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Abstract

Our goal in this paper is to introduce some new sequences of some mero-
morphic function spaces, which will be called bq and qK-sequences. Our
study is motivated by the theories of normal, Q#

K and meromorphic Besov
functions. For a non-normal function f the sequences of points {an} and
{bn} for which

lim
n→∞

(1 − |an |2) f #(an) = +∞ and

lim
n→∞

∫∫

∆

(

f #(z)
)q

(1 − |z|2)q−2(1 − |ϕan(z)|2)sdA(z) = +∞

or

lim
n→∞

∫∫

∆

(

f #(z)
)2

K(z, an)dA(z) = +∞

are considered and compared with each other. Finally, non-normal mero-
morphic functions are described in terms of the distribution of the values of
these meromorphic functions.

1 Introduction

Let ∆ = {z : |z| < 1} be the open unit disk in the complex plane C and let dA(z)
be the Euclidean area element on ∆. Let M(∆) denote the class of functions
meromorphic in ∆. The pseudohyperbolic distance between z and a is given by
σ(z, a) = |ϕa(z)|, where ϕa(z) = a−z

1−āz is the Möbius transformation of ∆. For
0 < r < 1, let ∆(a, r) = {z ∈ ∆ : σ(z, a) < r} be the pseudohyperbolic disk with
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center a ∈ ∆ and radius r. For 0 < q < ∞ and 0 < s < ∞, the classes M#(p, q, s)
are defined in [15] as follows:

M#(p, q, s) =

{

f ∈ M(∆) : sup
a∈∆

∫∫

∆

( f #(z))
p(

1−|z|2)q(
1−|ϕa(z)|2)s

dA(z) < ∞

}

,

(1)

where f #(z) =
| f ′(z)|

1+| f (z)|2 is the spherical derivative of f . The classes M#(q, q − 2, 0)

are called the Besov-type classes, they are denoted by B#
q , where

B#
q =

{

f ∈ M(∆) : sup
a∈∆

∫∫

∆

(

f #(z)
)q(

1 − |z|2
)q−2

dA(z) < ∞
}

.

But in this paper the meromorphic Besov-type classes always refer to the classes
M#(q, q − 2, s). Let 0 < q < ∞ and 0 < s < ∞. Then the Besov-type classes are
defined by:

B#
q,s =

{

f ∈ M(∆) : sup
a∈∆

∫∫

∆

(

f #(z)
)q(

1 − |z|2
)q−2(

1 − |ϕa(z)|2
)s

dA(z) < ∞
}

,

(2)

where the weight function is (1 − |z|2
)q−2(

1 − |ϕa(z)|2
)s

and z ∈ ∆.
For more information about holomorphic and meromorphic Besov classes, we
refer to [5, 6, 10, 11, 12, 14, 17, 18, 23] and others.
Recently Wulan [20] gave the following definition:

Definition 1.1. Let K : [0, ∞) → [0, ∞) be a nondecreasing function. A function f
meromorphic in ∆ is said to belong to the class Q#

K if

sup
a∈∆

∫∫

∆

(

f #(z)
)2

K
(

g(z, a)
)

dA(z) < ∞,

where, the function g(z, a) = ln
∣

∣

1−āz
a−z

∣

∣ is defined as the composition of the Möbius trans-
formation ϕa and the fundamental solution of the two-dimensional real Laplacian.

Q#
K space has been studied during the last few years (see e.g [8, 9] and others).

The meromorphic counterpart of the Bloch space is the class of normal functions
N (see [1, 2, 15, 16, 21]), which is defined as follows:

Definition 1.2. Let f be a meromorphic function in ∆. If

‖ f‖N = sup
z∈∆

(1 − |z|2) f #(z) < ∞, (3)

then f belongs to the class N of normal functions.

Definition 1.3. ([4]) Let f be a meromorphic function in ∆. A sequence of points {an}
(|an| → 1) in ∆ is called a qN−sequence if

lim
n→∞

f #(an)(1 − |an|2) = +∞. (4)

Now, we will introduce the following definitions:
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Definition 1.4. Let f be a meromorphic function in ∆, 2 < q < ∞ and 0 < s < ∞. A
sequence of points {an}(|an| → 1) in ∆ is called a bq−sequence if

lim
n→∞

∫∫

∆

(

f #(z)
)q

(1 − |z|2)q−2
(

1 − |ϕan(z)|2
)s

dA(z) = +∞. (5)

Definition 1.5. Let f be a meromorphic function in ∆. For a function K, K : [0, ∞) −→
[0, ∞). A sequence of points {an}(|an| → 1) in ∆ is called a qK−sequence if

lim
n→∞

∫∫

∆

(

f #(z)
)2

K(g(z, an))dA(z) = +∞. (6)

2 bq and qN−sequences

In this section, we study some new sequences of some meromorphic function
spaces such as bq and qN−sequences. Our study is motivated by the theories of
normal and meromorphic Besov functions. We prove various results about these
sequences. For example, if {an} is a qN sequence for the meromorphic function f
and {bn} is a sequence with σ(an, bn) → 0 as n → ∞, where σ(an, bn) denotes the
pseudohyperbolic distance, then {bn} is a bq sequence for f for every q > 2.
We will need the following definition in the sequel:

Definition 2.1. [19] Let f be a meromorphic function in C. If the family { f (z + an)} is
normal for any sequence {an} of complex numbers, then f is a Yosida function y(z).

Theorem 2.1. Let f be a meromorphic function in ∆. If {an} is a qN−sequence, then
any sequence of points {bn} in ∆ for which σ(an, bn) → 0 is a bq−sequence for all q,
2 < q < ∞.

Proof. By([19], theorem 4.4.1) with β = 0 and α = 1, there exist sequences {bn} ⊂
∆ and {pn} ⊂ R+, with σ(an, bn) −→ 0 and

pn

(1 − |bn|2)
−→ 0, (7)

where the sequence of functions { fn(t)} = { f (bn + pnt)} converges uniformly
on each compact subset of C to a nonconstant Yosida function y(t). Then

sup
bn∈∆

∫∫

∆

( f #(z))q(1 − |z|2)q−2
(

1 − |ϕbn
(z)|2

)s
dA(z)

≥
∫∫

∆(bn, 1
e )

( f #(z))q(1 − |z|2)q−2
(

1 − |ϕbn
(z)|2

)s
dA(z)

≥
∫∫

∆(0,r)
(y#

n(t))q(1 − |bn + pnt|2)q−2
(

1 − |ϕbn
(bn + pnt)|2

)s
p

2−q
n dA(t)

=
∫∫

∆(0,r)
|y#

n(t)|q
(

1 − |bn + pnt|2
pn

)q−2

×
(

1 −
∣

∣

∣

∣

bn − (bn + pnt)

1 − b̄n(bn + pnt)

∣

∣

∣

∣

2)s

dA(t)

=
∫∫

∆(0,r)
(y#

n(t))q

(

1 − |bn + pnt|2
pn

)q−2

×
(

1 −
∣

∣

∣

∣

1
1−|bn|2

pnt − b̄n

∣

∣

∣

∣

2)s

dA(t) .
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By the uniformly convergence, we have
∫∫

∆(0,r)
( f #

n (t))qdA(t) −→
∫∫

∆(0,r)
(y#(t))qdA(t),

and this last integral is positive, because y(t) is a nonconstant meromorphic func-
tion. Moreover, using (7) as n → ∞, we obtain that

1 −
∣

∣

∣

∣

1
1−|bn|2

pnt − b̄n

∣

∣

∣

∣

2

−→ 1.

Then, we conclude that

∫∫

∆(0,r)
(y#

n(t))q

(

1 − |an + pnt|2
pn

)q−2

×
(

1 −
∣

∣

∣

∣

1
1−|an|2

pnt − ān

∣

∣

∣

∣

2)s

dA(t) −→ ∞,

and it follows for all q, where 2 < q < ∞ that
∫∫

∆

( f #(z))q(1 − |z|2)q−2
(

1 − |ϕbn
(z)|2)s

dA(z) −→ ∞,

then {bn} ∈ ∆ is a bq−sequence for all q, 2 < q < ∞. Thus the proof of Theorem
2.1 is established.

Theorem 2.2. There exist a non-normal function f and {an} in ∆ which is a bq−sequence
for all q, 2 < q < ∞, but {an} is not a qN−sequence.

Proof. By ([4] theorem 2), we can consider a function f (z) = exp ( i
1−z) be not

normal, i =
√
−1 . Choose a sequence {bn} = { n2

1+n2} and by a computation, we

obtain that
lim

n→∞
(1 − |bn|2) f #(bn) = +∞.

By Theorem 2.1 for any sequence of points {an} in ∆ for which σ(an, bn) → 0,

lim
n→∞

∫∫

∆

( f #(z))q(1 − |z|2)q−2
(

1 − |ϕan(z)|2)s
dA(z) = +∞,

for all q, 2 < q < ∞. Now we choose {an} = { n2

1+n2 − i
n+n3} and notice that

σ(an, bn) → 0. But
lim

n→∞
(1 − |an|2) f #(an) = 0.

Thus {an} is just one we need.

Theorem 2.3. Let f be a meromorphic function in ∆ and let 2 < q′ < q < ∞ and
0 < s′ < s < ∞. If, for a sequence of points {an} in ∆,

lim
n→∞

∫∫

∆

( f #(z))q(1 − |z|2)q−2
(

1 − |ϕan(z)|2
)s

dA(z) = +∞, (8)

then

lim
n→∞

∫∫

∆

( f #(z))q′ (1 − |z|2)q′−2
(

1 − |ϕan(z)|2)s′
dA(z) = +∞. (9)
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Proof. If assumption (8) holds for 2 < q′ < q < ∞ and 0 < s′ < s < ∞, then by
Hölder’s inequality, we have that

∫∫

∆

( f #(z))q′ (1 − |z|2)q′−2
(

1 − |ϕan(z)|2)s′
dA(z)

≤
(

∫∫

∆

( f #(z))q(1 − |z|2)q−2
(

1 − |ϕan(z)|2
)s

dA(z)

)

q′
q

×
(

∫∫

∆

(1 − |ϕan(z)|2)(s′− sq′
q )(

q

q−q′ )(1 − |z|2)−2dA(z)

)(1− q′
q )

=

(

∫∫

∆

( f #(z))q(1 − |z|2)q−2
(

1 − |ϕan(z)|2
)s

dA(z)

)

q′
q

×
(

∫∫

∆

(1 − |w|2)(
s′q−sq′

q−q′ −2)
dA(w)

)(1− q′
q )

.

Since it is easy to check ( s′q−sq′
q−q′ − 2) = (κ − 2) > −1, for κ = s′q−sq′

q−q′ > 1 , then we

obtain that

∫∫

∆

(1 − |w|2)(
s′q−sq′

q−q′ −2)
dA(w) =

∫∫

∆

(1 − |w|2)(κ−2)dA(w) < C < ∞, for C > 0.

Thus,
M#(q, q − 2, s) ⊂ M#(q′, q′ − 2, s′),

Hence, we obtain that
∫∫

∆

( f #(z))q′(1 − |z|2)q′−2
(

1 − |ϕan(z)|2)s′
dA(z)

≥
∫∫

∆

( f #(z))q(1 − |z|2)q−2
(

1 − |ϕan(z)|2
)s

dA(z) = +∞.

Then assumption (9) holds. Hence the proof of Theorem 2.3 is completed.

Remark 2.1. By assumption (8), we know that f /∈ M#(q, q − 2, s). Since the function
classes M#(q, q − 2, s) have a nesting property, f /∈ M#(q′, q′ − 2, s′), for q′ < q and
0 < s′ < s < ∞. However, Theorem 2.3 gives more information about this situation
showing that the same sequence {an}, which breaks the M#(q, q − 2, s)−condition, also
breaks M#(q′, q′ − 2, s′)−condition.

Remark 2.2. In fact, from the proof of Theorem 2.3, we can see that if for a fixed r0,
0 < r0 < 1 and R > 0,

lim
n→∞

∫∫

∆(an,r0)
( f #(z))q(1 − |z|2)q−2

(

1 − |ϕan(z)|2
)s

dA(z) = +∞,

then there exists a sequence of points {bn} in Un
R = {z : (1− |ϕa(z)|2

)

> R}, such that

lim
n→∞

(1 − |bn|2) f #(bn) = +∞.
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Theorem 2.4. Let f be a meromorphic function in ∆. If, for a sequence of points {an} in
∆,

lim
n→∞

(1 − |an|2) f #(an) = +∞, (10)

then for the same sequence {an}

lim
n→∞

∫∫

∆(an,r)
( f #(z))q(1 − |z|2)q−2

(

1 − |ϕan(z)|2
)s

dA(z) = +∞,

holds for all q, s, 2 < q < ∞ , 0 < s < ∞ and all r, 0 < r < 1.

Proof. Suppose that (10) holds. If there exists an r0, 0 < r0 < 1 and p, 1 < p < ∞,
such that

lim
n→∞

sup
∫∫

∆(an,r0)
( f #(z))q(1 − |z|2)q−2

(

1 − |ϕan(z)|2)s
dA(z) = M < +∞,

then there exists a subsequence {ank
} of {an}, such that

∫∫

∆(ank
,r0)

( f #(z))q(1 − |z|2)q−2
(

1 − |ϕank
(z)|2

)s
dA(z) ≤ M + 1,

for k sufficiently large.
Now, choose an r1, 0 < r1 < r0, ∆(ank

, r1) = {z ∈ ∆ :| ϕank
(z) |< r1}, satisfying

M + 1

(1 − r2
1)

s+q−2
<

π

2
.

It follows that
∫∫

∆(ank
,r1)

( f #(z))qdA(z) ≤ M + 1

(1 − r2
1)

s+q−2
<

π

2
,

for (1 − |ϕank
(z)|2) ≥ (1 − r2

1).

By Dufresnoy’s theorem (see [16] pp.83 ), we have (1− |ank
|2) f #(ank

) ≤ 1
r1

, which

contradicts our assumption. Hence the proof of Theorem 2.4 is completed.

Theorem 2.5. Let f be a meromorphic function in ∆. Suppose for 0 < p < ∞, there
exists a sequence of points {an} ⊂ ∆, such that

lim
n→∞

∫∫

∆

( f #(z))q(1 − |z|2)q−2(1 − |ϕan(z)|2)sdA(z) = +∞.

Then, for any sequence of points {bn} in ∆ for which σ(an, bn) → 0,

lim
n→∞

∫∫

∆

( f #(z))q(1 − |z|2)q−2
(

1 − |ϕbn
(z)|2

)s
dA(z) = +∞.

Proof. Choose positive constants M1 and M2 such that M2 < M1. Let

Un
M1

= {z : (1 − |ϕan(z)|2) > M1} and Un
M2

= {z : (1 − |ϕan(z)|2) > M2}.
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Then if w ∈ Un
M1

, z ∈ ∆\Un
M2

and C(1 − |ϕan(z)|2) ≤ (1 − |ϕbn
(w)|2) for some

constant C > 0.
This means for all n that,

∫∫

∆\Un
M2

( f #(z))q(1 − |z|2)q−2
(

1 − |ϕbn
(z)|2)s

dA(z)

≥ Cs
∫∫

∆\Un
M2

( f #(z))q(1 − |z|2)q−2
(

1 − |ϕan(z)|2
)s

dA(z), (11)

for any sequence of points {bn} in ∆ for which σ(an, bn) → 0. If

lim
n→∞

sup
∫∫

∆\Un
M2

( f #(z))q(1 − |z|2)q−2
(

1 − |ϕan(z)|2)s
dA(z) = +∞,

Then, by (11)

lim
n→∞

sup
∫∫

∆\Un
M2

( f #(z))q(1 − |z|2)q−2
(

1 − |ϕbn
(z)|2

)s
dA(z) = +∞.

Also, if

lim
n→∞

sup
∫∫

Un
M2

( f #(z))q(1 − |z|2)q−2
(

1 − |ϕan(z)|2
)s

dA(z) = +∞,

then, we have two different cases:
Either (i) there exists a sequence of points {cn} in Un

M2
for which σ(an, cn) → 0,

such that
lim

n→∞
(1 − |cn|2) f #(cn) = +∞,

or (ii) there exists r0, 0 < r0 < e−M2 and k > 0, such that

(1 − |z|2) f #(z) ≤ k, for all z ∈ ∆(an, r0).

If (i) is true, then, by Theorem 2.1, for above {bn}, for which σ(an, bn) → 0,

lim
n→∞

sup
∫∫

∆

( f #(z))q(1 − |z|2)q−2
(

1 − |ϕbn
(z)|2)s

dA(z) = +∞ ,

since σ(bn, cn) → 0. On the other hand, if (ii) holds, then using the same conclu-
sions for weight functions we see that necessarily for any sequence of points {bn}
for which σ(an, bn) → 0,

lim
n→∞

sup
∫∫

∆

( f #(z))q(1 − |z|2)q−2
(

1 − |ϕbn
(z)|2

)s
dA(z) = +∞.

This completes the proof.
Now, we consider the following question.
Question 2.1 Let 1 < q < ∞ for any sequence of points {an} and suppose that

lim
n→∞

∫∫

∆

( f #(z))q(1 − |z|2)q−2
(

1 − |ϕan(z)|2)s
dA(z) = +∞.

Is it true for q′, where q < q′,

lim
n→∞

sup
∫∫

∆

( f #(z))q′ (1 − |z|2)q′−2
(

1 − |ϕan(z)|2
)s

dA(z) = +∞?

We answer the question by Theorem 2.6.
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Definition 2.2. Let 2 < q < ∞. For any sequence of points {an} in ∆ is a mq−sequence
if

lim
n→∞

sup
∫∫

∆

( f #(z))q(1 − |z|2)q−2
(

1 − |ϕan(z)|2
)q

dA(z) = +∞.

Our answer to Question 2.1 is naturally as follows:

Theorem 2.6. Let 2 < q < ∞ and suppose that

lim
n→∞

∫∫

∆

( f #(z))q(1 − |z|2)q−2(1 − |ϕan(z)|2)sdA(z) = +∞.

If the sequence of points {an} in ∆ is not a mq−sequence, then for any q′ and q <

q′ with q′ + s > 1, then we have

lim
n→∞

∫∫

∆

( f #(z))q′ (1 − |z|2)q′−2
(

1 − |ϕan(z)|2
)s

dA(z) = +∞.

Proof. Since,

(i) M#(q, q − 2, s) ⊂ N for all q, 2 < q < ∞ and 0 < s < 1

(see [15] theorem 3.3.3).

(ii)
⋃

2<q<q′
M#(q, q − 2, s) ( M#(q′, q′ − 2, s) for all q, where 2 < q < ∞

and 0 < s < 1 with q′ + s > 1, the proof of this result can be found in [15]. So, it
is easy to see that

lim
n→∞

∫∫

∆

( f #(z))q′ (1 − |z|2)q′−2
(

1 − |ϕan(z)|2
)s

dA(z) = +∞.

3 qK and qN -sequences

Now, we study bq and qN -sequences. We prove many results about these se-

quences. Our results are obtained by the help of normal and Q#
K functions. For

example, if {an} is a qN sequence for the meromorphic function f and {bn} is a
sequence with σ(an, bn) → 0 as n → ∞, then {bn} is a qK sequence for f .
Now, we give the following theorem:

Theorem 3.1. Let f be a meromorphic function in ∆. If {an} is a qN−sequence, then
any sequence of points {bn} in ∆ for which σ(an, bn) → 0 is a qK−sequence for all K,
K(t) → ∞ as t → ∞.

Proof. By ([7], theorem 7.2), there exist sequences {cn} ⊂ ∆ and {pn} ⊂ R+, with

σ(an, cn) −→ 0 and
pn

(1 − |cn|2)
−→ 0, (12)

where the sequence of functions { fn(t)} = { f (cn + pnt)} converges uniformly
on each compact subset of C to a nonconstant meromorphic function y(t).
For a fixed R > 0 set ∆n = {z : z = cn + pnt, |t| < R}. Now, for any sequence
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of points {bn} ⊂ ∆, for which σ(an, cn) −→ 0, we have σ(bn, cn) −→ 0 since
σ(an, cn) −→ 0. Thus, for n sufficiently large, we obtain that

∆n = {z : z = cn + pnt, |t| < R} ⊂ Ωn = {z : |ϕbn
(z)| <

1

e
}.

Therefore, we get by change of variables
∫∫

Ωn

( f #(z))2K(g(z, bn)dA(z)

≥
∫∫

∆n

( f #(z))2K(g(z, bn)dA(z)

=
∫∫

|t|<R
( f #(z))2K(g(cn + pnt, bn)dA(z).

By the uniformly convergence, we have
∫∫

|t|<R
( f #

n (t))2dA(t) −→
∫∫

|t|<R
(y#(t))2dA(t),

and the last integral is finite and non-zero, because y(t) is a non-constant mero-
morphic function. However, g(cn + pnt, bn) → +∞ as n → +∞ uniformly, for
|t| < R, we obtain that

∫∫

|t|<R
(y#(z))2K(g(cn + pnt, bn)dA(z) −→ ∞.

In fact,

g(cn + pnt, bn) = log

∣

∣

∣

∣

1 − bn(cn + pnt)

cn + pnt − bn

∣

∣

∣

∣

Moreover, using (12) as n → ∞, we obtain that

∣

∣

∣

∣

cn + pnt − bn

1 − bn(cn + pnt)

∣

∣

∣

∣

≤ |cn − bn| + pn|t|
|1 − bncn| − pn|bnt|

≤

∣

∣

∣

∣

cn−bn

1−bncn

∣

∣

∣

∣

+ pn|t|
|1−bncn |

1 − pn|t|
|1−bncn |

−→ 0.

For all K, K(t) → ∞ as t → ∞, it follows that
∫∫

∆

( f #(z))2K(g(z, bn)dA(z) −→ ∞,

then {bn} ∈ ∆ is a qK−sequence for all K. Thus the proof of Theorem 3.1 is
therefore established.

Theorem 3.2. There exist a non-normal function f and {an} in ∆ which is a qK−se-
quence for all K, K : [0, ∞) → [0, ∞), but {an} is not a qN−sequence.

Proof. The proof of this theorem is much akin to the proof of Theorem 2.2. So, it
will be omitted.
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4 Non-normal functions and ρN−sequences.

In this section we define the concept of ρN−sequences of meromorphic functions
which allows one to describe non-normal functions. We give the necessary and
sufficient condition for the sequence of points {zn}, where limn→∞ |zn| = 1 to be
a ρN−sequence in terms of the growth of f .
Makhmutov defined the concept of ρB−sequences of holomorphic functions f (z)
in the unit disk ∆ (see [13], pp. 9 definition 5.2.) as follows:

Definition 4.1. A sequence of points {zn}, limn→∞|zn| = 1, is a ρB−sequence of
holomorphic functions f (z) ∈ ∆, if there are two sequences of numbers {εn}, where
limn→∞ |εn| = 0 and {Mn}, limn→∞ Mn = ∞, for which the diameter of f (∆(zn , εn))
exceeds {Mn} for each n.

Now, we define ρN−sequences of meromorphic functions.

Definition 4.2. A sequence of points {zn} with limn→∞|zn| = 1, is a ρN−sequence of
meromorphic functions f , if there are two sequences of numbers {εn}, where
limn→∞ |εn| = 0 and {Mn}, limn→∞ Mn = ∞, for which the diameter of f (∆(an , εn))
exceeds {Mn} for each n.

Now, we let

A f (a, r) =
∫∫

∆(a,r)
( f #(z))2dxdy

be the area of the Riemann image of ∆(a, r) by f and

L(a, r) =
∫∫

∆(a,r)
f #(z) |dz|

be the length of the Riemann image of the pseudohyperbolic circle Γ(a, r) by f .
Let F(a, r) be the Riemann image of ∆(a, r) by f and F (a, r) be the projection
of F(a, r) to C. Let A f (a, r) be the Euclidean area of F (a, r) and L(a, r) be the
length of the outer boundary of F (a, r). It is clear that

A f (a, r) ≤ A f (a, r) and L f (a, r) ≤ L f (a, r)

for each a ∈ ∆ and each 0 < r < 1.
Yamashita proved in [22] that, for any holomorphic function f (z) or a mero-

morphic function f in ∆, any a ∈ ∆ and 0 < r < 1,

(1 − |a|2) f #(a) ≤
(A f (a, r)

πr2

)
1
2

,

(1 − |a|2) f #(a) ≤ L f (a, r)

2πr
.

Now, we give the following important proposition.

Proposition 4.1. If f is a meromorphic function in ∆ and {zn}, limn→∞|zn| = 1, is
such that

lim
n→∞

(1 − |zn|2) f #(zn) = +∞,

then {zn} is a ρN−sequence of the meromorphic function f .
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Proof. Suppose that f is a meromorphic function in ∆ and {zn}, limn→∞|zn| = 1,

lim
n→∞

(1 − |zn|2) f #(zn) = +∞,

let
(1 − |zn|2) = εn and Mn = f #(zn),

then there are two sequences of numbers {εn}, {Mn}, where

lim
n→∞

|εn| = 0 and lim
n→∞

Mn = 0.

By Definition 4.2, we have a sequence of points {zn} which is a ρN−sequence.
If the sequence of points {zn} is a ρN−sequence of the meromorphic function
f , then there are two sequences limn→∞ (1 − |zn|2) = 0 as limn→∞|zn| = 1 and
limn→∞ f #(zn) = +∞. Our proposition is therefore proved.

Theorem 4.1. A meromorphic function f is not a normal function if and only if it has a
ρN−sequence of points.

Proof. Necessity. If f /∈ N , then there exists a sequence {zn} which satisfies the
condition

lim
n→∞

(1 − |zn|2) f #(zn) = +∞.

By Proposition 4.1, the sequence {zn} is a ρN−sequence of the meromorphic
function f .
Sufficiency. Let {an} be a ρN−sequence of the meromorphic function f .
If f ∈ N by ([13] theorem 3.4) we have L f (a, r) and A f (a, r) are bounded for any
0 < r < 1, i.e. the diameters of f (∆(an , r)) don’t tend to infinity. This contradicts
our assumption that {an} is a ρN−sequence of f .

Theorem 4.2. Let {an} be a ρN−sequence of the meromorphic function f and {bn} be
such that

lim
n→∞

σ(an, bn) = 0, (13)

then {bn} is a ρN−sequence of f too.

Proof. Let {an} be a ρN−sequence of the meromorphic function f and {bn} be
not a ρN−sequence of f . Then by Definition 4.2 for each δ > 0, we have

lim
n→∞

A f (bn, δ) < ∞,

and
lim

n→∞
L f (bn, δ) < ∞.

Suppose ε = δ
2 . As limn→∞ σ(an, bn) = 0, then beginning with some N for any

n > N, we obtain
∆(an , ε) ⊂ ∆(bn, δ) and hence ,

f (∆(an , ε)) ⊂ f (∆(bn, δ)).

Thus,
dim f (∆(an , ε)) → ∞ as n → ∞,



406 A. El-Sayed Ahmed – M. A. Bakhit

which implies that,
dim f (∆(bn , δ)) → ∞.

This is a contradiction from our hypothesis.

Remark 4.1. We need to remind the reader that the pseudohyperbolic circle Γ(zn, ρn)
with center zn and radius ρn is the same as Euclidean circle {z : |z − ẑn| = rn with

rn = 1−|zn|2
1−|zn|2ρ2

n
and ẑn = zn

1−|ρn|2
1−|zn|2ρ2

n
. In particular, ρn → 0 if and only if rn

1−|zn|2 → 0.

Now we prove the next theorem :

Theorem 4.3. A sequence {zn}, (|zn| → 1), is a ρN−sequence of the meromorphic
function f if and only if there is a sequence of positive numbers {εn}, (εn → 0) such
that

lim
n→∞

sup
z∈∆(zn,εn)

(1 − |z|2) f #(z) = +∞. (14)

Proof. Necessity. Let {zn} be a ρN−sequence of the meromorphic function f .
Then by ([3], Lemma 2), there are sequences {an} and {bn} such that

lim
n→∞

σ(an, zn) = 0, lim
n→∞

σ(bn, zn) = 0 and lim
n→∞

| f #(an)− f #(bn)| ≥ 1

2
.

Suppose δn = max{|zn − an|, |zn − bn|} and Ln is a segment connecting the points
an and bn. Since an and bn lie in a disk with hyperbolic radius tending to zero

then by Remark 4.1, δn

1−|zn|2 must also tend to zero. For some wn ∈ Ln, we have

that

|an − bn| f #(wn) ≥
∫

Ln

f #(z)|dz| ≥
∣

∣

∣

∣

∫

Ln

f #(z)dz

∣

∣

∣

∣

=
∣

∣ f #(an) − f #(bn)
∣

∣ ≥ 1

2
.

On the other hand for sufficiently large n, we have that

(1 − |wn|2) f #(wn) ≥ (1 − |wn|2)
1

2|an − bn|
≥ 1 − (|zn| + δn)

2

4δn

=
1 − |zn|2

4δn
− |zn|

2
− δn

4
.

The last expression tends to ∞ and condition (14) is proved .
Sufficiency. Let {zn} be such sequence of points that

lim
n→∞

(1 − |zn|2) f #(zn) = +∞,

{εn} be a sequence of positive numbers, limn→∞ εn = 0 and zn ∈ ∆(zn, εn) for
each n. Then by Proposition 4.1 the sequence {zn} is a ρN−sequence of f and by
the Theorem 4.2 the sequence {zn}, which satisfies condition (13), i.e.
limn→∞ σ(zn, zn) = 0, is also a ρN−sequence of the meromorphic function f .
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