Sequences of some meromorphic function spaces

M. A. Bakhit A. El-Sayed Ahmed

Abstract

Our goal in this paper is to introduce some new sequences of some meromorphic function spaces, which will be called b_q and q_K -sequences. Our study is motivated by the theories of normal, $Q_K^{\#}$ and meromorphic Besov functions. For a non-normal function f the sequences of points $\{a_n\}$ and $\{b_n\}$ for which

$$\lim_{n \to \infty} (1 - |a_n|^2) f^{\#}(a_n) = +\infty \text{ and}$$
$$\lim_{n \to \infty} \iint_{\Delta} (f^{\#}(z))^q (1 - |z|^2)^{q-2} (1 - |\varphi_{a_n}(z)|^2)^s dA(z) = +\infty$$
$$\lim_{n \to \infty} \iint_{\Delta} (f^{\#}(z))^2 K(z, a_n) dA(z) = +\infty$$

or

$$\lim_{n \to \infty} \iint_{\Delta} (f^{\#}(z))^2 K(z, a_n) dA(z) = +\infty$$

are considered and compared with each other. Finally, non-normal meromorphic functions are described in terms of the distribution of the values of these meromorphic functions.

Introduction 1

Let $\Delta = \{z : |z| < 1\}$ be the open unit disk in the complex plane C and let dA(z)be the Euclidean area element on Δ . Let $M(\Delta)$ denote the class of functions meromorphic in Δ . The pseudohyperbolic distance between z and a is given by $\sigma(z,a) = |\varphi_a(z)|$, where $\varphi_a(z) = \frac{a-z}{1-\bar{a}z}$ is the Möbius transformation of Δ . For 0 < r < 1, let $\Delta(a,r) = \{z \in \Delta : \sigma(z,a) < r\}$ be the pseudohyperbolic disk with

Bull. Belg. Math. Soc. Simon Stevin 16 (2009), 395–408

Received by the editors February 2008.

Communicated by F. Brackx.

¹⁹⁹¹ Mathematics Subject Classification : 30D45, 46E15.

Key words and phrases : b_q , q_K -sequences, meromorphic functions , Besov classes.

center $a \in \Delta$ and radius r. For $0 < q < \infty$ and $0 < s < \infty$, the classes $M^{\#}(p,q,s)$ are defined in [15] as follows:

$$M^{\#}(p,q,s) = \left\{ f \in M(\Delta) : \sup_{a \in \Delta} \iint_{\Delta} \left(f^{\#}(z) \right)^{p} \left(1 - |z|^{2} \right)^{q} \left(1 - |\varphi_{a}(z)|^{2} \right)^{s} dA(z) < \infty \right\},$$
(1)

where $f^{\#}(z) = \frac{|f'(z)|}{1+|f(z)|^2}$ is the spherical derivative of f. The classes $M^{\#}(q, q-2, 0)$ are called the Besov-type classes, they are denoted by $B_q^{\#}$, where

$$B_{q}^{\#} = \left\{ f \in M(\Delta) : \sup_{a \in \Delta} \iint_{\Delta} \left(f^{\#}(z) \right)^{q} \left(1 - |z|^{2} \right)^{q-2} dA(z) < \infty \right\}$$

But in this paper the meromorphic Besov-type classes always refer to the classes $M^{\#}(q, q-2, s)$. Let $0 < q < \infty$ and $0 < s < \infty$. Then the Besov-type classes are defined by:

$$B_{q,s}^{\#} = \left\{ f \in M(\Delta) : \sup_{a \in \Delta} \iint_{\Delta} \left(f^{\#}(z) \right)^{q} \left(1 - |z|^{2} \right)^{q-2} \left(1 - |\varphi_{a}(z)|^{2} \right)^{s} dA(z) < \infty \right\},$$
(2)

where the weight function is $(1 - |z|^2)^{q-2} (1 - |\varphi_a(z)|^2)^s$ and $z \in \Delta$. For more information about holomorphic and meromorphic Besov classes, we refer to [5, 6, 10, 11, 12, 14, 17, 18, 23] and others. Recently Wulan [20] gave the following definition:

Definition 1.1. Let $K : [0, \infty) \to [0, \infty)$ be a nondecreasing function. A function f meromorphic in Δ is said to belong to the class $Q_K^{\#}$ if

$$\sup_{a\in\Delta}\iint_{\Delta} \left(f^{\#}(z)\right)^{2} K(g(z,a)) dA(z) < \infty,$$

where, the function $g(z, a) = \ln \left| \frac{1 - \bar{a}z}{a - z} \right|$ is defined as the composition of the Möbius transformation φ_a and the fundamental solution of the two-dimensional real Laplacian.

 $Q_K^{\#}$ space has been studied during the last few years (see e.g [8, 9] and others). The meromorphic counterpart of the Bloch space is the class of normal functions \mathcal{N} (see [1, 2, 15, 16, 21]), which is defined as follows:

Definition 1.2. *Let* f *be a meromorphic function in* Δ *. If*

$$||f||_{\mathcal{N}} = \sup_{z \in \Delta} (1 - |z|^2) f^{\#}(z) < \infty,$$
(3)

then f belongs to the class \mathcal{N} of normal functions.

Definition 1.3. ([4]) Let f be a meromorphic function in Δ . A sequence of points $\{a_n\}$ $(|a_n| \rightarrow 1)$ in Δ is called a q_N -sequence if

$$\lim_{n \to \infty} f^{\#}(a_n)(1 - |a_n|^2) = +\infty.$$
(4)

Now, we will introduce the following definitions:

Definition 1.4. *Let* f *be a meromorphic function in* Δ *,* $2 < q < \infty$ *and* $0 < s < \infty$ *. A sequence of points* $\{a_n\}(|a_n| \rightarrow 1)$ *in* Δ *is called a bq-sequence if*

$$\lim_{n \to \infty} \iint_{\Delta} (f^{\#}(z))^{q} (1 - |z|^{2})^{q-2} (1 - |\varphi_{a_{n}}(z)|^{2})^{s} dA(z) = +\infty.$$
(5)

Definition 1.5. *Let* f *be a meromorphic function in* Δ *. For a function* $K, K : [0, \infty) \longrightarrow [0, \infty)$ *. A sequence of points* $\{a_n\}(|a_n| \rightarrow 1)$ *in* Δ *is called a* q_K *-sequence if*

$$\lim_{n \to \infty} \iint_{\Delta} (f^{\#}(z))^2 K(g(z, a_n)) dA(z) = +\infty.$$
(6)

2 b_q and q_N -sequences

In this section, we study some new sequences of some meromorphic function spaces such as b_q and q_N -sequences. Our study is motivated by the theories of normal and meromorphic Besov functions. We prove various results about these sequences. For example, if $\{a_n\}$ is a q_N sequence for the meromorphic function f and $\{b_n\}$ is a sequence with $\sigma(a_n, b_n) \rightarrow 0$ as $n \rightarrow \infty$, where $\sigma(a_n, b_n)$ denotes the pseudohyperbolic distance, then $\{b_n\}$ is a b_q sequence for f for every q > 2. We will need the following definition in the sequel:

Definition 2.1. [19] Let f be a meromorphic function in \mathbb{C} . If the family $\{f(z + a_n)\}$ is normal for any sequence $\{a_n\}$ of complex numbers, then f is a Yosida function y(z).

Theorem 2.1. Let f be a meromorphic function in Δ . If $\{a_n\}$ is a q_N -sequence, then any sequence of points $\{b_n\}$ in Δ for which $\sigma(a_n, b_n) \rightarrow 0$ is a bq-sequence for all q, $2 < q < \infty$.

Proof. By([19], theorem 4.4.1) with $\beta = 0$ and $\alpha = 1$, there exist sequences $\{b_n\} \subset \Delta$ and $\{p_n\} \subset \mathbb{R}^+$, with $\sigma(a_n, b_n) \longrightarrow 0$ and

$$\frac{p_n}{(1-|b_n|^2)} \longrightarrow 0,\tag{7}$$

where the sequence of functions $\{f_n(t)\} = \{f(b_n + p_n t)\}$ converges uniformly on each compact subset of \mathbb{C} to a nonconstant Yosida function y(t). Then

$$\begin{split} \sup_{b_{n}\in\Delta} \iint_{\Delta} (f^{\#}(z))^{q} (1-|z|^{2})^{q-2} (1-|\varphi_{b_{n}}(z)|^{2})^{s} dA(z) \\ &\geq \iint_{\Delta(b_{n},\frac{1}{e})} (f^{\#}(z))^{q} (1-|z|^{2})^{q-2} (1-|\varphi_{b_{n}}(z)|^{2})^{s} dA(z) \\ &\geq \iint_{\Delta(0,r)} (y^{\#}_{n}(t))^{q} (1-|b_{n}+p_{n}t|^{2})^{q-2} (1-|\varphi_{b_{n}}(b_{n}+p_{n}t)|^{2})^{s} p_{n}^{2-q} dA(t) \\ &= \iint_{\Delta(0,r)} |y^{\#}_{n}(t)|^{q} \left(\frac{1-|b_{n}+p_{n}t|^{2}}{p_{n}}\right)^{q-2} \times \left(1-\left|\frac{b_{n}-(b_{n}+p_{n}t)}{1-\bar{b}_{n}(b_{n}+p_{n}t)}\right|^{2}\right)^{s} dA(t) \\ &= \iint_{\Delta(0,r)} (y^{\#}_{n}(t))^{q} \left(\frac{1-|b_{n}+p_{n}t|^{2}}{p_{n}}\right)^{q-2} \times \left(1-\left|\frac{1}{\frac{1-|b_{n}|^{2}}{p_{n}t}-\bar{b}_{n}}\right|^{2}\right)^{s} dA(t) \,. \end{split}$$

By the uniformly convergence, we have

$$\iint_{\Delta(0,r)} (f_n^{\#}(t))^q dA(t) \longrightarrow \iint_{\Delta(0,r)} (y^{\#}(t))^q dA(t),$$

and this last integral is positive, because y(t) is a nonconstant meromorphic function. Moreover, using (7) as $n \to \infty$, we obtain that

$$1 - \left|\frac{1}{\frac{1-|b_n|^2}{p_n t} - \bar{b}_n}\right|^2 \longrightarrow 1.$$

Then, we conclude that

$$\iint_{\Delta(0,r)} (y_n^{\#}(t))^q \left(\frac{1-|a_n+p_nt|^2}{p_n}\right)^{q-2} \times \left(1-\left|\frac{1}{\frac{1-|a_n|^2}{p_nt}-\bar{a}_n}\right|^2\right)^s dA(t) \longrightarrow \infty,$$

and it follows for all *q*, where $2 < q < \infty$ that

$$\iint_{\Delta} (f^{\#}(z))^{q} (1-|z|^{2})^{q-2} (1-|\varphi_{b_{n}}(z)|^{2})^{s} dA(z) \longrightarrow \infty,$$

then $\{b_n\} \in \Delta$ is a b_q -sequence for all q, $2 < q < \infty$. Thus the proof of Theorem 2.1 is established.

Theorem 2.2. There exist a non-normal function f and $\{a_n\}$ in Δ which is a b_q -sequence for all q, $2 < q < \infty$, but $\{a_n\}$ is not a q_N -sequence.

Proof. By ([4] theorem 2), we can consider a function $f(z) = \exp(\frac{i}{1-z})$ be not normal, $i = \sqrt{-1}$. Choose a sequence $\{b_n\} = \{\frac{n^2}{1+n^2}\}$ and by a computation, we obtain that

$$\lim_{n \to \infty} (1 - |b_n|^2) f^{\#}(b_n) = +\infty.$$

By Theorem 2.1 for any sequence of points $\{a_n\}$ in Δ for which $\sigma(a_n, b_n) \rightarrow 0$,

$$\lim_{n \to \infty} \iint_{\Delta} (f^{\#}(z))^{q} (1 - |z|^{2})^{q-2} (1 - |\varphi_{a_{n}}(z)|^{2})^{s} dA(z) = +\infty,$$

for all $q, 2 < q < \infty$. Now we choose $\{a_n\} = \{\frac{n^2}{1+n^2} - \frac{i}{n+n^3}\}$ and notice that $\sigma(a_n, b_n) \to 0$. But

$$\lim_{n \to \infty} (1 - |a_n|^2) f^{\#}(a_n) = 0.$$

Thus $\{a_n\}$ is just one we need.

Theorem 2.3. Let f be a meromorphic function in Δ and let $2 < q' < q < \infty$ and $0 < s' < s < \infty$. If, for a sequence of points $\{a_n\}$ in Δ ,

$$\lim_{n \to \infty} \iint_{\Delta} (f^{\#}(z))^{q} (1 - |z|^{2})^{q-2} (1 - |\varphi_{a_{n}}(z)|^{2})^{s} dA(z) = +\infty,$$
(8)

then

$$\lim_{n \to \infty} \iint_{\Delta} (f^{\#}(z))^{q'} (1 - |z|^2)^{q'-2} (1 - |\varphi_{a_n}(z)|^2)^{s'} dA(z) = +\infty.$$
(9)

Proof. If assumption (8) holds for $2 < q' < q < \infty$ and $0 < s' < s < \infty$, then by Hölder's inequality, we have that

$$\begin{split} &\iint_{\Delta} (f^{\#}(z))^{q'} (1-|z|^2)^{q'-2} (1-|\varphi_{a_n}(z)|^2)^{s'} dA(z) \\ &\leq \left(\iint_{\Delta} (f^{\#}(z))^q (1-|z|^2)^{q-2} (1-|\varphi_{a_n}(z)|^2)^s dA(z) \right)^{\frac{q'}{q}} \\ &\times \left(\iint_{\Delta} (1-|\varphi_{a_n}(z)|^2)^{(s'-\frac{sq'}{q})(\frac{q}{q-q'})} (1-|z|^2)^{-2} dA(z) \right)^{(1-\frac{q'}{q})} \\ &= \left(\iint_{\Delta} (f^{\#}(z))^q (1-|z|^2)^{q-2} (1-|\varphi_{a_n}(z)|^2)^s dA(z) \right)^{\frac{q'}{q}} \\ &\times \left(\iint_{\Delta} (1-|w|^2)^{(\frac{s'q-sq'}{q-q'}-2)} dA(w) \right)^{(1-\frac{q'}{q})}. \end{split}$$

Since it is easy to check $\left(\frac{s'q-sq'}{q-q'}-2\right) = (\kappa-2) > -1$, for $\kappa = \frac{s'q-sq'}{q-q'} > 1$, then we obtain that

$$\iint_{\Delta} (1 - |w|^2)^{\left(\frac{s'q - sq'}{q - q'} - 2\right)} dA(w) = \iint_{\Delta} (1 - |w|^2)^{(\kappa - 2)} dA(w) < C < \infty, \text{ for } C > 0.$$

Thus,

$$M^{\#}(q,q-2,s) \subset M^{\#}(q',q'-2,s'),$$

Hence, we obtain that

$$\iint_{\Delta} (f^{\#}(z))^{q'} (1-|z|^2)^{q'-2} (1-|\varphi_{a_n}(z)|^2)^{s'} dA(z)$$

$$\geq \iint_{\Delta} (f^{\#}(z))^{q} (1-|z|^2)^{q-2} (1-|\varphi_{a_n}(z)|^2)^{s} dA(z) = +\infty.$$

Then assumption (9) holds. Hence the proof of Theorem 2.3 is completed.

Remark 2.1. By assumption (8), we know that $f \notin M^{\#}(q, q-2, s)$. Since the function classes $M^{\#}(q, q-2, s)$ have a nesting property, $f \notin M^{\#}(q', q'-2, s')$, for q' < q and $0 < s' < s < \infty$. However, Theorem 2.3 gives more information about this situation showing that the same sequence $\{a_n\}$, which breaks the $M^{\#}(q, q-2, s)$ -condition, also breaks $M^{\#}(q', q'-2, s')$ -condition.

Remark 2.2. In fact, from the proof of Theorem 2.3, we can see that if for a fixed r_0 , $0 < r_0 < 1$ and R > 0,

$$\lim_{n\to\infty}\iint_{\Delta(a_n,r_0)} (f^{\#}(z))^q (1-|z|^2)^{q-2} (1-|\varphi_{a_n}(z)|^2)^s dA(z) = +\infty,$$

then there exists a sequence of points $\{b_n\}$ in $U_R^n = \{z : (1 - |\varphi_a(z)|^2) > R\}$, such that

$$\lim_{n\to\infty}(1-|b_n|^2)f^{\#}(b_n)=+\infty.$$

Theorem 2.4. Let f be a meromorphic function in Δ . If, for a sequence of points $\{a_n\}$ in Δ ,

$$\lim_{n \to \infty} (1 - |a_n|^2) f^{\#}(a_n) = +\infty,$$
(10)

then for the same sequence $\{a_n\}$

$$\lim_{n \to \infty} \iint_{\Delta(a_n, r)} (f^{\#}(z))^q (1 - |z|^2)^{q-2} (1 - |\varphi_{a_n}(z)|^2)^s dA(z) = +\infty$$

holds for all q, s, $2 < q < \infty$, $0 < s < \infty$ and all r, 0 < r < 1.

Proof. Suppose that (10) holds. If there exists an r_0 , $0 < r_0 < 1$ and p, 1 , such that

$$\lim_{n\to\infty}\sup\iint_{\Delta(a_n,r_0)}(f^{\#}(z))^q(1-|z|^2)^{q-2}(1-|\varphi_{a_n}(z)|^2)^s dA(z)=M<+\infty,$$

then there exists a subsequence $\{a_{n_k}\}$ of $\{a_n\}$, such that

$$\iint_{\Delta(a_{n_k},r_0)} (f^{\#}(z))^q (1-|z|^2)^{q-2} (1-|\varphi_{a_{n_k}}(z)|^2)^s dA(z) \le M+1,$$

for *k* sufficiently large.

Now, choose an r_1 , $0 < r_1 < r_0$, $\Delta(a_{n_k}, r_1) = \{z \in \Delta : | \varphi_{a_{n_k}}(z) | < r_1\}$, satisfying

$$\frac{M+1}{(1-r_1^2)^{s+q-2}} < \frac{\pi}{2}$$

It follows that

$$\iint_{\Delta(a_{n_k},r_1)} (f^{\#}(z))^q dA(z) \le \frac{M+1}{(1-r_1^2)^{s+q-2}} < \frac{\pi}{2},$$

for $(1 - |\varphi_{a_{n_k}}(z)|^2) \ge (1 - r_1^2).$

By Dufresnoy's theorem (see [16] pp.83), we have $(1 - |a_{n_k}|^2)f^{\#}(a_{n_k}) \leq \frac{1}{r_1}$, which contradicts our assumption. Hence the proof of Theorem 2.4 is completed.

Theorem 2.5. Let f be a meromorphic function in Δ . Suppose for $0 , there exists a sequence of points <math>\{a_n\} \subset \Delta$, such that

$$\lim_{n \to \infty} \iint_{\Delta} (f^{\#}(z))^{q} (1 - |z|^{2})^{q-2} (1 - |\varphi_{a_{n}}(z)|^{2})^{s} dA(z) = +\infty.$$

Then, for any sequence of points $\{b_n\}$ *in* Δ *for which* $\sigma(a_n, b_n) \rightarrow 0$ *,*

$$\lim_{n \to \infty} \iint_{\Delta} (f^{\#}(z))^{q} (1 - |z|^{2})^{q-2} (1 - |\varphi_{b_{n}}(z)|^{2})^{s} dA(z) = +\infty.$$

Proof. Choose positive constants M_1 and M_2 such that $M_2 < M_1$. Let

$$U_{M_1}^n = \{z : (1 - |\varphi_{a_n}(z)|^2) > M_1\} \text{ and } U_{M_2}^n = \{z : (1 - |\varphi_{a_n}(z)|^2) > M_2\}.$$

Then if $w \in U_{M_1}^n$, $z \in \Delta \setminus U_{M_2}^n$ and $C(1 - |\varphi_{a_n}(z)|^2) \leq (1 - |\varphi_{b_n}(w)|^2)$ for some constant C > 0. This means for all *n* that,

$$\iint_{\Delta \setminus U_{M_{2}}^{n}} (f^{\#}(z))^{q} (1 - |z|^{2})^{q-2} (1 - |\varphi_{b_{n}}(z)|^{2})^{s} dA(z) \\
\geq C^{s} \iint_{\Delta \setminus U_{M_{2}}^{n}} (f^{\#}(z))^{q} (1 - |z|^{2})^{q-2} (1 - |\varphi_{a_{n}}(z)|^{2})^{s} dA(z),$$
(11)

for any sequence of points $\{b_n\}$ in Δ for which $\sigma(a_n, b_n) \rightarrow 0$. If

$$\lim_{n \to \infty} \sup \iint_{\Delta \setminus U_{M_2}^n} (f^{\#}(z))^q (1 - |z|^2)^{q-2} (1 - |\varphi_{a_n}(z)|^2)^s dA(z) = +\infty,$$

Then, by (11)

$$\lim_{n \to \infty} \sup \iint_{\Delta \setminus U_{M_2}^n} (f^{\#}(z))^q (1 - |z|^2)^{q-2} (1 - |\varphi_{b_n}(z)|^2)^s dA(z) = +\infty.$$

Also, if

$$\lim_{n\to\infty}\sup\iint_{\mathcal{U}_{M_{2}}^{n}}(f^{\#}(z))^{q}(1-|z|^{2})^{q-2}(1-|\varphi_{a_{n}}(z)|^{2})^{s}dA(z)=+\infty,$$

then, we have two different cases:

Either (i) there exists a sequence of points $\{c_n\}$ in $U_{M_2}^n$ for which $\sigma(a_n, c_n) \to 0$, such that

$$\lim_{n \to \infty} (1 - |c_n|^2) f^{\#}(c_n) = +\infty$$

or (ii) there exists r_0 , $0 < r_0 < e^{-M_2}$ and k > 0, such that

$$(1 - |z|^2)f^{\#}(z) \le k$$
, for all $z \in \Delta(a_n, r_0)$.

If (i) is true, then, by Theorem 2.1, for above $\{b_n\}$, for which $\sigma(a_n, b_n) \rightarrow 0$,

$$\lim_{n \to \infty} \sup \iint_{\Delta} (f^{\#}(z))^{q} (1 - |z|^{2})^{q-2} (1 - |\varphi_{b_{n}}(z)|^{2})^{s} dA(z) = +\infty,$$

since $\sigma(b_n, c_n) \to 0$. On the other hand, if (ii) holds, then using the same conclusions for weight functions we see that necessarily for any sequence of points $\{b_n\}$ for which $\sigma(a_n, b_n) \to 0$,

$$\lim_{n \to \infty} \sup \iint_{\Delta} (f^{\#}(z))^{q} (1 - |z|^{2})^{q-2} (1 - |\varphi_{b_{n}}(z)|^{2})^{s} dA(z) = +\infty.$$

This completes the proof.

Now, we consider the following question.

Question 2.1 Let $1 < q < \infty$ for any sequence of points $\{a_n\}$ and suppose that

$$\lim_{n \to \infty} \iint_{\Delta} (f^{\#}(z))^{q} (1 - |z|^{2})^{q-2} (1 - |\varphi_{a_{n}}(z)|^{2})^{s} dA(z) = +\infty.$$

Is it true for q', where q < q',

$$\lim_{n \to \infty} \sup \iint_{\Delta} (f^{\#}(z))^{q'} (1 - |z|^2)^{q'-2} (1 - |\varphi_{a_n}(z)|^2)^s dA(z) = +\infty?$$

We answer the question by Theorem 2.6.

Definition 2.2. *Let* $2 < q < \infty$ *. For any sequence of points* $\{a_n\}$ *in* Δ *is a* m_q *-sequence if*

$$\lim_{n \to \infty} \sup \iint_{\Delta} (f^{\#}(z))^{q} (1 - |z|^{2})^{q-2} (1 - |\varphi_{a_{n}}(z)|^{2})^{q} dA(z) = +\infty.$$

Our answer to Question 2.1 is naturally as follows:

Theorem 2.6. *Let* $2 < q < \infty$ *and suppose that*

$$\lim_{n \to \infty} \iint_{\Delta} (f^{\#}(z))^{q} (1 - |z|^{2})^{q-2} (1 - |\varphi_{a_{n}}(z)|^{2})^{s} dA(z) = +\infty.$$

If the sequence of points $\{a_n\}$ in Δ is not a m_q -sequence, then for any q' and q < q' with q' + s > 1, then we have

$$\lim_{n \to \infty} \iint_{\Delta} (f^{\#}(z))^{q'} (1 - |z|^2)^{q'-2} (1 - |\varphi_{a_n}(z)|^2)^s dA(z) = +\infty.$$

Proof. Since,

(*i*) $M^{\#}(q, q-2, s) \subset \mathcal{N}$ for all q, $2 < q < \infty$ and 0 < s < 1(see [15] theorem 3.3.3).

(*ii*)
$$\bigcup_{2 < q < q'} M^{\#}(q, q-2, s) \subsetneq M^{\#}(q', q'-2, s)$$
 for all q , where $2 < q < \infty$

and 0 < s < 1 with q' + s > 1, the proof of this result can be found in [15]. So, it is easy to see that

$$\lim_{n\to\infty}\iint_{\Delta} (f^{\#}(z))^{q'} (1-|z|^2)^{q'-2} (1-|\varphi_{a_n}(z)|^2)^s dA(z) = +\infty.$$

3 q_K and q_N -sequences

Now, we study b_q and q_N -sequences. We prove many results about these sequences. Our results are obtained by the help of normal and $Q_K^{\#}$ functions. For example, if $\{a_n\}$ is a q_N sequence for the meromorphic function f and $\{b_n\}$ is a sequence with $\sigma(a_n, b_n) \to 0$ as $n \to \infty$, then $\{b_n\}$ is a q_K sequence for f. Now, we give the following theorem:

Theorem 3.1. Let f be a meromorphic function in Δ . If $\{a_n\}$ is a q_N -sequence, then any sequence of points $\{b_n\}$ in Δ for which $\sigma(a_n, b_n) \to 0$ is a q_K -sequence for all K, $K(t) \to \infty$ as $t \to \infty$.

Proof. By ([7], theorem 7.2), there exist sequences $\{c_n\} \subset \Delta$ and $\{p_n\} \subset \mathbb{R}^+$, with

$$\sigma(a_n, c_n) \longrightarrow 0 \quad \text{and} \quad \frac{p_n}{(1 - |c_n|^2)} \longrightarrow 0,$$
 (12)

where the sequence of functions $\{f_n(t)\} = \{f(c_n + p_n t)\}$ converges uniformly on each compact subset of \mathbb{C} to a nonconstant meromorphic function y(t). For a fixed R > 0 set $\Delta_n = \{z : z = c_n + p_n t, |t| < R\}$. Now, for any sequence of points $\{b_n\} \subset \Delta$, for which $\sigma(a_n, c_n) \longrightarrow 0$, we have $\sigma(b_n, c_n) \longrightarrow 0$ since $\sigma(a_n, c_n) \longrightarrow 0$. Thus, for *n* sufficiently large, we obtain that

$$\Delta_n = \{z : z = c_n + p_n t, |t| < R\} \subset \Omega_n = \{z : |\varphi_{b_n}(z)| < \frac{1}{e}\}.$$

Therefore, we get by change of variables

$$\iint_{\Omega_n} (f^{\#}(z))^2 K(g(z,b_n) dA(z)$$

$$\ge \iint_{\Delta_n} (f^{\#}(z))^2 K(g(z,b_n) dA(z)$$

$$= \iint_{|t| < R} (f^{\#}(z))^2 K(g(c_n + p_n t, b_n) dA(z).$$

By the uniformly convergence, we have

$$\iint_{|t| < R} (f_n^{\#}(t))^2 dA(t) \longrightarrow \iint_{|t| < R} (y^{\#}(t))^2 dA(t),$$

and the last integral is finite and non-zero, because y(t) is a non-constant meromorphic function. However, $g(c_n + p_n t, b_n) \rightarrow +\infty$ as $n \rightarrow +\infty$ uniformly, for |t| < R, we obtain that

$$\iint_{|t|< R} (y^{\#}(z))^2 K(g(c_n+p_nt,b_n)dA(z) \longrightarrow \infty.$$

In fact,

$$g(c_n + p_n t, b_n) = \log \left| \frac{1 - \overline{b_n}(c_n + p_n t)}{c_n + p_n t - b_n} \right|$$

Moreover, using (12) as $n \to \infty$, we obtain that

$$\begin{aligned} \left| \frac{c_n + p_n t - b_n}{1 - \overline{b_n}(c_n + p_n t)} \right| &\leq \frac{|c_n - b_n| + p_n|t|}{|1 - \overline{b_n}c_n| - p_n|b_n t|} \\ &\leq \frac{\left| \frac{c_n - b_n}{1 - \overline{b_n}c_n} \right| + \frac{p_n|t|}{|1 - \overline{b_n}c_n|}}{1 - \frac{p_n|t|}{|1 - \overline{b_n}c_n|}} \longrightarrow 0. \end{aligned}$$

For all *K*, $K(t) \rightarrow \infty$ as $t \rightarrow \infty$, it follows that

$$\iint_{\Delta} (f^{\#}(z))^2 K(g(z,b_n)dA(z) \longrightarrow \infty,$$

then $\{b_n\} \in \Delta$ is a q_K -sequence for all K. Thus the proof of Theorem 3.1 is therefore established.

Theorem 3.2. There exist a non-normal function f and $\{a_n\}$ in Δ which is a q_K -sequence for all $K, K : [0, \infty) \to [0, \infty)$, but $\{a_n\}$ is not a q_N -sequence.

Proof. The proof of this theorem is much akin to the proof of Theorem 2.2. So, it will be omitted.

4 Non-normal functions and ρ_N -sequences.

In this section we define the concept of ρ_N -sequences of meromorphic functions which allows one to describe non-normal functions. We give the necessary and sufficient condition for the sequence of points $\{z_n\}$, where $\lim_{n\to\infty} |z_n| = 1$ to be a ρ_N -sequence in terms of the growth of f.

Makhmutov defined the concept of ρ_B -sequences of holomorphic functions f(z) in the unit disk Δ (see [13], pp. 9 definition 5.2.) as follows:

Definition 4.1. A sequence of points $\{z_n\}$, $\lim_{n\to\infty}|z_n| = 1$, is a $\rho_{\mathcal{B}}$ -sequence of holomorphic functions $f(z) \in \Delta$, if there are two sequences of numbers $\{\varepsilon_n\}$, where $\lim_{n\to\infty} |\varepsilon_n| = 0$ and $\{M_n\}$, $\lim_{n\to\infty} M_n = \infty$, for which the diameter of $f(\Delta(z_n, \varepsilon_n))$ exceeds $\{M_n\}$ for each n.

Now, we define ρ_N – sequences of meromorphic functions.

Definition 4.2. A sequence of points $\{z_n\}$ with $\lim_{n\to\infty} |z_n| = 1$, is a ρ_N -sequence of meromorphic functions f, if there are two sequences of numbers $\{\varepsilon_n\}$, where $\lim_{n\to\infty} |\varepsilon_n| = 0$ and $\{M_n\}$, $\lim_{n\to\infty} M_n = \infty$, for which the diameter of $f(\Delta(a_n, \varepsilon_n))$ exceeds $\{M_n\}$ for each n.

Now, we let

$$A_f(a,r) = \iint_{\Delta(a,r)} (f^{\#}(z))^2 dx dy$$

be the area of the Riemann image of $\Delta(a, r)$ by f and

$$L(a,r) = \iint_{\Delta(a,r)} f^{\#}(z) |dz|$$

be the length of the Riemann image of the pseudohyperbolic circle $\Gamma(a, r)$ by f. Let F(a, r) be the Riemann image of $\Delta(a, r)$ by f and $\mathcal{F}(a, r)$ be the projection of F(a, r) to \mathbb{C} . Let $\mathcal{A}_f(a, r)$ be the Euclidean area of $\mathcal{F}(a, r)$ and $\mathcal{L}(a, r)$ be the length of the outer boundary of $\mathcal{F}(a, r)$. It is clear that

$$\mathcal{A}_f(a,r) \leq A_f(a,r)$$
 and $\mathcal{L}_f(a,r) \leq L_f(a,r)$

for each $a \in \Delta$ and each 0 < r < 1.

Yamashita proved in [22] that, for any holomorphic function f(z) or a meromorphic function f in Δ , any $a \in \Delta$ and 0 < r < 1,

$$(1 - |a|^2)f^{\#}(a) \le \left(\frac{\mathcal{A}_f(a, r)}{\pi r^2}\right)^{\frac{1}{2}},$$
$$(1 - |a|^2)f^{\#}(a) \le \frac{\mathcal{L}_f(a, r)}{2\pi r}.$$

Now, we give the following important proposition.

Proposition 4.1. If f is a meromorphic function in Δ and $\{z_n\}$, $\lim_{n\to\infty} |z_n| = 1$, is such that

$$\lim_{n \to \infty} (1 - |z_n|^2) f^{\#}(z_n) = +\infty$$

then $\{z_n\}$ is a ρ_N -sequence of the meromorphic function f.

404

Proof. Suppose that *f* is a meromorphic function in Δ and $\{z_n\}$, $\lim_{n\to\infty} |z_n| = 1$,

$$\lim_{n \to \infty} (1 - |z_n|^2) f^{\#}(z_n) = +\infty$$

let

$$(1-|z_n|^2)=\varepsilon_n$$
 and $M_n=f^{\#}(z_n),$

then there are two sequences of numbers $\{\varepsilon_n\}, \{M_n\}$, where

$$\lim_{n\to\infty}|\varepsilon_n|=0 \text{ and } \lim_{n\to\infty}M_n=0.$$

By Definition 4.2, we have a sequence of points $\{z_n\}$ which is a ρ_N -sequence. If the sequence of points $\{z_n\}$ is a ρ_N -sequence of the meromorphic function f, then there are two sequences $\lim_{n\to\infty} (1-|z_n|^2) = 0$ as $\lim_{n\to\infty} |z_n| = 1$ and $\lim_{n\to\infty} f^{\#}(z_n) = +\infty$. Our proposition is therefore proved.

Theorem 4.1. A meromorphic function f is not a normal function if and only if it has a ρ_N -sequence of points.

Proof. Necessity. If $f \notin N$, then there exists a sequence $\{z_n\}$ which satisfies the condition

$$\lim_{n \to \infty} (1 - |z_n|^2) f^{\#}(z_n) = +\infty.$$

By Proposition 4.1, the sequence $\{z_n\}$ is a ρ_N -sequence of the meromorphic function f.

Sufficiency. Let $\{a_n\}$ be a ρ_N -sequence of the meromorphic function f. If $f \in \mathcal{N}$ by ([13] theorem 3.4) we have $\mathcal{L}_f(a, r)$ and $\mathcal{A}_f(a, r)$ are bounded for any 0 < r < 1, i.e. the diameters of $f(\Delta(a_n, r))$ don't tend to infinity. This contradicts our assumption that $\{a_n\}$ is a ρ_N -sequence of f.

Theorem 4.2. Let $\{a_n\}$ be a ρ_N -sequence of the meromorphic function f and $\{b_n\}$ be such that

$$\lim_{n \to \infty} \sigma(a_n, b_n) = 0, \tag{13}$$

then $\{b_n\}$ is a ρ_N -sequence of f too.

Proof. Let $\{a_n\}$ be a ρ_N -sequence of the meromorphic function f and $\{b_n\}$ be not a ρ_N -sequence of f. Then by Definition 4.2 for each $\delta > 0$, we have

$$\lim_{n\to\infty}\mathcal{A}_f(b_n,\delta)<\infty$$

and

$$\lim_{n\to\infty}\mathcal{L}_f(b_n,\delta)<\infty.$$

Suppose $\varepsilon = \frac{\delta}{2}$. As $\lim_{n\to\infty} \sigma(a_n, b_n) = 0$, then beginning with some *N* for any n > N, we obtain

$$\Delta(a_n, \varepsilon) \subset \Delta(b_n, \delta)$$
 and hence,
 $f(\Delta(a_n, \varepsilon)) \subset f(\Delta(b_n, \delta)).$

Thus,

$$\dim f(\Delta(a_n,\varepsilon)) \to \infty \text{ as } n \to \infty,$$

which implies that,

$$\dim f(\Delta(b_n,\delta))\to\infty.$$

This is a contradiction from our hypothesis.

Remark 4.1. We need to remind the reader that the pseudohyperbolic circle $\Gamma(z_n, \rho_n)$ with center z_n and radius ρ_n is the same as Euclidean circle $\{z : |z - \hat{z}_n| = r_n \text{ with } r_n = \frac{1 - |z_n|^2}{1 - |z_n|^2 \rho_n^2}$ and $\hat{z}_n = z_n \frac{1 - |\rho_n|^2}{1 - |z_n|^2 \rho_n^2}$. In particular, $\rho_n \to 0$ if and only if $\frac{r_n}{1 - |z_n|^2} \to 0$.

Now we prove the next theorem :

Theorem 4.3. A sequence $\{z_n\}$, $(|z_n| \to 1)$, is a ρ_N -sequence of the meromorphic function f if and only if there is a sequence of positive numbers $\{\varepsilon_n\}$, $(\varepsilon_n \to 0)$ such that

$$\lim_{n \to \infty} \sup_{z \in \Delta(z_n, \varepsilon_n)} (1 - |z|^2) f^{\#}(z) = +\infty.$$
(14)

Proof. Necessity. Let $\{z_n\}$ be a ρ_N -sequence of the meromorphic function f. Then by ([3], Lemma 2), there are sequences $\{a_n\}$ and $\{b_n\}$ such that

$$\lim_{n \to \infty} \sigma(a_n, z_n) = 0, \quad \lim_{n \to \infty} \sigma(b_n, z_n) = 0 \quad \text{and} \quad \lim_{n \to \infty} |f^{\#}(a_n) - f^{\#}(b_n)| \ge \frac{1}{2}$$

Suppose $\delta_n = \max\{|z_n - a_n|, |z_n - b_n|\}$ and L_n is a segment connecting the points a_n and b_n . Since a_n and b_n lie in a disk with hyperbolic radius tending to zero then by Remark 4.1, $\frac{\delta_n}{1-|z_n|^2}$ must also tend to zero. For some $w_n \in L_n$, we have that

$$|a_n - b_n| f^{\#}(w_n) \ge \int_{L_n} f^{\#}(z) |dz| \ge \left| \int_{L_n} f^{\#}(z) dz \right| = \left| f^{\#}(a_n) - f^{\#}(b_n) \right| \ge \frac{1}{2}.$$

On the other hand for sufficiently large *n*, we have that

$$(1 - |w_n|^2)f^{\#}(w_n) \ge (1 - |w_n|^2)\frac{1}{2|a_n - b_n|} \ge \frac{1 - (|z_n| + \delta_n)^2}{4\delta_n}$$
$$= \frac{1 - |z_n|^2}{4\delta_n} - \frac{|z_n|}{2} - \frac{\delta_n}{4}$$

The last expression tends to ∞ and condition (14) is proved . **Sufficiency.** Let $\{z_n\}$ be such sequence of points that

$$\lim_{n\to\infty}(1-|z_n|^2)f^{\#}(z_n)=+\infty,$$

 $\{\varepsilon_n\}$ be a sequence of positive numbers, $\lim_{n\to\infty} \varepsilon_n = 0$ and $z_n \in \Delta(z_n, \varepsilon_n)$ for each *n*. Then by Proposition 4.1 the sequence $\{z_n\}$ is a ρ_N -sequence of *f* and by the Theorem 4.2 the sequence $\{z_n\}$, which satisfies condition (13), i.e. $\lim_{n\to\infty} \sigma(z_n, z_n) = 0$, is also a ρ_N -sequence of the meromorphic function *f*.

Acknowledgements. The first author thanks Professor Klaus Gürlebeck from Bauhaus-University Weimar Germany for introducing him to the subject of function spaces and for several valuable discussions on the subject.

References

- [1] J. M. Anderson, J. Clunie and Ch. Pommerenke, On Bloch functions and normal functions, J. Reine. Angew. Math. 270(1974), 12-37.
- [2] R. Aulaskari and P. Lappan, Criteria for an analytic function to be Bloch and a harmonic or meromorphic function to be normal, Chung-Chun Yang et al. Eds: Complex analysis and its applications, Pitman Research Notes in Math. 305, Longman Scientific and Technical Harlow, (1994),136-146.
- [3] R. Aulaskari and P. Lappan, Additive automorphic functions and Bloch functions, Canadian J. Math. 46(3) (1994), 474-484.
- [4] R. Aulaskari, M. Makhmutov and H. Wulan, On q_p-sequences, Le Hung Son et al. Eds: In the book "Finite or infinite dimensional complex analysis and applications" Boston MA: Kluwer Academic Publishers. Adv. Complex Anal. Appl. 2(2004), 117-125.
- [5] R. Aulaskari and L.M. Tovar, On the function spaces B^q and Q_p, Bull. Hong Kong Math. Soc. Vol 1 (1997), 203-208.
- [6] B. Böe, A norm on the holomorphic Besov spaces, Proc. American. Math. Soc. 131(1)(2003), 235-241.
- [7] D. Campbell and G. Wickes, Characterizations of normal meromorphic functions, Complex Analysis, Joensuu, Lecture Notes in Mathematics, 747, Springer-Verlag, Berlin, (1978), 55-72.
- [8] M. Essén and H. Wulan, On analytic and meromorphic functions and spaces of Q_K type, Illinois J. Math. 46(2002), 1233-1258
- [9] M. Essén, H. Wulan, and J. Xiao, Several function-theoretic characterizations of Möbius invariant Q_K spaces, J. Funct. Anal. 230(1)(2006), 78-115.
- [10] E. G. Kwon, A characterization of Bloch space and Besov space, J. Math. Anal. Appl. 324(2)(2006), 1429-1437.
- [11] E. G. Kwon, O. H. Shim, and E. K. Bae, A characterization of Bloch function, Commun. Korean Math. Soc. 21(2)(2006), 287-292.
- [12] S. Li and S. Stević, Some characterizations of the Besov space and the α -Bloch space, J. Math. Anal. Appl. 346(1)(2008), 262-273.
- [13] S. Makhmutov, Integral characterizations of Bloch functions, New Zealand Journal of Mathematics, Vol 26 (1997), 201-212.
- [14] A. Nicolau, The corona property for bounded analytic functions in some Besov spaces, Proc. Am. Math. Soc. 110(1) (1990), 135-140.
- [15] J. Rättyä, On some Complex function spaces and classes, Annales Academiae Scientiarum Fennicae. Series A I. Mathematica. Dissertationes. 124. Helsinki: Suomalainen Tiedeakatemia (2001), 1-73.

- [16] J. L. Schiff, Normal families , Springer-Verlag, New York, 1993.
- [17] K. Stroethoff, Besov-type characterizations for the Bloch space, Bull. Austral. Math. Soc. Vol 39 (1989), 405-420.
- [18] Z. Wu, R. Zhao and N. Zorboska, Toeplitz operators on analytic Besov spaces, Integral Equations Oper. Theory 60(3)(2008), 435-449.
- [19] H. Wulan, On some classes of meromorphic functions, Annales Academiae Scientiarum Fennicae. Series A I. Mathematica. Dissertationes. 116. Helsinki: Suomalainen Tiedeakatemia, (1998), 1-57.
- [20] H. Wulan and P. Wu, Characterizations of Q_T spaces, J. Math. Anal. Appl. 254(2001), 484-497.
- [21] H. Wulan and X. Li, A new characterization of $Q_p^{\#}$ functions, Acta Math. Sci., Ser. B, Engl. Ed. 24(4)(2004), 583-588.
- [22] S. Yamashita, Criteria for function to be Bloch, Bull. Austral. Math. Soc. Vol 21 (1980), 223-227.
- [23] R. Zaho, On a general family of function spaces, Annales Academiae Scientiarum Fennicae. Series A I. Mathematica. Dissertationes. 105. Helsinki: Suomalainen Tiedeakatemia,(1996), 1-56.

Sohag University Faculty of Science, Department of Mathematics, Sohag, Egypt e-mail: ahsayed80@hotmail.com