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Abstract

We are concerned with the following problem. Let L and K be fixed real num-
bers. When does the Koebe function k(z) = z(1 − z)−2 maximize the Nth
Taylor coefficient of (1/f ′(z))L(z/f(z))K for f in the class S of normalized
schlicht functions? A sufficient condition for L ≥ −1 is 1 ≤ N ≤ 2L + K + 1.
A necessary condition is that a certain trigonometric sum involving hyperge-
ometric functions is non–negative. These results generalize a recent theorem
of Bertilsson and suggest a link between Brennan’s conjecture in conformal
mapping and Baernstein’s theorem about integral means of functions in S.

1 Introduction

An open problem in conformal mapping, which recently received a great deal of
attention [2, 3, 4, 8], is Brennan’s conjecture [7]. It states

∫∫

D

|f ′(z)|−L dxdy < ∞ (1)

for every conformal map f from the unit disk D := {z ∈ C : |z| < 1} into the
complex plane C and every real number L ≥ 2. Of course, one may assume f
belongs to the class S of univalent functions f : D → C, normalized by f(0) = 0
and f ′(0) = 1. In [3] Bertilsson observed Brennan’s conjecture is equivalent to the
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following conjecture about integral means of the derivatives of functions f in S: for
every L ≥ 2 there exists a constant CL > 0 such that
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for every f ∈ S and every 0 ≤ r < 1, where

k(z) =
z

(1 − z)2

is the Koebe function. It is even conjectured (see [3]) that one may take CL = 1.
The corresponding problem of estimating the integral means of the functions in S
instead of their derivatives was completely settled by Baernstein [1], who proved
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for every 0 ≤ r < 1, every K ∈ R and every f ∈ S. The purpose of the present note
is to point out a possible link between Brennan’s conjecture (2) and Baernstein’s
result (3), which might be useful in attacking Brennan’s conjecture.

We first note Brennan’s conjecture can be stated as a coefficient problem for
univalent functions as follows. For f ∈ S and L, K ∈ R let

(

1

f ′(z)

)L

=
∞
∑

N=0

aN (L, f) zN , a0(L, f) = 1,

and
(

z

f(z)

)K

=
∞
∑

N=0

bN (K, f) zN , b0(K, f) = 1.

Then (see, for instance, [3]), Brennan’s conjecture is equivalent to the coefficient
estimate

|aN(L, f)| ≤ cL |aN(L, k)| for N ≥ 1, f ∈ S, L ≥ 2. (4)

Here, cL is a constant which does not depend on f and N . Again, one might suspect
cL = 1.

In [2, 3] D. Bertilsson was able to prove an estimate of the form (4). Specifically,
he established for L > 0 the inequality

|aN(L, f)| ≤ |aN(L, k)| for 1 ≤ N ≤ 2L + 1, f ∈ S. (5)

Bertilsson’s proof of (5) is based on an ingenious modification of de Branges’s method
[5] and is quite involved. A quick proof of Bertilsson’s inequalities (5) was given in
[17]. Recently, the method of [17] was adapted in [13] to establish the following
similar result for the Taylor coefficients bN (K, f):

|bN(K, f)| ≤ |bN(K, k)| for 1 ≤ N ≤ K + 1, f ∈ S. (6)
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Consequently, combining (5) and (6), it is easy to see that

|cN(L, K, f)| ≤ |cN(L, K, k)|

for every f ∈ S and every 1 ≤ N ≤ min{K + 1, 2L + 1} where the coefficients
cN(L, K, f) are defined by

(

1

f ′(z)

)L (

z

f(z)

)K

=
∞
∑

N=0

cN(L, K, f) zN , c0(L, K, f) = 1.

Somewhat surprisingly much more than this is true:

Theorem 1. Let f ∈ S. Then for every L ≥ −1, every K ∈ R and all integers N
with 1 ≤ N ≤ 2L + K + 1 the inequalities

|cN(L, K, f)| ≤ |cN(L, K, k)| (7)

are valid. Except for the cases

2L + K = 0, N = 1,

2L + K = 1, N = 2,

L + 1 = 0, N = K − 1, K ≥ 2

equality is attained if and only if f is the Koebe function or one of its rotations.

The proof of Theorem 1 will be given in Section 2. It uses the Löwner differential
equation and proceeds along similar lines as the proofs in [11, 13, 17].

Remarks.

(a) We shall see in Section 3 that in general not all of the individual coefficients
aj(L, f) and bN−j(K, f) in the sum

cN (L, K, f) =
N
∑

j=0

aj(L, f)bN−j(K, f) (8)

are maximized by the Koebe function. Nevertheless, Theorem 1 guarantees
that the Koebe function does maximize the absolute value of the sum (8) itself
if 1 ≤ N ≤ 2L+K +1. So in a sense a kind of averaging phenomenon occurs,
which is to be reminiscent of Milin’s inequality for the weighted sums

N
∑

k=1

k(N − k + 1)|γk|
2 (9)

of the logarithmic coefficients of univalent functions defined by

log
f(z)

z
= 2

∞
∑

n=1

γnzn.

As in (8) the Koebe function is not extremal for the absolute value of the
individual logarithmic coefficients γn, n ≥ 2 (see, for instance, [9]), but by
de Branges’s theorem [5] the weighted sums (9) are indeed maximized by the
Koebe function.
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(b) In view of the equivalence of Brennan’s conjecture with the coefficient problem
(4), Theorem 1 strongly suggests to consider the integral means of the product

(

1

f ′(z)

)L (

z

f(z)

)K

and makes the following generalization of Brennan’s problem (2) irresistable.

Problem. For which real numbers K and L ≥ 2 does there exist a
constant EK,L such that

∫

|z|=r

∣

∣

∣

∣

∣

1

f ′(z)

∣

∣

∣

∣

∣

L ∣
∣

∣

∣

∣

z

f(z)

∣

∣

∣

∣

∣

K

dθ ≤ EK,L ·
∫

|z|=r

∣

∣

∣

∣

∣

1

k′(z)

∣

∣

∣

∣

∣

L ∣
∣

∣

∣

∣

z

k(z)

∣

∣

∣

∣

∣

K

dθ,

for every f ∈ S and every 0 ≤ r < 1?

(c) Theorem 1 simultaneously generalizes Bertilsson’s theorem (5) and the in-
equalities (6).

We now return to estimate (7) and derive a necessary condition for this inequality
for fixed N ∈ N and fixed real parameters K and L. As in many extremal problems
for univalent functions [6, 15] hypergeometric functions enter the picture. We first
recall that for fixed complex numbers a, b, c with c 6= −n (n = 0, 1, 2, . . .), the
Gaussian hypergeometric series is defined by

2F1(a, b, c; z) :=
∞
∑

n=0

(a)n (b)n

(c)n

zn

n!
, |z| < 1,

where

(a)n = a(a + 1)(a + 2) · · · (a + n − 1) =
Γ(a + n)

Γ(a)

is the Pochhammer symbol. If b is a negative integer, b = −j, then

2F1(a,−j, c; z) =
j
∑

n=0

(a)n (−j)n

(c)n

zn

n!
,

is a polynomial of degree j and it is easy to check that

αj(L, K) =
Γ(L + j)

j! Γ(L)
2F1(−2K − 3L,−j, 1 − L − j;−1) (10)

are well–defined real numbers for every L, K ∈ R and j = 0, 1, 2, . . .. We also note
(

1

k′
0(z)

)L (

z

k0(z)

)K

=
(1 + z)3L+2K

(1 − z)L

=
∞
∑

N=0





N
∑

j=0

(

3L + 2K

j

)(

−L

N − j

)

(−1)N−j



 zN

=
∞
∑

N=0

αN(L, K)zN ,

(11)

for k0(z) = −k(−z) = z/(1 + z)2, that is,

αN (L, K) = cN(L, K, k0).
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Theorem 2. Let N ≥ 1 be a fixed integer and let L, K be real numbers. If the
inequality (7) holds for all functions f ∈ S, then the trigonometric sum

αN (L, K)
N
∑

j=1

(

(L + K)αN−j(L, K) + LjαN−j(L + 1, K − 1)

)

sin(j u) (12)

is non–negative for u ∈ [0, π].

Condition (12) can easily be checked for fixed L, K and N with the help of a
computer. It follows from Theorem 2 (see Section 3) that (7) does not hold for every
N ∈ N. In this sense Theorem 2 complements Theorem 1. The proof of Theorem 2
is given in Section 3 and is based on an elementary special case of Schiffer’s method
of boundary variation [16].

2 Proof of Theorem 1

We begin relating the Taylor coefficients cN(L, K, f) of

(

1

f ′(z)

)L (

z

f(z)

)K

to the Taylor coefficients dn(L, K, N, f) defined by

F ′(w)L+1

(

F (w)

w

)K−N−1

= 1 +
∞
∑

n=1

dn(L, K, N, f) wn, (13)

where F is the inverse function to f ∈ S.

Lemma 3. Let f ∈ S and F be the inverse function of f . For any real numbers
L and K and any positive integer N let the coefficients dn(L, K, N, f) be defined by
(13). Then

cN(L, K, f) = dN(L, K, N, f).

In particular, cN(−1, N + 1, f) = 0 for any N ≥ 1.

Proof. By Koebe’s One–Quarter Theorem, f(D) contains the disk |w| < 1/4, so
the circle Γ of radius 1/8, say, centered at the origin belongs to f(D) and Cauchy’s
integral formula gives

dN(L, K, N, f) =
1

2πi

∫

Γ

F ′(w)L+1F (w)K−N−1

wK
dw

=
1

2πi

∫

F (Γ)

(

1

f ′(z)

)L (

z

f(z)

)K
1

zN+1
dz = cN(L, K, f).
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In the next step we apply Löwner’s theory to find the sharp upper bound for the
coefficients dn(L, K, N, f). The method goes back to Löwner’s paper [12] and has
been used before in [11], [17] and [13].

Theorem 4. Let K and L be real numbers with L ≥ −1 and let N be a positive
integer with 1 ≤ N ≤ 2L + K + 1 such that either L 6= −1 or K − N − 1 6= 0.
Moreover, let f ∈ S and dn(L, K, N, f) be defined as in Lemma 3. Then the sharp
estimate

|dn(L, K, N, f)| ≤ |dn(L, K, N, k)|

holds for any positive integer n. Except for the cases 2L + K + 1 = N and n = 1 or
n = 2 equality occurs if and only if f is the Koebe function or one of its rotations.

Proof. We first recall some basics from Löwner’s theory (see [12, 14] for details).
Every f ∈ S can be embedded in a normalized subordination chain f(z, t), 0 ≤ t <
∞, with f(z, 0) = f(z). This means z 7→ f(z, t) = etz + · · · is univalent in D and
f(D, t) ⊆ f(D, τ) for 0 ≤ t ≤ τ < ∞, i.e., the image domains f(D, t) are increasing.
Since f(z, t) is absolutely continuous in t ≥ 0 for each z ∈ D, (see [14, Theorem
6.2]), the function

p(z, t) :=

∂f(z, t)

∂t

z
∂f(z, t)

∂z

=
∞
∑

n=0

pn(t)zn, p0(t) = 1, (14)

is an analytic function of z ∈ D for a.e. t ≥ 0, and a measurable function of t
in [0,∞) for each fixed z ∈ D. Moreover, Re p(z, t) ≥ 0. This is geometrically
obvious from (14) since the image domains of the functions f(z, t) are increasing.
Consequently, z 7→ p(z, t) belongs to the class of normalized analytic functions with
positive real part, so |pn(t)| ≤ 2 for every n ≥ 1. If, moreover, p1(t) = 2 (a.e.), then
pn(t) = 2 (a.e.) for every n ≥ 1. The only normalized subordination chain in which
the Koebe function f(z) = k(z) can be embedded is f(z, t) = etk(z), so we have
p(z, t) = (1 + z)/(1 − z) in this case.

Now, let w 7→ Φ(w, t) be the inverse function of z 7→ f−1(f(z), t). Then (14)
implies

∂Φ(w, t)

∂t
= w

∂Φ(w, t)

∂w
p(w, t), (15)

for every w in some neighborhood of w = 0 (depending on t) and

Φ(w, 0) = w, F (w) = lim
t→∞

Φ(e−tw, t).

Using the differential equation (15) the function

Q(w, t) =

(

∂Φ(w, t)

∂w

)L+1 (
Φ(w, t)

w

)K−N−1

=
∞
∑

n=0

Dn(t)wn

is easily seen to be a solution of the partial differential equation

∂Q(w, t)

∂t
=

(

(L + 1)
∂(wp(w, t))

∂w
+ (K − N − 1)p(w, t)

)

Q(w, t)

+
∂Q(w, t)

∂w
wp(w, t),



A Generalization of Bertilsson’s Theorem 59

that is,

∞
∑

n=0

dDn(t)

dt
wn =

∞
∑

n=0





n
∑

j=0

((L + 1)(n − j + 1) + j − N + K − 1)Dj(t)pn−j(t)



wn.

This yields the following initial value problems for the Taylor coefficients Dn(t):

dD0(t)

dt
= (L − N + K)D0(t), D0(0) = 1,

and

dDn(t)

dt
= (L + n − N + K)Dn(t)

+
n−1
∑

j=0

((L + 1)(n − j + 1) + j − N + K − 1)Dj(t)pn−j(t), Dn(0) = 0,

for n = 1, 2, . . . . These initial value problems have the solutions

D0(t) = e(L−N+K)t,

Dn(t) =
∫ t

0
e(L+n−N+K)(t−τ)

n−1
∑

j=0

((L+1)(n− j +1)+ j −N +K − 1)Dj(τ)pn−j(τ) dτ,

for n = 1, 2, . . . . In particular, D1(t) ≡ 0 if N = 2L + K + 1.

We note

(L+1)(n− j +1)+ j−N +K −1 ≥ 2(L+1)+ j−N +K−1 ≥ 2L+K +1−N ≥ 0

for 0 ≤ j ≤ n − 1, L ≥ −1 and 1 ≤ N ≤ 2L + K + 1. Moreover, equality occurs
if and only if n = 1 and 2L + K + 1 = N . It follows ReDn(t) is maximized for
fixed t ≥ 0, if we choose Dj(τ) real and maximal for every j = 1, . . . , n − 1 and
a.e. τ ∈ [0, t], and also pj(τ) = 2 for every j = 1, . . . , n and a.e. τ ∈ [0, t]. These
conditions are also necessary for ReDn(t) to be maximal except N = 2L + K = 1
and either n = 1 or n = 2.

In view of the relation

dn(L, K, N, f) = lim
t→∞

e−t(L+n−N+K)Dn(t)

we conclude the functional f 7→ Re dn(L, K, N, f) attains its maximal value on the
set S if

p(w, t) =
1 + w

1 − w
, (16)

that is, if f(z) = k(z). Only in the cases 2L+K +1 = N and either n = 1 or n = 2,
p(w, t) doesn’t have to be of the form (16).

Now the assertion of Theorem 4 follows immediately from the fact that a function
F ∈ S maximizes |dn(L, K, N, f)|, if and only if a suitable rotation e−iθF (eiθz) ∈ S,
θ ∈ R, maximizes Re dn(L, K, N, f).

After this preparations, Theorem 1 is an immediate consequence of Lemma 3
and Theorem 4.
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Remarks.

(a) In the first exceptional case, 2L+K = 0 and N = 1, of Theorem 1, the estimate
(7) is trivial since c1(L, K, f) = 0 for every f ∈ S. We next consider the second
exceptional case 2L + K = 1 and N = 1. Now, c2(L, K, f) = (L + 1)(a2

2 − a3)
for every f(z) = z + a2z

2 + a3z
3 + · · · in S. Hence, if L = −1, then again (7)

is trivially satisfied. If L > −1, then equality occurs in (7) if and only if f is
a rotation of

G(z) =
z

1 + cz + z2
,

where c is a real number with −2 ≤ c ≤ 2. This is classical and may be found
in [10, Chapter 2]. Note in Exercise 1 of [9, Chapter 2] there is the erroneous
statement that equality holds only if f is a rotation of the Koebe function.
Finally, the third exceptional case, L = −1 and N = K − 1, of Theorem 1 is
again trivial since cN (L, K, f) = 0 for every f ∈ S by Lemma 3.

(b) Our method of proof can also be used to consider the cases L < −1, K > 0.
In these cases one is lead to the conclusion the Taylor coefficients cN (L, K, f)
are maximized by the Koebe function if N ≤ −1 − K/L.

3 Proof of Theorem 2

If the inequality (7) holds, then the Koebe function

k0(z) =
z

(1 + z)2

maximizes the functional
φ(f) = |cN(L, K, f)|2

on the set S. We produce a one–parameter family of neighboring functions

kr(z) = k0(z) +
r2

4

(

1 − eiγ
) k0(z)2

η2(η − k0(z))
+ O(r3), r → 0, (17)

with γ ∈ R and η > 1/4 as follows.

Let ϕ(u) = u−u−1+. . . be the inverse of the Joukowski transform Ψ(ξ) = ξ+1/ξ,
which maps |ξ| > 1 conformally onto C \ [−2, 2]. The rotation h(ξ) = ξ + eiγ/ξ,
γ ∈ R, of the Joukowski function maps |ξ| > 1 conformally onto C minus a line
segment of length 4. We deduce that for fixed η > 1/4 and fixed 0 < r < η − 1/4
the function

Hr(w) = h
(

ϕ
(

2

r
(w − η)

))

=
2

r
(w − η) −

r

2

1 − eiγ

w − η
+ O(r2)

is univalent on k0(D) = C \ [1/4,∞). Finally, we normalize

Gr(w) =
Hr(w) − Hr(0)

H ′
r(0)

= w −
r2

4

(

1 − eiγ
) w2

η2(w − η)
+ O(r3),

and set kr(z) = Gr(k0(z)) to obtain the variation (17).
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Next, a calculation using (17) gives

cN(L, K, kr) = cN(L, K, k0) −
1 − eiγ

4η3
δN(η)r2 + O(r3), (18)

where δN(η) is the Nth Taylor coefficient of the function
(

1

k′
0(z)

)L (

z

k0(z)

)K
η k0(z)

(η − k0(z))2 [η (K + 2L) − k0(z)(K + L)] . (19)

From (18) we obtain

|cN(L, K, kr)|
2 = |cN (L, K, k0)|

2 −
1

2
Re

{

1 − eiγ

η3
r2cN(L, K, k0)δN(η)

}

+ O(r3).

Now k0 maximizes |cN(L, K, f)|2 on S. This implies

Re

{

1 − eiγ

η3
cN (L, K, k0)δN (η)

}

≥ 0, γ ∈ R, η > 1/4,

or
cN(L, K, k0)δN(k0(ξ)) ≥ 0 (20)

for every |ξ| = 1.

Since the identity (19) may be written for η = k0(ξ) as

(L + K)tξ(z)

(

1

k′
0(z)

)L (

z

k0(z)

)K

+ Lzt′ξ(z)

(

1

k′
0(z)

)L+1 (
z

k0(z)

)K−1

,

with

tξ(z) =
z

1 − (ξ + ξ)z + z2
=

∞
∑

j=1

sin(j u)

sin u
zj , ξ = eiu,

and using (10), we see that (20) reduces to the fact that (12) is non–negative for
0 ≤ u ≤ π.

Remarks. We take briefly a closer look at Theorem 1 and Theorem 2 in the case
N = 2 and L ≥ −1. It follows from these two results that

|b2(K, f)| ≤ |b2(K, k)| (21)

for every f ∈ S if and only if K ≥ 1, (see also [13]), that

|a2(L, f)| ≤ |a2(L, k)| (22)

for every f ∈ S if and only if L ≥ 1/2, and also that

|c2(L, K, f)| ≤ |c2(L, K, k)| (23)

for every f ∈ S if K + 2L ≥ 1. In particular, if K = 1/2 and L = 1/4, then
K + 2L ≥ 1, so (23) holds for every f ∈ S, but (21) and (22) are not fulfilled for
any f ∈ S. We see that in the sum

c2(L, K, f) = b2(K, f) + b1(K, f)a1(L, f) + a2(L, f)

not all of the individual terms are maximized by the Koebe function, but the sum
itself is. Theorem 2 also implies that (23) can only hold if either K + 2L ≥ 1 or
if K + 3L > 0 and (K + 2L)2 + K + 4L < 0. In particular, (23) fails to hold for
K + 3L < 0. Finally we note that a similar analysis can be carried out for N > 2
or L < −1.
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