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Abstract

In this paper, we shall study the unicity of meromorphic functions defined
over non-Archimedean fields of characteristic zero such that their valence func-
tions of poles grow slower than their characteristic functions. If f is such a
function, and f and a linear differential polynomial P (f) of f , whose coeffi-
cients are meromorphic functions growing slower than f , share one finite value
a CM, and share another finite value b (6= a) IM, then P (f) = f .

1 Introduction.

In 1929, R. Nevanlinna studied the unicity of meromorphic functions in C. The
five value theorem due to R. Nevanlinna states that if two non-constant meromor-
phic functions f and g in C share five distinct complex numbers aj IM (ignoring
multiplicity), which means

f−1(aj) = g−1(aj), j = 1, 2, ..., 5

in the sense of sets, then it follows that f = g. The four value theorem of R.
Nevanlinna states that if two non-constant meromorphic functions f and g in C
share four distinct complex numbers aj CM (counting multiplicity), which means

f−1(aj) = g−1(aj), j = 1, 2, ..., 4

in the sense of counting multiplicities, then f is some Möbius transformation of g.
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In 1977, replacing the function g by the first derivative f ′ of f , L. Rubel and
C. C. Yang proved that if f is an entire function in C such that f and f ′ share
only two distinct finite complex numbers a, b CM, then f = f ′. Further, it has
been generalized to IM value sharing assumptions by E. Mues and N. Steinmetz,
and independently by G. G. Gundersen when ab 6= 0. Afterwards, there are a
lot of researches along this direction. For example, G. Frank etc. proved that a
meromorphic function f in C and its m-th derivative f (m) are equal if they share
two distinct finite complex numbers CM. E. Mues and M. Reinders, G. Frank and
X. H. Hua, and P. Li continuously obtained that a meromorphic function f in C is
equal to a linear differential polynomial P (f) of f if f and P (f) share three distinct
finite complex numbers IM. In particular, when f in C is entire, C. A. Bernstein,
C. D. Chang and B. Q. Li, and P. Li and C. C. Yang also obtained the relationship
f = P (f) if and only if f and P (f) share two distinct finite complex numbers CM
(see, e.g., [1], [8], [10], [11] or [12]).

Let κ be an algebraically closed field of characteristic zero, complete for a non-
trivial non-Archimedean absolute value | · |. Let f and g be two non-constant
meromorphic functions on κ. A unicity theorem (cf. [7]) states that if f and g share
two distinct values a, b CM, then there exists some non-zero constant c ∈ κ such
that

c =
f − a

f − b
· g − b

g − a
. (1)

To determine f and g completely, we need other conditions to determine the constant
c. For example, c = 1 if there exists a point z0 ∈ κ such that f(z0) = g(z0) (6= a, b).
In this paper, we replace the function g by a linear differential polynomial of f with
the following expression

P (f) = b−1 + b0f + b1f
′ + · · ·+ bmf

(m), (2)

where m ≥ 1 is an integer, and bi are meromorphic functions in κ with bm(z) 6≡ 0
such that their characteristic functions grow slower than that of f , that is

T (r, bi) = o(T (r, f)), i = −1, 0, 1, ...,m as r →∞. (3)

Now, our main theorem states

Theorem 1.1. Let f be a non-constant meromorphic function on κ satisfying

N̄(r, f) = o(T (r, f)). (4)

If f and P (f) share a finite value a CM, and share another finite value b (6= a) IM,
then P (f) = f .

Conversely, it is easy to show that the condition P (f) = f implies the relation
(4). A natural question is that, under the condition (4), if f and P (f) share two
distinct finite values a, b IM, whether the relation P (f) = f still holds or not.
Further, we have the following

Corollary 1.2. Let f be a transcendental entire function on κ, or more generally,
a transcendental meromorphic function on κ having finitely many poles. If f and
P (f) share a finite value a CM, and share another finite value b (6= a) IM, then
P (f) = f .
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2 Preliminaries.

In this section, we recall some basic notations and information related to our proofs
of Theorem 1.1 and other results. Let κ be stated as in the previous section, and
let A(κ) be the ring of entire functions on κ. Then each f ∈ A(κ) can be given by
a power series

f(z) =
∞∑

n=0

anz
n

with coefficients in κ such that for any z ∈ κ, we have |anz
n| → 0 as n→∞. For a

positive real r, the maximum term of f is defined to be

µ(r, f) = max
n≥0

|an|rn.

Let n
(
r, 1

f

)
denote the counting function of zeros of f , which is the number of zeros

(counting multiplicities) of f in the disc κ[0; r] = {z ∈ κ | |z| ≤ r}. The following
fact is fundamental

n

(
r,

1

f

)
= max

n≥0

{
n
∣∣∣|an|rn = µ(r, f)

}
.

Fix a real number ρ0 > 0. For r > ρ0, define the valence function of zeros of f by

N

(
r,

1

f

)
=
∫ r

ρ0

n
(
t, 1

f

)
t

dt.

Then we have the following Jensen Formula

N

(
r,

1

f

)
= log µ(r, f)− log µ(ρ0, f).

We also denote the number of distinct zeros of f in κ[0; r] by n̄
(
r, 1

f

)
and define the

refined valence function to be

N̄

(
r,

1

f

)
=
∫ r

ρ0

n̄
(
t, 1

f

)
t

dt.

Let nk)

(
r, 1

f

) (
resp. n(k

(
r, 1

f

))
denote the number of zeros of f in κ[0; r] with

multiplicities no more (resp. less) than k and define Nk)

(
r, 1

f

) (
resp. N(k

(
r, 1

f

))
as above; n̄k)

(
r, 1

f

) (
resp. n̄(k

(
r, 1

f

))
and thus N̄k)

(
r, 1

f

) (
resp.

(
N̄(k

(
r, 1

f

))
are

similarly defined.

The fractional field of A(κ) is denoted by M(κ). An element f in the field
M(κ) will be called a meromorphic function on κ. Next, let f be a non-constant
meromorphic function in κ. Since the greatest common factors of any two elements
in A(κ) exist, there exist f0, f1 ∈ A(κ) with f = f0

f1
such that f0 and f1 have no

common factors in the ring A(κ). We can uniquely extend µ to a meromorphic
function f by defining

µ(r, f) =
µ(r, f0)

µ(r, f1)
.
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Define the compensation function of f by

m(r, f) = max
{
0, log µ(r, f)

}
.

As usual, we define the characteristic function of f by

T (r, f) = m(r, f) +N(r, f),

where N(r, f) = N
(
r, 1

f1

)
is the valence function of poles of f . Then, the first main

theorem (cf. [3] or [7]) claims

T (r, f) = m

(
r,

1

f − a

)
+N

(
r,

1

f − a

)
+O(1) (5)

for any a ∈ κ. Further, we have the basic formula (cf. [7])

T (r, f) = max

{
N

(
r,

1

f − a

)
, N

(
r,

1

f − b

)}
+O(1) (6)

for any two distinct values a, b ∈ κ ∪ {∞}.
The lemma of the logarithmic derivative now states that for any positive integer

k > 0,

µ

(
r,
f (k)

f

)
≤ 1

rk
,

which further means

m

(
r,
f (k)

f

)
≤ k log+ 1

r
= O(1). (7)

The Jensen formula can be generalized into the following form (cf. [7])

T

(
r,
Af

Bf

)
= max(p, q)T (r, f) +O

 p∑
i=0

T (r, ui) +
q∑

j=0

T (r, vj)

 , (8)

where Af =
p∑

i=0
uif

i and Bf =
q∑

j=0
vjf

j are two coprime polynomials of f of degrees

p and q, respectively, and ui, vj ∈M(κ) for all i = 0, 1, . . . , p and j = 0, 1, . . . , q.

The second main theorem (cf. [3] or [7]) states that for q distinct finite values
a1, a2, . . . , aq of κ,

(q − 1)T (r, f) ≤ N(r, f) +
q∑

i=1

N

(
r,

1

f − ai

)
−NRam(r, f)− log r +O(1)

≤ N̄(r, f) +
q∑

i=1

N̄

(
r,

1

f − ai

)
− log r +O(1),

where NRam(r, f) is defined by

NRam(r, f) = 2N(r, f)−N(r, f ′) +N

(
r,

1

f ′

)
,

and is called the ramification term of f .

For more details on functional analysis over non-Archimedean fields, we refer the
reader to books [6], [7] or [9].



Unicity of meromorphic functions related to their derivatives 909

3 Proof of Theorem 1.1.

Set g := P (f). Without loss of generality, we may suppose a = 0. Otherwise, it is
sufficient to consider F = f − a and G = g − a.

At first, we consider the case that f and g share the two distinct finite values
0, b CM under the condition (4). By a basic unicity theorem in [7], there exists a
non-zero constant c ∈ κ such that

f

f − b
· g − b

g
= c, (9)

which implies that

f(g − b) = cg(f − b). (10)

If c = 1, then f = g, and so we are done. Next, suppose c 6= 1 and a contradiction
will be deduced. We rewrite (10) as

(g − b){(1− c)f + cb} = cb(f − b).

Then, we have

f − d =
cb

1− c
· f − b

g − b
,

where d := cb
c−1

6= 0, b. Since f and g share b CM, the zeros of f −d come from poles
of g, so

N

(
r,

1

f − d

)
≤ mN̄(r, f) + o(T (r, f)) = o(T (r, f)).

By using the formula (6), we obtain

N(r, f) 6= o(T (r, f)).

Thus, f and g have at least one common pole, say z0. Letting z → z0 in (9), we
immediately obtain c = 1. This is a contradiction. So, we derive f = g.

Now, we consider the general case under the assumptions of Theorem 1.1. Write

ϕ :=
f ′(f − g)

f(f − b)
. (11)

Note that

ϕ =
f ′

f − b
− b−1

b

{
f ′

f − b
− f ′

f

}
− f ′

f − b

m∑
i=0

bi
f (i)

f
.

Then the lemma of the logarithmic derivative yields immediately

m(r, ϕ) = o(T (r, f)).

Since f and g share 0 CM and b IM with the condition (4), we easily obtain an
estimate

N(r, ϕ) ≤ (m+ 1)N̄(r, f) +
m∑

i=−1

N(r, bi) = o(T (r, f)). (12)
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Therefore,

T (r, ϕ) = o(T (r, f)).

Similarly, we can prove that the function

ψ :=
f ′

f
− g′

g
(13)

satisfies

T (r, ψ) = o(T (r, f)).

Assume, to the contrary, that f 6≡ g. Thus ϕ 6≡ 0. From (11), we have

ϕ
f − b

f ′
≡ 1− g

f
.

By taking the derivative on both sides of the above equation and substituting (13)
into the resulted one, we have

ϕ′
f − b

f ′
+ ϕ

(
1− (f − b)f ′′

(f ′)2

)
≡ ψ

(
1− ϕ

f − b

f ′

)
,

which can be rewritten as

(ϕ− ψ)
f ′

f − b
− ϕ

f ′′

f ′
+ ϕ′ + ψϕ ≡ 0. (14)

We will distinguish three cases to study equation (14).

(i) ϕ− ψ ≡ 0. For this case, equation (14) becomes

−f
′′

f ′
+
ϕ′

ϕ
+
f ′

f
− g′

g
≡ 0. (15)

From (11), we have
ϕ′

ϕ
=
f ′′

f ′
+
f ′ − g′

f − g
− f ′

f
− f ′

f − b
.

Substituting this into (15), we obtain

f ′ − g′

f − g
=

f ′

f − b
+
g′

g
,

which means that the Wronskian determinant satisfies∣∣∣∣∣∣∣
f − g g(f − b)

f ′ − g′ f ′g + g′(f − b)

∣∣∣∣∣∣∣ ≡ 0.

Thus f−g and g(f−b) are linearly dependent. There exists a constant c ∈ κ (c 6= 0)
such that

f − g ≡ cg(f − b).
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If z0 is a zero of f − b and g − b with multiplicities p and q, respectively, then
the Taylor expansions of f and g around z0 are respectively

f(z) = b+
∞∑

n=p

An(z − z0)
n

and

g(z) = b+
∞∑

n=q

Bn(z − z0)
n.

By simple calculations, we find

p = q, bcAn = An −Bn (n ≥ p). (16)

Therefore, f and g share b CM, and hence f = g. This is a contradiction.

(ii) ϕ−kψ ≡ 0 for some integer k (> 1). Then equation (14) can be rewritten as

(
1− 1

k

)
f ′

f − b
− f ′′

f ′
+
ϕ′

ϕ
+
f ′

f
− g′

g
≡ 0.

By similar arguments as above, we can obtain

f ′ − g′

f − g
=

1

k
· f ′

f − b
+
g′

g
,

that is, the Wronskian determinant satisfies∣∣∣∣∣∣∣∣∣∣
f − b (f−g

g
)k

f ′ k (f−g)k−1

gk+1 {g(f ′ − g′)− g′(f − g)}

∣∣∣∣∣∣∣∣∣∣
≡ 0.

Hence f−b and
(

f−g
g

)k
are linearly dependent. There exists a constant d ∈ κ (d 6= 0)

such that

f = b+ d

(
f − g

g

)k

= b+ d

(
f

g
− 1

)k

.

By applying the estimate (8), we have

kT

(
r,
f

g

)
= T (r, f) +O(1). (17)

On the other hand, the poles of g
f

come only from poles of g, since f and g share
0 CM. So,

N

(
r,
g

f

)
≤ mN̄(r, f) + o(T (r, f)) = o(T (r, f)).

Similarly, we also have

N

(
r,
f

g

)
= o(T (r, f)).
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By using the formula (6), we have

T

(
r,
f

g

)
= max

{
N

(
r,
f

g

)
, N

(
r,
g

f

)}
+O(1) = o(T (r, f)).

This is a contradiction to (17), and so we can rule out of the case (ii), too.

(iii) ϕ− kψ 6≡ 0 for any integer k ≥ 1. For this case, we claim

N̄

(
r,

1

f − b

)
= o(T (r, f)). (18)

Let z0 be a zero of f − b with multiplicity p ≥ 1. If ϕ(z0) 6= ∞, from (14) it is easy
to show

ϕ(z0)− pψ(z0) = 0.

Thus we obtain

N̄m+1)

(
r,

1

f − b

)
≤ N̄(r, ϕ) +

m+1∑
p=1

N̄

(
r,

1

ϕ− pψ

)
= o(T (r, f)). (19)

Next, assume p ≥ m+ 2. If bi(z0) 6= ∞ (i = −1, 0, ...,m), g(z0) = b yields

b = b−1(z0) + bb0(z0).

If b−1(z) + b0(z)b 6≡ b, we obtain

N̄(m+2

(
r,

1

f − b

)
≤ N̄

(
r,

1

b−1 + bb0 − b

)
+

m∑
i=−1

N̄(r, bi) = o(T (r, f)).

If b−1(z) + b0(z)b ≡ b, we have

g − f ≡ (b0 − 1)(f − b) +
m∑

i=1

bif
(i),

which means that z0 is a multiple zero of f − g, and thus a zero of ϕ when bi(z0) 6=
∞ (i = −1, 0, ...,m). Therefore,

N̄(m+2

(
r,

1

f − b

)
≤ N̄

(
r,

1

ϕ

)
+

m∑
i=−1

N̄(r, bi) = o(T (r, f)).

Hence we obtain

N̄

(
r,

1

f − b

)
= N̄m+1)

(
r,

1

f − b

)
+ N̄(m+2

(
r,

1

f − b

)
= o(T (r, f)).

The claim (18) is proved completely. Applying the second main theorem to f and
three values 0, b,∞, then (4) and (18) yield immediately

T (r, f) = N̄

(
r,

1

f

)
+ o(T (r, f)).
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Combining the above equality, the first main theorem with the fact that

N

(
r,

1

f

)
≥ N̄

(
r,

1

f

)
+

1

2
N(2

(
r,

1

f

)
≥ N̄

(
r,

1

f

)

derives that

N(2

(
r,

1

f

)
= o(T (r, f))

and

T (r, f) = N1)

(
r,

1

f

)
+ o(T (r, f)). (20)

The condition (4) and (18) imply that the function

η :=
f ′

f − b
− g′

g − b
(21)

satisfies

T (r, η) = N(r, η) +O(1) ≤ N̄

(
r,

1

f − b

)
+ o(T (r, f)) = o(T (r, f)).

Similarly, we can obtain the equation

(ϕ− η)
f ′

f
− ϕ

f ′′

f ′
+ ϕ′ + ηϕ ≡ 0. (22)

We claim ϕ− η ≡ 0. Assume, to the contrary, that ϕ− η 6≡ 0. If z0 is a simple zero
of f , then z0 also is a simple zero of g, and so ϕ(z0) 6= ∞, η(z0) 6= ∞. It is easy to
show ϕ(z0)− η(z0) = 0 from (22). Thus we obtain an estimate

N1)

(
r,

1

f

)
≤ N̄

(
r,

1

ϕ− η

)
= o(T (r, f)).

Combining this with (20) yields a contradiction immediately. Hence ϕ− η ≡ 0. So
from (22), we obtain

−f
′′

f ′
+
ϕ′

ϕ
+

f ′

f − b
− g′

g − b
≡ 0.

In an analogous way as in case (i), we can obtain

f − g ≡ c0f(g − b) (c0 ∈ κ, c0 6= 0),

and similarly prove that f and g share b CM. It follows that f = g, a contradiction
again.

Therefore from the discussions in cases (i), (ii) and (iii), we find that it must be
f = g. The proof of Theorem 1.1 is finished completely.
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4 f and P (f) share two values IM.

Let f be a non-constant meromorphic function on κ satisfying the assumption (4),

and let P (f) be defined by (2). We further define NE

(
r, 1

f

)
to be the valence

function of common zeros of f and P (f) with the same multiplicities, and N̄E

(
r, 1

f

)
the corresponding refined valence function.

Proposition 4.1. Let f be a non-constant meromorphic function on κ satisfying
the assumption (4), and let P (f) be defined by (2). Assume that f and P (f) share
two distinct finite values a, b IM. Then we have either P (f) = f or

N̄

(
r,

1

f − b

)
≤ (m+ 1)

{
N̄

(
r,

1

f − a

)
− N̄E

(
r,

1

f − a

)}
+ o(T (r, f)).

Proof. Set g = P (f), a = 0 and define ϕ, ψ as in the proof of Theorem 1.1. First of
all, we assume

N̄

(
r,

1

f

)
6= o(T (r, f)).

We also get

T (r, ϕ) = o(T (r, f)),

and

T (r, ψ) = N(r, ψ) +O(1) = N̄(r, ψ) +O(1)

≤ N̄

(
r,

1

f

)
− N̄E

(
r,

1

f

)
+O(1). (23)

Next we distinguish two cases.

(i) ϕ− kψ ≡ 0 for some integer k ≥ 1. Then by (12) and (23), we know that f
and g share 0 CM, since poles of ϕ and ψ cannot coincide each other. Meanwhile
(16) or (17) still holds, thus we get either a contradiction or f = g from Theorem 1.1.

(ii) ϕ − kψ 6≡ 0 for any integer k ≥ 1. According to the proof of Theorem 1.1,
we have

N̄(m+2

(
r,

1

f − b

)
= o(T (r, f)).

Now the estimate (19) still holds, and hence

N̄m+1)

(
r,

1

f − b

)
≤ (m+ 1)T (r, ψ) + o(T (r, f))

≤ (m+ 1)

{
N̄

(
r,

1

f

)
− N̄E

(
r,

1

f

)}
+ o(T (r, f)).

Therefore,

N̄

(
r,

1

f − b

)
≤ (m+ 1)

{
N̄

(
r,

1

f

)
− N̄E

(
r,

1

f

)}
+ o(T (r, f)).
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Finally, we consider the case

N̄

(
r,

1

f

)
= o(T (r, f)).

By the proof above, we can still get that either f = g or

N̄

(
r,

1

f − b

)
= o(T (r, f)).

However, if the latter case holds, the second main theorem yields

T (r, f) ≤ N̄(r, f) + N̄

(
r,

1

f

)
+ N̄

(
r,

1

f − b

)
+O(1) = o(T (r, f)).

This is a contradiction, and so it must be f = g. The proof finishes completely. �

5 No condition (4).

Theorem 5.1. Let f be a non-constant meromorphic function on κ, and let P (f)
be defined by (2). If f and P (f) share two distinct finite values a CM and b IM,
then we have either P (f) = f or

N

(
r,

1

f − a

)
6= o(T (r, f)).

Proof. Set g = P (f), a = 0 as in the proof of Theorem 1.1. Assume, to the contrary,
that f 6≡ g and

N

(
r,

1

f

)
= o(T (r, f)).

Since f and g share 0 CM, we also have

N

(
r,

1

g

)
= o(T (r, f)).

Then from the formula (6), we obtain

T (r, f) = N(r, f) + o(T (r, f)),

and
T (r, g) = N(r, g) + o(T (r, f)). (24)

By considering the poles of g, it is easy to show

N(r, g) = N(r, f) +mN̄(r, f) + o(T (r, f)). (25)

The second main theorem yields immediately

T (r, g) ≤ N̄(r, g) + N̄

(
r,

1

g − b

)
+ o(T (r, f)). (26)
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Since

N̄

(
r,

1

g − b

)
≤ N

(
r,

1
g
f
− 1

)
≤ T

(
r,
g

f

)
+O(1)

= max

{
N

(
r,
g

f

)
, N

(
r,
f

g

)}
+O(1)

= N

(
r,
g

f

)
+ o(T (r, f))

≤ mN̄(r, f) + o(T (r, f)), (27)

we obtain

T (r, g) ≤ (m+ 1)N̄(r, f) + o(T (r, f)) ≤ N(r, g) + o(T (r, f)),

which together with the first main theorem implies

T (r, g) = (m+ 1)N̄(r, f) + o(T (r, f)). (28)

Comparing (24), (25) and (28), we find

N(r, f) = N̄(r, f) + o(T (r, f)),

and hence
T (r, f) = N̄(r, f) + o(T (r, f)). (29)

By using (26), (27) and (28), we also obtain

N̄

(
r,

1

f − b

)
= N̄

(
r,

1

g − b

)
= mN̄(r, f) + o(T (r, f)). (30)

Thus it follows that m = 1.
Consider the function

φ :=
g

f 2
.

Since f and g share 0 CM, m = 1, and N(2(r, f) = o(T (r, f)), it is obvious that

N

(
r,

1

φ

)
= o(T (r, f))

and

N(r, φ) ≤ N

(
r,

1

f

)
+ o(T (r, f)) = o(T (r, f)).

Therefore,

T (r, φ) = max

{
N(r, φ), N

(
r,

1

φ

)}
+O(1) = o(T (r, f)).

If z0 is a zero of f − b, then φ(z0) = 1
b
. If φ 6≡ 1

b
, we have

N̄

(
r,

1

f − b

)
≤ N̄

(
r,

1

φ− 1
b

)
≤ T (r, φ) +O(1) = o(T (r, f)),
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which contradicts against (29) and (30).

Therefore, it must be φ = 1
b
, and so bg ≡ f 2. Then f has no zeros. Note that

b(g − b) ≡ (f − b)(f + b).

Then f + b also has no zeros, since f and g share b IM. The formula (6) yields
directly

T (r, f) = max

{
N

(
r,

1

f

)
, N

(
r,

1

f + b

)}
+O(1) = O(1),

which also is impossible since T (r, f) →∞. The theorem is proved completely. �

6 Final notes.

The meromorphic function f in Theorem 1.1 is a solution of the linear differential
equation

w(m) + amw
(m−1) + · · ·+ a2w

′ + a1w + a0 = 0. (31)

In [7], P. C. Hu and C. C. Yang proved that (31) has no transcendental meromorphic
solutions provided that the coefficients are constants.

Take a prime number p. Here we consider the field κ = Cp, completion of the
algebraic closure of the field Qp of p-adic numbers. Let Q̄ be the algebraic closure
of Q in the field Cp. A. Boutabaa ([2], [4]) studied meromorphic solutions of (31)
and proved the following

Theorem 6.1. Suppose that the equation (31) is such that a1(z), ..., am(z) ∈ Q̄(z),
a0(z) ≡ 0, and let w(z) ∈M(Cp) be a solution of (31). Then w(z) ∈ Cp(z).

If a1(z), ..., am(z) are not all in Q̄(z), A. Boutabaa ([4], [5]) shows that the
Gaussian differential equation

z(1− z)
d2w

dz2
+ (c− (a+ b+ 1)z)

dw

dz
− abw = 0 (32)

does have transcendental entire solutions on Cp, where a, b, c are constants. We
think it is interesting to further study the equation (31).

Acknowledgement. The authors owe many thanks to the referee for valuable
comments and suggestions made to the present paper.
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