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Introduction

In his influential 1967 monograph Homotopical Algebra, D. Quillen [8] described an
abstract approach to homotopy theory enabling analogous theories to be defined in
categories other than the category of spaces and continuous maps. Although the
starting point in the classical homotopy theory of spaces and maps is the equiv-
alence relation (between maps) of homotopy, in Quillen’s approach it is that of
a model category, that is to say, a category C, together with three distinguished
classes of morphisms, we, cof, fib, called weak equivalences, cofibrations, and fibra-
tions, respectively. These are required to satisfy certain axioms which reflect typical
properties of the classes of such maps in topology and they enable the construction
of much of the basic machinery of homotopy theory in the category C. However,
it is not possible in a model category to introduce all possible concepts and prove
analogs of all possible theorems that hold in the homotopy theory of spaces: for
the simple reason that the axioms of a model category are self-dual whereas the
Eckmann-Hilton duality in spaces is known not to be perfect.

Nevertheless additional axioms, if enjoyed by a particular model category, some-
times enable further classical concepts and results to be introduced in C. A relatively
recent instance of this has been the successful definition by Doerane [2] of a notion
of Lusternik-Schnirelmann category in a type of model category satisfying the so-
called cube axiom. In such cases there is a price to be paid: the richer theory is only
available in categories C for which the additional axioms can be verified.
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The purpose of this paper is to show that the cube axiom permits the develop-
ment of another powerful feature of the homotopy theory of spaces: the existence
of James spaces [6]. The classical James space construction associates with a lo-
cally countable pointed CW-complex X a space X∞ and a homotopy equivalence
X∞ → ΩΣX, where Ω and Σ refer to the loop and (reduced) suspension endo-
functors of the category of pointed spaces. It opens the door to the study of the
suspension operation via the inclusion X → X∞ and to the detection of elements
in the cokernel of suspension via the James map X∞ → (X ∧ X)∞. Such consid-
erations have hitherto been out of the reach of abstract homotopy theory, although
generalizations, fibrewise and equivariant, of the equivalence X∞ → ΩΣX have been
obtained, [3].

In this paper we define the reduced powers Xn of an object X in a suitable model
category, or more generally, the objects (X, A)n and (X, A)∞ as in the work [4] of
Gray, associated with a cofibration A → X. If, in particular, a certain cube axiom
is satisfied, we prove the weak equivalence of the object X∞ to ΩΣX generalizing
work of I. M. James and others.

1 Model categories

Many authors have found it convenient to modify Quillen’s axioms as presented in
[8]. We use the version given by Hovey [5]:

1.1 Definition A model category is a category C with all small limits and colimits
together with a model structure on C.
A model structure on a category C consists of three classes of morphisms of C

called weak equivalences, cofibrations and fibrations, and two functorial factorisations
(α, β) and (γ, δ) satisfying the following properties:

1. (2-out-of-3) If f and g are morphisms of C such that gf is defined and two
of f, g and gf are weak equivalences then so is the third.

2. (Retract) If f and g are morphisms of C such that f is a retract of g and g
is a weak equivalence, cofibration, or fibration, then so is f .

3. (Lifting) Define a map (i.e. morphism of C) to be a trivial cofibration if it is
both a cofibration and a weak equivalence. Similarly, define a map to be a trivial
fibration if it is both a fibration and a weak equivalence. Then trivial cofibrations
have the left lifting property with respect to fibrations, and cofibrations have the
left lifting property with respect to trivial fibrations.

4. (Factorisation) For any map f : A→ B,

f = A //
α(f)

// B′ //
β(f)

∼
// B and f = A //

γ(f)

∼
// A′ //

δ(f)
// B ,

indicating that α(f) is a cofibration, β(f) is a trivial fibration, γ(f) is a trivial
cofibration and δ(f) is a fibration.

The retract property enables the statement of the lifting property to be strength-
ened:

1.2 Lemma ([5, Lemma 1.1.10]). A map in a model category is a cofibration (trivial
cofibration) if and only if it has the left lifting property with respect to all trivial
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fibrations (fibrations). Dually, a map is a fibration (trivial fibration) if and only if
it has the right lifting property with respect to all trivial cofibrations (cofibrations).

In particular, every isomorphism in a model category is a trivial cofibration and
a trivial fibration.

1.3 Corollary ([5, 1.1.11]). The cofibrations (trivial cofibrations) in a model cate-
gory are closed under pushout. That is, if

A
f

��

// C
g

��

B // D

is a pushout square, where f is a cofibration (trivial cofibration), then g is a cofi-
bration (trivial cofibration). Dually, fibrations (trivial fibrations) are closed under
pullback.

Every model category C has an initial object 0 (the colimit of the empty diagram)
and a terminal object ∗. If 0 and ∗ are isomorphic then C is pointed. Since our goal
is a James construction in C we assume henceforth that C is pointed. We assume
throughout that every object is cofibrant.

A commutative diagram in C

(1.4)
D

h //

k ��

C
g

��

A
f

// B

is a homotopy pullback if the induced map (shown dotted) in the following diagram
is a weak equivalence.

(1.5)

D
k

��

++

h // C

��

)) ∼
))SSSSS

A×B C ′

sshhhhhh

// C ′

uukkkkk

δ(g)
uu

A
f

// B

Here it is to be understood that the square with source A×B C ′ is a pullback. The
special case C = ∗ of 1.4 is of some significance, for then we call D the homotopy
fibre of f and denote it by Ff . If both C = A = ∗ then we say that D is a loop
object of B and denote it by ΩB.

Dually, we define the notions of homotopy pushout square and homotopy cofibre
(i.e. mapping cone): specifically the square 1.4 is a homotopy pushout if the induced
dotted arrow in the following diagram is a weak equivalence.

(1.6)

D
h //++

α(h)
++WWWWWWWW

k
��

C
g

��C ′

��

∼

33ggggggggg

A //
++VVVVVV B
A ∨D C ′

33

In the case C = ∗ of 1.6, we call C ′ a cone on D and A ∨D C ′ a mapping cone of
k. If there is a weak equivalence X → ∗ then we say that X is weakly contractible.
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In particular each mapping cone of 1 : X → X is a cone on X and is weakly
contractible.

In order to prove the weak equivalence of infinite reduced power with loops-
suspension, we require the following cube axioms and the conditions in 1.10 below.

1.7 Cube Axioms. Suppose that we have a commutative diagram as follows.

•

yyssssss
// •

yyssssss

��

• //

��

��

•

��

•

yyssssss
// •

yyssssss

• // •

(1.8)

(a) If the top and bottom faces are homotopy pushouts and the left and rear faces
are homotopy pullbacks, then the remaining two faces are homotopy pullbacks.
(b) If the bottom face is a homotopy pushout and four vertical faces are homotopy
pullbacks, then the top face is a homotopy pushout.

In the topological case Axiom 1.7(a) is very similar to the first cube theorem [7,
Theorem 18] of Mather, except that we assume strict commutativity of the diagram.
Axiom 1.7(b) is exactly the same as the axiom [2, Cube axiom on p220] in the paper
of Doerane.

1.9 Lemma. Let us assume that C is a pointed model category in which Axiom
1.7(b) holds. Taking the product of a rectangular diagram with a fixed fibrant object
F of C preserves the property of being a homotopy pushout.

Proof. There is a cubical diagram whose base is the original rectangle and whose
upper face is the desired homotopy pushout. The vertical arrows are product pro-
jections which, under our assumptions, are fibrations. Hence the vertical faces are
homotopy pullback rectangles and we may apply Axiom 1.7(b). �

Conditions 1.10:

(we) Given any object X and weak equivalence f : A→ B in C, then the morphism
X × f : X × A→ X ×B is a weak equivalence.

(cof) Given any object X and cofibration f : A → B in C, then the morphism
X × f : X × A→ X ×B is a cofibration.

(cotriad) Given any commutative diagram of solid arrows as below, in which every
morphism is a cofibration and the upper quadrilateral is a pushout, then the induced
map B +A C → D is a cofibration.

B

%%KKKKKKKKKKKKKKK

**UUUUUUUUUUUU Aoo // C

ttiiiiiiiiiiii

yysssssssssssssss

B+AC

��

D

1.11 Remark. (a) If Condition 1.10(we) is satisfied, then Lemma 1.9 will hold
more generally, without F having to be fibrant.
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(b) The cube axioms and Conditions 1.10 can be seen to hold, for instance, in the
category of topological spaces Top∗ with model structure as in [5, Cor 2.4.20] and
in the category of pointed simplicial sets SSet∗ with the model structure as in [5,
Cor 3.6.6].
(c) The definition of model category given in [5] and adopted here seems to be more
restrictive than is actually necessary for our purposes.

2 The Gray construction

For a cofibration i : A → X in C, we construct objects (X, A)n in C, for positive
integers n, which are analogues of the relevant subspaces of the spaces (X, A)∞
defined by Gray [4]. Fat wedge maps wn : Wn(X, A) → X × An are defined as
follows (consistent with the construction of Doerane [2, Definition 3.1]). We take
w0 to be the map ∗ → X and, for n > 0, we define wn inductively as follows. Let

e = 1× (∗ → A) : V → V ×A

be the natural map and note that the outside of the following diagram is commuta-
tive.

(2.1)

Wn−1(X, A) e //

wn−1

��

Wn−1(X, A)× A

��
w̄

wn−1×A

!!B
B

B
B

B
B

B
B

B
B

B
B

B
B

B
B

B
B

B
B

X × An−1 //ē

e
,,XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Wn(X, A)

((

X ×An

The desired map wn is then the induced map from the pushout (recall that C has
small colimits) of the top left corner. In the case X = A we denote (X, A)n simply
by An and likewise Wn(X, A) by WnA.

We now define the objects (X, A)n (n ≥ 0), folding maps φn (n ≥ 0) and identi-
fication maps µn (n ≥ 1)

φn : Wn(X, A)→ (X, A)n ; µn : X × An−1 → (X, A)n

inductively as follows. We start off by setting (X, A)0 = ∗, φ0 = ∗ → ∗ and µ1 = 1.
Given φn−1, then µn is defined by forming a pushout square

(2.2)

Wn−1(X, A)

φn−1

��

wn−1
// X × An−1

µn

��

(X, A)n−1 jn

// (X, A)n

Given µn, we now define φn. To do so we require an alternative way of constructing
the object Wn(X, A), this time as the colimit of a larger diagram. The construction,
although somewhat technical, is conceptually simple.
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Fix any n ∈ N. For any k ∈ N, let Sk be the collection of all proper nonempty
subsets of {1, 2, ..., k}. Given any σ ∈ Sn+1, let Zσ = Y × A|σ|−1, where Y = X
if 1 ∈ σ and otherwise Y = A. Let σ1, σ2, ..., σk be the distinct elements of σ in
increasing order. For any σ, τ ∈ Sn+1 with σ ⊂ τ , let fσ,τ : Zσ → Zτ be a section
to the relevant projection map so that fσ,τ ‘inserts the base point ∗ in the i’th
place’ for every i which is such that τi ∈ τ\σ. Note that if σ, τ, ρ ∈ Sn+1 with
σ ⊂ τ ⊂ ρ, then fτ,ρ ◦ fσ,τ = fσ,ρ. Now let D be the diagram formed by all the maps
fσ,τ for σ, τ ∈ Sn+1, together with the initial maps into the objects Zσ. Let D0 be
the “sub-diagram” of D obtained by removing the object U = Z{1,2,...,n} and every
arrow having U as its target. Then the colimit of diagram D is (isomorphic to)
Wn(X, A). To this end, note that the colimit of the diagram D0 exists and coincides
with Wn−1(X, A)×A. Augment the diagram D with maps gσ : Zσ → (X, A)n which
coincide with µn (in the obvious sense) for all maximal members σ of Sn+1. By
induction on n one can prove that the augmented diagram is commutative. Then
since Wn(X, A) is a colimit of D there exists a unique map φn such that φn ◦ gσ

agrees with fσ for all maximal σ, where fσ : Zσ →Wn(X, A) refers to the maps into
the colimiting object.

We shall need to recognize Wn(X, A) also as the pushout

(2.3)

Wn−1A
f

//

wn−1

��

X ×Wn−1A

��
w′

X×wn−1

��?
?

?
?

?
?

?
?

?
?

?
?

?
?

?
?

?
?

?

An

f×An

++WWWWWWWWWWWWWWWWWWWWWWWWWWW //
f̄

Wn(X, A)

''

wn

X × An

where f = (∗ → X)× 1 : V → X × V .
We also define a multiplication map

νn : X ×An−1 → (X, A)n ,

as follows. Let ν2 = µ2 and then define νn+1 inductively to be the unique map (dotted
arrow) determined by pushout in the following diagram which may be checked to
be commutative by considering the appropriate ‘diagram D’.

(2.4)

X ×Wn−1(A)

X×φn−1

��

// X × An

X×µn

�� µn+1

""E
E

E
E

E
E

E
E

E
E

E
E

E
E

E
E

E
E

X ×An−1
//

jn−1◦νn ,,YYYYYYYYYYYYYYYYYYYYYYYYYYY X × An

((

νn+1

(X, A)n+1

2.5 Proposition. If Conditions 1.10(cof and cotriad) hold, then for any cofibration
A→ X, the map wn : Wn(X, A)→ X × An is a cofibration.

Proof. The proof is by induction on n. The map w0 : ∗ → CA is a cofibration.
Now assume that for some n ∈ N we know that wn−1 is a cofibration. Note that in
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the following commutative diagram, the rows present cotriads of which the pushouts
are objects Wn(X, A) and X × An, and the induced map is wn.

X × An−1

1
��

Wn−1(X, A)
wn−1

oo

wn−1

��

// Wn−1(X, A)× A

wn−1×A
��

X × An−1 X × An−1
1

oo // X × An

(2.6)

Due to Condition 1.10(cof), all of the maps in diagram 2.6 are cofibrations. Condi-
tion 1.10(cotriad) ensures that wn is a cofibration. �

2.7 Proposition. If Conditions 1.10 hold, then for every object A and for every
n ∈ N, the object (CA, A)n is weakly contractible.

For the proof of this proposition, we require the following.

2.8 Proposition. If Conditions 1.10 hold, then for each n ∈ N, the map wn :
Wn(CA, A)→ CA×An is a weak equivalence.

Proof. The proof is by induction on n. We first note that by Proposition 2.5 the maps
wn are cofibrations. The map w0 : ∗ → CA and w1 : CA ∨ A→ CA× A is a weak
equivalence. Given n > 0, suppose that wn−1 is a weak equivalence. Then in diagram
2.6, with X = CA, the vertical arrows are weak equivalences (Condition 1.10(we)
applies to the arrow wn−1×A) and the pushouts of the cotriads in the top and bottom
rows are Wn(CA, A) and CA× An respectively. The horizontal arrows pointing to
the right hand side are cofibrations. The unique map Wn(CA, A) → CA × An

determined by pushout coincides with wn. Hence, by the cube lemma [5, Lemma
5.2.6], wn is a weak equivalence. �

Proof of Proposition 2.7. For each n ∈ N∪{0} there is a cofibration jn : (CA, A)n →
(CA, A)n+1. The map j0 : (CA, A)0 → (CA, A)1 coincides with ∗ → CA, and is
therefore a weak equivalence. Since (CA, A)0 is weakly contractible, it suffices to
prove that each jn is a weak equivalence. By Proposition 2.8, the map wn−1 in
diagram 2.2 is a weak equivalence if X = CA. Since the square is a pushout, it
follows that jn is a weak equivalence, completing the proof of Proposition 2.7. �

3 The Main Theorem

Throughout this section we work in a pointed model category C (except in the case
of Proposition 3.7, which is valid for arbitrary categories), we assume that every
object is cofibrant and that our model category satisfies Conditions 1.10.

In order to prove for an object A that A∞ is weakly equivalent to ΩΣA, we
need to impose certain conditions on A. Thus we shall work with a fixed cofibration
A→ X. Since our model category satisfies Conditions 1.10, by Proposition 2.5 the
maps wn are cofibrations, and we can now identify many other cofibrations, such as
the maps w′ of diagram 2.3 for instance.
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The object obtained as the pushout of the cotriad ∗ ← A→ X is denoted by X/A
and is weakly equivalent to a mapping cone of i.

Definition 3.1. For a cofibration A→ X, we define V1(X, A) = W1(X, A) and, for
n ≥ 2, the object Vn(X, A) so that the following square is a pushout.

(3.2)

X ×Wn−1(A)
X×φn−1

//

w′

��

X × An−1

��

Wn(X, A) // Vn(X, A)

For the trivial cofibration A = A we write Vn(A) instead of Vn(A, A).

Proposition 3.3. For a cofibration A→ X, the object P obtained in the following
pushout square is (isomorphic to) Vn(X, A).

∗ ×An−1
//

��

∗ × An

��
X × An−1

// P

Proof. Consider the commutative diagram below.

∗ ×Wn−1(A) //

��

∗ × An

��

X ×Wn−1(A) //

��

Wn(X, A)
��

X ×An−1
// Vn(X, A)

We note (comparing with 2.3) that the upper square is a pushout. The lower square
is a pushout, by definition of Vn(X, A). Thus the outer square is a pushout. Now
we turn to the following commutative diagram.

∗ ×Wn−1(A) //

��

∗ × An

��

∗ ×An−1
//

��

∗ × An

��

X × An−1
// Vn(X, A)

We have shown above that the outer square is a pushout. By the definition of the
objects An it follows that the upper square is a pushout and hence the lower square
is also. This completes the proof of Proposition 3.3. �

Theorem 3.4. Suppose that C satisfies axiom 1.7(b). For any cofibration A→ X,
the following square, in which the vertical arrows are versions of ν and the horizontal
arrows are the obvious maps, is a homotopy pushout square.

A× An
//

��

X × An

��

An+1
// (X, A)n+1
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Proof. The morphism X × wn−1 : X ×Wn−1(A) → X × An can be factorized as
follows (see 2.2):

X ×Wn−1(A)
w′

// Wn(X, A)
wn // X ×An .

We have two commutative diagrams inducing arrows via 3.2 :

A

X×Wn−1A
X×φn−1

//

w′

��

X×An−1

��
X×jn

||

Wn(X,A) //

wn

��

Vn(X,A)

��
vn

X×An

X×µn

// X×An

B

X×Wn−1A
X×φn−1

//

w′

��

X×An−1

�� νn

!!C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

Wn(X,A) //

φn ,,XXXXXXXXXXXXXXXXXXXXXXXX Vn(X,A)

((

αn

(X,A)n

By Lemma 1.9 (see also Remark 1.11(a)) the vertical composite of the two squares
in A is a homotopy pushout. Since the upper square is a homotopy pushout, the
lower square is also a homotopy pushout. Next, considering the diagram

(3.5)

Wn(X, A) //
φn

**UUUUUUU

wn

��

Vn(X, A)

vn

��

αn
ttiiiiiii

(X, A)n
jn+1

��

X × An

µn+1
**VVVVVVV

X×µn
// X × An

νn+1
tthhhhhh

(X, A)n+1

we recognize the pushout square defining the object (X, A)n+1. In view of B the
top triangle is commutative and we may check that the remainder of the diagram is
commutative. We have shown that the square at the back is a homotopy pushout.
It now follows that the right front square is a homotopy pushout, since the back
and left front squares are. Note that the right front square in diagram 3.5 is also
the right hand face of the following commutative cube.

(3.6)

VnA

uukkkkkkkkk
// Vn(X, A)

αn
ttiiiiiii

vn

��

An
//

��

��

(X, A)n

��

A× An

uukkkkkk

// X × An

νn+1
tthhhhhh

An+1
// (X, A)n+1

In the left face of diagram 3.6 we have a similar square (for the special case X = A).
Thus the proof will be complete if we can show that the upper face of 3.6 is a
homotopy pushout (since the left and right faces are homotopy pushout squares).
This we now prove by induction.
In the case n = 1, the relevant square is as follows and is obviously a pushout.

W1(A) //

��

W1(X, A)
��

A // X
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So the case n = 1 of the theorem follows. Now assume that n ≥ 2 and consider the
following commutative diagram. By Proposition 3.3, the top left is a pushout, so
that the composed square on the top row is a homotopy pushout.

∗ × An−1
//

��

A× An−1
//

��

X × An−1
��

∗ × An
// Vn(A) //

��

Vn(X, A)
��

An
// (X, A)n

Thus the top right square (2) is a homotopy pushout. By the inductive hypothesis
the vertical composite of the right hand squares is a homotopy pushout. Thus the
lower square is a homotopy pushout and the induction is complete. �

In any category, the direct limit of any sequence of maps,

A1 → A2 → A3 → ...,

is defined and it may or may not exist for a given sequence. For convenience (and a
little abusively) we suppress the role of the morphisms in the sequence above, and
denote the direct limit by lim(An) if it exists. In a model category the direct limits
exist for all sequences of maps, and direct limit is functorial in the obvious way.
Nevertheless, the following proposition is much more generally applicable. Its proof
is simple and we omit it.

3.7 Proposition. Suppose that (in any category) we have a sequence of pushout
squares

A(0)
n

//

��

A(1)
n
��

A(2)
n

// A(3)
n

,

and for each i ∈ {0, 1, 2, 3} and n ∈ N, a given map

f (i)
n : A(i)

n → A
(i)
n+1,

which is such that we actually have a sequence of maps of squares. If each of the
four direct limits lim(A(i)

n ) exist, then they form a pushout square.

For our final result we need the relevant model category to satisfy the following
condition on direct limits.

Condition 3.8: Given any sequence of cofibrations as below, in which An is weakly

contractible for each n ∈ N,

A1
// // A2

// // A3
// // ...

then lim(An) is weakly contractible.

The limit of the sequence, (X, A)1 → (X, A)2 → (X, A)3 → ..., we denote by
(X, A)∞, and the object (X, X)∞ is denoted by X∞.

3.9 Theorem. Suppose that C satisfies the cube axioms 1.7 and Condition 3.8
(as well Conditions 1.10). Then for any cofibration A → X, there is a map f∞ :
(X, A)∞ → X/A having A∞ as its homotopy fibre.
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Proof. For the following commutative diagram we form the pushouts of the cotriads
in the top row and in the bottom row. Condition 1.10(cof) ensures that A×An →
X ×An is a cofibration.

An+1

��

A× An

µn+1
oo

proj ��

incl // X ×An
proj��

∗ Aoo // X

By Theorem 3.4, the object obtained as the pushout of the upper cotriad is
(X, A)n+1. The object obtained as the pushout of the cotriad in the bottom co-
triad is X/A. Then there exists a unique map fn+1 : (X, A)n+1 → X/A, completing
a commutative cube diagram. We have a sequence (indexed by n) of such cubes,
and the limit of this sequence is a cube as below:

A× A∞µ∞

uukkkkkk

incl // X × A∞

ttiiiiii

��

A∞
//

��

��

(X, A)∞

��

f∞

A

uukkkkkkkkkk
// X

ttiiiiiiiiiii

∗ // X/A

The proof is completed through application of Proposition 3.7, Condition 3.8, and
the cube axiom 1.7(a). �

3.10 Corollary. Suppose that C satisfies the cube axioms 1.7 and Condition 3.8
(together with Condition 1.10).
Then for any object A, the homotopy fibre of the initial morphism ∗ → ΣA is A∞,
i.e., A∞ is weakly equivalent to ΩΣA.

Proof. This is deduced from Theorem 3.9, using Proposition 2.7 and Condition 3.8.
�
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