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A. El-Sayed Ahmed M. A. Bakhit

Abstract

Our goal in this paper is to introduce some new sequences of some mero-
morphic function spaces, which will be called b, and gg-sequences. Our
study is motivated by the theories of normal, Q% and meromorphic Besov
functions. For a non-normal function f the sequences of points {a,} and
{b,} for which

nlgrc}oﬂ — |an|*)f*(an) = +o0 and
lim [ (7)1 = 12P)772(1 = |pu, () PYdA(z) = +oo

or

lim //A(f#(z))zK(z,an)dA(z) = +oo

n—oo

are considered and compared with each other. Finally, non-normal mero-
morphic functions are described in terms of the distribution of the values of
these meromorphic functions.

1 Introduction

Let A = {z : |z| < 1} be the open unit disk in the complex plane C and let dA(z)
be the Euclidean area element on A. Let M(A) denote the class of functions
meromorphic in A. The pseudohyperbolic distance between z and a is given by
0(z,a) = |@a(z)|, where @,(z) = {=% is the Mdbius transformation of A. For

0<r<1letAlar) ={z€A:0(za) <r} be the pseudohyperbolic disk with
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center 2 € A and radius 7. For 0 < g < coand 0 < s < oo, the classes M*(p, q,5)
are defined in [15] as follows:

M(p,q,5) = {f € M(a) : sup J] @) (1= EP) (1= lgu(2)P) dAG) < oo},
ae
ey
where f#(z) = 1H f(( ))|‘2 is the spherical derivative of f. The classes M*(g,q — 2,0)
are called the Besov-type classes, they are denoted by B#, where
= {f € M(A) : sup // ]z|2)q_2dA(z) < oo}
aen

But in this paper the meromorphic Besov-type classes always refer to the classes
M*(q,4—2,5). Let0 < g < coand 0 < s < oo. Then the Besov-type classes are
defined by:

= (€M) sup [ (@) (0~ )"0~ (e dAG) < o),
ae
, )
where the weight function is (1 — |z|*)" (1 — |@.(2)|*)" and z € A.
For more information about holomorphic and meromorphic Besov classes, we

refer to [5, 6, 10, 11, 12, 14, 17, 18, 23] and others.
Recently Wulan [20] gave the following definition:

Definition 1.1. Let K : [0,00) — [0, 00) be a nondecreasing function. A function f
meromorphic in A is said to belong to the class Qf if

4, 2
ilellz //A (f"(2)) K(g(z,a))dA(z) < oo,

where, the function §(z,a) = In| L 1-az % | is defined as the composition of the Mobius trans-

formation ¢, and the fundamental solution of the two-dimensional real Laplacian.

Q¥ space has been studied during the last few years (see e.g [8, 9] and others).
The meromorphic counterpart of the Bloch space is the class of normal functions
N (see[1,2,15, 16, 21]), which is defined as follows:

Definition 1.2. Let f be a meromorphic function in A. If

1fllar = sup(1 = [z*) f*(z) < o, 3)

z€A
then f belongs to the class N of normal functions.

Definition 1.3. ([4]) Let f be a meromorphic function in A. A sequence of points {a, }
(lan| — 1) in A'is called a g r—sequence if

hmf (ay)(1— ]an| ) = 4o0. 4)

n—oo

Now, we will introduce the following definitions:
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Definition 1.4. Let f be a meromorphic functionin A,2 < g < c0oand 0 < s < co. A
sequence of points {an }(|an| — 1) in A is called a bq—sequence if

lim ([ (#2)"(1 = P2 (1~ |ga,(2)) dAG) = +eo (5)
Definition 1.5. Let f be a meromorphic function in A. For a function K, K : [0, c0) —
0, 00). A sequence of points {an }(|an| — 1) in A is called a qx—sequence if

fim / /A (F*(2))2K(g(z, an))dA(z) = +oco. ©)

n—oo

2 by and q) —sequences

In this section, we study some new sequences of some meromorphic function
spaces such as b; and g —sequences. Our study is motivated by the theories of
normal and meromorphic Besov functions. We prove various results about these
sequences. For example, if {a, } is a qn sequence for the meromorphic function f
and {b,} is a sequence with ¢(a,,b,) — 0asn — oo, where o(ay,, b,) denotes the
pseudohyperbolic distance, then {b,, } is a b; sequence for f for every g > 2.

We will need the following definition in the sequel:

Definition 2.1. [19] Let f be a meromorphic function in C. If the family { f (z + a,)} is
normal for any sequence {a, } of complex numbers, then f is a Yosida function y(z).

Theorem 2.1. Let f be a meromorphic function in A. If {a,} is a gar—sequence, then
any sequence of points {b,} in A for which o(a,,b,) — 0 is a bq—sequence for all g,
2 < g < oo.

Proof. By([19], theorem 4.4.1) with f = 0 and a = 1, there exist sequences {b,, } C
Aand {p,} C R, with ¢(a,, b,) — 0and

Pn
Al Y @

where the sequence of functions {f,(t)} = {f(b, + pnt)} converges uniformly
on each compact subset of C to a nonconstant Yosida function y(t). Then

sup [ (74(2))7 (1= [2P)72 (1 g, (2) ) 4AG)

//A(bn,%)(f#(Z))q(l )2 (1 = g, (2)P) dA(2)

[, o, DI~ 00+ put P20~ g, (6 4 put) 393"
_ 2\ 12 o 2§
— // |yﬁ(t)|q<1 |bn+l9nt| ) % (1_ ’ by _(bn+]9nt) ) dA(t)
A(0r) Pn 1-by, (bn + pnt)

= (yh(6)1 1= [bu o+ putl” q_zx 1- L 2 SdA(t).
//A(O,r) ( Pn ) ( )

1—|by|?
D

Vv

Vv
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By the uniformly convergence, we have

[, omaan — [[ - @*ordan,

and this last integral is positive, because y(t) is a nonconstant meromorphic func-
tion. Moreover, using (7) as n — oo, we obtain that

1 2
1-— DI 1.
put "
Then, we conclude that
_ 2\ 92 2\ S
[, o (R (1) A — o,
A(0,) P % —a,

and it follows for all g, where 2 < g < o that

@I = 12272 (1= gy, (2)P) dAR) — e,
then {b,} € A is a by—sequence for all g, 2 < g < co. Thus the proof of Theorem
2.1 is established.
Theorem 2.2. There exist a non-normal function f and {a, } in Awhichisa b,—sequence

forall q,2 < q < oo, but {a,} is not a g —sequence.

Proof. By ([4] theorem 2), we can consider a function f(z) = exp (1=;) be not

normal, i = v/—1. Choose a sequence {b,} = {
obtain that

2 .
11712} and by a computation, we

lim (1 — [by|?) f*(by) = +oo.

By Theorem 2.1 for any sequence of points {a,} in A for which ¢ (a,, b,) — 0,

lim //A(f#(Z))”’(l — |z|2)q—2(1 . |(Pu,1(Z)|2)SdA(z) oo,

n—oo

for all g, 2 < g < oo. Now we choose {a,} = {1112 - njn3} and notice that
o(an,by) — 0. But
lim (1 — |a,|?) f*(a,) = 0.

n—oo

Thus {a, } is just one we need.

Theorem 2.3. Let f be a meromorphic function in A and let 2 < ¢q' < q < oo and
0 < s’ <'s < oo.If, for a sequence of points {a, } in A,

lim [[ (£1(2))7(1 = 22)72(1 = |gu, (2) ) dA(2) = +oo, ®)

n—oo

then

lim ([ (@) (1= P21~ lon, D) dAG) =+ )

n—oo
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Proof. If assumption (8) holds for 2 < ¢’ < g < 00 and 0 < s’ < s < oo, then by
Holder’s inequality, we have that

[P @) A= =BT (1~ lgn, () ) dAR)

< (Ff(2))1(1 = 2772 (1~ |0, (2)|*) dA(2)
A

NS

/

1)

o sty (1=
< ([fa-len@R T - ) 2aam)
%’
= ([ @ra - By~ lpw @) dA)
s'g—sq’ (1_4_/)
([ a=1oP) S Paa)
A
Since it is easy to check (% —2)=(k—2)>—1,forx = q ;q > 1, then we
obtain that

s 7sq
//1—]w| D dA(w //1—]w| &2 4 A(w) < C < o0, for C > 0.
Thus,

M*(q,9 —2,5) € M*(q',q' = 2,¢),

Hence, we obtain that

// f# Z q/ 1 — |Z|2)EII—2(1 o |§0an (Z)|2)S/dA(Z)
> [[ @1 - ERH - a2 AAR) = +oo

Then assumption (9) holds. Hence the proof of Theorem 2.3 is completed.

Remark 2.1. By assumption (8), we know that f ¢ M*(q,q — 2,s). Since the function
classes M*(q,q — 2,s) have a nesting property, f ¢ M*(q',q' —2,s'), for ¢ < q and
0 < s’ < s < co. However, Theorem 2.3 gives more information about this situation
showing that the same sequence {ay }, which breaks the M*(q,q — 2, s)—condition, also
breaks M*(q',q' — 2, ") —condition.

Remark 2.2. In fact, from the proof of Theorem 2.3, we can see that if for a fixed ro,
0<ro<land R >0,

7115120// anro ’Z| )" 2(1_ |9a, (2)] )sdA(Z) = +09,

then there exists a sequence of points {b, } in Ug = {z: (1 — |@a(z) |2) > R}, such that

lim (1 — |by| )f#( n) = +oo.

n—oo
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Theorem 2.4. Let f be a meromorphic function in A. If, for a sequence of points {a, } in
A,
lim (1 — |a,|?) f*(an) = +oo, (10)

n—oo

then for the same sequence {a, }

n—oo

. //A(an,r) (@)1~ 1217)T72 (1~ [ 90, (2) ") "dA(2) = +eo,

holds forall q,s, 2 < g <o ,0<s <o andallr,0 <r <1

Proof. Suppose that (10) holds. If there exists an 7y, 0 < rp < land p,1 < p < oo,
such that

lim sup [ (7)1~ 21721~ lga, (2)/) dA(2) = M < too

n—oo

then there exists a subsequence {a,, } of {a,}, such that
I (@0 = P2 |ga, () AAR) < M+1,
A(ank/rO) k

for k sufficiently large.
Now, choose an 11,0 < ry <o, Aay,,r1) = {z € A:| ¢4, (z) [< 11}, satisfying

M+1 < T
(1 _ r%)s—&-q—z 2°
It follows that
M+1 7T
# 1dA << —,
//A(ank,rl)(f (2))1dA(z) < (1—r3)s+a-2 = 2

for (1 — |@a, (2)]?) = (1 —1).
By Dufresnoy’s theorem (see [16] pp.83), we have (1 — |a,, |?) f*(as,) < % , which
contradicts our assumption. Hence the proof of Theorem 2.4 is completed.

Theorem 2.5. Let f be a meromorphic function in A. Suppose for 0 < p < oo, there
exists a sequence of points {a,} C A, such that

lim [ (@)1= 12P)72(1 = [ga, (2) PV dA) = +oo.

n—oo

Then, for any sequence of points {by, } in A for which o(a,, b,) — 0,

tim [/ (#1270 = 221721~ gy, () dA() = +eo.

n—oo
Proof. Choose positive constants M; and M, such that My < Mj. Let

Uy, = {z: (1= 19a,(2)]) > My} and Uy, = {z: (1= |9a, (2)*) > Ma}.
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Then if w € U, , z € A\Uj, and C(1 — |¢q,(2)[*) < (1 — [y, (w)|?) for some
constant C > 0.
This means for all n that,

//A\UX/IZ (f#(Z))q(l — |z’2)[]—2 (1 — |§0bn (Z)IZ)SdA(Z)
> CS//A\U” (F 2))7(1 = |z]*)72(1 — |@a, (Z)|2)SdA(Z), a1

for any sequence of points {b,} in A for which o(a,, b,) — 0.1If

Jing, sup //A\UXAZ (@)1~ 1227721~ [9a, (2)|) dA(z) = +oo,

n—oo

Then, by (11)

lim sup //A\% (FH2)7(1 = 22172 (1 — | gy, (2)2) dA(z) = +oo.

n—oo

Also, if

n—oo

25, 5P //UgAZ (FH(2)7 (1= 121)772 (1~ [ 9, (2) ) "dA(2) = +eo,

then, we have two different cases:
Either (i) there exists a sequence of points {c,} in LI]’\’/Iz for which o(ay,,c,) — 0,
such that

lim (1= [cq[2)f*(ca) = +oo,

n—oo

or (ii) there exists rg, 0 < rg < e~™2 and k > 0, such that
(1—|z2)f*(z) <k, forall z € A(ay, o).
If (i) is true, then, by Theorem 2.1, for above {b,}, for which o (a,, b,) — 0,

g, sup //A(f#(Z))q(l —[21)772 (1~ |y, (2)|*) dA(z) = +oo,

n—oo

since 0(by, cy) — 0. On the other hand, if (ii) holds, then using the same conclu-
sions for weight functions we see that necessarily for any sequence of points {b, }
for which o(ay,, b,) — 0,

lim sup [ (£(2))7(1 = 2P)72(1 = gy, (2) ) dA() = +eo.

n—oo

This completes the proof.
Now, we consider the following question.
Question 2.1 Let 1 < g < oo for any sequence of points {a, } and suppose that

lim ([ (@)1= 2221~ Ign, (2) ) IA() = +eo

n—oo

Is it true for ¢/, where g < ¢/,

tim sup [/ (F4(2)7 (1= [22)72(1 = g, (2) ) dA(z) = +oo?

We answer the question by Theorem 2.6.
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Definition 2.2. Let 2 < q < co. For any sequence of points {a,} in A is a m,—sequence

if

Our answer to Question 2.1 is naturally as follows:

Theorem 2.6. Let 2 < q < oo and suppose that

n—oo

tim [] (7)1 = 22720 = [gu, (2) PV dA) = +oo.

If the sequence of points {a,} in A is not a my—sequence, then for any q' and q <
q" with q' +s > 1, then we have

tim [[ (F(2)7 (1= [22)72(1 = |gu, () dA) = +eo.

n—oo

Proof. Since,

(i) M*(q,9 —2,8) C N forallg, 2<g<oand 0<s<1
(see [15] theorem 3.3.3).

(if) U2<q<q,M#(q,q —2,5) C M*(q',q' —2,5) forall g, where 2 < g < oo

and 0 < s <1 with ¢’ +s > 1, the proof of this result can be found in [15]. So, it
is easy to see that

n—oo

lim [] ()7 (1= P 2(1 = |ga, () dA) = +oo.

3 qk and q\r-sequences

Now, we study b; and gx-sequences. We prove many results about these se-
quences. Our results are obtained by the help of normal and Q% functions. For
example, if {a,} is a gy sequence for the meromorphic function f and {b,} is a
sequence with o(ay,,b,) — 0asn — oo, then {b,} is a gk sequence for f.

Now, we give the following theorem:

Theorem 3.1. Let f be a meromorphic function in A. If {a,} is a g —sequence, then
any sequence of points {b,} in A for which o(a,,b,) — 0 is a qx—sequence for all K,
K(t) — ocoast — oo.

Proof. By ([7], theorem 7.2), there exist sequences {c¢,} C Aand {p,} C R, with

Pn
o(ay,¢cy) — 0 and 0, 12

where the sequence of functions {f,(t)} = {f(cn + pnt)} converges uniformly
on each compact subset of C to a nonconstant meromorphic function y(¢).
For a fixed R > 0set A, = {z : z = ¢, + put, |t| < R}. Now, for any sequence
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of points {b,} C A, for which o(a,,¢,) — 0, we have o(b,,c,) — 0 since
o(an,cn) — 0. Thus, for n sufficiently large, we obtain that

An=1{z:z=cutput |t <R} C 0w = {z:]gs,(2)] < 3 }.
Therefore, we get by change of variables
[, (@) K(s(z b))
> [[ (@)K b)dA)
=[], @K (slen + put br)dALR).

By the uniformly convergence, we have

/ /t|< AP dA() — / / ok (v*(1)*dA(t),

and the last integral is finite and non-zero, because y(f) is a non-constant mero-
morphic function. However, g(c,, + put,by) — +00 as n — oo uniformly, for
|t| < R, we obtain that

//t|<R(y#(Z))2K(g(Cn + Pnt, bn)dA(Z) oo,

In fact,

1 - bn(c;/l + pnt) ’
Cn + put — by

Moreover, using (12) as n — oo, we obtain that

g(cn + put, by) = log

‘ Cn+pnt_bn ‘ < |Cn_bn|+pn|t|

1= bu(cn + put) 11— bucu| — pulbat|

Cn__bn Prﬁ|
1—bycy |[1—bpcn|
0.
1— Piﬁ\
|1—bpcy|

For all K, K(t) — oo as t — o9, it follows that

@K s b)dAR) — o,
then {b,} € A is a qx—sequence for all K. Thus the proof of Theorem 3.1 is
therefore established.
Theorem 3.2. There exist a non-normal function f and {a,} in A which is a qx—se-

quence for all K, K : [0,00) — [0, 00), but {a,} is not a g —sequence.

Proof. The proof of this theorem is much akin to the proof of Theorem 2.2. So, it
will be omitted.
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4 Non-normal functions and p, —sequences.

In this section we define the concept of p\r —sequences of meromorphic functions
which allows one to describe non-normal functions. We give the necessary and
sufficient condition for the sequence of points {z,}, where lim,,_.« |z,| = 1 to be
a pr—sequence in terms of the growth of f.

Makhmutov defined the concept of pz—sequences of holomorphic functions f(z)
in the unit disk A (see [13], pp. 9 definition 5.2.) as follows:

Definition 4.1. A sequence of points {z,}, lim,_|z,| = 1, is a pp—sequence of
holomorphic functions f(z) € A, if there are two sequences of numbers {e,}, where
limy, e [€n| = 0 and {M, }, lim,_.co M, = oo, for which the diameter of f(A(zy, €n))
exceeds { My, } for each n.

Now, we define p\r—sequences of meromorphic functions.

Definition 4.2. A sequence of points {z, } with lim,_.|zx| = 1, is a pr—sequence of
meromorphic functions f, if there are two sequences of numbers {e,}, where
limy, e &7 = 0 and {M, }, lim,_.co M, = oo, for which the diameter of f(A(ay, en))
exceeds { My, } for each n.

Now, we let

Artar) = [[ (F*(e) dxdy

be the area of the Riemann image of A(a, ) by f and

Lan =[] fE]d]

be the length of the Riemann image of the pseudohyperbolic circle I'(a, r) by f.
Let F(a,r) be the Riemann image of A(a,r) by f and F(a,r) be the projection
of F(a,r) to C. Let A¢(a,r) be the Euclidean area of F(a,r) and L(a,r) be the
length of the outer boundary of F(a,r). Itis clear that

Af(a,r) < Ag(a,r) and  Lg(a,r) < L¢(a,7)

foreacha € Aandeach 0 <r < 1.
Yamashita proved in [22] that, for any holomorphic function f(z) or a mero-
morphic function fin A,anya € Aand 0 <r <1,

Ay(a,r) )

7tr2

(1 - lal?)f*(a) < (
Le(a,r
(-l fa) < 00,

Now, we give the following important proposition.

Proposition 4.1. If f is a meromorphic function in A and {z,}, lim,_c|zs| = 1, is
such that
lim (1— [24[2)f*(22) = +oo,

n—oo

then {z, } is a p xr—sequence of the meromorphic function f.
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Proof. Suppose that f is a meromorphic function in A and {z, }, lim,_—|z,| = 1,

Tim (1= |za[2) f(z0) = +o0,
let
(1 - |Zn|2) = &p and M, = f#(zn)/

then there are two sequences of numbers {¢, }, { M, }, where

lim |¢,| =0 and lim M, = 0.
n—oo n—oo

By Definition 4.2, we have a sequence of points {z, } which is a p\r—sequence.

If the sequence of points {z,} is a pyr—sequence of the meromorphic function

f, then there are two sequences lim;, . (1 — |z4|?) = 0 as lim;_«|z4| = 1 and

limy,—.co f#(24) = +00. Our proposition is therefore proved.

Theorem 4.1. A meromorphic function f is not a normal function if and only if it has a
o\ —sequence of points.

Proof. Necessity. If f ¢ N, then there exists a sequence {z,} which satisfies the
condition
Hm (1 — |z,|*) f*(zn) = +oo.

n—oo

By Proposition 4.1, the sequence {z,} is a pyr—sequence of the meromorphic
function f.

Sufficiency. Let {a, } be a p\r—sequence of the meromorphic function f.

If f € N by ([13] theorem 3.4) we have L¢(a,7) and A¢(a, ) are bounded for any
0 < r < 1,1ie. the diameters of f(A(a,,r)) don’t tend to infinity. This contradicts
our assumption that {a, } is a ppr—sequence of f.

Theorem 4.2. Let {a, } be a pr—sequence of the meromorphic function f and {b,} be
such that
lim o(ay,,b,) =0, (13)

n—oo

then {by} is a p r—sequence of f too.

Proof. Let {a,} be a ppr—sequence of the meromorphic function f and {b,} be
not a py—sequence of f. Then by Definition 4.2 for each § > 0, we have
lim Af(by,0) < o0,

and
lim Ef(bn,é) < 00,

n—oo

Suppose ¢ = %. As lim, o 0(ay,b,) = 0, then beginning with some N for any
n > N, we obtain
A(ay,e) C A(by,d8) and hence,

f(A(an,€)) C f(A(bn,9)).
Thus,
dim f(A(a,,€)) — o0 as n — oo,
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which implies that,
dim f(A(by,d)) — o0
This is a contradiction from our hypothesis.

Remark 4.1. We need to remind the reader that the pseudohyperbolic circle T(z,, pn)

with center z, and radius p, is the same as Euclidean circle {z : |z — 2,| = r, with

—lz, 2 1— . . .
% and Z, = zy ‘p"z‘ 7. In particular, py — 0 if and only if —"— — 0.
1=|zu[?0n 1=|zu[?0 |2n]

Ty =
Now we prove the next theorem :

Theorem 4.3. A sequence {z,}, (|zu| — 1), is a ppr—sequence of the meromorphic
function f if and only if there is a sequence of positive numbers {e,}, (e, — 0) such
that

lim  sup (1—|z|?)f*(z) = +oo. (14)

n—0o0
- 2EN(zn,€n)

Proof. Necessity. Let {z, } be a p\r—sequence of the meromorphic function f.
Then by ([3], Lemma 2), there are sequences {a, } and {by,} such that

lim o(ay,z,) =0, lim o(b,,z,) =0 and 11m | (an) — f(by)] >

n—oo n—oo

N =

Suppose é, = max{|z, — au|, |zn — bn|} and L, is a segment connecting the points
a, and by,. Since ay, and by lie in a disk with hyperbolic radius tending to zero
then by Remark 4.1 e must also tend to zero. For some w,, € L,,, we have

that

o = balfH ) = [ Pl 2| [ e

4 1 ‘

# # 1
= (@)~ f(b0)] = 5.

On the other hand for sufficiently large 1, we have that

1 1 — (|zn| + 6n)?
_ 2\ > (1— 2 > n n
(1= ) () 2 (1= faonP) g 2 =
:1_|Zn|2_|zn|_5_n
45, 2 4°

The last expression tends to co and condition (14) is proved .
Sufficiency. Let {z,, } be such sequence of points that
Lim (1= |z,*)f¥(z,) = +oo,
{en} be a sequence of positive numbers, lim,_ €&, =0 and z,, € A(zy,€,) for
each n. Then by Proposition 4.1 the sequence {z, } is a ppsr—sequence of f and by

the Theorem 4.2 the sequence {z,}, which satisfies condition (13),
limy, e 0(z,,,24) = 0, is also a pr—sequence of the meromorphic function f.
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