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Abstract

Let S be a locally compact semigroup and Ma(S) be its semigroup alge-
bra. In this paper, we investigate inner invariant means on L∞(S , Ma(S))
of all Ma(S)-measurable complex-valued bounded functions on S and its
closed subspace Cb(S), the space of all bounded continuous complex-valued
functions on S . We also study topological inner invariant means on certain
closed subspaces X of L∞(S , Ma(S)) and their relation with inner invariant
means on X.

1 Introduction

Throughout this paper, S denotes a locally compact semigroup; i.e., a semigroup
with a locally compact Hausdorff topology whose binary operation is jointly
continuous. The space of all bounded complex regular Borel measures on S is
denoted by M(S). This space with the convolution multiplication ∗ and the total
variation norm defines a Banach algebra. The space of all measures µ ∈ M(S)
for which the maps s 7−→ δs ∗ |µ| and s 7−→ |µ| ∗ δs from S into M(S) are weakly

continuous is denoted by Ma(S) (or L̃(S) as in [2]), where δs denotes the Dirac
measure at s. It is well-known that Ma(S) is a closed two-sided L-ideal of M(S);
see [2].
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Denote by L∞(S , Ma(S)) the set of all complex-valued bounded functions g
on S that are Ma(S)-measurable; that is, µ-measurable for all µ ∈ Ma(S). We
identify functions in L∞(S , Ma(S)) that agree µ-almost everywhere for all µ ∈
Ma(S). For every g ∈ L∞(S ; Ma(S)), define

‖ g ‖∞= sup{ ‖g‖∞,|µ| : µ ∈ Ma(S) },

where ‖.‖∞,|µ| denotes the essential supremum norm with respect to |µ|. Observe

that L∞(S , Ma(S)) with the complex conjugation as involution, the pointwise
operations and the norm ‖.‖∞ is a commutative C∗-algebra. Let X be a subspace
of L∞(S , Ma(S)) which is left and right translations invariant; that is, sg and g s are
in X for all g ∈ X and s ∈ S , where

(sg)(t) = g(st) and (gs)(t) = g(ts)

for all t ∈ S . A linear functional F on X is called inner invariant whenever

F(sg) = F(gs)

for all s ∈ S and g ∈ X. Recall that a bounded linear functional m with norm one
on X is said to be a mean if m(g) ≥ 0 for all g ∈ X with g ≥ 0.

The study of inner invariant means was initiated by Effros [10] and pursued
by Akemann [1], H. Choda and M. Choda [5], M. Choda [6, 7] for discrete groups,
Lau and Paterson [16] and [17], Losert and Rindler [19], Yuan [28] for locally
compact groups, and by Ling [18] and the authors [21] for discrete semigroups.

In this paper, we investigate inner invariant means on L∞(S , Ma(S)) and its
closed subspace Cb(S) of all bounded continuous complex-valued functions on
S . We also study topological inner invariant means on certain closed subspaces
X of L∞(S , Ma(S)) and their relation with inner invariant means on X.

2 Topological inner invariant means

Given any µ ∈ Ma(S) and g ∈ L∞(S , Ma(S)), define the complex-valued func-
tions g ◦ µ and µ ◦ g on S by

(g ◦ µ)(s) = µ(sg) and (µ ◦ g)(s) = µ(gs)

for all s ∈ S . It is clear that

(g ◦ µ)(s) = (δx ∗ µ)(g) and (µ ◦ g)(s) = (µ ∗ δx)(g)

and so g ◦ µ and µ ◦ g are in Cb(S) with

‖g ◦ µ‖∞ ≤ ‖g‖∞ ‖µ‖ and ‖µ ◦ g‖∞ ≤ ‖g‖∞ ‖µ‖.

A closed subspace X of L∞(S ; Ma(S)) is called topologically invariant if

X ◦ Ma(S) ⊆ X and Ma(S) ◦ X ⊆ X.
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Let LUC(S) (resp. RUC(S)) be the space of all left (resp. right) uniformly con-
tinuous functions on S ; recall that a function f ∈ Cb(S) is called left (resp. right)
uniformly continuous if the mapping s 7−→ s f (resp. s 7−→ fs) from S into Cb(S)
is ‖.‖∞-continuous. Also, a function f ∈ Cb(S) is called uniformly continuous if f
is in

UC(S) := LUC(S) ∩ RUC(S).

It follows from the equalities

s( f ◦ µ) = s f ◦ µ and (µ ◦ f )s = µ ◦ fs

for all s ∈ S , f ∈ Cb(S) and µ ∈ Ma(S) that

LUC(S)) ◦ Ma(S) ⊆ LUC(S) and Ma(S) ◦ RUC(S) ⊆ RUC(S).

Before we state the following lemma which is needed in the sequel, let us
recall that S is called foundation semigroup if

⋃
{supp(µ) : µ ∈ Ma(S)} is dense

in S . Foundation semigroups form a large class of locally compact semigroups
which includes locally compact groups and discrete semigroups as elementary
examples; as another example, consider the semigroup S := [0, 1] with the usual
topology of the real line and the operation xy = min{x + y, 1} defines a compact
foundation semigroup with identity; indeed,

Ma(S) = L1([0, 1]) ⊕ C δ1.

Moreover, the additive semigroup S := R
+ of all non-negative real numbers with

the usual topology defines a non-compact foundation semigroup with identity;
indeed,

Ma(S) = L1(R
+).

Also, the multiplicative semigroup S := {0, 1, 1/2, 1/3, ...} with the restriction of
the usual topology of the real line defines a compact foundation semigroup with
identity; indeed,

Ma(S) = ℓ
1(S \ {0}).

Lemma 2.1. Let S be a foundation semigroup with identity. If X and Y are closed
subspaces of L∞(S ; Ma(S)) such that UC(S) ⊆ X ⊆ LUC(S) and UC(S) ⊆ Y ⊆
RUC(S). Then

X ⊆ Ma(S) ◦ X ⊆ LUC(S) and Y ⊆ Y ◦ Ma(S) ⊆ RUC(S).

In particular, UC(S), LUC(S) and RUC(S) are topologically invariant.

Proof. Let f ∈ Y and µ ∈ Ma(S). It follows from the hypothesis that the map
x 7→ µ ∗ δx from S into Ma(S) is norm continuous; see [9], Theorem 5.6.1. This
together with

( f ◦ µ)x = f ◦ (µ ∗ δx) (x ∈ S)

imply that f ◦ µ ∈ RUC(S). It follows that Y ◦ Ma(S) ⊆ RUC(S), in particular,

RUC(S) ◦ Ma(S) ⊆ RUC(S),
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and thus RUC(S) is topologically invariant.
On the other hand, for every ε > 0, there is a neighbourhood U of the identity

element of S such that
‖ fx − f‖∞ < ε (x ∈ U).

Since S is foundation, there exists a probability measure e0 in Ma(S) with
supp (e0) ⊆ U. Then

‖ f ◦ e0 − f‖∞ ≤ ε.

Now, let (eγ)γ∈Γ be an approximate identity for Ma(S) bounded by one; see [12],
Lemma 2.1. Then for each γ ∈ Γ we have

‖ f ◦ eγ − f‖∞ ≤ ‖ f ◦ eγ − ( f ◦ e0) ◦ eγ‖∞

+ ‖( f ◦ e0) ◦ eγ − f ◦ e0‖∞ + ‖ f ◦ e0 − f‖∞

≤ ‖ f − f ◦ e0‖∞

+ ‖ f ◦ (e0 ∗ eγ − e0)‖∞ + ‖ f ◦ e0 − f‖∞

≤ 2 ε + ‖ f‖∞ ‖e0 ∗ eγ − e0‖.

It follows that ‖ f ◦ eγ − f‖∞ → 0. This together with the Cohen factorization the-
orem imply that Y ⊆ Y ◦ Ma(S); see [11], Theorem 32.5. The proof of the other
inclusions are similar.

Let us point out that the second dual Ma(S)∗∗ of Ma(S) is a Banach algebra
with the first Arens product ⊙ defined by the equations

(F ⊙ H)( f ) = F(H f ),

(H f )(µ) = H( f µ),

( f µ)(ν) = f (µ ∗ ν)

for all F, H ∈ Ma(S)∗∗, f ∈ Ma(S)∗, and µ, ν ∈ Ma(S). In the case where, S is a
foundation semigroup with identity, Ma(S)∗ can be identified with L∞(S , Ma(S));
in fact, the equation

τ(g)(µ) := µ(g) =
∫

S
f dµ

defines an isometric isomorphism τ of L∞(S ; Ma(S)) into the continuous dual
space Ma(S)∗ of Ma(S); see Proposition 3.6 of Sleijpen [27]. Moreover, for each
g ∈ L∞(S , Ma(S)) and µ ∈ Ma(S),

τ(g ◦ µ) = µ τ(g) and τ(µ ◦ g) = τ(g) µ.

Let X be a topologically invariant closed subspace of L∞(S ; Ma(S)) contain-
ing the constant functions and m be a mean on X; i.e., ‖m‖ = m(1) = 1. Recall
from [14] that m is topological inner invariant on X whenever

µ ⊙ m = m ⊙ µ (µ ∈ Ma(S));

or equivalently

m(µ ◦ g) = m(g ◦ µ) (µ ∈ Ma(S), g ∈ X.)
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The notion of topological inner invariant means was introduced and studied
by the second author [23] for a large class of Banach algebras known as Lau al-
gebras. The subject of Lau algebras originated with the paper [15] published in
1983 by Lau in which he referred to them as F-algebras. Later on, in his use-
ful monograph, Pier [25] introduced the name Lau algebra. Let us remark from
[22] that Ma(S) is a Lau algebra for all foundation semigroups S with identity;
in this case, any mixed identity with norm one in Ma(S)∗∗ is a topological inner
invariant mean on L∞(S, Ma(S)).

Proposition 2.2. Let S be a foundation semigroup with identity. Then any topological
inner invariant mean on UC(S), LUC(S), or RUC(S) is inner invariant.

Proof. Let m be a topological inner invariant mean on LUC(S). By Lemma 2.1,
for each f in LUC(S) we have f = µ ◦ g for some µ ∈ Ma(S) and g ∈ LUC(S).
Since for each s ∈ S ,

s(µ ◦ g) = (µ ∗ δs) ◦ g

g ◦ (µ ∗ δs) = gs ◦ µ

µ ◦ gs = (µ ◦ g)s

we conclude

m(s f ) = m(s(µ ◦ g))

= m((µ ∗ δs) ◦ g)

= m(g ◦ (µ ∗ δs))

= m(gs ◦ µ)

= m(µ ◦ gs)

= m((µ ◦ g)s)

= m( fs).

That is, m is inner invariant on LUC(S). Similar arguments hold for RUC(S) and
UC(S).

As a consequence of Proposition 2.2 we have the following improvement of
Theorem 3.1 of [20] from locally compact groups to a large class of locally compact
semigroups; see also [13] and [14].

Corollary 2.3. Let S be a foundation semigroup with identity and m be a mean on
UC(S). Then m is inner invariant if and only if it is topological inner invariant.

Proof. The “if” part follows from Proposition 2.2. To prove the converse, let m be
an inner invariant mean on UC(S). Then there is a net (mγ)γ∈Γ in UC(S)∗ such
that mγ → m in the weak∗ topology of UC(S)∗ and

mγ =
nγ

∑
i=1

ci,γ δsi,γ
(γ ∈ Γ),
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where si,γ ∈ S , ci,γ are complex numbers with

nγ

∑
i=1

|ci,γ| ≤ 1;

see for example [8], page 417, Theorem 10. Now, let f ∈ UC(S) and µ ∈ Ma(S)
be a measure with compact support C. Then the sets

{s f : s ∈ C} and { fs : s ∈ C}

are norm compact in UC(S), and therefore

mγ(s f ) → m(s f ) and mγ( fs) → m( fs)

uniformly on C by the Makey-Arens theorem. We thus have

m( f ◦ µ) = lim
γ

mγ( f ◦ µ)

= lim
γ

nγ

∑
i=1

ci,γδsi,γ
( f ◦ µ)

= lim
γ

nγ

∑
i=1

ci,γ

∫

S
δsi,γ

( fs) dµ(s)

= lim
γ

∫

S
mγ( fs) dµ(s)

=
∫

S
m( fs) dµ(s)

=
∫

S
m(s f ) dµ(s)

= lim
γ

∫

S
mγ(s f ) dµ(s)

= lim
γ

nγ

∑
i=1

ci,γ

∫

S
δsi,γ

(s f ) dµ(s)

= lim
γ

nγ

∑
i=1

ci,γ δsi,γ
(µ ◦ f )

= lim
γ

mγ(µ ◦ f )

= m(µ ◦ f ).

Since measures with compact supports are norm dense in Ma(S), it follows that
m is topological inner invariant on UC(S).

Let us remark that an element E ∈ Ma(S)∗∗ is called a mixed identity if

µ ⊙ E = E ⊙ µ (µ ∈ Ma(S)).

It well-known from [3], page 146, that an element E ∈ Ma(S)∗∗ is a mixed identity
with norm one if and only if it is a weak∗ cluster point of an approximate identity
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bounded by one in Ma(S); see [14], Theorem 2.3, for other descriptions of mixed
identities with norm one in Ma(S)∗∗.

Moreover, note that if S is a foundation semigroup with identity, then for
every F ∈ Ma(S)∗∗ and n ∈ LUC(S)∗ , the functional F ⊙ n can be defined as an
element of Ma(S)∗∗ in a way similar to the first Arens product; this is because
that µ ◦ g ∈ LUC(S) for all µ ∈ Ma(S) and g ∈ L∞(S , Ma(S)); see Lemma 2.1 of
[12].

The next proposition should be compared with the corresponding result con-
cerning topological left invariant means; see Theorem 4.2.4 of [9]. It should be
noted that the standard technic used in [9] does not work in our setting.

Proposition 2.4. Let S be a foundation semigroup with identity. If m is a topological
inner invariant mean on LUC(S), then E ⊙ m is a topological inner invariant mean on
L∞(S , Ma(S)) for all mixed identities E in Ma(S)∗∗ with norm one.

Proof. Let E ∈ Ma(S)∗∗ be a mixed identity with norm one, and (eγ) be an ap-
proximate identity for Ma(S) bonded by one such that eγ converges to E in the
weak∗ topology of Ma(S)∗∗. Then for µ ∈ Ma(S) and g ∈ L∞(S , Ma(S)) we
have

‖eγ ◦ (µ ◦ g)− µ ◦ g‖∞ = ‖(eγ ∗ µ − µ) ◦ g‖∞ → 0

and
‖µ ◦ (eγ ◦ g) − µ ◦ g‖∞ = ‖(µ ∗ eγ − µ) ◦ g‖∞ → 0.

Now, suppose that m is a topological inner invariant mean on LUC(S). Then

lim
γ

m(eγ ◦ (µ ◦ g)) = lim
γ

m(µ ◦ (eγ ◦ g)).

Since Ma(S) ◦ L∞(S , Ma(S)) ⊆ LUC(S), it follows that eγ ◦ g ∈ LUC(S) for all
γ and thus

m(µ ◦ (eγ ◦ g)) = m((eγ ◦ g) ◦ µ)

= m(eγ ◦ (g ◦ µ))

= (eγ ⊙ m)(g ◦ µ).

This shows that

lim
γ

(eγ ⊙ m)(µ ◦ g) = lim
γ

m(eγ ◦ (µ ◦ g))

= lim
γ

m(µ ◦ (eγ ◦ g))

= lim
γ

(eγ ⊙ m)(g ◦ µ).

Since eγ ⊙ m converges to E ⊙ m in the weak∗ topology of Ma(S)∗∗, we get

(E ⊙ m)(µ ◦ g) = lim
γ

(eγ ⊙ m)(µ ◦ g)

= lim
γ

(eγ ⊙ m)(g ◦ µ)

= (E ⊙ m)(g ◦ µ).
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This implies that E ⊙ m is a topological inner invariant mean on L∞(S , Ma(S))
and the proof is complete.

The following result is of independent interest.

Proposition 2.5. Let S be a foundation semigroup with identity. If m is a topological
inner invariant mean on Cb(S), then m(µ ◦ g) = m(g ◦ µ) for all µ ∈ Ma(S) and
g ∈ L∞(S , Ma(S)). In particular, any extension of m to a mean on L∞(S , Ma(S)) is
topological inner invariant.

Proof. Let µ, ν ∈ Ma(S) and g ∈ L∞(S , Ma(S)). Then ν ◦ g, g ◦ µ ∈ Cb(S), and
hence we have

m((ν ∗ µ) ◦ g) = m(µ ◦ (ν ◦ g))

= m((ν ◦ g) ◦ µ)

= m(ν ◦ (g ◦ µ)

= m((g ◦ µ) ◦ ν)

= m(g ◦ (ν ∗ µ)).

Now, let (eγ) be an approximate identity for Ma(S). Then for each γ,

lim
γ

m((eγ ∗ µ) ◦ g) = lim
γ

m(g ◦ (eγ ∗ µ)).

Also,

‖(eγ ∗ µ) ◦ g − µ ◦ g‖∞ → 0

and

‖g ◦ (eγ ∗ µ) − g ◦ µ‖∞ → 0.

It follows that

m(µ ◦ g) = lim
γ

m((eγ ∗ µ) ◦ g)

= lim
γ

m(g ◦ (eγ ∗ µ))

= m(g ◦ µ).

Therefore, if M is an extension of m from Cb(S) to a mean on L∞(S , Ma(S)), then
M(µ ◦ g) = M(g ◦ µ). Thus M defines a topological inner invariant mean on
L∞(S , Ma(S)).

3 Inner invariant means on L∞(S , Ma(S))

In this section we shall be concerned with the inner invariant means on
L∞(S , Ma(S)) for a locally compact semigroup S . Before, we give our first result,
let us recall that a subset A of S is called Ma(S)-measurable if it is µ-measurable
for all µ ∈ Ma(S).
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Lemma 3.1. Let S be a left (resp. right) cancellative locally compact semigroup such that
xA (resp. Ax) are Ma(S)-measurable for all Ma(S)-measurable subset A of S . Then
the space of inner invariant functionals on L∞(S , Ma(S)) is the linear span of inner
invariant means.

Proof. Let F be an inner invariant functional on L∞(S , Ma(S)). We have to show
that F is a linear span of some inner invariant means on L∞(S , Ma(S)). Without
loss of generality we may assume that F is nonzero and self-adjoint. In view of
1.14.3 of [26], there are unique positive functionals F+ and F− on L∞(S , Ma(S))
such that

F = F+ − F− and ‖F‖ = ‖F+‖ + ‖F−‖.

The result then will follow if we show that F+ and F− are inner invariant func-
tionals. This is because that if F+ (resp. F−) is nonzero, then the mean F+(1)−1F+

(resp. F−(1)−1F−) is inner invariant.
To this end, let s ∈ S , and s.F be the linear functional on L∞(S , Ma(S)) de-

fined by
(s.F)(g) = F(sg) (g ∈ L∞(S , Ma(S))).

Then there are unique positive functionals (s.F)+ and (s.F)− on L∞(S , Ma(S))
such that

s.F = (s.F)+ − (s.F)− and ‖s.F‖ = ‖(s.F)+‖+ ‖(s.F)−‖.

We show that (s.F)+ = s.F+ and (s.F)− = s.F−. By uniqueness and that
s.F = s.F+ − s.F− we only need to prove that

‖(s.F)+‖ = ‖s.F+‖ and ‖(s.F)−‖ = ‖s.F−‖.

Using the fact that

‖(s.F)+‖ = (s.F)+(1) = sup {F(sg) : g ∈ L∞(S , Ma(S)), 0 ≤ g ≤ 1}

‖(s.F)−‖ = (s.F)−(1) = − inf {F(sg) : g ∈ L∞(S , Ma(S)), 0 ≤ g ≤ 1}

and

‖s.F+‖ = F+(1) = sup {F(g) : g ∈ L∞(S , Ma(S)), 0 ≤ g ≤ 1}

‖s.F−‖ = F−(1) = − inf {F(g) : g ∈ L∞(S , Ma(S)), 0 ≤ g ≤ 1} .

By the hypothesis it suffices to show that the two sets

{F(sg) : g ∈ L∞(S , Ma(S)), 0 ≤ g ≤ 1}

and
{F(g) : g ∈ L∞(S , Ma(S)), 0 ≤ g ≤ 1 }

are the same. To see this, let g ∈ L∞(S , Ma(S)) with 0 ≤ g ≤ 1. If S is left
cancellative, then for each s ∈ S and t ∈ sS , let s−1t denote the unique element y
of S for which t = sy. Now, we may define g′ : S −→ C for each t ∈ S by

g′(t) =

{
g(s−1t) t ∈ sS

0 t 6∈ sS
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Then g′ is well-defined. Moreover, for any open subset V of C we have

(g′)−1(V) =

{
s (S ∩ g−1(V)) 0 6∈ V

s (S ∩ g−1(V)) ∪ (S \ sS) 0 ∈ V

Thus g′ is Ma(S)-measurable by the hypothesis and that g ∈ L∞(S , Ma(S)). It
follows that

g′ ∈ L∞(S , Ma(S)), with 0 ≤ g′ ≤ 1 and g =s g′.

In the case where S is right cancellative, in a similar way it can be proved that
there is

g′ ∈ L∞(S , Ma(S)), with 0 ≤ g′ ≤ 1 and g = g′s.

In both cases, since F is inner invariant, we have F(sg′) = F(g′s).
By a similar argument we have (F.s)+ = F+.s and (F.s)− = F−.s for all s ∈ S ,

where F.s is the linear functional on L∞(S , Ma(S)) defined by

(F.s)(g) = F(gs) (g ∈ L∞(S , Ma(S))).

Therefore

s.F+ = (s.F)+ = (F.s)+ = F+.s,

and

s.F− = (s.F)− = (F.s)− = F−.s.

That is F+ and F− are inner invariant as required.

In the next theorem, we denote by H(S) (resp. HR(S)) the complex (resp.
real) linear span of functions of the form sg − gs for some s ∈ S and complex-
valued (resp. real-valued) functions g ∈ L∞(S , Ma(S)).

Theorem 3.2. Let S be a locally compact semigroup and consider the following state-
ments.

(a) There is an inner invariant mean on L∞(S , Ma(S)).
(b) sup{h(s) : s ∈ S} ≥ 0 for all h ∈ HR(S).
(c) inf{‖1 − h‖∞ : h ∈ H(S)} = 1.
(d) H(S) is not norm dense in L∞(S , Ma(S)).

Then (a)⇐⇒(b)⇐⇒(c) =⇒(d). If S is as in Lemma 3.1, then (a)-(d) are equivalent.

Proof. (a)=⇒(b). If m is an inner invariant mean on L∞(S , Ma(S)), then for each
h ∈ HR(S) we have

sup{h(s) : s ∈ S} ≥ m(h) = 0.

(b)=⇒(c). Suppose on the contrary that inf{‖1 − h‖∞ : h ∈ H(S)} < 1. Then

sup{−Re h(s) : s ∈ S} < 0

for some h ∈ H(S). This together with that −Re h ∈ HR(S) contradict (b). Now,
(c) follows from that 0 ∈ H(S).
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The implications (c)=⇒(d) and (c)=⇒(a) follow from the fact that by the Hahn-
Banach theorem, there is n ∈ L∞(S , Ma(S))∗ with norm one such that n(H(S)) =
{0}, and

n(1) = inf{‖1 − h‖∞ : h ∈ H(S)}.

The rest of the proof follows at once from Lemma 3.1.

In the following result, let L∞(G) be the usual Lebesgue space of all essen-
tially bounded measurable functions on a locally compact group G, and note that
L∞(G) = L∞(G, Ma(G)).

Corollary 3.3. Let G be a locally compact group. Then the following statements are
equivalent

(a) There is an inner invariant mean on L∞(G).
(b) sup{h(x) : x ∈ G} ≥ 0 for all h ∈ HR(G).
(c) inf{‖1 − h‖∞ : h ∈ H(G)} = 1.
(d) H(G) is not norm dense in L∞(G).

Before we give the next result, let us recall that a family (Aγ)γ∈D of sets is
upward directed if D is a directed set and Aγ ⊆ Aβ when γ ≤ β.

Proposition 3.4. Let (Sγ)γ∈D be an upward directed family of locally compact sub-
semigroups of a locally compact semigroup S . If for each γ ∈ D, there exists an in-
ner invariant mean on L∞(Sγ, Ma(Sγ)), then there exists an inner invariant mean on
L∞(∪γ∈DSγ, Ma(∪γ∈DSγ)).

Proof. By Theorem 3.2, we only need to note that if h ∈ HR(∪γ∈DSγ), then
h ∈ HR(Sγ) for some γ ∈ D.

As an immediate consequence of Proposition 3.4, we obtain

Corollary 3.5. Let S be a locally compact semigroup. If there is an inner invariant mean
on L∞(S0, Ma(S0)) for all finitely generated subsemigroups S0 of S , then there is an
inner invariant mean on L∞(S , Ma(S)).

Let S0 be a subset of a locally compact semigroup S . We say that a mean
m on L∞(S , Ma(S)) is inner S0-invariant if m(xg) = m(gx) for all x ∈ S0 and
g ∈ L∞(S , Ma(S)).

Proposition 3.6. Suppose that S0 is a closed subsemigroup of a locally compact semi-
group S . Then there exists an inner invariant mean on L∞(S0, Ma(S0)) if and only if
there is an inner S0-invariant mean m on L∞(S , Ma(S)) with m(χS0

) = 1.

Proof. Suppose that n is an inner invariant mean on L∞(S0, Ma(S0)). Since g|S0
,

the restriction of g to S0 belongs to L∞(S0, Ma(S0)) for all g in L∞(S , Ma(S)), the
map

m : g 7−→ n(g|S0
)

defines a mean on L∞(S , Ma(S)). Moreover, m(χS0
) = 1 trivially, and also m is

inner S0-invariant. Indeed, for each t ∈ S0 and g ∈ L∞(S , Ma(S)) we have

m(tg − gt) = n((tg − gt)|S0
)

= n(t(g|S0
) − (g|S0

)t).
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Conversely, suppose m is an inner S0-invariant mean on L∞(S , Ma(S)) with

m(χS0
) = 1. For every f ∈ L∞(S0, Ma(S0)), let f̃ : S −→ C be the function

which is equal to f on S0 and zero on S \ S0. Since the restriction of µ to S0 is in

Ma(S0) for all µ ∈ Ma(S), it follows easily that f̃ is Ma(S)-measurable. That is

f̃ ∈ L∞(S , Ma(S)). Thus the linear functional

n : f 7−→ m( f̃ )

defines a mean on L∞(S0, Ma(S0)). Furthermore, ( fs )̃ = f̃s on S0 for all s ∈ S0

and f ∈ L∞(S0, Ma(S0)), and therefore,

|( fs )̃− f̃s| ≤ ‖( fs )̃− f̃s‖∞ χS\S0
.

It follows that n(( fs )̃ ) = n( f̃s). Similarly, n((s f )̃ ) = n(s f̃ ). That is n is an inner
invariant mean on L∞(S0, Ma(S0)) as required.

4 Inner invariant means on Cb(S)

Let S be a locally compact semigroup. In the case where S has an identity e,
Cb(S) has always an inner invariant mean; in fact, δe is an inner invariant mean
on Cb(S). However, this is not true in general; for example, consider a left zero
semigroup with at least two elements. In this section, we study the existence of
inner invariant means on Cb(S). Before we give our first result of this section, let
us remind that a mean m on Cb(S) is called two-sided invariant if

m(s f ) = m( fs) = m( f ) (s ∈ S , f ∈ Cb(S)).

Proposition 4.1. Let S1 and S2 be two locally compact semigroups. If Cb(S1) has a
two-sided invariant mean and Cb(S2) has an inner invariant mean, then Cb(S1 × S2)
has an inner invariant mean.

Proof. Let m be a two-sided invariant mean on Cb(S1) and n be an inner invariant
mean on Cb(S2). For each f ∈ Cb(S1 ×S2), define the function f2 ∈ Cb(S2) by

f2(t) = m( f t
1) (t ∈ S2),

where f t
1 ∈ Cb(S1) is defined by

f t
1(s) = f (s, t) (s ∈ S1).

It follows that

((x,y) f )t
1 = x( f

yt
1 ) and ( f(x,y))

t
1 = ( f

ty
1 )x

for all x ∈ S1 and y, t ∈ S2. Moreover,

((x,y) f )2(t) = m((x,y) f )t
1)

= m( x( f
yt

1 ))

= m( f
yt

1 )

= y( f2)(t),
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and

( f(x,y))2(t) = m( f(x,y))
t
1)

= m(( f
ty

1 )x)

= m( f
ty

1 )

= ( f2)y(t).

Therefore
((x,y) f )2 = y( f2) and ( f(x,y))2 = ( f2)y.

Now, define the mean M on Cb(S1 ×S2) by M( f ) = n( f2) for all f ∈ Cb(S1 ×S2).
Then for each x ∈ S1 and y ∈ S2,

M((x,y) f ) = n(((x,y) f )2)

= n( y( f2))

= n(( f2)y)

= n(( f(x,y))2)

= M( f(x,y)).

That is M is an inner invariant mean on Cb(S1 × S2).

Corollary 4.2. Let S1 and S2 be non-trivial locally compact semigroups with identities
e1 and e2 respectively. Suppose that Cb(S1) has a two-sided invariant mean and Cb(S2)
has an inner invariant mean. Then there is an inner invariant mean on Cb(S1 ×S2) not
equal to δ(e1,e2).

Proof. Let m be a two-sided invariant mean on Cb(S1), and M be the inner invari-
ant mean on Cb(S1 × S2) defined as in the proof of Proposition 4.1. Since Cb(S1)
separates the points of S1, m(g) 6= g(e1) for some g ∈ Cb(S1). Now, define the
function f ∈ Cb(S1 × S2) by f (s1, s2) = g(s1) for all s1 ∈ S1 and s2 ∈ S2. Then

M( f ) = m(g) 6= g(e1) = f (e1, e2).

Therefore M 6= δ(e1,e2) as required.

Let S0 be a subset of a locally compact semigroup S . We say that a mean m on
Cb(S) is inner S0-invariant if m(sg) = m(gs) for all s ∈ S0 and g ∈ Cb(S).

Proposition 4.3. Suppose that S1 and S2 are two locally compact semigroups and θ is
a continuous homomorphism from S1 into S2. If there is an inner invariant mean on
Cb(S1), then there is an inner θ(S1)-invariant mean m on Cb(S2).

Proof. First note that if s1 ∈ S1, then

(s2 g − gs2) ◦ θ =s1
(g ◦ θ) − (g ◦ θ)s1

,

where s2 = θ(s1). Indeed, for each s ∈ S1 we have

[(s2 g − gs2) ◦ θ](s) = g(θ(s1)θ(s)) − g(θ(s)θ(s1))

= g(θ(s1s)) − g(θ(ss1))

= (g ◦ θ)(s1s)− (g ◦ θ)(ss1)

= s1
(g ◦ θ)(s) − (g ◦ θ)s1

(s).
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Now, suppose n is an inner invariant mean on Cb(S1). Then the mean

m : g 7−→ n(g ◦ θ)

is inner θ(S1)-invariant on Cb(S2). In fact, for each s2 ∈ S2 with s2 = θ(s1) for
some s1 ∈ S1, we have

m(s2 g − gs2) = n(s1
(g ◦ θ) − (g ◦ θ)s1

) = 0.

This establishes the proof.

Let C be a congruence relation on S ; that is, an equivalence relation such that
x C y implies both xs C ys and sx C sy (x, y, s ∈ S). We denote by S/C the
semigroup of all equivalence classes x/C (x ∈ S) induced by C with the usual
operation

(x/C) (y/C) = xy/C (x, y ∈ S).

The quotient space S/C endowed with the quotient topology is in general not
a locally compact semigroup in our sense; see [4], pages 46-50. Observe that if
C is a congruence relation on a locally compact semigroup S such that S/C is a
locally compact semigroup, then the natural map φ : S 7−→ S/C is a continuous
homomorphism.

Corollary 4.4. Let C be a closed congruence relation such that S/C is a locally compact
semigroup. If there is an inner invariant mean on Cb(S), then there is an inner invariant
mean on Cb(S/C).

Proof. The canonical map s 7−→ s/C from S onto S/C is a continuous homomor-
phism. So the result follows from Proposition 4.3

Corollary 4.5. Let S be a σ-compact locally compact semigroup and S0 be a closed ideal
of S . If there is an inner invariant mean on Cb(S), then there is an inner invariant mean
on Cb(S/S0).

Proof. From Theorem 1.57 of [4], it follows that S/S0 is a locally compact semi-
group. So, the result follows from Proposition 4.3 and Corollary 4.4.

Let {Si : i ∈ I} be a family of locally compact semigroups. The full direct
product Πi∈ISi of {Si : i ∈ I} is the set of all functions φ defined on I with φ(i) ∈
Si for i ∈ I. Note that Πi∈ISi equipped with the binary operation (φ, ψ) 7→ φ · ψ
defined by

(φ · ψ)(i) = φ(i) ψ(i) (i ∈ I)

is a semigroup. Moreover, if every Si is a locally compact semigroup, then Πi∈ISi

together with the product topology is also a locally compact semigroup.

Corollary 4.6. Suppose that {Si : i ∈ I} is a family of locally compact semigroups. If
there is an inner invariant mean on Cb(Πi∈ISi), then for each i ∈ I, there is an inner
invariant mean on Cb(Si).
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Proof. Set S := Πi∈ISi and note that for each i ∈ I, the projection map φ 7−→ φ(i)
from S onto Si is a continuous homomorphism. So, the result follows from
Proposition 4.3.
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