Exceptional sets with a weight in a unit ball

Piotr Kot

Abstract

For a given number s > —1 and a multiindex o« € N we give a proof of
the following equality:

L s n !R2(5+\a|+n)
[ e (R a) as = T ~
I+I<r [0 (s +4)

As a result we receive different properties of the sets defined by the following
formula

E5(f) = {z € OB" : /|A<1 FOR)* (1- \A\2)8d£2 = oo}

for the holomorphic function f € O(B").

1 Preface
This paperdeals with the exceptional sets with a weight:
Xs B3z — x(2) = (1—[|=]*)".

We denote D = {A € C: |\ <1}. The exceptional set with a weight s for the
holomorphic function f € O(B") in this paper is denoted as

B (f) = {z € OB" : /D fPyed? = oo} |
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In the 80s Peter Pflug [7] posed the question whether there exists a domain Q C C",
a complex subspace M of C" and a holomorphic, square integrable function f in 2
such that f |ynqo is not square integrable.

A similar question was posed by Jacques Chaumat [1] in the late 80s; whether
there exists a holomorphic function f in a ball B™ such that for any linear, complex
subspace M in C" a holomorphic function f |yp- is not square integrable.

The questions mentioned above inspired further investigation among the authors
[2, 3, 4, 5, 6]. These authors consider holomorphic functions which are not square
integrable along complex lines with a point 0. Due to [2, 3] we know that for a
convex domain €2 with a boundary of a class C! it is possible to create a holomorphic
function f, which is not square integrable along any real manifold M of a class C*
crossing transversally a boundary €.

Let E be any circular subset of the type Gs of dB™. In the papers [5, 6] we
presented a construction of the holomorphic function f € O(B") for which £ =

E°(f). Additionally in the paper [6] we proved that a function f can be selected so
that fguacm) [fI7dL*" < 00, where A(E) = {\z: [\ =1,z € E}.

In this paper we deal mainly with the exceptional sets with a non-trivial weight.
The following theorem is of key importance for this paper:

Theorem 2.2. Fork € N, a number s > —1, a number R > 0 and for a multiindex
a = (aq, ..., ag) we have the following equality

%o R? (s+]al+k)

Hla\-i-k( +4) )

/ 2%2% (RQ— ||z||2>sdz:
o1 24+ |z 2< R

Let us define the functional:

OB")>f= ) pm—
mze%\I mze:N\/qun)

where p,,, denote homogeneous polynomial of the degree m.

Observe that §1 = §s 0 5. We use this property to describe the functional §:
Theorem 2.4. Define s > —1. The operator §s is properly defined and has the
following properties:

€ 0(),

1. 5.,(0(B")) = OB"),

2. there exist the constants ¢, ¢y > 0 such that:

o [ B(fPagh, < [ 1fPxash.
< o[ [8.(/Pdgh,

for f € O(B"), z € 9B" and
C1 /}Bn ]gs(f”?dg% < /Bn ‘f‘zxsdi.‘?n < ¢y /}Bn ’&g(f)]QdQQ"

for f € O(B").
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Due to this Theorem it is possible to create the exceptional sets with a weight on
the basis of the exceptional sets without a weight:
Example 2.5. Let E be a circular set of the type Gs of the measure zero in OB™.
Define s > —1. Therefore there exists a holomorphic function f € QO(B"™) such that
E = E5(f) and [ga | f|*x:dL%" < o0.

Due to Theorems 2.2 and 2.4 we can prove some estimations connected with the
exceptional sets with a weight:
Theorem 2.7. If s > —1, the function f € Q(B") is such that: [ga | f|*xsdL*" < oo,
then EST=1(f) = 0.

2 Exceptional sets with the weights in a unit ball

Lemma 2.1. Let us define R > 0. We have the following equality
R | ps+m+1
/ (R tyde = T
0 [T (s + 1)
for s > —1 and m € N. Additionally
R
/ #™(R — t)%dt = 0o
0

for s < —1 and m € N.

Proof. First, we assume that s > —1. Let GT(R) = [ t™(R — t)*dt. Tt is casy to

s+11R .
observe that G2 = [—%}0 = }:'“ J:. Therefore we get the equality
m!RsTmFL
GI'(R) = —————= 2.1

for m = 0 and for any s > —1. We assume that we have (2.1) for a given m € N
and s > —1. We can calculate

GmHY(R) = /O Bt R
_ [_th(R — t)s+1r . /()R(m+ e ((R — t)s“> "

s+1 s+1
- m—l—le (R>_m+1 m!Retm T2
s+l TR s T (s + 1+ 9)
_ (m+ 1)IRsm
[T (s +1)

for a given m € N and for any s > —1. Therefore, using induction, we have the
equality (2.1) for every m € N and for any s > —1.
Let s < —1. Let € be such that max{0, R — 1} < R — ¢ < R. We can calculate

/ORtm(R—t)sdt > /R t"(R—t)'dt > (R—e)™ /R (R—1t)tdt

> (R—o" [~In(R— ), =,

which finishes the proof. |
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Theorem 2.2. Fork € N, a number s > —1, a number R > 0 and for a multiindex
a = (aq,...,ax) we have

ko) R2 (s+]al+k)

HIa\—I—k‘( ) )

/ 7 (R — |l2])%) " dz =
|21 2. |2 [2< B2

Proof. We define

GZSR:/ 27 (R — ||2)*) d=
’ ( ) |z1|24...+|zm |2 < R2 ( H H )

We prove the following equality
WmOé'R2 (s+|a|+m)

1™ (s +4)

(2.2)

If m =1, then a € N. Therefore, due to Lemma 2.1, we can calculate

s R
G}M(R) = /Z|2<R2 2929 (R2 — ]2\2) dz = 277/0 r2 et (R? — r?)%dr
Tl R? (s+|a|+1)

R2
= 7| t"R-t)dt="—r7—"!.
A ( ) 1 (s +4)

for R > 0 and s > —1. We assume that we have (2.2) for a given m € N, any
number R > 0, a number s > —1 and a multiindex o = (o, ..., a,,). We define a
multiindex 5 = (o, ..., &, Bmi1). We have the equality

G (R) = 2P (R —||2]*) de

/|21|2+-~~+|2m+1|2SR2

B /Z |2<R2 ‘Zm+1‘2ﬂm+1GZ];S ( R2 - ‘Zm+1‘2> dzm+l
m—+1

2 s+|a|+m
— o /R 2/5'm+1+17r a'(}iHm )( Hlelt )dT
0 Hz 1 (S + Z)

2 m—+1 2 s+|al+m
0 n"“*’"(s +1)
Using Lemma 2.1 we can calculate:
m+1 2
Gt (R) _ ol /R tﬂm+1(R2 _ t)(sHOéHm)dt
,S HlaH_m(S + Z)

m+1a!ﬁ 'R2 (s+|8]4+m+1)

H'ﬁ‘fm(s +1) Hﬁ“l(s + |a| + m + 1)
m+15|R2(s+|ﬁ\+m+1)

2™ (s +4)

Therefore, using induction we have (2.2) for any m € N, a number s > —1, a
number R > 0 and a multiindex o = (v, ..., ). ]
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We need the following estimations:

Lemma 2.3. Let s > —1. There exist the constants C,c > 0 such that

form > 1.

Proof. Let N € N be such that % < 1. Let M € N be such that N < M.
For |z| < 1 we have the following inequality x — % <In(1+2z) < . In particular,
we have |In(1+z) — 2| < % We can conclude the following estimation

M M M o 2
S S S s s
1 000) £B 00252
nigv i L z:ZN L5 z:ZN S 5 i/ T 2
Similarly
M M-1 1 M-1 1 M—-1 1
W)
N i=N v i=N "
M-1 0o
1 1 1
[ ey
= ) ) = 2:?

We can now estimate:

JJ Y (1 + §‘) M s M
n—————~2% = |ln (1—1—,)—3111‘
) LA
M s Mg M M
< IL( D)= R d ey - X
BESES LI
N =1 212 =1 2
Therefore

for

and for any M > N. There exists C' > 0 such that

1 m!m?® m!m?® ~
=< = <C

Cmomre, (1+3) MG+ s)

for m € N, which finishes the proof. |
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Theorem 2.4. We define s > —1. The operator §s is properly defined and has the
following properties:

1. F,(O(B")) = O(B"),
2. there exists the constants ¢y, co > 0 such that:
2502 2 2
o [ B.(fPdh < [ 1fPds.
N AGIRN

IN

for f € O(B"), z € OB" and

o [ B(Pag < [ 1P < e [ (5 Pag

for f € O(B").

Proof. Observe that due to Lemma 2.3 there exist the constants ¢y, ¢y > 0 such that

(m+n)l(m+n)?

<

VAR B
and

. (m+ 1)l(m +n)* .

TN T
for m € N. )
Aslim,, . (m®)™ = 1, therefore the operator § is properly defined and §(O(B")) =

Oo(B").

Let us take any function

f2) = 3 baz® € OB).

aeN”

Observe that ) o
B =Y ——=

aeNn /(la] +n)?

and due to Theorem 2.2

ba|? 7!
s 2d£2n — | o )
J. 1805 2 Tal+ )l +

Using Theorem 2.2 we can again calculate

|ba | 7!
|f|2Xsd£2n = E : aln
/B” & T (s + 1)

_ ¥ dy |ba|? 7!
o (laf +n)!(|a] +n)*’
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where

Therefore
o [ BDPdg < [ 7™ <o [0

There exists a sequence of homogeneous polynomials p,, of a degree m such that
f(2) = > henPm(2). Observe that due to Lemma 2.1 for s > —1 we have:

[ lnPxedgt, = [ (PN (0)A ()
Dz [A<1

= () [ (1 - v

[pm (2) P!
I (s +14)
Therefore oz )|2 |
o 2qg? = Pm\2)| TV
/]D)z [8+(f)["d L. sz:N(m—l—l) l(m + n)s
and
|
2 sd£2 _ ’pm 2rm!
/]D)Z|f|X Dz %Hﬁ“s%—@)

Km,s|pm (2 )|27Tm‘
mZGN (m+ 1)l(m +n)s

for z € OB", where
(m+ 1)l(m +n)*

[T (s 4 2)

1 < km,s = > Co.

In particular:

o [ B(fPagh. < [ 1fPxash,
[ 18.(1)Pagh,

IA

for z € OB"™, which finishes the proof. (]

Example 2.5. Let E be a circular set of the type Gs of the measure zero in JB".
We define s > —1. There exists therefore a holomorphic function f € Q(B™) such
that £ = E*(f) and [ga | f]*x.d€*" < oo.

Proof. On the basis of the paper [6] there exists a holomorphic function g such that
E = E°%¢g) and [gu\ x(p) |g)* d€?* < co. On the basis of Theorem 2.4 there exists a
holomorphic function f € O(B") such that g = §(f). Therefore, due to Theorem
2.4 function f has the required properties. |
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The following question can be posed: is it possible that a holomorphic function
f € O(B") is square integrable with a given weight x, and E*(f) # 0 for ¢t > —1.
The answer to this question is negative.

Lemma 2.6. There exists a constant C' > 0 such that

sup [ |pufPxo-1d€h, < C [ |pufide® (23)
z€OBn JDz B

for any natural number m and for any homogeneous polynomial p,, of a degree m.

Proof. Let e; = (1,0,...0) € 0B™. By (,, we denote a multiindex such that 3,, =
(m,0,...,0) € N* for m € N.
We prove that there exists a constant C' > 0 such that:

/ P (Aen) Xt (Aer)dL2(A) < C / [P |2dL2" (2.4)
[Al<1 B~

for any natural number m and for any homogeneous polynomial p,, of a degree m.
There exists a constant ¢; > 0 such that:

nlmlm™
— <
(m+n)! — “

and a constant ¢y such that:

for m € N. Let

pm(2) = D b2

|al=m

be a homogeneous polynomial of a degree m. Let us estimate using Theorem 2.2
(for s=n—1, k= 1) that:

c1mlbg, |*m! S |bg,, |*m!
mlm» = It n —1419)

= [ e P Qede (),

Therefore, again due to Theorem 2.2 (for s = 0, k = n), we can estimate

by 2!
m2d£2n —_ i | o
/Bn [Dm| |a|zzm(m+”)’

v

3 Com™ by |2a!

mlmn
la]=m ’

com"|bg,, |*m!

A%

mlmn

n—1
//\|<1 |Pm(/\€1)‘2an1()\€1>d£2()\)-

CoTr

vV

&1
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Constant C' can be defined as C' =
(2.4).

We show that such a constant C' is appropriate. Therefore, let us select any
point z € OB". There exists linear isometry (a geometric turn around a point 0)
© : C" — C" such that ©(e;) = z. Let us take any homogeneous polynomial p,, of
a degree m. Let us observe that

cL which finishes the proof of the inequality

coT

[ pmooPag® = [ |p, g™
B B
Moreover

/|A<1 ]pm(kz)|2xn,1(>\z)d£2()\) - / |pm © @()\61)’2Xn—1()\61)d£2()\).

[Al<1

In particular when using (2.4) for a homogeneous polynomial p,, o © of a degree m
we get:

2 2 < 2 2n
L PO xaa(A2)a8 ) < € [ o Pag,

which finishes the proof. ]

Theorem 2.7. If s > —1, the function f € Q(B") is such that: [ga | f|*xsdL*" < oo,
then EST=1(f) = 0.

Proof. Assume that [g. |f|*xsdL*" < oo for a holomorphic function f € Q(B").
Observe that due to Theorem 2.4 there is also the inequality [g. [§s(f)]|?dL*" < oo
for the function §4(f). There exists a sequence of homogeneous polynomials p,, of
a degree m such that

Fs(N)(2) = 3 pm(2)-

meN

On the basis of Lemma 2.6, there exists a constant C' > 0 such that

2 2n 2 2n
¢ [ B(nPde = ¢ [ |paitac

> Z /ID) |pm|2Xn—1d£]%)z
meN 7%

= [ BPIPxarde..

Therefore E" 1 (Fs(f)) = 0. As Fsin_1 = Fn_10°3s, on the basis of Theorem 2.4, we
have

ESN(f) = B@ornaa(f) = E@ua (o(f) = E"'@(6)) = 0,

which finishes the proof. [

It appears that Theorem 2.7 cannot be strengthened.



52 P. Kot

Example 2.8. Let ¢; = (1,0,...0) € OB". If

f Ry eeey & i

S~ Inm

q

then [g. |f|?dL* < oo and E"'7¢(f) = Se;, where ¢ is any number such that
0<e<n.

Proof. Let us select € such that 0 < ¢ < n. There exists a constant ¢ > 0 such that

mn

— < C
i1 (m +1)

for m € N. Due to Theorem 2.2, we can calculate:

> m"r"ml S m"7"m)
agr = <
/]Bn 7 mz:Q (lnm)z(m+n)‘ - 2_22 m(lnm)Q(ern)!
< <
- mz; (lnm 2m - tlnt ln2 >

Let e; = (1,0,...0) € 0B™. On the basis of Lemma 2.3, there exist the constants
q1,q2 > 0 such that

qa qm! m! qam! _ @
mr—e  mlmre T [ n—1—e+4) — mlmre mnoe’

There also exists a constant p > 0 such that
t© > p(Int)?

for t > 2. Therefore, due to Theorem 2.2, we can estimate:

[e's) )\‘2771(1 _ ‘)\' )n l—e
SN 1, / | dg2(A
/Del P xn-s Per mz,; N<t  mTF(lnm)? ()
B i m" Lrm!
= (Inm)? ]_[mH( 1 —e+1)

IV
Msz
s
3
>l
|
(]
ik

= (Inm) (Inm)2mn—= o (Inm)2mi-s
S o0 dt
T
= o t1=¢(Int)?
% dt
e [
3t

It follows that Ae; € E"'7¢(f), when |\| = 1.
However, if z € OB™ and z ¢ Sey, then |z;| < 1, which results in

[e's) |2m n— 1’7Tm!

2 e 7€d£2 < |’Z1
/Dz|f‘X 1 Dz = Z lnmzl_[mﬂ(n 1—e+1)

m*2

[e.9]

|Z1|2m<]27T
Z lnm 2m1 5 < 0,

IN

m*2
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because
. 1aPmeer 2
AN G = Al <1
Therefore z ¢ E"17¢(f), which finishes the proof. n
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