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Abstract

We study two nonlinear degenerate eigenvalue problems on R
N . For the

first problem we prove the existence of a positive eigenvalue while for the
second we show the existence of a continuous family of eigenvalues. Our
approach is based on standard tools in the critical point theory combined
with adequate variational methods. We also apply an idea developed recently
by Szulkin and Willem.

1 Introduction

In this paper we shall deal with the nonlinear eigenvalue problem

−div(A(x)∇u) = λf(x, u), x ∈ R
N . (1)

We work under general conditions N ≥ 3, and A : R
N → R is a function which

vanishes in at least one point on R
N . Thus equation (1) becomes a degenerate

elliptic equation.
The presence of the singular potential A(x) in the divergence operator represents

the main point of interest in our investigation. At our best knowledge, the study
of degenerate elliptic equations began around the 1800’s with Legendre’s famous
equation

−
d

dx

{

(1 − x2)
df

dx

}

= λf, x ∈ [−1, 1]. (2)
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For more information and connections on equation (2) the reader may consult
Kevorkian [15] (p. 124-125) or Davies [11] (Example 1.2.4, p. 10). Between 1953 and
1954 the study of degenerate elliptic equations was carried on by Mikhlin’s work [16],
[17] who also pointed out the relevance of these problems in Mathematical Physics.
This study continued in the 70’s with a careful analysis of several linear degenerate
elliptic problems (see, e.g., Murthy-Stampacchia [19] and Trudinger [23]). We also
refer to more recent papers by Baouendi-Goulaouic [3], Edmunds-Peletier [13], Pas-
saseo [18], Stredulinsky [22] for the treatment of some nonlinear classes of degenerate
elliptic problems. In the non-singular case when A(x) is a function that does not
vanish on R

N we can mention several studies devoted to the investigation of related
problems. P. Drábek, for instance, proved in [12] that the problem







−div(a(x)∇u) = λf(x, u), x ∈ R
N , λ > 0

u > 0, x ∈ R
N , lim

|x|→∞
u = 0

has a solution in the weak sense assuming that a ∈ L∞(RN) is a positive function
and f is a Caratheodory function having sub-critical growth. The above formulation
of the problem is not quite exact the result being proved in a more general case which
involves the operator −div(a(x)|∇u|p−2∇u) with 1 < p < N .

There are more extensive results recorded in the particular case f(x, u) = g(x)u.
We start by celebrating the result given by Brown-Cosner-Fleckinger [5] on a problem
of the type

−∆u = λg(x)u, x ∈ R
N . (3)

They showed that (3) has a principal eigenvalue λ1 if g is sufficiently smooth and
satisfies an appropriate condition at infinity. In the case g is bounded and g+ ∈
LN/2(RN) Allegretto proved in [2] the existence of infinitely many eigenvalues such
that 0 < λ1 ≤ λ2 ≤ ... ≤ λn ≤ ... and λn → ∞ as n→ ∞. Recently, A. Szulkin and
M. Willem in [21] improved the above results on equations (3) showing the existence
of a sequence of eigenvalues λn → ∞ when g satisfies the assumption

g ∈ L1
loc(R

N), g+ = g1 + g2 6= 0, g1 ∈ LN/2(RN), lim
x→y

|x − y|2g2(x) = 0, ∀y ∈ R
N ,

lim
|x|→∞

|x|2g2(x) = 0.

The result of Szulkin-Willem is even more general, the existence of eigenvalues being
proved for a general open set Ω ⊂ R

N .

Finally, we refer to Jin [14] who proved under the hypotheses that g is a locally
Hölder continuous function on R

N , the existence of a continuous family of eigenvalues
for (3) when g is dominated by a non-negative function g1 having the property that
the problem

−∆u = µg1(x)u, x ∈ R
N

has a principal eigenvalue µ > 0.

In this paper we study two different eigenvalue problems. We are concerned only
with the weak solutions for problems of type (1). Each time will be specified the
space in which we are seeking solutions. The respective spaces will be weighted
Sobolev spaces defined as the closure of C∞

0 (RN) under different norms.
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First, we consider the equation

−div(a(x)∇u) = λ
(

f(x, u) + θ(x)|u|γ−1u ·
∫

RN
(2F (x, u) − f(x, u)u) dx

)

, x ∈ R
N .

(4)
We denote by 2⋆ the critical Sobolev exponent, i.e. 2⋆ = 2N/(N − 2) and let
p ∈ (2, 2⋆) be fixed. Suppose that the functions a(x), f(x, t) and θ(x) satisfy the
hypotheses:

(A) a ∈ C(RN), a(x) ≥ 0 a.e. x ∈ R
N and there exists q > Np/(2N + 2p − Np)

such that 1/a ∈ Lq(RN);

(F1) f : R
N × R → R+ is a Carathéodory function, i.e. f is measurable and for

x ∈ R
N , the function t→ f(x, t) is continuous on R;

(F2) There exists an open set Ω ⊂ R
N (Ω 6= ∅) and there exist two constants

0 ≤ δ1 < δ2 ≤ ∞ such that f(x, t) > 0 on Ω × (δ1, δ2);

(F3) There exists a non-negative function θ = θ(x) such that

0 ≤ f(x, t) ≤ θ(x)|t|γ , ∀x ∈ R
N , ∀t ∈ R

where 0 < γ < 1 and θ ∈ Lm(RN ) with m = β⋆/(β⋆ − (γ + 1)). We denoted by
β and β⋆ the real numbers β = 2q/(q + 1) and β⋆ = Nβ/(N − β) with q given by
condition (A).

Condition (A) is inspired by condition (A1) in Ĉırstea-Rădulescu [10] (see also
Chabrowski [9] or Murthy-Stampacchia [19]) while conditions (F1)-(F3) are in-
spired by conditions (f1)-(f3) in Drábek [12]. Similar conditions may be founded
in Rădulescu-Smets [20].

We point out that there exist functions a : R
N → R which satisfy the condition

(A) and which vanish on R
N . An example in that sense is the function a1(x) = |x|ν1

if |x| ≤ 1 and a1(x) = |x|ν2 if |x| ≥ 1 with 0 < ν1 < N/q < ν2.
We define now F (x, u) =

∫ u
0 f(x, t) dt. By (F2) we obtain that F (x, u) > 0 on

Ω × (δ1, δ2) while by (F3) we deduce

0 ≤ F (x, u) ≤
1

γ + 1
θ(x)|t|γ+1, on R

N × R. (5)

Let us consider the weighted Sobolev space Da(R
N) defined as the completion

of C∞
0 (RN) under the norm

‖u‖a =
(
∫

RN
a(x)|∇u|2 dx

)1/2

.

Clearly, Da(R
N) is a Hilbert space with respect to the scalar product

〈u, v〉a =
∫

RN
a(x)∇u∇v dx.

Definition 1. We say that λ ∈ R is an eigenvalue of (4) if there exists u ∈ Da(R
N)\

{0} such that

∫

RN
a(x)∇u∇ϕ dx− λ ·

∫

RN
f(x, u)ϕ dx

− λ ·
∫

RN
(2F (x, u) − f(x, u)u) dx ·

∫

RN
θ(x)|u|γ−1uϕ dx = 0 (6)
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for all ϕ ∈ C∞
0 (RN). Moreover, a function u ∈ Da(R

N) which verifies the above
relation for a fixed λ ∈ R is called a weak solution of (4).

The main result on problem (4) is given by the following theorem:

Theorem 1. Assuming (A), (F1)-(F3) are fulfilled then there exists λ0 > 0, an
eigenvalue of (4). Moreover, the corresponding week solution, u0 ∈ Da(R

N) \ {0},
satisfies u0 ≥ 0 in R

N .

Second, we study problem (1) in the particular case A(x) = |x|α. Thus equation
(1) becomes

−div(|x|α∇u) = λf(x, u), x ∈ R
N . (7)

We assume that α ∈ (0, 2) and f(x, t) is a function of the type f(x, t) = g(x)t +
r(x)|t|q−2t with 2 < q < 2⋆

α. We denoted by 2⋆
α the real number 2⋆

α = 2N/(N−2+α).
Suppose that r is a positive function on R

N which satisfies the property r ∈ Ls(RN)
for s chosen such that 1/s+ q/2⋆

α = 1. We show that imposing some conditions on
g problem (7) has a continuous family of positive eigenvalues.

Let us consider the weighted Sobolev space D1,2
α (RN) defined as the completion

of C∞
0 (RN) under the norm

‖u‖ =
(
∫

RN
|x|α|∇u|2 dx

)1/2

.

It is clear that D1,2
α (RN ) is a Hilbert space with respect to the scalar product

〈u, v〉 =
∫

RN
|x|α∇u∇v dx.

Our basic assumption on g is that it is dominated by a function g1 which satisfies
the property:

(G) A non-negative function g1 on R
N is said to have the property (G) if g1(x) > 0

a.e. x ∈ R
N and there are µ > 0 and u ∈ D1,2

α (RN) \ {0} such that

µ =

∫

RN
|x|α|∇u|2 dx

∫

RN
g1(x)u

2 dx
= inf

ϕ∈D1,2
α (RN )\{0}

∫

RN
|x|α|∇ϕ|2 dx

∫

RN
g1(x)ϕ

2 dx
.

Definition 2. We say that λ ∈ R is an eigenvalue of (7) if there exists u ∈
D1,2

α (RN) \ {0} such that

∫

RN
|x|α∇u∇ϕ dx− λ ·

∫

RN
f(x, u)ϕ dx = 0

for all ϕ ∈ C∞
0 (RN). Moreover, a function u ∈ D1,2

α (RN) which verifies the above
relation for a fixed λ ∈ R is called a weak solution of (7).

Our first result on problem (7) is given by the following theorem
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Theorem 2. Assuming g1 is a non-negative function which satisfies property (G)
and g ∈ L∞

loc(R
N) is a function such that

|g(x)| ≤ g1(x) a.e. x ∈ R
N

then any λ ∈ (0, µ) is an eigenvalue for problem (7), where µ is a number defined
in property (G).

We point out that there are a lot of functions having property (G). Indeed, we
can replace property (G) on g1 by the property:

(G1) A non-negative function g1 is said to have property (G1) if g1(x) > 0 a.e.
x ∈ R

N and the application

D1,2
α (RN) ∋ u −→

∫

RN
g1(x)u

2 dx

is weakly continuous.
We establish the following result.

Theorem 3. Assuming g1 is a non-negative function which has property (G1) then
g1 has property (G). Furthermore, if g is a function such that

|g(x)| ≤ g1(x) a.e. x ∈ R
N

then |g| has property (G).

We remark that there exist functions which verify property (G1). A class of
such functions is offered by the following theorem.

Theorem 4. Assuming g1 > 0 a.e. x ∈ R
N is a function such that g1 ∈ LN/(2−α)(RN)

then the application

D1,2
α (RN) ∋ u −→

∫

RN
g1(x)u

2 dx

is weakly continuous.

As an application of Theorems 2-4 we have:

Theorem 5. Assuming g is a function such that |g| ∈ LN/(2−α)(RN) then any
number λ ∈ (0, λ1) is an eigenvalue for (7), where λ1 > 0 reaches the minimum in
the expression

λ1 = inf
ϕ∈D1,2

α (RN )\{0}

∫

RN
|x|α|∇ϕ|2 dx

∫

RN
|g(x)|ϕ2 dx

.

2 Proof of Theorem 1

For each λ ≥ 0 we associate to problem (4) the equation

−div(a(x)∇u) − λf(x, u) = M(λ)θ(x)|u|γ−1u, x ∈ R
N . (8)
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Clearly, λ0 and u0 solve Theorem 1 if and only if M(λ) =
∫

RN (2λ0F (x, u0) −
λ0f(x, u0)u0) dx is an eigenvalue of (8). To find the principal eigenvalue of (8)
we solve the minimization problem

minimize
∫

RN
a(x)|∇u|2 dx− 2λ ·

∫

RN
F (x, u) dx,

when u ∈ Da(R
N ) and

∫

RN
θ(x)|u|γ+1 dx = 1. (9)

Let
Sλ(u) =

∫

RN
a(x)|∇u|2 dx− 2λ ·

∫

RN
F (x, u) dx.

We show that problem (9) has sense, that is for every λ ≥ 0 fixed Sλ(u) is bounded
from below for all u ∈ Da(R

N ) with
∫

RN θ(x)|u|γ+1 dx = 1.
Indeed, using (5) we obtain that for any fixed λ ≥ 0 holds the inequality

Sλ(u) ≥ ‖u‖2
a −

2λ

γ + 1
·
∫

RN
θ(x)|u|γ+1 dx.

Thus for all u ∈ Da(R
N) with

∫

RN θ(x)|u|γ+1 dx = 1 we have

Sλ(u) ≥ −
2λ

γ + 1
> −∞.

Let
µ(λ) = inf

u∈Da(RN ),
∫

RN θ(x)|u|γ+1 dx=1
Sλ(u).

Lemma 1. The function space Da(R
N) is continuously embedded in W 1,β(RN) and

in Lβ⋆
(RN ) where β = 2q/(q + 1) and β⋆ = Nβ/(N − β).

Proof. Since β = 2q/q + 1 it follows that 1 < β < 2 < N . Using the Sobolev-
Galiardo-Nirenberg inequality (see Theorem IX.9, p. 162 in [4]) combined with the
Hölder inequality we get

(
∫

RN
|u|β

⋆

dx
)1/β⋆

≤ C1 ·
(
∫

RN
|∇u|β dx

)1/β

= C1 ·

(

∫

RN

1

a(x)q/q+1
|∇u|β a(x)q/q+1 dx

)1/β

≤ C1 ·

(

∫

RN

1

a(x)q
dx

)1/2q

·
(
∫

RN
a(x)|∇u|2 dx

)1/2

≤ C2 ·
(
∫

RN
a(x)|∇u|2 dx

)1/2

where C1, C2 are positive constants. By the above inequalities Lemma 1 follows. �

Lemma 2. For all u ∈ Da(R
N) there exists C > 0 such that

∫

RN
F (x, u) dx ≤ C · ‖u‖γ+1

a .
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Proof. Applying Hölder’s inequality and Lemma 1 we obtain
∫

RN
F (x, u) dx ≤

1

γ + 1
·
∫

RN
θ(x)|u|γ+1 dx

≤
1

γ + 1
·
(
∫

RN
|θ(x)|m dx

)1/m

·
(
∫

RN
|u|β

⋆

dx
)γ+1/β⋆

≤
1

γ + 1
·
(
∫

RN
|θ(x)|m dx

)1/m

· (c ‖u‖a)
γ+1.

�

Lemma 3. Assume conditions (A), (F1)-(F3) are fulfilled. Then problem (9) has
a solution e1 ≥ 0. Moreover, e1 is a weak solution of (8) corresponding to the
eigenvalue

M(λ) = ‖e1‖
2
a − λ ·

∫

RN
f(x, e1)e1 dx.

Proof. Let {un} be a minimizing sequence for (9), i.e.
∫

RN
a(x)|∇un|

2 dx− 2λ ·
∫

RN
F (x, un) dx→ µ(λ)

and
∫

RN θ(x)|un|
γ+1 dx = 1, for all n. Then by Lemma 2 it follows that {un} is

bounded in Da(R
N). Since Da(R

N) is a Hilbert space we deduce that there exists
u ∈ Da(R

N ) such that passing eventually to a subsequence {un} converges weakly
to u in Da(R

N). By Proposition III.5 (iii), p. 35 in [4] we obtain
∫

RN
a(x)|∇u|2 dx ≤ lim inf

n→∞

∫

RN
a(x)|∇un|

2 dx. (10)

On the other hand since {un} is bounded in Da(R
N) by Lemma 1 we have that {un}

is bounded in Lβ⋆
(RN). Moreover, we get un(x) → u(x) a.e. x ∈ R

N . Then by
Theorem 10.36, p. 220 in [24] it follows that {un} converges weakly to u in Lβ⋆

(RN)
or {|un|

γ+1} converges weakly to |u|γ+1 in Lβ⋆/γ+1(RN).
We define the operator Λ : Lβ⋆/γ+1(RN) → R by

〈Λ, ϕ〉 =
∫

RN
θ(x)ϕ dx.

Since θ ∈ Lm(RN ) and 1/m = 1−(γ+1)/β⋆ it is clear that Λ is linear and continuous.
The above remarks imply that 〈Λ, |un|

γ+1〉 → 〈Λ, |u|γ+1〉 or
∫

RN
θ(x)|un|

γ+1 dx→
∫

RN
θ(x)|u|γ+1 dx.

Since θ(x)|un|
γ+1 converges to θ(x)|u|γ+1 in L1(RN ) it follows by Theorem IV.9, p.

58 in [4] that passing eventually to a subsequence, there exists h0 ∈ L1(RN) such
that

1

γ + 1
|θ(x)| |un|

γ+1 ≤ h0(x) a.e. x ∈ R
N .

Taking into account that F (x, un(x)) → F (x, u(x)) a.e. x ∈ R
N and |F (x, un)| ≤

1
γ+1

θ(x) |un|
γ+1 a.e. x ∈ R

N we obtain via Lebesgues’ Theorem (Theorem IV.2, p.

54 in [4]) that
∫

RN
F (x, un) dx→

∫

RN
F (x, u) dx. (11)
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Finally, we remark that
∫

RN
θ(x)|u|γ+1 dx = 1. (12)

By (10), (11) and (12) we conclude that u is a solution of problem (9). Furthermore,
since |u| is also a solution we may assume that u ≥ 0.

Let now v ∈ Da(R
N) be fixed. Then the application

h(ǫ) = Sλ

(

u+ ǫv

(
∫

RN θ(x)|u+ ǫv|γ+1 dx)1/(γ+1)

)

is well defined in a suitable neighborhood of the origin and it possesses a minimum
in ǫ = 0. Then we obtain that h

′

(0) = 0 which yields

∫

RN
a(x)∇u∇v dx− λ ·

∫

RN
f(x, u)v dx = M(λ) ·

∫

RN
θ(x)|u|γ−1uv dx

with

M(λ) = ‖u‖2
a − λ ·

∫

RN
f(x, u)u dx.

It follows that u is a weak solution of (8) corresponding to the eigenvalue M(λ)
specified above. �

Proof of Theorem 1. We remark that for fixed ψ ∈ Da(R
N), the application

λ −→ ‖ψ‖2
a − 2λ ·

∫

RN
F (x, ψ) dx

is an affine function and thus a concave function. As the infimum of any collection
of concave functions is a concave function it follows that λ → µ(λ) is a concave
function on [0,∞) and thus a continuous function.

On the one hand it is clear that µ(0) > 0. Considering ω ⊂ Ω a nonempty
bounded domain and fixing δ ∈ (δ1, δ2) there exists ψ0 ∈ C∞

0 (RN) such that ψ0 = δ
on ω and |ψ0| ≤ 2δ on R

N . By (F2) we obtain that

∫

RN
F (x, ψ0) dx ≥

∫

ω
F (x, ψ0) dx =

∫

ω
F (x, δ) dx > 0.

The above inequality yields lim
λ→∞

µ(λ) = −∞. Thus λ → µ(λ) is a continuous

function with µ(0) > 0 and lim
λ→∞

µ(λ) = −∞. Then, clearly, there exists λ0 > 0 such

that µ(λ0) = 0. On the other hand we point out the fact that since u is the solution
of (8) given by Lemma 3 we have M(λ) = µ(λ) +

∫

RN (2λF (x, u) − λf(x, u)u) dx.
We conclude Theorem 1 holds true. �

3 Proof of Theorem 2

We fix a λ in (0, µ). Let us define the energetic functional Jλ : D1,2
α (RN) → R by

Jλ(u) =
1

2
·
∫

RN
|x|α|∇u|2 dx−

λ

2
·
∫

RN
g(x)u2 dx−

λ

q
·
∫

RN
r(x)|u|q dx.
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It is clear that Jλ is well-defined on D1,2
α (RN) and Jλ ∈ C1(D1,2

α (RN),R) with

〈J
′

λ(u), v〉 =
∫

RN
|x|α∇u∇v dx− λ ·

∫

RN
g(x)uv dx− λ ·

∫

RN
r(x)|u|q−2uv dx,

for all u, v ∈ D1,2
α (RN). Moreover, we observe that u is a solution of (7) if and only

if u is a critical point of Jλ. To obtain the nontrivial critical points for Jλ we shall
apply the Mountain Pass Theorem.

We establish some auxiliary results. We start by recalling the following key
result, known as the Caffarelli-Kohn-Nirenberg inequality (see [6]).

Lemma 4. Let N ≥ 2, α ∈ (0, 2) and denote 2⋆
α = 2N

N−2+α
. Then there exists Cα > 0

such that
(
∫

RN
|ϕ|2

⋆
αdx

)2/2⋆
α

≤ Cα ·
∫

RN
|x|α|∇ϕ|2dx

for every ϕ ∈ C∞
0 (RN).

As an immediate consequence, we get that D1,2
α (RN ) is continuously embedded

in L2⋆
α(RN). Let us illustrate some other useful remarks.

Remark 1. For all Ω bounded domains in R
N , with 0 6∈ Ω, the norm ‖ · ‖ and the

H1
0 (Ω) norm, i.e.

‖u‖2
H1

0
(Ω) =

∫

Ω
|∇u|2 dx

are equivalent. Using that fact and the Rellich-Kondrachov embedding theorem for
Sobolev spaces (see [1], p. 144) we can deduce a result presented as Example 1.3
by Caldiroli-Musina in [7]: if Ω is a bounded domain in R

N with 0 6∈ Ω then the
embedding D1,2

α (Ω) ⊂ L2⋆
α(Ω) is compact for α ∈ (0, 2), where 2⋆

α = 2N/(N − 2 + α).
Moreover, we deduce that D1,2

α (Ω) is compactly embedded in Li(Ω) for all i ∈ [1, 2⋆
α].

Remark 2. By Lemma 2.1 in Catrina-Wang [8] we deduce that

D1,2
α (RN) = C∞

0 (RN \ {0})
‖·‖
.

Lemma 5. There exist a > 0, ρ > 0 such that Jλ(u) ≥ a > 0 for all u ∈ D1,2
α (RN)

with ‖u‖ = ρ.

Proof. Using Hölder’s inequality and Lemma 4 we have

Jλ(u) =
1

2
· ‖u‖2 −

λ

2
·
∫

RN
g(x)u2 dx−

λ

q
·
∫

RN
r(x)|u|q dx

≥
1

2
· ‖u‖2 −

µ− σ

2µ
· µ ·

∫

RN
g1(x)u

2 dx−
λ

q
· ‖r‖Ls(RN ) · ‖u‖

q

L2⋆
α(RN )

≥
σ

2µ
· ‖u‖2 −

λ

q
· ‖r‖Ls(RN ) · Cα · ‖u‖q

≥

[

σ

2µ
−
µ

q
· ‖r‖Ls(RN ) · Cα · ‖u‖q−2

]

· ‖u‖2

where σ is a positive constant which lies in the interval (0, µ). The above inequalities
show that the conclusion of Lemma 5 holds. �
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Lemma 6. There exists e ∈ D1,2
α (RN) with ‖e‖ > ρ (ρ given by Lemma 5) such that

Jλ(e) < 0.

Proof. Let e1 ∈ D1,2
α (RN) \ {0} be a function given in property (G) and t > 0.

Then we have

Jλ(t · e1) =
t2

2
· ‖e1‖

2 −
λ · t2

2
·
∫

RN
g(x)e21 dx−

λ · tq

q
·
∫

RN
r(x)|e1|

q dx.

Passing to the limit as n → ∞ we deduce that the above expression tends to −∞,
since q > 2. It follows that fixing a t0 > 0 large enough and letting e = t0 · e1 we
obtain Jλ(e) < 0 and the Lemma is proved. �

Lemma 7. Assume that the hypotheses of Lemmas 5 and 6 are fulfilled. If

Γ = {γ ∈ C([0, 1], D1,2
α (RN)); γ(0) = 0, γ(1) = e}

where e is given by Lemma 6, and

c = inf
γ∈Γ

max
t∈[0,1]

Jλ(γ(t))

then c > 0.

Proof. It is obvious that c ≥ 0 because c ≥ inf
γ∈Γ

max
t∈{0,1}

Jλ(γ(t)) and

γ(0) = 0 ⇒ Jλ(γ(0)) = Jλ(0) = 0,

γ(1) = e⇒ Jλ(γ(1)) = Jλ(e) < 0.

We suppose that c = 0. Then 0 = inf
γ∈Γ

max
t∈[0,1]

Jλ(γ(t)). It follows that

1) max
t∈[0,1]

Jλ(γ(t)) ≥ 0, ∀γ ∈ Γ;

2) for all ǫ > 0 there is γǫ ∈ Γ such that, max
t∈[0,1]

Jλ(γǫ(t)) < ǫ. Using a given by

Lemma 5 we fix ǫ such that 0 < ǫ < a.
We have γǫ(0) = 0, γǫ(1) = e. It follows, ‖γǫ(0)‖ = 0, ‖γǫ(1)‖ = ‖e‖ > ρ (where

ρ is given by Lemma 5). But the application t→ ‖γǫ(t)‖, is continuous and thus we
conclude that there exists tǫ ∈ [0, 1] such that ‖γǫ(tǫ)‖ = ρ. Then Jλ(γǫ(tǫ)) ≥ a > ǫ
and we have obtained a contradiction with 2).

We conclude that c > 0 and then Lemma 7 follows. �

Proof of Theorem 2. Applying Lemma 7 and the Mountain Pass Theorem
we deduce that there exists a sequence {un} ∈ D1,2

α (RN) such that

Jλ(un) → c, J
′

λ(un) → 0 in (D1,2
α (RN ))⋆. (13)

We show that {un} is bounded in D1,2
α (RN). Indeed, if we assume the contrary then

we may suppose that passing eventually to a subsequence ‖un‖ → ∞. Then for n
large enough we have

c+ 1 + ‖un‖ ≥ Jλ(un) −
1

q
· 〈J

′

λ(un), un〉

=

(

1

2
−

1

q

)

·
[

‖un‖
2 − λ ·

∫

RN
g(x)u2

n dx
]

≥

(

1

2
−

1

q

)

·

(

1 −
λ

µ

)

· ‖un‖
2.
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Now dividing the above inequality by ‖un‖ and passing to the limit we obtain a
contradiction. Hence {un} is bounded in D1,2

α (RN).
Since {un} is bounded in D1,2

α (RN) it follows that there exists u ∈ D1,2
α (RN) and

a sub-sequence of {un} (still denoted by {un}) such that {un} converges weakly to
u in D1,2

α (RN). By Remark 1 {un} converges strongly to u in Li(Ω), for all Ω ⊂ R
N

bounded domains with 0 6∈ Ω and for all i ∈ [1, 2⋆
α].

We prove now that u is a weak solution of problem (7). By Remark 2 it is enough
to verify that

〈J
′

λ(un), ϕ〉 → 〈J
′

λ(u), ϕ〉, ∀ ϕ ∈ C∞
0 (RN \ {0}).

Let ϕ ∈ C∞
0 (RN \ {0}) be fixed. We set Ω = supp(ϕ) (0 6∈ Ω). Since un ⇀ u in

D1,2
α (RN) we obtain

lim
n→∞

∫

RN
|x|α∇un∇ϕ dx =

∫

RN
|x|α∇u∇ϕ dx.

Furthermore, we have
∣

∣

∣

∣

∫

Ω
r(x)[|un|

q−2un − |u|q−2u]ϕ dx
∣

∣

∣

∣

≤ ‖ϕ‖L∞(Ω) ·‖r‖Ls(Ω) ·‖|un|
q−2un−|u|q−2u‖L2⋆

α/q(Ω).

Taking into account that un → u in Li(Ω) for all i ∈ [1, 2⋆
α] and since 2⋆

α/q ∈ [1, 2⋆
α]

we deduce by Theorem A.2 in [25] that the right-hand side of the above inequality
converges to 0, as n→ ∞.

With the same arguments we have
∣

∣

∣

∣

∫

Ω
g(x)[un − u]ϕ dx

∣

∣

∣

∣

≤ ‖ϕ‖L∞(Ω) · ‖g‖L∞(Ω) · ‖un − u‖L1(Ω) → 0 as n→ ∞.

We conclude that
〈J

′

λ(un), ϕ〉 → 〈J
′

λ(u), ϕ〉

for all ϕ ∈ C∞
0 (RN \ {0}), and thus u is a weak solution of equation (7).

Finally we remark that u can not be trivial. Indeed by (13) we deduce that for
n large enough we have

c

2
≤ Jλ(un) −

1

2
· 〈J

′

λ(un), un〉

≤ λ ·

(

1

2
−

1

q

)

·
∫

RN
r(x)|un|

q dx.

Since c > 0 it is enough to prove that
∫

RN r(x)|un|
q dx→

∫

RN r(x)|u|q dx as n→ ∞.
Indeed, by un ⇀ u in D1,2

α (RN) we deduce that un(x) → u(x) a.e. x ∈ R
N and ‖un‖

is bounded.
Using Lemma 4 it follows that ‖un‖L2⋆

α (RN ) is bounded. Then the hypotheses of

Theorem 10.36, p. 220 in [24] are fulfilled and we obtain that {|un|
q} converges

weakly to |u|q in L2⋆
α/q(RN). On the other hand the application T : L2⋆

α/q(RN) → R

defined by

〈T, v〉 =
∫

RN
r(x)v dx

is linear and continuous provided r ∈ Ls(RN ) and 1/s+ q/2⋆
α = 1. Thus we obtain

lim
n→∞

∫

RN
r(x)|un|

q dx =
∫

RN
r(x)|u|q dx.

We conclude that u is not trivial and the proof of Theorem 2 is now complete. �
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4 Proof of Theorem 3

The proof of Theorem 3 uses some ideas from Szulkin-Willem [21].
In order to prove that g1 satisfies property (G) provided that it verifies property

(G1) we consider the minimization problem

(P) minimize
∫

RN |x|α|∇u|2 dx; u ∈ D1,2
α (RN ),

∫

RN g1(x)u
2 dx = 1.

We show that if g1 satisfies property (G1) then there exists e1 ∈ D1,2
α (RN)\{0},

e1 ≥ 0 solution for problem (P).
We let {un} ⊂ D1,2

α (RN ) be a minimizing sequence for (P), i.e.

∫

RN
|x|α|∇un|

2 dx→ c := inf (P)

and
∫

RN g1(x)u
2
n dx = 1, for all n. Then it is clear that {un} is bounded in D1,2

α (RN)
and thus there exists u ∈ D1,2

α (RN) such that un converges weakly to u in D1,2
α (RN).

It follows that
∫

RN
|x|α|∇u|2 dx ≤ lim inf

n→n

∫

RN
|x|α|∇un|

2 dx

and
∫

RN g1(x)u
2 dx = lim

n→∞
g1(x)u

2
n dx = 1. We conclude that u is a solution of (P).

Moreover, since |u| is also a solution we may assume u ≥ 0. Furthermore, we obtain
that g1 satisfies property (G).

For the second part of Theorem 3 we consider

0 ≤ |g(x)| ≤ g1(x) a.e. x ∈ R
N .

We let {un} be a sequence in D1,2
α (RN) which converges weakly to u ∈ D1,2

α (RN).
Then we have

∫

RN
g1(x)u

2
n dx→

∫

RN
g1(x)u

2 dx

or g1(x)u
2
n converges to g1(x)u

2 in L1(RN ). By Theorem IV.9, p. 58 in [4] we deduce
that passing eventually to a sub-sequence g1(x)u

2
n → g1(x)u

2 a.e. x ∈ R
N and there

exists h0 ∈ L1(RN) such that g1(x)u
2
n ≤ h0(x) a.e. x ∈ R

N and for all n. It follows
that

|g(x)|u2
n → |g(x)|u2 a.e. x ∈ R

N

and
|g(x)|u2

n ≤ h0(x) a.e. x ∈ R
N

for all n. Using Lebesgues’ Theorem (Theorem IV.4, p. 54 in [4]) we deduce that

∫

RN
|g(x)|u2

n dx→
∫

RN
|g(x)|u2 dx

as n→ ∞, i.e. |g| has the property (G). �

5 Proof of Theorem 4

The proof of Theorem 4 follows the lines of the final part in the proof of Theorem
2. We present it in detail for reader’s convenience.
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Let {un} ⊂ D1,2
α (RN) be a sequence which converges weakly to u in D1,2

α (RN).
Then un(x) → u(x) a.e. x ∈ R

N and by Lemma 4 we deduce that {un} is bounded
in L2⋆

α(RN). Then we can apply Theorem 10.36, p. 220 in [24] to obtain that u2
n

converges weakly to u2 in L2⋆
α/2(RN). Defining the operator E : L2⋆

α/2(RN) → R by

〈E,w〉 =
∫

RN
g1(x)w dx

we remark that it is linear and continuous provided that g1 ∈ LN/2−α(RN ). We get

∫

RN
g1(x)u

2
n dx→

∫

RN
g1(x)u

2 dx

as n→ ∞ and the conclusion of Theorem 4 follows. �
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Department of Mathematics, University of Craiova,
A.I. Cuza 13,
200585 Craiova, Romania
email : mmihailes@yahoo.com


