Ultrametric umbral calculus in characteristic p

Bertin Diarra

Abstract

The question to have an umbral calculus in non zero characteristic p, has
been considered on some special subspaces of the space of polynomials, for
instance subspaces of the space of additive polynomials with coefficients in a
complete valued field of characteristic p and their closure in spaces of contin-
uous functions. In her PhD thesis, M. Héraoua has given an umbral calculus
on the so called ring of formal differential operators which has a coalgebra
structure. In many respects, this umbral calculus is as in the classical umbral
calculus in characteristic zero.

It turns out that the technique used by M. Héraoua can be extended in
the topological case. More precisely, let IF, be the finite field with ¢ elements
and F,[[T]] be the ring of formal power series with coefficients in F,. Then
with the addition of formal power series and the T-adic topology, F4[[T7]] is
a totally discontinuous compact group. Let K be a complete valued field,
extension of the valued field of formal Laurent series F,((7)), then it is well
known that the space of continuous functions C(F,[[T]], K) is an ultrametric
Hopf algebra. The coalgebra structure of C(F,[[T]], K) is that of a binomial
divided power coalgebra. In a previous work we have described the algebra
of difference operators of the Banach coalgebra C(F,[[T]], K'). Here, we show
that the Keigher-Pritchard’s divided powers of an element of the maximal
ideal of the dual algebra of C(IF,[[T]], K) can be performed. With this, and
the fact that the algebra of difference operators is isomorphic to the latter
dual algebra, one recovers much part of classical umbral calculus.
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1 Introduction and reminders

This paper is the sequel of [7] and gives, using the same technique as M. Héraoua in
[10], an ultrametric umbral calculus on C(IF,[[T]], i) that in many respects resembles
the classical umbral calculus and differs from the umbral calculus developed by
A. Kochubei in [14] that concerns the space of continuous F-linear functions from
F,[[T]] into K. Thanks to Carlitz polynomials (cf. [2] etc.., [20] etc..), the technique
is mainly founded on the divided powers structure of the dual algebra of C(F,[[T], K)
induced by the one defined by W.F. Keigher and F.L. Pritchard on the algebra of
Hurwitz formal series [12].

We shall remind here some facts on the coalgebra structure of the space of
continuous functions on F [[T]] with values in K, a complete valued field extension
the valued field of formal Laurent series F,((7)), where [, is the finite field with
q = p™ and of characteristic p. Naturally the absolute value on F,((7)) is induced
by the T-adic valuation and for b € F,((T)), one sets |b| = g~>r®)

1.1 Carlitz - Wagner basis

The main definitions and results stated here go back to L. Carlitz (cf. [2], [3] , [4]);
see also [9].

For an element a of the polynomial ring F [T], we denote by d°a, the degree of
a , with the convention d°0 = —oo and if f € F/[T][z], one sets deg(f) to be the
degree of f as polynomial in the indeterminate z.

The elementary Carlitz polynomials are defined as follows : let 5 > 0 be an
integer, one sets e;(z) = ][] (2 — a). One has deg(e;) = ¢/ and ey(z) = 2. It

d°a<j

is readily seen that e; is an zidditive polynomial, i.e. e;(z +y) = e;(z) + ¢;(y).
Moreover, if o € I, one sees that e;(az) = ae;(2).
Let us put Dy = 1 and for any integer j > 1: D; = e;(TY). Since e¢;(T7+a) = ¢;(17),
for any a € F [T, such that d°a < j, one obtains D; = H b. Furthermore,

d°b=j, b monic

J .
on verifies that for j > 1, D; = qurf and D, = [j]D_,, where [(] = T9 —T.

=1
=1
On the other hand, one has e;(2) = e;_1(2)?— D?jej_l(z) and so, by induction,
one obtains:

J Dj J

ej(z) = Z(—l)j_giézqé, where Lo =1and L; = [[[4], for j > 1..
(=0 DyLi, =1
For instance e1(z) = 29—z and ey(2) = P (14+(T?=T)41 1) 204 (T =T 2.
e; s ' log j
Set for j >0, fj=—. Let j = ngq be the g-expansion of j, s(j) = )
D; (=0 log q

s@)

The jth basic Carlitz polynomial is the polynomial h; = H f7¢, with hg = 1 and
(=0

deg(h;) = j.

Since f; is Fy - linear, one verifies by using a well known congruence of Lucas on

binomial coefficients, that for z,y € F[T], hj(z +y) = > (i) hs(x)h(y).

s+t=j
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Moreover, if S,(j) = % je is the sum of the digits of the g-expansion of j, one sees
that for o € F, and ;:EO F,[T], hj(az) = a®Wh;(z) = afh;(z).

Parallel to the polynomials /;, Carlitz has defined the polynomials €} = 81(_][) e
where e;feqe =et if 0< j, < q—2and eikq_l)qg =e0 ' =D if j,=¢q _éfO

*
Jeq®

* s(4) 5(J) o*
e , e
Furthermore, one puts h} = d—], where d; = [[ Dy*. Hence h} = #]q;
‘ £=0 =0 ¢

j
If0<j,<qg—2forall £, 0<{<s(j), one has hj = hy.

Moreover, as for h;, one verifies that for any j > 0, hj(z+y) = > (i) Ri(x)he(y).
s+t=j
A particular subsequence of (h%);>o is given by g; = h where m(j) =
e e?q—l—j )q*
S(]) + 1. One haS g] = H Dq—il—zﬂ
=0 Ly

Let K be a field that contains F,[T], since deg(h;) = j, the sequence (h;);>o is
a basis of the K-vector space K|z].

An important property of the polynomial functions h; ( resp. h} ) is that they
map FF,[T] into itself.

Let us put for any element a of IF,[T] and any polynomial P € K[z] : 7,(P)(z) =
P(z+a).

*
qm() —j—1°

log i

Set for any integer j > 0,m(j) = s(j) + 1, where s(j) = LOg]], and let us consider
0gq

the K - linear operator A; = (—1)™U >~ g;(a)7,. Then for £ > 0, one has

d°a<m(j)

Aj(he)(2) = (=)™ 3 gila)he(z +a) =

dea<m(j)

> () ((—nm@ ) gj<a>hs<a>> ) = X (1) o

s+t=/¢ d°a<m(j) s+t=¢

Hence Aj(hy) = 0, if £ < j and A;(hy) = (j
consequence is that A;(P) =0, if deg(P) < j.

On the other hand, since for a # 0, hj(a) = 0 if and only if ¢*’* < ¢°¥) and ¢*@ =
q?, for ¢*'* < i < ¢¥** one has h;(a) # 0 if and only if j < ¢***! — 1. Hence for

1+doa71

)h[_j, if [ > 7. An immediate

q

a, xz€F,[T]and P € K[z], one has 7,P(z) = 7, P(a) = ;) h;(a)A;(P)(z), i.e.

q1+d°a71
Ta — Z hj(a)Aj. (T() = Zd)
=0
Now, let K be a complete valued field, extension of the field F,((T")) of the formal
Laurent series with coefficients in the finite field F,. Therefore F,[[T]] is a compact
sub-ring of K.
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Let C(F,[[T]], K) be the K - Banach algebra of the continuous functions f :
F,[[T])] — K. The norm on C(F,[[T]], K) is || f|| = sup |f(z)|. We identify K|z]

z€lq[[T]]
with the space of the polynomial functions of F,[[T]] into K.

For a € F,[[T]], one defines on C(F,[[T]], K) the translation operator 7, such that
Tof(2) = fx +a), z € FJ[[T]]. '
For j > 0, the linear operator A; = (—1)"0 3" g;(a)7, is too well defined

d°a<m(yj)
on C(F,[[T]],K). Let us remind that g; = h;mj)_j_l, m(j) = 1+ [}géﬂ and
9;(Fq[T]) C F [T
The operators 7, are isometric and the operators A; are bounded, with norm ||A,|| =
1.
Moreover, the operators 7, map K|[z] into K[z|; the same is true for the operators
A;.
Furthermore one can prove that for any f € C(F,[[T]], K), one has Aliflrl Ai(f)=0
j—+oo

(c.f [7]) and as a consequence, one obtains a proof of the following theorem ([20],
[22])

Theorem 1. (Wagner)

Let K be a complete valued field, extension of the field of formal Laurent series
F,(T)).

Then the sequence of the basic Carlitz polynomials (h;);>0 is an orthonormal basis
of the K - Banach space C(F,[[T]], K).

In other words, if f € C(F,[[T]],K), one has f = > a;(f)h;, with a;(f) € K,

j=0
Jlim a(f) =0 and || f]| = §1>113|04j(f>|-
Moreover a;(f) = A;(f)(0) = (=D)m@ Y7 gi(a)f(a), where g; = W) _j_1-

d°a<m(j)

1.2 The Hopf algebra structure of  C(F,[[T]], K)

Notations. Let K be a complete ultrametric valued field. An ultrametric Banach
space H over K is said to be a Banach coalgebra if there exist continuous linear
maps ¢ : H — H®H = topological tensor product, called the coproduct of H, and
o : H — K, called the counit of H, such that

(i) (c®idy)oc=(idg®c)oc

(ii) (idg ® 0)oc=ridy = (0 ®idy)oc, and |o| =1

where idy is the identity map of H.

It follows that for a € H, one has ||a|| < ||c(a)| < ||c|| ||a| and ¢ is isometric if
and only if ||c|| =1

Furthermore, the Banach coalgebra H is said to be a Banach bialgebra, respec-
tively a complete Hopf algebra, if it is a unitary Banach algebra with multiplication
m : HRH — H such that ¢ and ¢ are algebra homomorphisms, respectively and
there exists a continuous linear map 7 : H — H, called the antipode or inversion of
H, such that

(iii) mo (idg®@n)oc=koo=mo(n®idy)oc
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where k is the canonical map of K into H.
— o — For any Banach coalgebra H, the dual Banach space H' of H, with the
convolution product p*v = (u®v)oc, is a unitary normed algebra with unit o and

[l vl < lef] el -

Definition 1. Let us say that a continuous linear endomorphism u of the Banach
H is a (left)-comodule endomorphism of H if one has cou = (idy ® u) o c.

The set Endeom(H) is readily seen to be a closed Banach subalgebra of the
Banach L(H) of the set of continuous linear endomorphisms u with the norm ||u|| =

Nut)
=20zl

—e— Tt is well known that if one sets for p € H' : o(u) = (idy @ p) oc, then ¢ is
a continuous algebra isomorphism of the complete algebra H' onto Endee, (H).
Moreover this isomorphism is isometrical if ||g|| = 1 = ||¢||. The reciprocal ¢; of ¢
is such that 6, (u) = o ou. (c.f [5]).

—e— Also, one defines the continuous coalgebra endomorphisms of H to be the
continuous linear endomorphisms v of H is a continuous linear such that (v®wv)oc =
covand cov=oao.

As usual, the complete tensor product of two ultrametric Banach spaces E and
F over K is the completion EQF of the algebraic tensor product £ ® F with respect

to the tensor norm ||z|| = . ié)lf <max I Hy]||> In the sequel all Banach spaces
J,‘j y]-:z J

are ultrametric.

Let us remind that if F is a free Banach space with orthogonal (orthonormal)

basis (e;);er, then any z € F®E can be written in the unique form z = Zyj ® ej,
jel
with i g e1] = 0 (ly | = 0)

Moreover, if F' is free with orthogonal (orthonormal) basis (f/)ser; then (fr ®
ej)(e.jerx1 is an orthogonal (orthonormal) basis of FRE. (cf. for example [ 5 ])

Important examples of complete ultrametric Hopf algebras are provided by the
Banach algebras C(G, K) of continuous functions on a totally disconnected compact
group G with values in K. It is well known that, if one sets for f,g € C(G, K) and
x,y € G:I(f ®g)(x,y) = f(x)g(y), one obtains by linearity and completion an
isometric isomorphism of Banach algebras I : C(G, K)®C(G,K) — C(G x G, K)
(cf. [5] or [17]). On the other hand, let p : C(G,K) — C(G x G, K) be defined
by setting p(f)(s,t) = f(st) = 7sf(t). Then p is an isometric morphism of Banach
algebras.

Together with the usual multiplication of functions, the inversion operator n
defined by n(f)(x) = f(z~') and the Dirac linear form o(f) = f(e), one obtains on
C(G, K) a structure of complete ultrametric Hopf algebra with coproduct ¢ = I 1op,
antipode 7 and counit o (cf. [ 5 ]).

For these Banach coalgebras C(G, K') the dual algebra C(G, K) = M (G, K) can
be identified with the algebra of bounded measures of G with values in K. Here the
convolution of measures uxv = (p®v)o is the usual one such that for any continuous
fonction f : G — K one has < pxv, f >=< u,< v,7,f >>. Furthermore, with
previous reminds, one sees that the Banach algebras M (G, K) and End..m(C(G, K))
are isometrically isomorphic. In addition, one has the following proposition.
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Proposition 2. :  The algebra Endeon(C(G, K)) of the comodule endomorphisms
of the Hopf algebra C(G, K) coincides with the algebra W (G, K) of the difference
operators, i.e the continuous linear endomorphisms u of C(G, K) that commute with
the translation operators Ts: woTs =Ts0u, Vs € G. ( ¢f.[5])

Considering any ultrametric complete value field K and the additive group struc-
ture of the ring of formal power series IF,[[T"]], which then becomes a compact topo-
logical group, one has on C(IF,[[T]], K) a Hopf algebra structure with isometrical
coproduct ¢ such that IT o ¢(f)(z,y) = p(f)(z,y) == f(z + y) and counity o the
linear form defined by o(f) = f(0).

We are concerned here by the case when K is a complete extension of F,((T')).
Then thanks to the Carlitz basis on C(IF,[[T]], K'), one has the following proposition

(ct. [T])

Proposition 3. Let K be a complete valued field extension of Fy((T')).
Then the complete ultrametric Hopf algebra C(F,[[T]], K) is a binomial divided power
coalgebra, having (hj);>0 as an associated basic binomial divided power sequence.

More precisely, for any integer j > 0, one has c(h;) = Z (‘2) hs @ hy.

s+t=j

Proof :  This is an obvious consequence of the fact that if x,y € F,[[T]], one has

et = 3 () oo e = 5 () niom

stt=j s+t=j

2 Divided powers in the algebra of bounded measures

In the sequel K will be a complete valued field extension of the complete valued
field F,((7)) of the formal Laurent power series with ccefficients in the finite field
F, with ¢ = p™ elements. The notations and definitions are those of the previous
section.

2.1 The algebra structure of the set of bounded measures and the algebra
of difference operators

— o —  Let us remind some facts from the previous section. The continuous dual
M(F,[[T]], K) of the ultrametric Banach space C(FF,[[T]], K'), which can be identified
with the space of the bounded measures on F[[T]] with values in K is a commutative
Banach algebra for the convolution product

puxv = (u®v)oc. This product coincides with the usual one, such that for any
continuous function f from F [[T]] into K : < p*v, f >=< p, < v, 7, f >>.
Moreover, the Banach algebra M (F,[[T]], K) is isometrically isomorphic to the al-
gebra of difference operators W (F,[[T]], K) = Endeom(C(F,[[T]], K)). The isomor-
phism is given by p(u) = (id ® p) o c.
For any non negative integer j, one defines the dual basis element h; of M (F,[[T]], K),
corresponding to the Carlitz polynomial h;, by setting < h’;, hy >= §;, (= Kronecker
symbol). One has hj, = o.
Since (hj);>o is an orthonormal basis of C(F,[[T]], K), one sees (cf. for instance
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[5]) that the family (h});>0 is a weak* basis of the Banach space M (F,[[T]], K). In
other words, any bounded measure p on F,[[T]] can be written in the unique form
p=>y_ ajh; in such a way that for any continuous function f : F [[T]] — K, the se-

Jj=0
ries < p, f >= Zaj < h’-, f > converges in K. Furthermore, one has a;; =< p, h; >
and |[pl| = Supl < phy > .

Let us notlce that for the non negative integers ¢ and j, one has h; x A

147
< j )h;—&-]

)|
Hence b/ = <2jj> hy; and by induction A" = g <€j> P ( ij)n -l

It follows that for j > 1, one has h;*p = 0.
It is obvious that the operators 4; = (—1)™Y) >~ g;(a)7, commutes with the

d°a<m(j)
translations Tb, b E F,[[T]]. Since for b and y in F,[[T]], one has f(y+b) = n(f)(y) =
> A f)(0 ZA (y), one sees that ¢(f) = > A;(f) ® hy, there-
>0 j=>0 Jj=0
fore p(R})(f) = (id ® h}) ZAg < I, he >= A;(f), that is o(h)) = A;.

>0
On the one hand, for the integers j,£ > 0, one has A;(h¢) = (id ® h}) o c(hy) =

> < I hy > (f) hi = (f) h_j, for £ > j and @(h})(he) = 0, for £ < j.
i+k=t

On the other hand one sees that A; 0 A; =

— o — Let u be an element of W(F,[[T]], K), one has u = p(c ou) = (id ®
(cou))oec. Hence for any continuous function f from F[[T]] to K, one has u(f) =
(id ® (0 o u)) =3 Ay (o ou)(hj) = > u(h;)(0)A;(f). Tt follows that

>0 >0
the family (A;);>0 is a topological basis of W (F,[[T]], K) on which one considers the
strong topology (called also the topology of pointwise uniform convergence), that is
the topology induced by the semi-norms ||u(f)||, f € C(F,[[T]], K). More precisely
any difference operator u can be written in a unique form as a pointwise uniform
convergent series u = »_ u(h;)(0)A;. Moreover, one has, [lu|| = sup |u(h;)(0)].
720 720
For complements on this subsection see [7].

2.2 The sequence of divided powers of some bounded measures

Let © be a bounded measure expanded in the weak* topology as the unique conver-
gent series p1 = » <y, h; > I, one has p** =Y < p, by >P WP =< i, hg >P.
J=0 j>0

One then deduces that M (FF,[[T7]], K) is a local algebra with maximal ideal M, =
Mo(Fq[[T1), K) = (K ho) ™
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For =Y a;h} and v =Y b;h; two elements of M (F,[[T]], K), one has p+v =

Jj=0 Jj=0

doehl, withe; = ) (Z) a;by. Hence the algebra M (F,[[T]], K) is isomorphic
7>0 ith=j
to a subalgebra of the algebra of Hurwitz formal series.

Therefore, one can define, as done by W. F. Keigher et F. L. Pritchard [12], the

divided powers of an element of M, (see also [10]).

For that, let 0 be the continuous endomorphism of the Banach space M (F,[[T], K)
which associates to u = Z < p,hy > h the measure O(u Z < p,hy > h; 1-
3>0 j>1

One verifies easily that 0 is a derivation of the algebra M (F,[[T]], K), that is for the
measures p and v, one has O(u*v) = 9(pu) * v+ px d(v). Moreover ||O(u)|| < ||l
and 0 is weak*-continuous on any bounded subset of M (F,[[T]], K).

In the opposite, one defines the operator of integration ¢ by setting ¢(p) = Z <

320

My hj > h;’—i—l'
Then ¢ is an isometrical linear endomorphim of M (F,[[T]], K') such that 0 o ¢ = id.
Moreover, for any bounded measure pu, one has ¢ o d(u) = u— < p, hg > o and for
p and v in the maximal ideal M, one has d(u) = d(v) if and only if p = v.

Definition 2. To any measure p € M, is associated the sequence of measures
(Y () )n>0, called the sequence of divided powers of u, defined recursively by setting :

Vo) = 0, n(p) = p, and forn > 1, yu(p) = t(yn-1(p) x ().

For any integer n > 1 and any measure 1 € M, one has v,(u) € M,.
Let us notice that the above definition of sequence of divided powers can be per-
formed for any bounded measure.

Lemma 4. Let ¢ be an element of M(IF,[[T]], K) and p, v € M,.
Then for the non negative mtegers m and n, one has :

_(i)' 7n 2 + V Z ’71 *7]
i+j=n

- (i) - () = x ().
- Gii) - ) * ) = (") (0.

(00 - o 0) = o ), for > 1.

- (v) - nlya(p) =

Proof : According to the definition, one has : (7, (1)) = Yn—1(1) * ().

The relation (v) follows readily from (iii).

The other formulae are obtained by induction .

For instance, to prove (ii), let us suppose that for the integer n > 1, one has
Vo1 () = = ™"y _1 (). Then, one sees that O(v, (xp)) = Vo1 (Pxp)O(hxp)
= V"Y1 () % (0(Y) % p+ ¥ % O(p)) = P 5 () x Yoo (1) * 9™ %1 (1) %
J(p). But, one shows that 7,,_1(u) * # = ny, (). This remark is also the beginning
of the the proof of (iii). Hence, O(y,(1*p)) = n* ™ %)) xv, (1) +0* %0 (vn () =
O(Y*"™ * v, (). And one has proved that v, (1 * ) = *™ x v, ().
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Lemma 5. Let p be an element of M,. Then, for any integer n > 0, one has
[[Yn ()| < [l

Proof - Indeed, [y (p)|| = [le(n-1() % O(p)) || = llrn—1 % ()| < [l ()[[[] ]
Then one obtains by induction that ||, (x)|| < ||x|™

Lemma 6. Put 0 = k), one has for any integer n >0 : ~,(0) = hl.

Proof : By definition 0(h,) = h.,_;,7%(d) = hy = o and 7,(d) = . Hence, if
n = 2, one has 9(7,(8)) = 71(0) x 9(0) = hy = I(h},), then 12(0) = hj.
Assume that, v,-1(8) = hl,_;, then 9(7,(9)) = Yn-1(0)*x9(6) = Y,—-1(0)

d(h!). Tt follows that ~, () = h!,.

/ _
hn—l -

2.3 Logarithm and exponential maps
2.3.1 Truncated logarithm and exponential maps

Let p be an element of M, with the following fact in mind, i.e p** = ply,(¢) =
on can define logarithm and exponential mappings from o + M, (resp. M,) mto
M(F,[[T]], K) by setting :

SR A R < VRV ~1 4
log(o 4+ p) = Y r pw? =Y (=17 — 1)lyj(p) and exp(p) = Zj—u I =
=1 =1 —0

p—1
> i(w)
=0

We have unfortunately stated an inezact fact in [ 7 ], Corollary 3-2-5, by saying
that the corresponding maps defined for specific subspaces of W (F,[[T]], K) were
group isomorphisms. Indeed it is readily seen, within M (F,[[T]], K'), that the above
exp is not a group homomorphism. The cases p = 2 and p = 3 are readily examined.
But more generally, exp(u) * exp(v) contains terms as p*®=1 x v*=Y which is no
longer a term of exp(u + v).

What is only true is that the corresponding maps are bijective. We state here
an erratum to this Corollary as a proposition within M (F,[[T]], K).

3

I
T

Proposition 7. Put for p € M,, log(c + nu) = 7 and exp(p) =

<.
I

p—1 1

]'u . Then exp : M, — o + M, is a bijection of the set M, onto o + My,
7=0
with reciprocal map log : 0 + M, — M,.

p—l i qye-1
Proof : Let u € M,, then logoexp(p) = log(l + w(u)) = ( 2 w(p)*,
iy - 1 1
where w(p) = Z ',u . However, one has w(p Z Z — ,—'u*”.
=17 N>l jitjetege=n J1 I
The notation Z means that in the sum the j; are different from 0. Since

Jitgrtge=n
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p—1 *

1 1
w™ =0 for n >p— 1, one has w(p) = > —
S S LR 11
n=~Lj1+Jr+Je=n
- ]Z 1 p— 1 * 1 1
Hence log o exp(u Z > Z — = o
=1 n=t jit-jitje=n J1*JC
- & - - - 1 1 *n
S e |
= = Jitgkteje=n J1: Je:

One deduces from the fact that the formal power series with rational ccefficients

—1)i1 1.
log(1+X) =) ( ) X7 and exp(X) =) — X7 are such that log(exp X) = X
J!

j=1 j=0
no(—1)t * 1 1
thatforn22,onehasz Z — . — =0.
T T
/=1 JitJet+Je=n

For n < p — 1 in the above sum the numbers lie in the ring of p-adic numbers
therefore by reducing modulo p, we have the same identities. It follows that

logoexp(n) = 3 ;,---?u+i(<_1€) S 11)u"=

| | |
1t jeteje=1J1° Je: =9 1t gpteje=n Ji: Je:

w40=p.
In the same way, one proves that for u € M, one has expolog(o+p) =o+u. =

N. B : —f— Let endow M, with the group law p ® v = log(exp(pu) *
exp(v)) and M, with the convolution, then the maps exp and log are reciprocal
group isomorphisms.

—tt— By the same way, with the group law (o + p) ® (0 +v) = exp(log(o + u) +
log(o +v)) on o+ M, and the addition on M,, one sees that the maps log and exp
are again reciprocal group 1somorphisms.

2.3.2 Non truncated logarithm and exponential maps

One can define logarithm and exponential functions which in many respects corre-
spond to the classical ones and are the "true” logarithm and exponential functions
in our context here. See [8], [18] and [19].

Let 7 be a real number > 0 or +oco. Let us set M+ = {u € M, / ||u|| <7} and
M= ={p e My / ||pll <r}. One sees easily that My* is a additive subgroup of
M,.

Put A, = M(F,[[T]],K)). A function f : /\/l;* — A, is said to be analytic
if there exists a sequence (a,)n>0 C A, such that the series Zan% converges

n>0
uniformly to f on any Mj*, s < r. One then writes [ = > a7y, and puts
n>0
An(M;-) = the set of analytic functions on M7-. With the usual operations on
sets of functions, An(M;-) becomes an algebra over the ring A,. One defines
on this algebra a A, -derivation by setting Dy, = 0 and D(vy,) = Vp-1,n > 1.
Let f and ¢ be two analytic functions defined on possibly different subsets, if one
can do the composition f o g of this two functions, then one has the chain rule
D(fog)=(D(f)og)D(g).
For more informations on the on the algebra of analytic functions in this context,
see [8] and [18].
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— e — Let us put for p € My : Log(o + pu) = > (=177 — Dlyy(p) =
Jj=1
P
> (=1)7'(j — Dly;(). This function is a polynomial function and then is an
j=1
analytic function(first studied in [19]).
p p—1
On sees that D(Log(o +p)) = > (=1)" 7' (j = Dlyjoa(p) = D (=) = (0 +p)* .
j=1 Jj=0
We know that the convolution product induces on o + M, a structure of com-
mutative multiplicative group. The map Log : 0 + M, — M(F,[[T]], K) is a
group homomorphism of the multiplicative group o + M, into the additive group
M (F,[[T]], K). This can be proved by fixing v and showing that the derivative of

the function f(u) = Log((c + p)(o + p)) — Log(u) — Log(v) is zero.

— o —  For the "exponential”, if 4 is an element of M, there is no reason that
the series Exp(u) = > 7;(u) converges. But if ||u|| < 1, we shall see later that this
Jj=0

series is weak*-convergent.
Thanks to the inequalities ||v;(u)]| < ||ull?, if ||¢|]] < 1, one sees that the series
Exp(p) = > 7;(p) is norm convergent, with ||[Exp(u) — o < [|p||. Furthermore,

Jj=0
one has Exp = > _v; € An(M,").

Jj=0

With the property (i) of Lemma 4, if 4 and v in /\/lé—, one proves that Exp(u+v) =
Eapl(u)  Bap(v).

Proposition 8.  Let r be a real number such that 0 < r <1

The mapping Exp is an isomorphism of the additive subgroup M= of /\/lé* onto
the multiplicative subgroup o + M= of o + ./\/lé*. The reciprocal isomorphism s
then restriction of the polynomial function Log.

Proof : See [8] and [18] for a full proof. For instance, one can calculate the
derivatives of the analytic functions Exp o Log and Log o Exp and finds that Expo
Log(pu) = 0+ p and Log o Exp(p) = p.

N.B : Let us notice that, for 0 < r < 1, one obtains the same isomorphisms
between the groups My and o + Mg+,

2.4 The operations of substitution in the algebra of bounded measures

In the sequel we shall put for u € M, : v,(x) = u™. In particular 7, () = 5" and
then for any measure p € M(F,[[T]], K), we write = > < p, b, > 6.
n>0
Let us consider pu = Zaj5[j] € Mé* and for any integer n > 1, let us put

| j=1
=37 ay(n)ov.
i=1
One has d(ul") = Y a;(n)oV Y = g% o(u) = Y a;(n)dV x> a6~ =
izt jz21 j>1

= ( 3 (’“ +£_ 1) an(n — 1)04@) 51,

J21 \k+{=j
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Hence aj(n) = ) (k +£ - 1) ar(n — 1oy = jz_: (j ; 1) ag(n — 1)aj_y.

k+Ll=j k=0
For n = 2, one has a;(2) = 0, as(2) = o?. Hence, ul? = 3" «;(2)6V, with
Jj=2
CYQ(Q) = a%.
One sees recursively that a;(n) =0 Vj, 0<ji<n-—1, an(n) =a,_1(n—1)ag = af.
In other words, one has ul" = > q; 5[9] with a,(n) = af and
ji>n

(i1 = (i1

aj(n) = Z ( I ) ap(n — 1oy = Z ( I ) ap(n — 1oy, Vi > n.
k=0 k=n—1

For any continuous function f : F,[[T]] — K with Wagner-Carlitz expansion

]
f= Zaghg, one has < ul, f >= Zajaj(n

>0 j>n
Assume [|p]] = sup || < 1; by induction, one sees that |a;(n)| < max |ag(n—
§>1 0<k<j—1
Df|oyj—i| < 1.
Hence, for any continuous function f = Zaghg, one obtains | < ul", f > | <

£>0
sgp\aj||a]( )|<sup|a]|et hm | <y f>]=0.
Jj=zn

For ¢ = > ﬁné[n] € M(IF,[[T]], K) and pn € M+ = the subset of the elements 4
n>0
of the maximal ideal M, with norm < 1. Since |3, < pl", f > | < ||| < pl?, f > |,
the series Z B, < p™ f > converges in K. By the way, one defines a bounded
n>0

measure noticed by ¢ ¢ p such that < ¢ op, f>= > 6, < pl f >
n>0

Definition 3. Let i be an element of the mazimal ideal M, with norm < 1 and
let v = 3" 3,0 be any element of M(TF,[[T)], K). The weak* convergent series
n>0

Yopu= Z Bop™ is said to be obtained by substitution of y into 1. Moreover, one
n>0

has Yo = Boo + ) (Z aj(n)ﬁn) oV and | o ull < 9.

i>1 \n=1

Example : Let ¢ = Z 6", By substitution of y € M;* into 11, one obtains
n>0
an extension to Mé+ of the exponential map by setting Fxp(u) = 11 op = Z ,u[”]
n>0
Furthermore this mapping is an isomorphism of the additive group Mé* onto the
multiplicative group o + M_+.
Let notice that ||[Ezp(u ) Expw)|| < || —vl|, for p, v e M+
Remark 1 :  Let ¢, ¢, € M(IF,[[T]],K) and o € K and let w and v be two
elements of M}ﬁ.
Then, one has :
-(1)- WHap)op=doptapiopn
-(2)- (Wr)op=(You)x(Yron)
-(3)- dop=p=poo
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-(4)- (@Wop)ov=yvo(uov)
-(5)- O op) = (0¥) o) o).
-(6)- (uov)l =yl ow.

Proof : Let us remind that the derivation 0 of M (FF,[[T]], K) is norm continuous
as well weak*-continuous on any bounded subset of M (IF,[[T]], K). Then, since ¢ ¢

S e gt} < 1 one s O 1) = 3 Ah0l0t) = 3 o1+

n>0 n>0 n>0

I(p) = (0(¥)) o p) x O(i). Hence (5) is proved. One deduces by induction (6) from
(5). The relation (4) follows from (6). The other relations are easy to prove.

Proposition 9. Let p be an element of Mé*.

The mapping w : p — w(Y) =¥ o u is a continuous endomorphism of the unitary

Banach algebra M (F,[[T]], K), which is weak*-continuous and has norm 1.

With the above notations, one has < Y ou, f >=<1,g >, where g = Z bphy, with
n>0

by = ag and b, = Z ag(n)ag, forn > 1.

£>n

Proof : From (1) and (2) of the above Remark 1 and from the fact that cou = o,
one deduces that the map w : ¥ — w(¢)) = ¥ op is an endomorphism of the unitary
algebra M (F,[[T]], K). As already noticed, ||¢ ¢ u|| < ||#||, hence |Jw|| < 1. Since
w(o) = o, one obtains that ||w|| = 1.

By definition p® = v5(1) = o, hence ag(0) = 1. Let us remind that for n > 1 and
with the above notations, one has pl" = Z aj 5M7 aj(n) =0, 0<j<n-—1.Let

7>0
(S Z ﬁn5[n] be a bounded measure. For any continuous function f = Z anhy,,
n>0 n>0
one has < Ypopu, f >= > B, < i fo>= > Babn, where b, =< pl f o>=
n>0 n>0
> ae(n)ay =Y ap(n)ay. Since |ay(n)| < 1, one has |b,| < Y |a,| and 11m b, = 0.
>0 >n >n
Then one defines a continuous function ¢ by setting g = Z b,h,, and one has
n>0
<w),f>=<vouf>=> 8,< p, f >=< 1), g >. From this identity, one

n>0
deduces that the operator w is weak*-continuous.

Corollary 10. Let pu be an element of M;*

The linear operator ‘w, transpose of the endomorphism w : ¢ — w(y)) = Y o u of
the unitary algebra M (F,[[T]], K), induces a continuous coalgebra endomorphism of
the Banach coalgebra C(F,[[T], K).

In other words, one has co'w = (‘w ® 'w) o ¢ and 0 o'w = 0.

Proof :  One has a natural isometrical identification of C(F,[[T]], K') as a sub-
space of its strong bidual C(F,[[T]], K)" = M(F,[[T]], K)". Thus, < w(v), f >=<
), w(f) >=< 1, g >="w(f) =g =3 (3 an)ag)h, € C(F[T]], K).

n>0 £>n
Let ¢ and ¢y be two bounded measures. For any continuous function f, one has

<P @i, colw(f) >= (@) o c(w(f)) =< Py, 'w(f) >=<w(*th), f>=
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=< w() xw(yr), f >= (w(¥) @ w(¥r)) o c(f) = (w(th) @ w(thr)) (Z fi® ff) =

i>1
= wa)(ff) ® w()(ff) = Z < Ow(f)) >< L'w(fl) >=
i>1 i>1
<Y @Yy, ("w @ w)oc(f) >.
It follows that ¢ o'w = (‘w ® 'w) o c. "
Remark 2 :

More generally, one can prove that for any ultrametric Banach coalgebra H which is
a pseudo-reflexive normed space (i.e the canonical application of H into its bidual is
an isometry), the operation of transposition of linear operators induces an isomor-
phism between the monoid of continuous coalgebra endomorphisms of H and that of
the continuous algebra endomorphisms of the dual algebra H' of H.

— o — One deduces from Remark 1-(6) that the endomorphism of the algebra
M (F,[[T]], K) defined by w(¢) = ) o pu (for p € Mg+ commutes with the divided
powers, that is for v € M+, one has w(v") = w(v)".
— e — Let w be an algebra endomorphism of M (FF,[[T], K), since for any element
v of the maximal ideal M,, one has v*? = 0, one sees that 0 = w(v*?) = w(r)*® and
w(v) belongs to M,. In particular w(d) € M,. Moreover, if w is continuous with
norm < 1, weak*-continuous and commutes with the divided powers, then setting
w(8) = i, one has [|u/ < 1. And for any bounded measure ¢ = Y_ 3,0, one

n>0
has w(y) = > Baw (o) = > Baw(0)" = ¢ o . The following proposition is a
n>0 n>0

topological counterpart of the one given in [10].

Proposition 11. Let w be a continuous algebra endomorphism of the unitary
Banach algebra M (F,[[T]], K).

-(1)-  Assume that there exists a bounded measure v such 0 ow = wom, o0, where
m,, is the multiplication operator defined defined by m,(u) = pxv. Thenw commutes
with divided powers.

-(#)-  Conwversely, assume that Im(0ow) C Im(w) and w is weak*- continuous and
commutes with divided powers, then for any bounded measure v such that dow(d) =
w(v), one has dow =wom,od.

Proof : —(i)— Let w be a continuous algebra endomorphism of the uni-
tary algebra (M (F,[[T]], K), such that there exists a bounded measure v satisfying
dow=wom,oO0.

Then, one has 9o w(u™) = wom, o d(u") = wom, (UP=Ux0(u)) = wv*pln= %
8(11)) = w(pl =V (1)) = w1 ) ww(v % D)) = (1) (wom, 0 0) (1) =
w(pl* 1) % d(w(p)).
Let us suppose, by induction hypothesis, that w(u™~1) = w(u)
tains w(p™) = v 0 O(w(ul)) = (w(w)r" Y x d(w(w))) = w(p)".
—(131)— Assume I'm(0ow) C I'm(w), then there exists a bounded measure v
such that 0 o w(d) = w(v). If w commutes with the divided powers, for any integer
n > 0, one has w(6") = w(6)™ and 9o w(6™) = o(w(§)M) = w()" N xd(w(s)) =
w0 x 9(w(8)) = wd™ ) x w) = w(v * ") = w om, o A(8M), because
d9(0) = o.

If in addition, w is weak*-continuous, since the sequence (5[”])@0 converges weakly

[n—1]

(=11 then one ob-
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to zero, the sequence (w(6)),>o converges also weakly to zero. Hence for any
bounded measure
po=> < phy > 6" and any continuous fonction f : F,[[T]] — K, one has

< w(f)(jf >=< plw(f) >=< Y < why, > " tw(f) >= Y < ph, >
M tw(f) >= 3 < ph, >< gﬁg,tw(f) >= 3 << p,hy >n251(5[”]),f >=
ST << by > :uz(%)["],f > =<3 < h, > w(é)ﬁ?f >.
7'}Zlferefore one has the weak con\:ezrogent sum w(p) = Y < p, hy > w(8)M,

n>0

Since Jow(8™) = wom,,09(5"), Vn > 0, one obtains by linearity and weak* conver-
gence that dow(u) = wom,,00(u), for any bounded measure p, i.e. dow = wom,,00.

Lemma 12. Let p= Y a;0V be an element of ML+

Jj=z1
Then, there exists v € M+ such that vopu = 6 = pov if and only if ||| = |as| = 1.
In this case, p is said to be reversible with reverse v = pu°!,

Proof :  Let v = ;6" be a measure such that ||v|| < 1. One has v oy =

j=1
j , -1
Z (Z aj(n)ﬁn) 6 and vopu=0 <= a1 =1and for j > 2: Z a;(n)B, +
j>1 \n=1 n=1
o] = 0. Since |a;| < 1 and || < 1, with a8 = 1, one necessary obtains

ou| =1 = [Bi]. Hence [[p| = fou] = 1.
Reciprocally, assume that ||| = [oq| = 1, then |oy| < 1,Vj > 1 and |a;(n)| < 1 for
any integer n > 1 and any integer j > n.

Take 3, = ai', with the relations 3; = 7 Z&] )3y, we shall determine

recursively the 3;. Indeed B, = —aj?ay is such that |B2] < 1. Assume by in-

duction hypothesis that [3,] < 1,¥n,1 < n < j — 1, then one sees that |3;] <

| — 7’| sup |Ozj(n)||ﬂn| < 1. Setting v = Zﬁj{?m, one obtains v o u = 4.

Assume that we have found v = Zﬁjém such that v o pu = 4, then |3;| = 1. Hence,
jz1

there exists v such that vy ov = §. Therefore p=dopu = (L ov)ou=1r1o(vou) =

Vo0 =1;.

—1
1 p—
Examples : The measures py = exp(d) — o = Z —§ = Zém and py =
Jj= 1J Jj=1
Exp(d) — o = Z oVl belongs to ./\/léJr and are reversible with reverse respectively

Jj=1

log(0) and Log(6).

Proposition 13. Let =Y ;60U € M+ such that ||p|| = ||| = 1.

j>1
The map w which associates to any bounded measure ¥ the bounded measure w(y) =
Yo is an isometrical automorphism of the unitary Banach algebra M (F,[[T]], K)

and is weak*-continuous .
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Proof : 1t remains to show that the endomorphism w of the algebra is an iso-
metrical bijection.
We know that if u is a measure such that ||p|| < 1, then the corresponding algebra
endomorphism w obtained by substitution of  has norm < 1.
Since ||p|]| = 1 = |au]|, the measure u is reversible of reverse p°~'. By definition
w(y) =Y op. Put w(th) = o p° !, which also defines an algebra endomorphism
of M(F,[[T]], K). One verifies that w o w(¢)) = w(p o p®™1) = (Wopu*)opu =
Yo (utou)=10d=1. And also w o w()) = 1.
Since |w()|| = [[¢ o pll < |0, one has [[¢]] = |lw(w(@)| < [w@)] < || =

[w(W)|| = [l¥]l
Which finishes the proof of the proposition. [ |

o—1

3 Ultrametric umbral calculus in characteristic P

With the above propositions we are able to recover some important statements of
classical umbral calculus.

3.1 Orthonormal basis of binomial divided power sequences of polynomi-
als

A sequence of polynomial functions (Q,,)n>0 is said to a sequence of binomial divided
power sequence if for any integer n > 0 the polynomial @),, is of degree n with )y = 1

and Qu(z +y) = > T;) Qi(z)Q;(y), Yn > 0. This condition can be expressed

i+j=n

with the coproduct, i.e ¢(Q,) = Z (?) Qi ® Q.
i+j=n
Theorem 14. Let =Y ;00 € M+ such that |p| = |ou|] = 1.
j=1
There exists a unique sequence of polynomial functions (Qn)n>0 in C(F,[[T]], K)
such that deg(Q,) = n and < p™, Q) >= 6,4
Moreover (Qn)n>0 is an orthonormal basis of C(F,[[T]], K).

Proof : -(i)- Let us remind that for yu = Zaﬁm one has pl" = > n)obl,
Jj=1 j>n
with a,(n) = af. Moreover |ul"| = 1.
If Q is a polynomial of degree deg(Q) < n — 1, one has < ", Q >= 0.
Since pl% = &, for Qo a polynomial of degree 0, one has < ,Qy >=1 = Qo = 1.
Let Q)1 = agho + a1hy be such' that < 0,01 >=ap =0 and < u[”,Ql >=1.
By hypothesis 1 = Zaj < 5[3}, Q1 >= a0 = a1 = 041_1 Q= aflhl.
jz1
Let us consider a polynomial @),, = Z ap chy such that < u[j], Qn >= 9.
=0

Hence, for 0 < j < n, onehasZZak ang<5[] hy >= Zag Yane = 0jp.
k>7 0=0

n—1
For j = n, one has 1 =< u". > " a, by > +an(n)an, = 0+ an(n)an,
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— Ay = ap(n)t=a;™
n

For j =n —1, one has 0 = Z ag(n —1)ane =
l=n—1
Unn-1=—0p_1(n—1)ta,pan(n—1) = —a;" M ay o (n—1) = —aj ap(n—1).

0=< Nm Qn > ZOQ/ Apg = Qpj = ij(j)_l Z Oée(j)anz = —Oéfj Z aé(j) L

{=j+1 l=j+1
By the way, one determlnes the coefﬁc1ents of the polynomial Qn For j = 1, one

has ay(1) = ay and 0 =< p,Q, >= ZO[gang = a, + Z(Xganvg = Ay =

/=1 (=2
n
—1
(=2

Since 0 =< 0,Q, >= a,,, one sees that (), is unique such that < wl Q, >=
Ok, VE > 0.

- (ii) -  We have just proved that Q,, = Z ap ohe, with a,,,, = —07", app_1 =

=0
—a;? M, (n —1). Therefore |ay,| = |ai|™ = 1 and |y, 1| = |oq| 72" an(n —

1) <1
Assuming that |a, .| < 1, for j +1 < ¢ < n, one obtains
|an ;] < faa|™" sup Jew(f)|ane < 1.

J+1<t<n

Since for n > 1, one has a, o = 0, then one sees that |a, . < 1,V0 < ¢ < n, with
|an.n| = 1.
Therefore, since )y = 1, one has ||Q,| = sup |a,¢| =1,Vn > 0.

0</<n

Since any polynomial @, is of degree n,iogle verifies that (Qn)n>o is a basis of
the vector space of polynomials Klz]. Let @ be an element of K[z] of degree

deg(Q)) = m, one has ) = anQn On one hand one has a || Q|| < Jmax. |b 1Qn|] =

n=0
max |by|.
0<n<m
On the other hand |b,| = | < u™, Q > | < [|[u™]||Q| < ||Q]|. Hence Jmax bn| =
Q- o

It follows that (Qy)n>0 is an orthonormal family. Since this family is a basis of the
space of polynomial functions that is a dense subspace of the space of continuous
functions C(IF,[[T]], K), one sees that it is an orthonormal basis of C(F,[[T]], K). =

— o —  With the notations of the above theorem, one has that the sequence
(ul"),,>0 is the dual basis of the orthonormal basis (Q,)n>0. Let ¢ = Z 5,0 be

n>0
the weak*-expansion of the bounded measure ¢ and w(¢)) = opu= > B ™
n>0
If f = cQx is the expansion of the continuous function f : F,[[T]] — K) in
k>0

the orthonormal basis (Qg)r>0; since < ul", Q. >= d,4, one has < w(v), f >=
Z Bnc,. But llm ¢, = 0, hence the following continuous g = Z cihy is such that
n>0 k>0

<P, g >=Y Puca =< w(¥), [ >. ]

n>0
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Corollary 15.  Let p = Zaj5[j] € M;* be such that ||u|| = |ou]| = 1.

Jj=1
The transpose 'w of the algebra automorphism w associated to p induces on
C(F,[[T]], K) a continuous linear endomorphism W which is an isometrical coal-

gebra automorphism.

One has W(Qp) = hn, Yn >0, and ¢(Q,) = > <’Z> Qi ® Q.

i+j=n
Setting v = Znné["} the reverse p°~' of u, and v = an(n)cSm, one has

n>1 jzn

)

Proof : The transpose ‘w of the isometrical bijective linear operator w is an
isometrical linear operator of the Banach dual space of M (F,[[T]], K), this dual is
the strong bidual of C(F,[[T]], K). Since C(F,[[T]], K) is pseudo-reflexive, that is
the canonical map of C(IF,[[T]], K) into it bidual is isometrical, one sees that the
weak*-dual of M(IF,[[T], K) is equal to C(F,[[T]], K). Since w is weak*-continuous
its transpose ‘w induces by restriction, a continuous linear W of C(F,[[T]], K).
Then, as already seen, W is a Banach coalgebra endomorphism of C(F,[[T]], K).
Since < 6" hy >= 0,4 =< pl", Q) >=< w(§M), Q) >=< 5" tw(Qy) >, one has
< ol (Q) — hy >= 0, Yn > 0. Hence W(Qy) = 'w(Qi) = hy.

Let U = W°~! be the reciprocal of W.
Obviously U is a coalgebra endomorphism and one has U(h,,) = @Q,, ¥n > 0.

Therefore ¢(Q,) =coU(h,) = (U@ U)oc(h,) = (UU) ( > (7;) hi ® hj) =
i+j=n
= > (?) Uh)@U(hj) = > (7;) Qi ® Q;. This means that the sequence
i+j=n i+j=n
(@n)n>0 is a binomial divided power sequence.
N.B : Keep the notations of Corollary 15.
Since for any bounded measure 1, one has "W (1)) = 1) ¢ u, one sees that 'U(y)) =
We=l(y)) = ¢ ov. Hence < 6V, Q, >=< oV U(h,) >=< UV, h, >=<
tU(§)V, by, >=< vl h, >.

Furthermore @Q,, = Z <6 Q, > h; = Z < vl n, > h; = Z%(j)hj.

j=1 j=1 j=1

What we have proved is that given a bounded measure pu = Z a0 such that
n>1

llpell = || = 1, there exists a unique binomial divided power sequence (Q,,)n>0 such

that < ul, Q, >= On i, YN,k > 0. Moreover this sequence is an orthonormal basis
of C(I,[[T]], K).

3.2 The algebra of difference operators

Let us remind that W (IF,[[T]], K) is the algebra of difference operators for the com-
pact additive group FF,[[T]], that is the same as the comodule endomorphisms of the
Banach coalgebra C(F,[[T]], K), in other words, these operators are the continuous
linear endomorphism u of C(FF,[[T]], K) such that cou = (id ® u) o c.
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Also, considering on W (F,[[T]], K') the strong topology, one has a topological ba-

sis (A4;)j0 of W(F,[[T]], K) where A; has been defined previously as follows :

Aj=(=1)m@D 3" gi(a)7,, furthermore A; = (h}) = (id®h})oc. Then if u is an
d°a<m(j)

j

element of W (IF,[[T]], K), one has the strong sum u = Y _ a;A;, with a; = u(h;)(0)
Jj=0

and ] = sup |

Let d be the derlvatlon of W(F,[[T]], K) analogous to 0, hence such that d(u) =
> ajA;_y and T the operator of integration Z(u) = Y ajA;j41. Let W, = Wo(F,[[T]], K)
=1 >0

the space of the difference operator v such that v(hy)(0) = 0. As for bounded mea-
sures, on defines the divided powers of an element v of W, = by setting vl = id
and inductively for the integers n > 1, vI") = Z(v"1 o d(v)).

Let ¢ be the isometric isomorphism of Banach algebra of M (F,[[T]], K) onto
W(F,[[T]], K) such that ¢(p) = (id®u)oc. One has dop = pod et Top = @or. From
these relations one deduces that for any integer n > 0, one has ¢(u™) = (). If
0, is the reciprocal isomorphism of ¢, one also has 6, (v = (6, (v))".

We have set h} = & and have seen that 6" = A/ . Put A; = A, it is readily seen
that A"l = (") = A,,. Therefore any difference operator u can be written in the
strong sum u = ZajAm. Let v = Zoszm e W, (a; = v(h;)(0)), then as for

7>0 i>1
j=1 /.
bounded measures, one has vl = ;Oéj(n)A[ I with a;(n) = kz:;) ( I ) ag(n —

Day_g, if 7 > n and a;(n) =0, for j < n.
Lemma 16. Letv = ZO[]‘AU] € W, and let the divided powers of v be ol =

=t
Z j A[n] !

j>n

For any continuous function f =Y _ aghy, one has ll(f) = > (Z (‘7 + g) aj(n)aﬂg) he.

>0 >0 \j>n \ J
In particular, for any polynomial function P of degree < n — 1, one has v (P) =0
and if Q) is a polynomial function of degree n and leading ceefficient 3,, one has

U[n}(Q) = a?ﬁnho-
Proof: Let f =Y ashy be a continuous function of IF,[[T]] into K.

>0

For any integer j > 0, one has AVl(f) = Z (‘7 + g) a;iohe. Hence, vI"(f) =

>0

a4 |+ 4
=3 ;) AV () =3 ai(n) Y <‘7 . > ajrehe =Y | > (‘7 : ) a;j(n)aje | he
j>n i>n o\ J >0 \y>n \ J
For integers such f < n <j, one has AVl(hy) = 0. Hence, in one hand, for ¢ < n,
one sees that vl™ Z Q; Am (he) = 0.
ji>n

On the other hand v["](hn) an(n)AM(h,) + Y a;(n) A (h,) = an(n)ho + 0 =

j>n+1

othg. Then if P =" Byhy, with m < n, one obtains v"l(P) = 0.
k=0
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n—1
And for Q = Zﬁkhk + Buhn = P 4 Buhy, one has v"(Q) = 0 + B0 (h,) =

g b k=0
ay ﬁn 0- u
— e e— When |[v]] < 1, one can substitute v in any difference operator u =

J
> B, A by setting uov = > B, One has uov = Boid+> (> aj(n)ﬁn) AV
n>0 n>0 i>1 \n=1

and |[uo v < |ul.

Assume that v = Y a;AV is such that |jv]| = |ay| = 1. One has [l =
i>1
o (n)] = |aa|" =1 |
Put g = 61(v). One has p = Y ;0 et ||u]| = |ay| = 1. We know that
i>1

there exists a sequence of polynomial functions (Q,),>0 such that deg(Q,) = n and
< u™. Q, >= dpn. Moreover (Q,),>0 is a sequence of binomial divided power and
is an orthonormal basis of C(F,[[T]], K).

Let us notice that since the sequence (Q,)n>0 is a binomial divided power sequence,
one has @,(0) =0, ¥n > 1.

For any integer n > 0, one has v = (id ® u™) o c¢. Hence v"(Q,,) = (id ® pl") o

(@Qm)= X <i>Qi<uthj>— ( )
it+j=m i+j=m

Then v"(Q,,) = 0, if m < n and v"(Q,,) = ( ) Qm—n, for 0 < n < m. Further-

more if @ is a polynomial with ccefficients in K and degree deg(Q) = m, one has
Q=2 v"(Q)0)Q

n=0
Let us notice that setting Q,, = Zﬁg )he, one has (Gy(n) = 0, if n > 1 and, since

ho = v"(Q,) = B, (n), one obtalns Bn(n) =a;™.
Now, if (QL),>0 is an other sequence of polynomials such that deg(QL) =n, Q} =

1, QL(0) = 0, for n > 1 and satisfying v"(QL) = 0, if m < n and v"(Q}) =
m
n

one sees that Q! = i (m) (0@ = Q.

n=1 n

for 0 < n < m, then Q. = Q,,, Vn > 0. Indeed for any integer m > 1,

mn7

Theorem 17.  Letv =Y _ ;AU be a difference operator such that ||v|| = || = 1.
j>1

There exists a unique binomial divided power sequence (Qy)nso such that vI"(Q,,) =

0, if m < n, v"(Q,) = ZL Qm_n, for m > n. This sequence is an orthonormal

basis of the Banach space C(F,[[T]], K).

More precisely, any continuous function f : F[[T]] — K can be expanded as a

unique uniformly convergent series f = > VM (£)(0)Q, and ||f]| = sup [o["(£)(0)].

Proof : The existence and unicity of the sequence of polynomials (Q),,),>0 satis-
fying the properties in the theorem have been verified just above.
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Let f = Z b, Q. be the expansion in the orthonormal basis (@Q;,),>0 of the con-
n>0
tinuous function f : F,[[T]] — K. Then for any integer k > 0, one has v!*(f) =

2 bn < )Qn v=vM(f)(0) = by

n>k
Remark 3: -(i)-  Let as above K be a complete valued field extension of

the field F,((T)) of Laurent formal series.

Let (Qn)n>0 be a sequence of polynomials with cefficients in K and which is a bi-

nomial divided power sequence. Then for any integer £ > 0, the polynomial Qe is

additive, that is Que(x +y) = Qpe(x) + Qpe(y).

-(ii)-  Let x € F[[T]], for any continuous function f : F,[[T]] — K,

with the notations of Theorem 17, one has 7,(f) = o™ (7, £)(0)Q
n>0
Furthermore, if u is a difference operator of C(F,[[T]], K), one has 7, o u(f) = uo

(f) = o™ (7, )(0)u(Q,). Therefore, for z, y € F,[[T]], one has u(f)(x+y) =

n>0
Zv[”] w(@n)(y). It follows that u(f)(z) =Y w(Qn)(0)0M(f)(x), the series
n>0 n>0
of functions being uniformly convergent. This last formula can also be obtained by
the substitution in the bounded measures. [

—t— Again, let (Q,)n>0 be a sequence of polynomial functions which is an or-
thonormal basis such that Qg = hg,deg(Q,) = n and is a binomial divided power

. n
sequence, i.e ¢(Q,) = ,-ﬂz:n (z) Qi ® Q.
One defines a continuous linear endomorphism v of C(F,[[T]], K) by setting v(Qy) =
0 and for any integer n > 1: v(Q,) = nQ,_1. Hence if f = Z a, @), is a continuous

n>0
function, one has v(f) = > na,Q,—1. Furthermore ||v|| = 1. Notice that if the
n>1
integer n is a multiple of p, then v(Q,) = 0.
n—1

Reducing modulo p the following identities between integers numbers n ; =

M_”Z'_l), _ (n—z’)i!(ﬁi)! — (n—i) (?) one obtains n (" A 1) = (n—i) (’;)

(mod. p).

n

From ¢(Q,) = Z (7;) Q; ® Q,_;, setting )_1; = 0, one sees that
1=0
n—1 n
Cco U(Qn) - nc(@nfl) == n (n Z_ 1) Qz ® anlfi = Z(n - Z) ( ) Qz & Qn i—1 =
i=0 i=0
— Z < ) (n—1)Qn-i—1 =Y < ) Qi@v(Qn_;) = (id®v) (Z (?) Q; ® Qn_i> —
i=0 i=0

zd®v)oc(Qn):>cov—(zd®v)oc

In other words, v is a difference operator of the Banach coalgebra C(F,[[T], K)
such that v(hg) = v(Qo) = 0. Hence v = ZajAm. But Q1 = aj hy et 1 =||Q4] =

j21
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|a11|, therefore hy = Qo = v(Q1) = a1 1v(h1) = @11 - athy = o = ozl_j. As a
consequence ||v]| =1 = |ay].

Let ¢ = 0 ov = 60;(v) be the linear form corresponding to v. One has p =
>~ a6 and [|u|| = 1 = |a;|. We have shown that in this case, there exists a unique
Jj=1
orthonormal basis (QL),>o of C(F,[[T]], K) such that < ul" Qi >= 4, . This basis
is a binomial divided power sequences of polynomial functions.

Furthermore Q) = hgy and v"(Q}) = ( > Q. ifn <k, and v"(Q}) = 0, for

k <n.
It is readily seen as above that from v(Q}) = hy = v(Q1) one deduces Q1 = Q;.

For any integer n > 1, one has 7,(Q,)(y Zv[k] (72(Qn))(0)Q), = ZTw o
k=0
Q) (0)Q4 )
Hence Q,(r + y) Z v[k] Qi(y). Since ¢(Q,) = Z ( ) Qn—1. ® Qk, one
k=0

n

obtains the identities Z v Q) (2)QL(y) = Qulz +y) = > <k> Qn—k(7)Qr(y).

k=0 k=0
One deduces by induction from v(Q,) = nQ,_1, that for any integer j > 1, one
has v/(Qn) =n(n—1)---(n—j + 1)Qn_;.
But jlvbl = v7, hence j107(Q,) =n(n —1)---(n — j + 1)Q,_;. Therefore for j
an integer such that

| “)en—jt1
0 <j <p—1, one has o0N(Q,) = it jv(n - >Q"_j N (?) Onmis

with the convention @),_; =0, if n < j.

—e— Assume that n < p—1, for 0 < j < n, one has vQ,, = (?) Qn—;. Hence

= ji)v[ﬂ@n)(m@ -y @ Qn-;(0)Q] = 5 (;‘) Qu(0)Q} + Qo(0)QL =

J=0 J=0
Q-
p—1
However, one has @), = Zv Z ( > Q,;(0 )le +U[p}(Qp)(0)Q}, _
] 0
p+1
[p](Qp>(O)le; and Qp1 = Z v QPH Z v QpH Q +ol? (QP+1)<O)Q}+

Q) (000 = 3 (p t 1) Q5 (O)Q407 (@) (O)Q 40771 (Qy 1) (0)Q)

7=0
[p}(QpH)(O)Q} +oPH(Q,41)(0 )Q;. More generally, for any integer n > p+ 1, one
has Qn = Y~ v7(Qn)(0)Q;.
j=p+1

—ee— Since vl is a difference operator, one has covl?(Q,,) = (idov!¥)oc(Q,,) =

> (Z) Qn-r@v Q1) = v1(Q,) = (id®0)ocovl(Q Enz (Z) Q1) (0)Qur =

k=0
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n

> (};‘) 0 (Qu)(0) Qs

p—;
—eee— Onechasv!(Q,) = (Z) Qn_s,¥n, £ <= v11(Q,)(0) = 1 and v (Q;)(0) =

0, Vk # (. Or, equivalently, < ul Q, >= vl9(Q4)(0) = 61, where g = 0 ov. In
these conditions, one sees that Q, = Q,,,Vn > 0 and since (Q/,),>o is the dual basis

of (Qn)n>0, one has @ = pl and < Q;, V(@) >= (Z) 0jn—t-

—eeee— Let U and U; be the continuous linear endomorphisms of the Banach
space C(F,[[T]], K) such that U(h,) = Q,, and Uy (h,,) = Q}.. Since the bases (Qy,)n>0
and (Q} )n>0 are both binomial divided power sequences, the operators U and U,
are isometrical coalgebra automorphisms of the Banach coalgebra C(F,[[T]], K).

One deduces from Corollary 15 that w; = 'U; is an algebra automorphism of
the dual Banach algebra M (F,[[T], K) that commutes with the divided powers
operations on M (F,[[T]], K). Moreover, if v is the reverse measure of y = o o v,
then w; is defined by substitution, that is for any bounded measure 1, one has
wi () = Y owv. Tt follows that the bases (Q,)n>0 and (Q}),>0 coincide if and only
if the coalgebra automorphism U defined by U(h,) = @, is such that its transpose
w ="'U, an algebra automorphism of the algebra M (F,[[T]], K) commutes with the
operations of divided powers.

Summarizing, one has proved the following proposition.

Proposition 18. The subset of the difference operatorsv ="» ajA[j] of C(F,[[T], K)
Jjz1

such that ||v|| = |ai| = 1 corresponds bijectively to the orthonormal bases (Qn)n>0

of C(F,[[T]], K) which are binomial divided power sequences of polynomial functions

such that the transpose w = 'U of the coalgebra automorphism U of C(F,[[T]], K)

defined by U(h,,) = Qy, is an algebra automorphism of the dual algebra M (F,[[T]], K)

that commutes with the operations of divided powers.

N.B: —e— There exist orthonormal basis (¢, )n>0 of C(F,[[T]], K) satis-

fying the condition : ¢(g,) = Y (7) g; ® g; and are not polynomial functions.
1+Jj=n

Orthonormal bases satisfying thgz binomial divided power condition correspond bi-
jectively to the continuous coalgebra automorphisms of C(F,[[T]], K).

In [7] we have characterized all continuous bialgebra endomorphisms of C(F,[[T]], K).
The description of the set of coalgebra endomorphisms done in the algebraic setting
in [11] can be adapted here, with assuming the appropriate continuity conditions.
— ee— The umbral calculus developed here, as already said, is different from the
one given by A. Kochubei in [14] which is done on the closed subspace of C(F,[[T]], K)

of the F,-linear continuous functions.

The author thanks the referee for his remarks and suggestions on the redaction
of this paper.
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