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Abstract

It is the aim of this paper to obtain the generalized Hyers-Ulam stability
result for a mixed type of cubic and additive functional equation
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for all (x1, · · · , xl, xl+1) ∈ X l+1, where l ≥ 2.

1 Introduction

In 1940, S. M. Ulam [21] posed the following problem concerning the stability of
homomorphisms:

Let G1 be a group and let G2 be a metric group with the metric d(·, ·). Given
ǫ > 0, does there exist a δ > 0 such that if a function h : G1 → G2 satisfies the in-
equality d(h(xy), h(x)h(y)) < δ for all x, y ∈ G1, then there exists a homomorphism
H : G1 → G2 with d(h(x), H(x)) < ǫ for all x ∈ G1?
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In other words, we are looking for situations when the homomorphisms are sta-
ble, i.e., if a mapping is approximately a homomorphism, then there exists a true
homomorphism near it with possible small error.

In 1941 D. H. Hyers [6] considered approximately additive mapping f : X → Y,

where X and Y are real Banach spaces and f satisfies

‖f(x+ y) − f(x) − f(y)‖ < ε

for all x, y ∈ X. It was proved that { f(2nx)
2n } is a Cauchy sequence for every x ∈ X and

that T : X → Y defined by T (x) = limn→∞
f(2nx)

2n is the unique additive mapping
satisfying

‖f(x) − T (x)‖ ≤ ε.

B. E. Johnson [10] proved that given a Banach space X and a number δ > 0 if
a continuous mapping f : X → R satisfies
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for all positive integers n, all ti ∈ R and all xi ∈ X, then there exists a linear
bounded functional g : X → R such that |f(x) − g(x)| ≤ 3δ‖x‖ for all x ∈ X.

During the last decades, the stability problems of several functional equations
have been extensively investigated by a number of authors [2, 5, 8, 14, 17, 18].
The terminology generalized Hyers-Ulam stability originates from these historical
backgrounds. These terminologies are also applied to the case of other functional
equations. For more detailed definitions of such terminologies, we can refer to [7, 9,
19].

The quadratic functional equation

f(x+ y) + f(x− y) − 2f(x) − 2f(y) = 0 (1.1)

clearly has f(x) = cx2 as a solution with c an arbitrary constant when f is a real
mapping over R. In particular, every solution of the quadratic equation (1.1) is said
to be a quadratic mapping, even in more general contexts. A stability problem for
the quadratic functional equation (1.1) was solved by a lot of authors [3, 15, 19, 20].
Moreover, Jun and Lee [11] proved the Hyers-Ulam stability of the pexiderized
quadratic equation (1.1).

In this paper we consider the following functional equations,

f(2x+ y) + f(2x− y) = 2f(x+ y) + 2f(x− y) + 12f(x), (1.2)

f(x+ y + z) + f(x+ y − z) + 2f(x) + 2f(y) (1.3)

= 2f(x+ y) + f(x+ z) + f(x− z) + f(y + z) + f(y − z),
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where l is a positive integer with l ≥ 2. Since the function f(x) = cx3 on real field
is a solution of the functional equation (1.2), the equation (1.2) is naturally called a
cubic functional equation and every solution of the cubic functional equation (1.2)
is said to be a cubic mapping. Let both E1 and E2 be real vector spaces. Authors
[12] proved that a mapping f : E1 → E2 satisfies the functional equation (1.2) if and
only if there exists a mapping B : E1 × E1 × E1 → E2 such that f(x) = B(x, x, x)
for all x ∈ E1, where B is symmetric for each fixed one variable and additive for
each fixed two variables.

In the present paper, we will show that a mapping f : E1 → E2 satisfies the
functional equation (1.4) if and only if there exist two mappings B : E1×E1×E1 →
E2, A : E1 → E2 and a constant c in E2 such that

f(x) = B(x, x, x) + A(x) + c

for all x ∈ E1, where A is additive, and B is symmetric for each fixed one variable
and additive for each fixed two variables. Additionally we solve the generalized
Hyers-Ulam stability problem for the equation (1.4) under the approximately cubic
(or additive) condition by the iterative methods and ideas that are analogous to the
ones used in [5, 18].

2 General Solution

Before taking up the main subject we seek for the general solution of (1.4) in the
class of functions between real vector spaces.

Theorem 2.1. A mapping f : E1 → E2 satisfies the functional equation (1.3) if
and only if there exist mappings B : E1 × E1 × E1 → E2, A : E1 → E2 and a
constant c in E2 such that f(x) = B(x, x, x) + A(x) + c for all x ∈ E1, where B is
symmetric for each fixed one variable and additive for each fixed two variables, and
A is additive.

Proof. Let f : E1 → E2 satisfy the functional equation (1.3). Putting x = 0 = y

in (1.3), we get f(z) + f(−z) − 2f(0) = 0. Thus, setting F (x) := f(x) − f(0), we
obtain that F is odd and F also satisfies the equation (1.3). Therefore, we may
assume without loss of generality that f : E1 → E2 satisfies the functional equation
(1.3), f(0) = 0 and f is odd. Putting z = x in (1.3), we get

f(2x+ y) = 3f(x+ y) + f(2x) + f(y − x) − 2f(x) − 3f(y) (2.1)

for all x, y ∈ E1. Setting z = y in (1.3), one obtains that

f(x+ 2y) = 3f(x+ y) + f(2y) + f(x− y) − 3f(x) − 2f(y) (2.2)

for all x, y ∈ E1. Adding the equation (2.2) to (2.1), we lead to

f(x+ 2y) + f(2x+ y) = 6f(x+ y) + f(2x) + f(2y) − 5f(x) − 5f(y) (2.3)

for all x, y ∈ E1. Replacing x by −x in (2.1), we get

f(−2x+ y) = −3f(x− y) − f(2x) + f(x+ y) + 2f(x) − 3f(y) (2.4)
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for all x, y ∈ E1. Putting −y instead of y in (2.2), one obtains that

f(x− 2y) = 3f(x− y) − f(2y) + f(x+ y) − 3f(x) + 2f(y) (2.5)

for all x, y ∈ E1. Adding the equation (2.4) to (2.5), we lead to the relation

f(x− 2y) + f(−2x+ y) = 2f(x+ y) − f(2x) − f(2y)− f(x) − f(y) (2.6)

for all x, y ∈ E1.

Now, define B : E1 × E1 ×E1 7→ E2 by

B(x, y, z) (2.7)

:=
1

24
[f(x+ y + z) + f(x− y − z) − f(x+ y − z) − f(x− y + z)]

for all x, y, z ∈ E1. Then B is symmetric for each fixed one variable since f is odd
mapping and B is additive for each fixed two variables, which is verified in the proof
of [12, Theorem 2.1].

On the other hand, define a mapping A : E1 7→ E2 as

A(x) := f(x) − B(x, x, x) for all x ∈ E1. (2.8)

Utilizing (2.3) and (2.6), we get

24A(x+ y) − 24A(x) − 24A(y) (2.9)

= 24f(x+ y) − 24f(x) − 24B(x+ y, x+ y, x+ y)

+24B(x, x, x) + 24B(y, y, y)− 24f(y)

= 24f(x+ y) − 24f(x) − 24f(y)− 72B(x, x, y) − 72B(x, y, y)

= 24f(x+ y) − 24f(x) − 3[f(2x+ y) + f(−2x+ y) − 2f(y)]

−3[f(x+ 2y) + f(x− 2y) − 2f(x)] − 24f(y)

= 0

for all x, y ∈ E1. That is, A is additive and f(x) = B(x, x, x) +A(x) for all x ∈ E1.

Since we regard f(x) as f(x) − f(0), we get f(x) = B(x, x, x) +A(x) + f(0) for all
x ∈ E1 and we obtain the desired results.

Conversely, if there exist mapping B : E1 × E1 × E1 → E2, A : E1 → E2 and a
constant c such that f(x) = B(x, x, x)+A(x)+ c for all x ∈ E1, where A is additive
and B is symmetric for each fixed one variable and B is additive for each fixed two
variables, then it is obvious that f satisfies the equation (1.3). This completes the
proof of the theorem.

Theorem 2.2. The functional equation (1.4) in the class of functions between real
vector spaces is identically equivalent to the functional equation (1.3), and thus the
general solution of (1.4) is of the form f(x) = B(x, x, x)+A(x)+c, where B is such
as previous section and A is additive.

Proof. Letting f be a solution of (1.4), then f(x)−f(0) satisfies also the equation
(1.4). Thus we may assume that f satisfies the equation (1.4) and f(0) = 0. Putting
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xi = 0 for all i = 1, · · · , l and xl+1 = z in the equation (1.4) yields f(z) = −f(−z).
Substituting xi = 0 for all i = 3, · · · , l and xl+1 = z in (1.4) we obtain

f(x1 + x2 + z) + f(x1 + x2 − z) + 2f(x1) + 2f(x2) (2.10)

= 2f(x1 + x2) + f(x1 + z) + f(x1 − z) + f(x2 + z) + f(x2 − z),

which is in fact the equation (1.3).
Conversely, if f satisfies the equation (1.3), then by Theorem 2.1 f has the form

f(x) = B(x, x, x) +A(x) + c, and so it is easily verified that f satisfies the equation
(1.4) by expanding (1.4) into B and A terms.

3 Stability of Equation (1.4)

From now on, let X be a real vector space and let Y be a real Banach space unless
we give any specific reference. Let R+ denote the set of all nonnegative real numbers
and N the set of all positive integers. Given f : X → Y , we define the difference
Df : X l+1 → Y by

Df(x1, · · · , xl, xl+1) := f
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for all (x1, · · · , xl, xl+1) ∈ X l+1. We consider the following functional inequality

‖Df(x1, · · · , xl, xl+1)‖ ≤ φ(x1, · · · , xl, xl+1),

where the mapping φ : X l+1 → R+ is called the approximate remainder of the func-
tional equation (1.4), which acts as a perturbation of the equation. For convenience
in this paper we denote

φ̂(x, y, z) := min{φi,j(x, y, z)|i, j = 1, · · · , l and i 6= j},

where φi,j(x, y, z) := φ(0, · · · , 0, x, 0, · · · , 0, y, 0, · · · , 0, z), (i 6= j) with x, y in i, j

entries, respectively, z in the last entry and 0 otherwise.

Theorem 3.1. Suppose that a mapping f : X → Y satisfies

‖Df(x1, · · · , xl, xl+1)‖ ≤ φ(x1, · · · , xl, xl+1) (3.1)

for all x1, · · · , xl, xl+1 ∈ X. If the approximate remainder φ : X l+1 → R+ is a
mapping such that the series

∞
∑

i=1

φ(2ix1, · · · , 2
ixl, 2

ixl+1)

2i

converges for all x1, · · · , xl, xl+1 ∈ X, then there exist a cubic mapping T : X → Y

and an additive mapping A : X → Y which satisfy the equation (1.4) and the
inequality

‖f(x) − f(0) − A(x) − T (x)‖ ≤
1

16

∞
∑

i=1

4i − 1

3 · 8i−1
Φ(2i−1x) (3.2)
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for all x ∈ X, where the mapping Φ : X → Y is given by

Φ(x) := 3φ̂(x, x, x) + φ̂(2x, x, x) +
4(l − 2)

l − 1
φ̂(0, 0, x)

and the mappings T and A are defined by

T (x) + A(x) = lim
n→∞

[

4n+1 − 1

3 · 8n
f(2nx) −

4n − 1

6 · 8n
f(2n+1x)

]

(3.3)

for all x ∈ X.

Proof. Define g : X → Y by g(x) := f(x) − f(0) for all x ∈ X. Then g satisfies
also the functional inequality

‖Dg(x1, · · · , xl, xl+1)‖ ≤ φ(x1, · · · , xl, xl+1), (3.4)

‖Dg(0, · · · , x, 0, · · · , 0, y, 0, · · · , z)‖ ≤ φi,j(x, y, z)

for all x1, · · · , xl, xl+1 ∈ X and x, y in i, j entries, respectively, z in the last en-
try. Noting that Dg(0, · · · , 0, x, 0, · · · , 0, y, 0, · · · , z) is invariant for all x, y in i, j

entries, where i, j = 1, 2, · · · , l, we may assume without loss of generality that
φ̂(x, y, z) := φ1,2(x, y, z) = φ(x, y, 0, · · · , 0, z). If we replace (x1, · · · , xl, xl+1) by
(2x, x, 0, · · · , 0, x) in (3.4), we have

‖g(4x) + 2g(2x) + g(x) − 3g(3x) − (l − 2)[g(x) + g(−x)]‖ (3.5)

≤ φ̂(2x, x, x) = φ1,2(2x, x, x)

for all x ∈ X. Replacing (x1, · · · , xl, xl+1) by (x, x, 0, · · · , 0, x) in (3.4), we get

‖g(3x) + 5g(x) − 4g(2x) − (l − 2)[g(x) + g(−x)]‖ ≤ φ̂(x, x, x) (3.6)

for all x ∈ X. Setting (x1, · · · , xl, xl+1) by (0, 0, · · · , 0, x) in (3.4), one obtains the
approximately odd condition of g

‖g(x) + g(−x)‖ ≤
1

l − 1
φ̂(0, 0, x) (3.7)

for all x ∈ X. Combining (3.5) and (3.6) to eliminate the term g(3x), and then
applying (3.7) to the resulting inequality, we obtain

‖g(4x) + 16g(x) − 10g(2x)‖ (3.8)

≤ 3φ̂(x, x, x) + φ̂(2x, x, x) +
4(l − 2)

l − 1
φ̂(0, 0, x)

:= Φ(x),

which is rewritten by

∥

∥

∥

∥
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1

16
g(4x)

∥
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∥

∥

≤
1

16
Φ(x) (3.9)
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for all x ∈ X. From the inequality (3.9) we use iterative methods and induction on
n to prove our next relation:

∥

∥

∥

∥

g(x) −
4n+1 − 1

3 · 8n
g(2nx) +

4n − 1

6 · 8n
g(2n+1x)

∥

∥

∥

∥

(3.10)

≤
1

16

n
∑

i=1

4i − 1

3 · 8i−1
Φ(2i−1x)

for all x ∈ X. We set a sequence {gn(x)} given by

gn(x) :=
4n+1 − 1

3 · 8n
g(2nx) −

4n − 1

6 · 8n
g(2n+1x), x ∈ X

and prove the convergence of the sequence. Now we figure out by (3.8)

‖gn+1(x) − gn(x)‖

=
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∥

∥

∥

4n+2 − 1

3 · 8n+1
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g(2nx) +

4n − 1

6 · 8n
g(2n+1x)

∥
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=
1

6 · 8n+1

∥
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∥

∥

2(4n+2 − 1)g(2n+1x) + 8(4n − 1)g(2n+1x)

−16(4n+1 − 1)g(2nx) − (4n+1 − 1)g(2n+2x)

∥

∥
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∥

=
1

6 · 8n+1

∥

∥

∥

∥

4n+1[10g(2n+1x) − 16g(2nx) − g(2n+2x)]

−[10g(2n+1x) − 16g(2nx) − g(2n+2x)]

∥

∥

∥

∥

≤
4n+1 − 1

6 · 8n+1
Φ(2nx)

for all x ∈ X. Hence it follows by the last inequality that for any positive integers
m,n with m > n > 0,

‖gn(x) − gm(x)‖ ≤
m−1
∑

k=n

‖gk+1(x) − gk(x)‖ ≤
m−1
∑

k=n

4k+1 − 1

6 · 8k+1
Φ(2kx)

for all x ∈ X. Since
∑∞

i=1
φ(2ix1,··· ,2ixl,2

ixl+1)
2i < ∞ by assumption, the right hand

side of the above inequality tends to 0 as n tends to infinity and thus the sequence
{gn(x)} is Cauchy in Y . Therefore, we may define a mapping F : X → Y as

F (x) = lim
n→∞

gn(x) = lim
n→∞

[

4n+1 − 1

3 · 8n
g(2nx) −

4n − 1

6 · 8n
g(2n+1x)

]

= lim
n→∞

[

4n+1 − 1

3 · 8n
f(2nx) −

4n − 1

6 · 8n
f(2n+1x)

]

for all x ∈ X and hence we right now arrive at the formula

‖f(x) − f(0) − F (x)‖ ≤
1

16

∞
∑

i=1

4i − 1

3 · 8i−1
Φ(2i−1x)

by letting n→ ∞ in (3.10).
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To show that F satisfies the equation (1.4), we calculate the following inequality
by (3.1)

4n+1 − 1

3 · 8n

∥

∥

∥

∥

Df(2nx1, · · · , 2
nxl, 2

nxl+1)

∥

∥

∥

∥

≤
4n+1 − 1

3 · 8n
φ(2nx1, · · · , 2

nxl, 2
nxl+1),

4n − 1

6 · 8n

∥

∥

∥

∥

Df(2n+1x1, · · · , 2
n+1xl, 2

n+1xl+1)

∥

∥

∥

∥

≤
4n − 1

6 · 8n
φ(2n+1x1, · · · , 2

n+1xl, 2
n+1xl+1)

for all x1, · · · , xl, xl+1 ∈ X. Thus it follows from above two relations that

Dgn(x1, · · · , xl, xl+1)

=
[

4n+1 − 1

3 · 8n

(

Df(2nx1, · · · , 2
nxl, 2

nxl+1)
)

−
4n − 1

6 · 8n

(

Df(2n+1x1, · · · , 2
n+1xl, 2

n+1xl+1)
)]

≤
[

4n+1 − 1

3 · 8n
φ(2nx1, · · · , 2

nxl, 2
nxl+1) +

4n − 1

6 · 8n
φ(2n+1x1, · · · , 2

n+1xl, 2
n+1xl+1)

]

,

which yields by letting n→ ∞ thatDF (x1, · · · , xl, xl+1) = 0 for all x1, · · · , xl, xl+1 ∈
X, that is, F is a solution of (1.4). By Theorem 2.2 there exist a cubic mapping T
and an additive mapping A such that F (x) = T (x) +A(x) for all x ∈ X. The proof
is complete.

Corollary 3.2. Suppose that a mapping f : X → Y satisfies

‖Df(x1, · · · , xl, xl+1)‖ ≤ ε

for all x1, · · · , xl, xl+1 ∈ X and some ε ≥ 0. Then there exist a cubic mapping
T : X → Y and an additive mapping A : X → Y which satisfy the equation (1.4)
and the inequality

‖f(x) − f(0) − A(x) − T (x)‖ ≤
4ε(2l − 3)

7(l − 1)

for all x ∈ X.

We now investigate the generalized Hyers-Ulam stability problem for the equa-
tion (1.4) under the approximately cubic condition. Thus we investigate situations
that there exists a true cubic mapping near an approximately cubic mapping.

Theorem 3.3. Suppose that a mapping f : X → Y satisfies

‖Df(x1, · · · , xl, xl+1)‖ ≤ φ(x1, · · · , xl, xl+1), (3.11)

‖f(2x) + 8f(−x) − 9f(0)‖ ≤ ψ(x) (3.12)
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for all x, x1, · · · , xl, xl+1 ∈ X. If the approximate remainders φ : X l+1 → R
+,

ψ : X → R+ are mappings such that the series

∞
∑

i=1

φ(3ix1, · · · , 3
ixl, 3

ixl+1)

27i
and

∞
∑

i=1

ψ(3ix)

27i

converge for all x, x1, · · · , xl, xl+1 ∈ X, then there exists a unique cubic mapping
T : X → Y which satisfies the equation (1.4) and the inequality

‖f(x) − f(0) − T (x)‖ (3.13)

≤
∞
∑

i=1

[

1

2

(

1

27i
−

(−1)i−1

37i

)

Φ1(3
i−1x)

+
1

2

(

1

27i
+

(−1)i−1

37i

)

Φ1(−3i−1x)
]

for all x ∈ X, where

Φ1(x) := φ̂(x, x, x) +
l − 2

l − 1
φ̂(0, 0, x) + 4ψ(x).

The mapping T is given by

T (x) = lim
n→∞

f(3nx)

27n
(3.14)

for all x ∈ X. If, moreover, for each fixed x ∈ X the mapping t 7→ f(tx) from R to
Y is continuous, then T (rx) = r3T (x) for all r ∈ R.

Proof. We use the same notation as in Theorem 2.2. If we put g(x) := f(x)−f(0)
in (3.11), then g : X → Y satisfies the functional inequality (3.4) and

‖g(2x) + 8g(−x)‖ ≤ ψ(x) (3.15)

for all x ∈ X. Combining (3.6) and (3.7) to eliminate the term g(x) + g(−x), and
then applying (3.15) to the resulting inequality, we obtain

‖g(3x) + 5g(x) + 32g(−x)‖ (3.16)

≤ φ̂(x, x, x) +
l − 2

l − 1
φ̂(0, 0, x) + 4ψ(x) := Φ1(x).

By substituting −x for x in (3.16), we have

‖f(−3x) + 5f(−x) + 32f(x)‖ ≤ Φ1(−x). (3.17)

We use induction on n to prove our next relation:

∥

∥

∥

∥

g(x) +
1

2

(

(−1)n−1

37n
−

1

27n

)

g(3nx) +
1

2

(

(−1)n−1

37n
+

1

27n

)

g(−3nx)
∥

∥

∥

∥

(3.18)

≤
n

∑

i=1

[

1

2

(

1

27i
−

(−1)i−1

37i

)

Φ1(3
i−1x) +

1

2

(

1

27i
+

(−1)i−1

37i

)

Φ1(−3i−1x)
]
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for all x ∈ X. By (3.16) and (3.17), we get

∥

∥

∥

∥

g(x) −
5

999
g(3x) +

32

999
g(−3x)

∥

∥

∥

∥

(3.19)

≤
5

999
‖ − g(3x) − 5g(x) − 32g(−x)‖

+
32

999
‖g(−3x) + 5g(−x) + 32g(x)‖

≤
5

999
Φ1(x) +

32

999
Φ1(−x),

which proves the validity of the inequality (3.18) for n = 1. By using (3.16), (3.17),
and the following relation:

g(x) +
1

2

(

(−1)n

37n+1
−

1

27n+1

)

g(3n+1x) +
1

2

(

(−1)n

37n+1
+

1

27n+1

)

g(−3n+1x)(3.20)

= g(x) +
1

2

(

(−1)n−1

37n
−

1

27n

)

g(3nx) +
1

2

(

(−1)n−1

37n
+

1

27n

)

g(−3nx)

+
1

2

(

(−1)n

37n+1
−

1

27n+1

)[

g(3n+1x) + 5g(3nx) + 32g(−3nx)
]

+
1

2

(

(−1)n

37n+1
+

1

27n+1

)[

g(−3n+1x) + 5g(−3nx) + 32g(3nx)
]

,

we can easily verify the relation (3.18) for n + 1.
It follows from (3.18) and (3.7) that

∥

∥

∥

∥

g(x) −
g(3nx)

27n

∥

∥

∥

∥

(3.21)

≤
n

∑

i=1

[

1

2

(

1

27i
−

(−1)i−1

37i

)

Φ1(3
i−1x) +

1

2

(

1

27i
+

(−1)i−1

37i

)

Φ1(−3i−1x)
]

+
1

2(l − 1)

(

1

27n
+

(−1)n−1

37n

)

φ̂(0, 0, 3nx)

for all x ∈ X.

In order to prove convergence of the sequence { g(3nx)
27n }, we show that it is a

Cauchy sequence in Y. By (3.21), we obtain that for positive integers n,m with
n > m, the following inequality

∥

∥

∥

∥

g(3mx)

27m
−
g(3m+nx)

27m+n

∥

∥

∥

∥

(3.22)

=
1

27m

∥

∥

∥

∥

g(3mx) −
g(3n(3mx))

27n

∥

∥

∥

∥

≤
1

27m

n
∑

i=1

[

1

2

(

1

27i
−

(−1)i−1

37i

)

Φ1(3
m+i−1x) +

1

2

(

1

27i
+

(−1)i−1

37i

)

Φ1(−3m+i−1x)
]

+
1

27m2(l − 1)

(

1

27n
+

(−1)n−1

37n

)

φ̂(0, 0, 3n+mx)

holds for all x ∈ X. Since
∑∞

i=1
φ(3ix1,··· ,3ixl,3

ixl+1)
27i <∞ by assumption, the right hand

side of the inequality (3.22) tends to 0 as m tends to infinity, and thus the sequence
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{ g(3nx)
27n } is Cauchy in Y . Therefore, we may define

T (x) := lim
n→∞

g(3nx)

33n
= lim

n→∞

f(3nx)

33n

for all x ∈ X. By letting n→ ∞ in (3.21), we arrive at the formula (3.13).
Replace (x1, · · · , xl, xl+1) by (3nx1, · · · , 3

nxl, 3
nxl+1) in (3.11) and divide by 27n,

then it follows that

27−n‖Df(3nx1, · · · , 3
nxl, 3

nxl+1)‖ ≤ 27−nφ(3nx1, · · · , 3
nxl, 3

nxl+1).

Taking the limit as n→ ∞, we find that T satisfies (1.4). Obviously, it follows from
(3.12) and (3.7) that T (x) + T (−x) = 0, and T (2x) + 8T (−x) = 0. Therefore T is
a cubic mapping defined by T (x) = B(x, x, x) by Theorem 2.2.

To prove the uniqueness of the cubic mapping T subject to the equation (1.4) and
the inequality (3.13), let us assume that there exists a cubic mapping S : X → Y

which satisfies (1.4) and the inequality (3.13). Obviously, we have S(3nx) = 27nS(x)
and T (3nx) = 27nT (x) for all x ∈ X and n ∈ N. Hence it follows from (3.13) that

‖S(x) − T (x)‖ = 27−n‖S(3nx) − T (3nx)‖

≤ 27−n(‖S(3nx) − f(3nx) + f(0)‖ + ‖f(3nx) − f(0) − T (3nx)‖)

≤
2

27n

∞
∑

i=1

[

1

2

(

1

27i
−

(−1)i−1

37i

)

Φ1(3
n+i−1x)

+
1

2

(

1

27i
+

(−1)i−1

37i

)

Φ1(−3n+i−1x)
]

for all x ∈ X. By letting n → ∞ in the preceding inequality, we immediately find
the uniqueness of T.

The proof of the last assertion in the theorem goes through in the same way as
that of [19]. This completes the proof of the theorem.

From the main Theorem 3.3, we obtain the following Hyers-Ulam-Rassias stabil-
ity of the equation (1.4) under the approximately cubic condition.

Corollary 3.4. Let X and Y be a real normed space and a Banach space, re-
spectively, and let δ, ε ≥ 0, 0 < p < 3 be real numbers. Suppose that a mapping
f : X → Y satisfies

‖Df(x1, · · · , xl, xl+1)‖ ≤ ε(‖x1‖
p + · · ·+ ‖xl‖

p + ‖xl+1‖
p), (3.23)

‖f(2x) + 8f(−x) − 9f(0)‖ ≤ δ

for all x ∈ X and (x1, · · · , xl, xl+1) ∈ X l+1. Then there exists a unique cubic
mapping T : X → Y which satisfies the equation (1.4) and the inequality

‖f(x) − f(0) − T (x)‖ (3.24)

≤
3ε‖x‖p

27 − 3p
+

(l − 2)ε‖x‖p

(l − 1)(27 − 3p)
+

2δ

13

for all x ∈ X. The mapping T is given by

T (x) = lim
n→∞

f(3nx)

27n

for all x ∈ X. Furthermore, if for each fixed x ∈ X the mapping t 7→ f(tx) from R

to Y is continuous, then T (rx) = r3T (x) for all r ∈ R.
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Proof. The conclusion follows from Theorem 3.3.

By Theorem 3.3, we obtain the following Hyers-Ulam stability of the equation
(1.4) under the approximately cubic condition.

Corollary 3.5. Let X and Y be a real normed space and a Banach space, respec-
tively, and let δ, ε ≥ 0 be real numbers. Suppose that a mapping f : X → Y satisfies

‖Df(x1, · · · , xl, xl+1)‖ ≤ ε, (3.25)

‖f(2x) + 8f(−x) − 9f(0)‖ ≤ δ

for all x ∈ X and (x1, · · · , xl, xl+1) ∈ X l+1. Then there exists a unique cubic mapping

T : X → Y defined by T (x) = limn→∞
f(3nx)

27n which satisfies the equation (1.4) and
the inequality

‖f(x) − f(0) − T (x)‖ ≤
ε

26
+

(l − 2)ε

(l − 1)26
+

2δ

13
(3.26)

for all x ∈ X. If moreover, for each fixed x ∈ X the mapping t 7→ f(tx) from R to
Y is continuous, then T (rx) = r3T (x) for all r ∈ R.

In the next part, we investigate the generalized Hyers-Ulam stability problem
for the equation (1.4) under the approximately additive condition.

Theorem 3.6. Suppose that a mapping f : X → Y satisfies

‖Df(x1, · · · , xl, xl+1)‖ ≤ φ(x1, · · · , xl, xl+1), (3.27)

‖f(2x) + 2f(−x) − 3f(0)‖ ≤ ψ(x) (3.28)

for all x, x1, · · · , xl, xl+1 ∈ X and for some δ ≥ 0. If the approximate remainder
φ : X l+1 → R+, ψ : X → R+ are mappings such that the series

∞
∑

i=1

φ(3ix1, · · · , 3
ixl, 3

ixl+1)

3i
and

∞
∑

i=1

ψ(3ix)

3i

converge for all x, x1, · · · , xl, xl+1 ∈ X, then there exists a unique additive mapping
A : X → Y which satisfies the equation (1.4) and the inequality

‖f(x) − f(0) − A(x)‖ (3.29)

≤
∞
∑

i=1

[

1

2

(

1

3i
−

(−1)i−1

13i

)

Φ1(3
i−1x)

+
1

2

(

1

3i
+

(−1)i−1

13i

)

Φ1(−3i−1x)
]

for all x ∈ X. The mapping A is given by

A(x) = lim
n→∞

f(3nx)

3n
(3.30)

for all x ∈ X. Moreover, if for each fixed x ∈ X the mapping t 7→ f(tx) from R to
Y is continuous, then A(rx) = rA(x) for all r ∈ R.

Proof. The proof of this theorem goes through in the same way as that of
Theorem 3.3.
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4 Applications

Let B be a unital Banach algebra with norm | · |, and let BB1 and BB2 be left Banach
B-modules with norms ‖ · ‖ and || · ||, respectively. A cubic mapping T : BB1 → BB2

is called B-cubic if

T (ax) = a3T (x), ∀a ∈ B, ∀x ∈ BB1.

In the last part of this paper, we prove the generalized Hyers-Ulam stability problem
for the equation (1.4) in Banach modules over a unital Banach algebra.

Theorem 4.1. Let φ, ψ be defined mappings as in Theorem 3.3. Suppose that a
mapping f : BB1 → BB2 satisfies

∣

∣

∣

∣

∣

∣

∣

∣

f

(

(
l

∑

i=1

αxi) + αxl+1

)

+ f

(

(
l

∑

i=1

αxi) − αxl+1

)

+ 2
l

∑

i=1

f(αxi) − 2α3f(
l

∑

i=1

xi)

−α3
l

∑

i=1

[f(xi + xl+1) + f(xi − xl+1)]
∣

∣

∣

∣

∣

∣

∣

∣

≤ φ(x1, · · · , xl, xl+1),

||f(2αx) + 8α3f(−x) − 9f(0)|| ≤ ψ(x)

for all α ∈ B(|α| = 1), all x, x1, · · · , xl, xl+1 ∈ BB1. If f(tx) is continuous in t ∈ R

for each fixed x ∈ BB1, then there exists a unique B-cubic mapping T : BB1 → BB2,

defined by (3.14), which satisfies the equation (1.4) and the inequality (3.13).

Proof. By Theorem 3.3, it follows from the inequality of the statement for α = 1
that there exists a unique cubic mapping T : BB1 → BB2, defined by T (x) =

limn→∞
f(3nx)

27n , which satisfies satisfies the equation (1.4) and the inequality (3.13).
Under the assumption that f(tx) is continuous in t ∈ R for each fixed x ∈ BB1, by
the same reasoning as the proof of [19], the cubic mapping T : BB1 → BB2 satisfies

T (tx) = t3T (x), ∀x ∈ BB1, ∀t ∈ R.

That is, T is R-cubic. Since T satisfies the equation

T

(

(
l

∑

i=1

αxi) + αxl+1

)

+ T

(

(
l

∑

i=1

αxi) − αxl+1

)

+ 2
l

∑

i=1

T (αxi)

−2α3T (
l

∑

i=1

xi) − α3
l

∑

i=1

[T (xi + xl+1) + T (xi − xl+1)] = 0,

putting (x, 0, · · · , 0, 0) instead of (x1, · · · , xl, xl+1) in the last equation we obtain
that for each fixed α ∈ B(|α| = 1), T (αx) = α3T (x) for all x ∈ BB1. The last
relation is also true for α = 0. Since T is R-cubic and T (αx) = α3T (x) for each
element α ∈ B(|α| = 1), for each element a ∈ B(a 6= 0) a is written by a = |a| · a

|a|

and thus

T (ax) = T (|a| ·
a

|a|
x) = |a|3 · T (

a

|a|
x) = |a|3 ·

a3

|a|3
· T (x)

= a3T (x), ∀a ∈ B(a 6= 0), ∀x ∈ BB1.

So the unique R-cubic mapping T : BB1 → BB2 is also B-cubic, as desired. This
completes the proof of the theorem.
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Since C is a unital Banach algebra, the Banach spaces E1 and E2 are considered
as Banach modules over C. Thus we have the following corollary.

Corollary 4.2. Let φ, ψ be defined mappings as in Theorem 3.6 and let E1 and E2

be Banach spaces over the complex field C. Suppose that a mapping f : E1 → E2

satisfies

∣

∣

∣

∣

∣

∣

∣

∣

f

(

(
l

∑

i=1

αxi) + αxl+1

)

+ f

(

(
l

∑

i=1

αxi) − αxl+1

)

+ 2
l

∑

i=1

f(αxi) − 2α3f(
l

∑

i=1

xi)

−α3
l

∑

i=1

[f(xi + xl+1) + f(xi − xl+1)]
∣

∣

∣

∣

∣

∣

∣

∣

≤ φ(x1, · · · , xl, xl+1),

||f(2αx) + 8α3f(−x) − 9f(0)|| ≤ ψ(x)

for all α ∈ C(|α| = 1), all x, x1, · · · , xl, xl+1 ∈ E1 and for some δ ≥ 0. If f(tx)
is continuous in t ∈ R for each fixed x ∈ E1, then there exists a unique C-cubic
mapping T : E1 → E2 which satisfies the equation (1.4) and the inequality (3.13).

Similarly, we obtain the alternative results of Theorem 4.1 and Corollary 4.2 for
the approximately additive condition.
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[5] P. Gǎvruta, A generalization of the Hyers-Ulam-Rassias Stability of approxi-
mately additive mappings, J. Math. Anal. Appl. 184(1994), 431-436.

[6] D. H. Hyers, On the stability of the linear functional equation, Proc. Natl.
Acad. Sci. 27(1941), 222-224.

[7] D. H. Hyers, G. Isac and Th. M. Rassias, “Stability of Functional Equations
in Several Variables”, Birkhäuser, Basel, 1998.
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