
Exceptional sets with a weight in a unit ball
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Abstract

For a given number s > −1 and a multiindex α ∈ Nn we give a proof of
the following equality:∫

‖z‖<R
zαzα

(
R2 − ‖z‖2

)s
dz =

πnα!R2(s+|α|+n)∏|α|+n
i=1 (s + i)

.

As a result we receive different properties of the sets defined by the following
formula

Es(f) =

{
z ∈ ∂Bn :

∫
|λ|<1

|f(λz)|2
(
1− |λ|2

)s
dL2 = ∞

}

for the holomorphic function f ∈ O(Bn).

1 Preface

This paperdeals with the exceptional sets with a weight:

χs : Bn 3 z −→ χs(z) = (1− ‖z‖2)s.

We denote D = {λ ∈ C : |λ| < 1}. The exceptional set with a weight s for the
holomorphic function f ∈ O(Bn) in this paper is denoted as

Es(f) =
{
z ∈ ∂Bn :

∫
Dz
|f |2χsdL2 = ∞

}
.
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In the 80s Peter Pflug [7] posed the question whether there exists a domain Ω ⊂ Cn,
a complex subspace M of Cn and a holomorphic, square integrable function f in Ω
such that f |M∩Ω is not square integrable.

A similar question was posed by Jacques Chaumat [1] in the late 80s; whether
there exists a holomorphic function f in a ball Bn such that for any linear, complex
subspace M in Cn a holomorphic function f |M∩Bn is not square integrable.

The questions mentioned above inspired further investigation among the authors
[2, 3, 4, 5, 6]. These authors consider holomorphic functions which are not square
integrable along complex lines with a point 0. Due to [2, 3] we know that for a
convex domain Ω with a boundary of a class C1 it is possible to create a holomorphic
function f , which is not square integrable along any real manifold M of a class C1

crossing transversally a boundary Ω.
Let E be any circular subset of the type Gδ of ∂Bn. In the papers [5, 6] we

presented a construction of the holomorphic function f ∈ O(Bn) for which E =
E0(f). Additionally in the paper [6] we proved that a function f can be selected so
that

∫
Bn\Λ(E) |f |2dL2n < ∞, where Λ(E) = {λz : |λ| = 1, z ∈ E}.

In this paper we deal mainly with the exceptional sets with a non-trivial weight.
The following theorem is of key importance for this paper:
Theorem 2.2. For k ∈ N+, a number s > −1, a number R > 0 and for a multiindex
α = (α1, ..., αk) we have the following equality

∫
|z1|2+...+|zk|2<R2

zαzα
(
R2 − ‖z‖2

)s
dz =

πkα!R2(s+|α|+k)∏|α|+k
i=1 (s + i)

.

Let us define the functional:

Fs : O(Bn) 3 f =
∑
m∈N

pm →
∑
m∈N

pm√
(m + n)s

∈ O(Ω),

where pm denote homogeneous polynomial of the degree m.
Observe that Fs+t = Fs ◦ Ft. We use this property to describe the functional F:
Theorem 2.4. Define s > −1. The operator Fs is properly defined and has the
following properties:

1. Fs(O(Bn)) = O(Bn),

2. there exist the constants c1, c2 > 0 such that:

c1

∫
Dz
|Fs(f)|2dL2

Dz ≤
∫

Dz
|f |2χsdL2

Dz

≤ c2

∫
Dz
|Fs(f)|2dL2

Dz

for f ∈ O(Bn), z ∈ ∂Bn and

c1

∫
Bn
|Fs(f)|2dL2n ≤

∫
Bn
|f |2χsdL2n ≤ c2

∫
Bn
|Fs(f)|2dL2n

for f ∈ O(Bn).
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Due to this Theorem it is possible to create the exceptional sets with a weight on
the basis of the exceptional sets without a weight:
Example 2.5. Let E be a circular set of the type Gδ of the measure zero in ∂Bn.
Define s > −1. Therefore there exists a holomorphic function f ∈ O(Bn) such that
E = Es(f) and

∫
Bn |f |2χsdL2n < ∞.

Due to Theorems 2.2 and 2.4 we can prove some estimations connected with the
exceptional sets with a weight:
Theorem 2.7. If s > −1, the function f ∈ O(Bn) is such that:

∫
Bn |f |2χsdL2n < ∞,

then Es+n−1(f) = ∅.

2 Exceptional sets with the weights in a unit ball

Lemma 2.1. Let us define R > 0. We have the following equality∫ R

0
tm(R− t)sdt =

m!Rs+m+1∏m+1
i=1 (s + i)

for s > −1 and m ∈ N. Additionally∫ R

0
tm(R− t)sdt = ∞

for s ≤ −1 and m ∈ N.

Proof. First, we assume that s > −1. Let Gm
s (R) =

∫ R
0 tm(R − t)sdt. It is easy to

observe that G0
s =

[
− (R−t)s+1

s+1

]R
0

= Rs+1

s+1
. Therefore we get the equality

Gm
s (R) =

m!Rs+m+1∏m+1
i=1 (s + i)

(2.1)

for m = 0 and for any s > −1. We assume that we have (2.1) for a given m ∈ N
and s > −1. We can calculate

Gm+1
s (R) =

∫ R

0
tm+1(R− t)sdt

=

[
−tm+1(R− t)s+1

s + 1

]R

0

+
∫ R

0
(m + 1)tm

(
(R− t)s+1

s + 1

)
dt

=
m + 1

s + 1
Gm

s+1(R) =
m + 1

s + 1

m!Rs+m+2∏m+1
i=1 (s + 1 + i)

=
(m + 1)!Rs+m+2∏m+2

i=1 (s + i)

for a given m ∈ N and for any s > −1. Therefore, using induction, we have the
equality (2.1) for every m ∈ N and for any s > −1.

Let s ≤ −1. Let ε be such that max{0, R− 1} < R− ε < R. We can calculate∫ R

0
tm(R− t)sdt ≥

∫ R

R−ε
tm(R− t)−1dt ≥ (R− ε)m

∫ R

R−ε
(R− t)−1dt

≥ (R− ε)m [− ln(R− t)]RR−ε = ∞,

which finishes the proof. �
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Theorem 2.2. For k ∈ N+, a number s > −1, a number R > 0 and for a multiindex
α = (α1, ..., αk) we have

∫
|z1|2+...+|zk|2<R2

zαzα
(
R2 − ‖z‖2

)s
dz =

πkα!R2(s+|α|+k)∏|α|+k
i=1 (s + i)

.

Proof. We define

Gm
α,s(R) =

∫
|z1|2+...+|zm|2≤R2

zαzα
(
R2 − ‖z‖2

)s
dz.

We prove the following equality

Gm
α,s(R) =

πmα!R2(s+|α|+m)∏|α|+m
i=1 (s + i)

. (2.2)

If m = 1, then α ∈ N. Therefore, due to Lemma 2.1, we can calculate

G1
α,s(R) =

∫
|z|2≤R2

zαzα
(
R2 − |z|2

)s
dz = 2π

∫ R

0
r2α+1(R2 − r2)sdr

= π
∫ R2

0
tα(R2 − t)sdt =

πα!R2(s+|α|+1)∏|α|+1
i=1 (s + i)

.

for R > 0 and s > −1. We assume that we have (2.2) for a given m ∈ N+, any
number R > 0, a number s > −1 and a multiindex α = (α1, ..., αm). We define a
multiindex β = (α1, ..., αm, βm+1). We have the equality

Gm+1
β,s (R) =

∫
|z1|2+...+|zm+1|2≤R2

zβzβ
(
R2 − ‖z‖2

)s
dz

=
∫
|zm+1|2≤R2

|zm+1|2βm+1Gm
α,s

(√
R2 − |zm+1|2

)
dzm+1

= 2π
∫ R

0
r2βm+1+1πmα!(R2 − r2)(s+|α|+m)∏|α|+m

i=1 (s + i)
dr

=
∫ R2

0
tβm+1

πm+1α!(R2 − t)(s+|α|+m)∏|α|+m
i=1 (s + i)

dt.

Using Lemma 2.1 we can calculate:

Gm+1
β,s (R) =

πm+1α!∏|α|+m
i=1 (s + i)

∫ R2

0
tβm+1(R2 − t)(s+|α|+m)dt

=
πm+1α!βm+1!R

2(s+|β|+m+1)∏|α|+m
i=1 (s + i)

∏βm+1
i=1 (s + |α|+ m + i)

=
πm+1β!R2(s+|β|+m+1)∏|β|+m+1

i=1 (s + i)
.

Therefore, using induction we have (2.2) for any m ∈ N+, a number s > −1, a
number R > 0 and a multiindex α = (α1, ..., αm). �
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We need the following estimations:

Lemma 2.3. Let s > −1. There exist the constants C, c > 0 such that

c ≤ m!ms∏m
i=1 (i + s)

≤ C

for m ≥ 1.

Proof. Let N ∈ N be such that |s|
N

< 1. Let M ∈ N be such that N < M .

For |x| < 1 we have the following inequality x− x2

2
≤ ln(1+x) ≤ x. In particular,

we have | ln(1 + x)− x| ≤ x2

2
. We can conclude the following estimation

∣∣∣∣∣ln
M∏

i=N

(
1 +

s

i

)
−

M∑
i=N

s

i

∣∣∣∣∣ =
∣∣∣∣∣

M∑
i=N

(
ln
(
1 +

s

i

)
− s

i

)∣∣∣∣∣ ≤
∞∑
i=1

s2

2i2
.

Similarly ∣∣∣∣∣ln M

N
−

M−1∑
i=N

1

i

∣∣∣∣∣ =

∣∣∣∣∣ln
M−1∏
i=N

(
1 +

1

i

)
−

M−1∑
i=N

1

i

∣∣∣∣∣
=

∣∣∣∣∣
M−1∑
i=N

(
ln
(
1 +

1

i

)
− 1

i

)∣∣∣∣∣ ≤
∞∑
i=1

1

2i2
.

We can now estimate:∣∣∣∣∣∣ln
∏M

i=N

(
1 + s

i

)
(

M
N

)s

∣∣∣∣∣∣ =

∣∣∣∣∣ln
M∏

i=N

(
1 +

s

i

)
− s ln

M

N

∣∣∣∣∣
≤

∣∣∣∣∣ln
M∏

i=N

(
1 +

s

i

)
−

M∑
i=N

s

i

∣∣∣∣∣+ |s|
∣∣∣∣∣ln M

N
−

M∑
i=N

1

i

∣∣∣∣∣
≤

∞∑
i=1

s2

2i2
+

∞∑
i=1

|s|
2i2

+ 1.

Therefore

1

C
≤
∏M

i=N

(
1 + s

i

)
(

M
N

)s ≤ C

for

C = exp

( ∞∑
i=1

s2

2i2
+

∞∑
i=1

|s|
2i2

+ 1

)

and for any M > N . There exists C̃ > 0 such that

1

C̃
≤ m!ms

m!
∏m

i=1

(
1 + s

i

) =
m!ms∏m

i=1 (i + s)
≤ C̃

for m ∈ N, which finishes the proof. �
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Theorem 2.4. We define s > −1. The operator Fs is properly defined and has the
following properties:

1. Fs(O(Bn)) = O(Bn),

2. there exists the constants c1, c2 > 0 such that:

c1

∫
Dz
|Fs(f)|2dL2

Dz ≤
∫

Dz
|f |2χsdL2

Dz

≤ c2

∫
Dz
|Fs(f)|2dL2

Dz

for f ∈ O(Bn), z ∈ ∂Bn and

c1

∫
Bn
|Fs(f)|2dL2n ≤

∫
Bn
|f |2χsdL2n ≤ c2

∫
Bn
|Fs(f)|2dL2n

for f ∈ O(Bn).

Proof. Observe that due to Lemma 2.3 there exist the constants c1, c2 > 0 such that

c1 ≤
(m + n)!(m + n)s∏m+n

i=1 (s + i)
≤ c2

and

c1 ≤
(m + 1)!(m + n)s∏m+1

i=1 (s + i)
≤ c2

for m ∈ N.
As limm→∞ (ms)

1
m = 1, therefore the operator Fs is properly defined and Fs(O(Bn)) =

O(Bn).
Let us take any function

f(z) =
∑

α∈Nn

bαzα ∈ O(Bn).

Observe that

Fs(f)(z) =
∑

α∈Nn

bαzα√
(|α|+ n)s

and due to Theorem 2.2

∫
Bn
|Fs(f)|2dL2n =

∑
α∈Nn

|bα|2 πnα!

(|α|+ n)!(|α|+ n)s
.

Using Theorem 2.2 we can again calculate

∫
Bn
|f |2χsdL2n =

∑
α

|bα|2 πnα!∏|α|+n
i=1 (s + i)

=
∑
α

dα |bα|2 πnα!

(|α|+ n)!(|α|+ n)s
,
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where

c1 ≤ dα =
(|α|+ n)!(|α|+ n)s∏|α|+n

i=1 (s + i)
≤ c2.

Therefore

c1

∫
Bn
|Fs(f)|2dL2n ≤

∫
Bn
|f |2χsdL2n ≤ c2

∫
Bn
|Fs(f)|2dL2n.

There exists a sequence of homogeneous polynomials pm of a degree m such that
f(z) =

∑
m∈N pm(z). Observe that due to Lemma 2.1 for s > −1 we have:∫

Dz
|pm|2χsdL2

Dz =
∫
|λ|<1

|pm(z)|2|λ|2mχs(λz)dL2(λ)

= |pm(z)|2π
∫ 1

0
tm(1− t)sdt

=
|pm(z)|2πm!∏m+1

i=1 (s + i)
.

Therefore ∫
Dz
|Fs(f)|2dL2

Dz =
∑
m∈N

|pm(z)|2πm!

(m + 1)!(m + n)s

and ∫
Dz
|f |2χsdL2

Dz =
∑
m∈N

|pm(z)|2πm!∏m+1
i=1 (s + i)

=
∑
m∈N

km,s|pm(z)|2πm!

(m + 1)!(m + n)s

for z ∈ ∂Bn, where

c1 ≤ km,s =
(m + 1)!(m + n)s∏m+1

i=1 (s + i)
≤ c2.

In particular:

c1

∫
Dz
|Fs(f)|2dL2

Dz ≤
∫

Dz
|f |2χsdL2

Dz

≤ c2

∫
Dz
|Fs(f)|2dL2

Dz

for z ∈ ∂Bn, which finishes the proof. �

Example 2.5. Let E be a circular set of the type Gδ of the measure zero in ∂Bn.
We define s > −1. There exists therefore a holomorphic function f ∈ O(Bn) such
that E = Es(f) and

∫
Bn |f |2χsdL2n < ∞.

Proof. On the basis of the paper [6] there exists a holomorphic function g such that
E = E0(g) and

∫
Bn\Λ(E) |g|

2 dL2n < ∞. On the basis of Theorem 2.4 there exists a
holomorphic function f ∈ O(Bn) such that g = Fs(f). Therefore, due to Theorem
2.4 function f has the required properties. �
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The following question can be posed: is it possible that a holomorphic function
f ∈ O(Bn) is square integrable with a given weight χs and Et(f) 6= ∅ for t > −1.
The answer to this question is negative.

Lemma 2.6. There exists a constant C > 0 such that

sup
z∈∂Bn

∫
Dz
|pm|2χn−1dL2

Dz ≤ C
∫

Bn
|pm|2dL2n (2.3)

for any natural number m and for any homogeneous polynomial pm of a degree m.

Proof. Let e1 = (1, 0, ...0) ∈ ∂Bn. By βm we denote a multiindex such that βm =
(m, 0, ..., 0) ∈ Nn for m ∈ N.

We prove that there exists a constant C > 0 such that:∫
|λ|<1

|pm(λe1)|2χn−1(λe1)dL2(λ) ≤ C
∫

Bn
|pm|2dL2n (2.4)

for any natural number m and for any homogeneous polynomial pm of a degree m.
There exists a constant c1 > 0 such that:

n!m!mn

(m + n)!
≤ c1

and a constant c2 such that:

c2 ≤
m!mn

(m + n)!

for m ∈ N. Let

pm(z) =
∑
|α|=m

bαzα

be a homogeneous polynomial of a degree m. Let us estimate using Theorem 2.2
(for s = n− 1, k = 1) that:

c1π|bβm|2m!

m!mn
≥ π|bβm|2m!∏m+1

i=1 (n− 1 + i)

=
∫
|λ|<1

|pm(λe1)|2χn−1(λe1)dL2(λ).

Therefore, again due to Theorem 2.2 (for s = 0, k = n), we can estimate

∫
Bn
|pm|2dL2n =

∑
|α|=m

πn|bα|2α!

(m + n)!

≥
∑
|α|=m

c2π
n|bα|2α!

m!mn

≥ c2π
n|bβm|2m!

m!mn

≥ c2π
n−1

c1

∫
|λ|<1

|pm(λe1)|2χn−1(λe1)dL2(λ).
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Constant C can be defined as C = c1
c2πn−1 , which finishes the proof of the inequality

(2.4).

We show that such a constant C is appropriate. Therefore, let us select any
point z ∈ ∂Bn. There exists linear isometry (a geometric turn around a point 0)
Θ : Cn → Cn such that Θ(e1) = z. Let us take any homogeneous polynomial pm of
a degree m. Let us observe that∫

Bn
|pm ◦Θ|2dL2n =

∫
Bn
|pm|2dL2n.

Moreover∫
|λ|<1

|pm(λz)|2χn−1(λz)dL2(λ) =
∫
|λ|<1

|pm ◦Θ(λe1)|2χn−1(λe1)dL2(λ).

In particular when using (2.4) for a homogeneous polynomial pm ◦Θ of a degree m
we get: ∫

|λ|<1
|pm(λz)|2χn−1(λz)dL2(λ) ≤ C

∫
Bn
|pm|2dL2n,

which finishes the proof. �

Theorem 2.7. If s > −1, the function f ∈ O(Bn) is such that:
∫
Bn |f |2χsdL2n < ∞,

then Es+n−1(f) = ∅.

Proof. Assume that
∫
Bn |f |2χsdL2n < ∞ for a holomorphic function f ∈ O(Bn).

Observe that due to Theorem 2.4 there is also the inequality
∫
Bn |Fs(f)|2dL2n < ∞

for the function Fs(f). There exists a sequence of homogeneous polynomials pm of
a degree m such that

Fs(f)(z) =
∑
m∈N

pm(z).

On the basis of Lemma 2.6, there exists a constant C > 0 such that

C
∫

Bn
|Fs(f)|2dL2n = C

∫
Bn
|pm|2dL2n

≥
∑
m∈N

∫
Dz
|pm|2χn−1dL2

Dz

=
∫

Dz
|Fs(f)|2χn−1dL2

Dz.

Therefore En−1(Fs(f)) = ∅. As Fs+n−1 = Fn−1 ◦Fs, on the basis of Theorem 2.4, we
have

Es+n−1(f) = E(Fs+n−1(f)) = E(Fn−1(Fs(f))) = En−1(Fs(f)) = ∅,

which finishes the proof. �

It appears that Theorem 2.7 cannot be strengthened.
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Example 2.8. Let e1 = (1, 0, ...0) ∈ ∂Bn. If

f(z1, ..., zn) =
∞∑

m=2

√
mn−1

ln m
zm
1 ,

then
∫
Bn |f |2dL2n < ∞ and En−1−ε(f) = Se1, where ε is any number such that

0 < ε < n.

Proof. Let us select ε such that 0 < ε < n. There exists a constant c > 0 such that

mn∏n
i=1(m + i)

< c

for m ∈ N. Due to Theorem 2.2, we can calculate:∫
Bn
|f |2dL2n =

∞∑
m=2

mn−1πnm!

(ln m)2(m + n)!
≤

∞∑
m=2

mnπnm!

m(ln m)2(m + n)!

≤
∞∑

m=2

cπn

(ln m)2m
≤ cπn

∫ ∞

2

dt

t(ln t)2
=

cπn

ln 2
< ∞.

Let e1 = (1, 0, ...0) ∈ ∂Bn. On the basis of Lemma 2.3, there exist the constants
q1, q2 > 0 such that

q1

mn−ε
=

q1m!

m!mn−ε
≤ m!∏m+1

i=1 (n− 1− ε + i)
≤ q2m!

m!mn−ε
=

q2

mn−ε
.

There also exists a constant p > 0 such that

tε ≥ p(ln t)2

for t ≥ 2. Therefore, due to Theorem 2.2, we can estimate:∫
De1

|f |2χn−1−εdL2
De1

=
∞∑

m=2

∫
|λ|<1

|λ|2m(1− |λ|2)n−1−ε

m−n+1(ln m)2
dL2(λ)

=
∞∑

m=2

mn−1πm!

(ln m)2
∏m+1

i=1 (n− 1− ε + i)

≥
∞∑

m=2

q1m
n−1π

(ln m)2mn−ε
=

∞∑
m=2

q1π

(ln m)2m1−ε

≥ q1π
∫ ∞

3

dt

t1−ε(ln t)2

≥ q1pπ
∫ ∞

3

dt

t
= ∞.

It follows that λe1 ⊂ En−1−ε(f), when |λ| = 1.
However, if z ∈ ∂Bn and z /∈ Se1, then |z1| < 1, which results in∫

Dz
|f |2χn−1−εdL2

Dz ≤
∞∑

m=2

|z1|2mmn−1πm!

(ln m)2
∏m+1

i=1 (n− 1− ε + i)

≤
∞∑

m=2

|z1|2mq2π

(ln m)2m1−ε
< ∞,
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because

lim
m→∞

m

√√√√ |z1|2mq2π

(ln m)2m1−ε
= |z1|2 < 1.

Therefore z /∈ En−1−ε(f), which finishes the proof. �
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