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Abstract

We study how the comultiplication on a Hopf algebra can be modified in such
a way that the new comultiplication together with the original multiplication
and a suitable antipode gives a new Hopf algebra. To this end, we have to
study Harrison type cocycles, and it turns out that there is a relation with the
Yang-Baxter equation. The construction is applied to deform the coalgebra
structure on the tensor product of two bialgebras using a copairing. This
new bialgebra can be viewed as a double crosscoproduct. It is also shown
that a crossed coproduct over an inner comeasuring is isomorphic to a twisted
coproduct.

Introduction

Let H be a bialgebra over a field k. If σ : H ⊗H → k is a Sweedler cocycle, then
we can define a new multiplication on H as follows:

a.b =
∑

σ(a(1)⊗ b(1))a(2)b(2)σ
−1(a(3) ⊗ b(3))

In [7], Doi shows that H, with this new multiplication and the original comultiplica-
tion is a bialgebra. This construction was further investigated by Doi and Takeuchi
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in [8], where it was applied to alterate the algebra structure on A ⊗ H, where A
and H are both bialgebras, and where a skew pairing (a Hopf pairing in the sense of
[2]) is given. They also show that the new Hopf algebra obtained after this algebra
deformation is a double crossproduct in the sense of Majid([10]).
In this note, we discuss the dual situation. How can we change the comultiplication
on H such that the newly obtained coalgebra, together with the original multipli-
cation (and a suitable antipode in case H is a Hopf algebra) is a new bialgebra? It
will turn out that we need Harrison cocycles rather than Sweedler cocycles. These
are invertible elements from H ⊗ H satisfying the cocycle condition (CH). In the
case where H is commutative, these cocycles have been considered before, we cite
[14] to justify the name Harrison cocycle. We are able to show the following: if
R =

∑
R1 ⊗R2 is a Harrison cocycle with inverse U =

∑
U1 ⊗ U2, then the comul-

tiplication rule

∆(R)(h) =
∑

R1h(1)U
1 ⊗R2h(2)U

2

makes H into a Hopf algebra. Moreover, if H is cocommutative, then we can define
a triangular structure on the new Hopf algebra H(R). Our results are dual to those
obtained by Doi (cf. [7, Theorem 1.6]), in fact, if H is finite dimensional, then they
are equivalent.
In the second part of Section 2, we investigate the relationship between Harrison co-
cycles and quasitriangular Hopf algebras: we can show that an invertible R ∈ H⊗H
that satisfies (QT1) and (QT3) is a Harrison cocycle if and only if it is a solution
of the Yang-Baxter equation, cf. Proposition 2.5. More specifically, if (H, R) is qu-
asitriangular, then R is a Harrison cocycle. In Theorem 2.7, we present a sufficient
condition for the Hopf algebras H(R) and H(W ) for two different cocycles R and W
to be isomorphic.
In Section 3, we introduce copairings (B, H, N) of bialgebras, and we apply the
coalgebra deformation from Section 2 to B ⊗ H. We then obtain a new bialgebra,
denoted by B >/N H. Some interesting applications for quasitriangular bialgebras
are given. Most of them are dual to results from [8].
In [16, Proposition 11], Radford gives a characterization of the dual of the Drin-
fel’d double suggesting a general definition of a ”product” of comodule algebras,
dual to the definition of the product of module coalgebras that was called ”Double
Crossproduct” in [10]. However he gives no definition or details about it. In Section
4, we develop the construction of this new ”product”, and we call it the double
crosscoproduct. This completes the picture of different kinds of products of Hopf
algebras (see [10, 11]). As an application, we show that the bialgebra B >/N H
constructed in the second section is a double crosscoproduct of B and H.
If R is a Harrison cocycle, then one can change the comultiplication in another way,
by putting R∆(h) = R∆(h). This makes H into an H-module coalgebra. A gener-
alization of this construction is the following: if C is a coalgebra, ν : C → C⊗H is
a comeasuring, and α : C → H⊗H is a map satisfying the three cocycle conditions
(CC), (NC) and (TC), then we can consider the crossed coproduct C >/α H. Our
main result (Theorem 5.1) is now that a crossed coproduct over an inner comeasur-
ing is isomorphic to a twisted coproduct, that is, a crossed coproduct over a trivial
comeasuring.
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1 Preliminaries

Let k be a field. Unless specified otherwise, all vector spaces, algebras, coalgebras,
bialgebras and Hopf algebras that we consider are over k. ⊗ and Hom will mean ⊗k
and Homk. For a coalgebra C , we will use Sweedler’s Σ-notation, that is, ∆(c) =∑

c(1) ⊗ c(2), (I ⊗ ∆)∆(c) =
∑

c(1) ⊗ c(2) ⊗ c(3), etc. We will also use the Sweedler
notation for left and right C-comodules: ρM (m) =

∑
m[0]⊗m[1] for any m in a right

C-comodule M , and ρN (n) =
∑

n[−1] ⊗ n[0] for any n in a left C-comodule N .
If V and W are two vector spaces, τ : V ⊗W → W ⊗ V will denote the switch
map, that is, τ (v ⊗ w) = w ⊗ v for all v ∈ V and w ∈ W .
Let H be a Hopf algebra. For an element R ∈ H ⊗ H, we use the notation R =∑

R1 ⊗ R2. We will then also write

R12 =
∑

R1 ⊗ R2 ⊗ 1, R23 =
∑

1⊗ R1 ⊗ R2

and so on.
Recall that a right H-comodule algebra is an algebra A which is also a right H-
comodule, such that the structure map ρA : A→ A⊗H is an algebra map. A right
H-module coalgebra is a coalgebra C that is also a right H-module such that the
structure map C ⊗ H−→C : c ⊗ h 7→ ch is a coalgebra map. A left H-comodule
coalgebra is a coalgebra C that is also a left H-comodule such that the comodule
structure map ρC : C → H⊗C : c 7→ ∑

c[−1]⊗ c[0] is a coalgebra map. This means
that ∑

c[−1] ⊗∆(c[0]) =
∑

c(1)[−1]
c(2)[−1]

⊗ c(1)[0]
⊗ c(2)[0]

and ∑
ε(c[0])c[−1] = ε(c)1H

for all c ∈ C .
A quasitriangular Hopf algebra is a pair (H, R), where H is a Hopf algebra and
R ∈ H ⊗H such that the following 5 conditions are fulfilled:
(QT1)

∑
∆(R1)⊗ R2 = R13R23

(QT2)
∑

ε(R1)R2 = 1
(QT3)

∑
R1 ⊗∆(R2) = R13R12

(QT4)
∑

R1ε(R2) = 1
(QT5) ∆cop(h)R = R∆(h), for all h ∈ H.
Recall from [15] (see also [13, p. 180]) that (H, R) is quasitriangular if and only if
R is invertible and conditions (QT1), (QT3) and (QT5) hold. We call a quasitrian-
gular Hopf algebra triangular if R−1 = τ (R).
Recall from [7] that a braided bialgebra is a bialgebra H together a convolution
invertible bilinear form σ : H ⊗H → k satisfying the following conditions:
(BB1)

∑
σ(x(1), y(1))x(2)y(2) =

∑
y(1)x(1)σ(x(2), y(2))

(BB2) σ(xy, z) =
∑

σ(x, z(1))σ(y, z(2))
(BB3) σ(x, yz) =

∑
σ(x(1), z)σ(x(2), y) for all x, y, z ∈ H.

As a consequence of the above conditions we have that:
(BB4) σ(x, 1H) = σ(1H , x) = ε(x) for all x ∈ H.
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We say that a Hopf algebra H coacts weakly on a coalgebra C if there exists a
k-linear map C−→H ⊗ C : c 7→ ∑

c[−1] ⊗ c[0] such that the following conditions
hold:
(W1)

∑
c[−1] ⊗∆(c[0]) =

∑
c(1)[−1]

c(2)[−1]
⊗ c(1)[0]

⊗ c(2)[0]

(W2)
∑

ε(c[0])c[−1] = ε(c)1H
(W3)

∑
ε(c[−1])c[0] = c

for all c ∈ C . Suppose that H coacts weakly on C , and let α : C−→H ⊗H : c 7→
α1(c)⊗α2(c) be a k-linear map for which the following three conditions hold for all
c ∈ C :
(CC)

∑
c(1)[−1]

α1(c(2))⊗ α1(c(1)[0]
)α2(c(2))(1) ⊗ α2(c(1)[0]

)α2(c(2))(2)

=
∑

α1(c(1))α1(c(2))(1) ⊗ α2(c(1))α1(c(2))(2) ⊗ α2(c(2))
(cocycle condition)

(NC) (I ⊗ ε)α = (ε⊗ I)α = ηH⊗H ◦ εC
(normal cocycle condition)

(TC)
∑

c(1)[−2]
α1(c(2))⊗ c(1)[−1]

α2(c(2))⊗ c(1)[0]

=
∑

α1(c(1))c(2)[−1](1)
⊗ α2(c(1))c(2)[−1](2)

⊗ c(2)[0]

(twisted comodule condition)

The crossed coproduct C >/α H of C , H and α is the k-vector space C ⊗H with
the following comultiplication and counit:

∆α(c >/α h) =
∑(

c(1) >/α c(2)[−1]
α1(c(3))h(1)

)
⊗
(
c(2)[0]

>/α α2(c(3))h(2)

)
(1)

εα(c >/α h) = εC(c)εH(h) (2)

for all c ∈ C and h ∈ H. It may be verified that the comultiplication ∆α is
coassociative, and that εα is a counit map, we refer to [6] for details. If the cocycle
α is trivial, that is, α(c) = ε(c)1H ⊗ 1H , the condition (TC) tells us that C is a
left H-comodule coalgebra, and in this case C >/α H is the usual smash coproduct
C >/ H. If the weak coaction C → C ⊗ H is trivial, that is, ρ(c) = 1H ⊗ c for
every c ∈ C , then we call the crossed coproduct a twisted coproduct. We then write
Cα[H] = C >/α H. The comultiplication formula for a twisted coproduct is less
complicated: it is easy to see that equation (1) takes the following form:

∆Cα[H ](c >/α h) =
∑(

c(1) >/α α1(c(3))h(1)

)
⊗
(
c(2) >/α α2(c(3))h(2)

)
(3)

Observe that if the cocycle α and the weak coaction are both trivial, then crossed
coproduct simplifies to the usual tensorproduct C ⊗H of the coalgebras C and H.

2 Modifying the comultiplication on a bialgebra

Let H be a bialgebra, and let R ∈ H ⊗H be an invertible element. In the sequel,
we will use the following notations: R =

∑
R1 ⊗ R2 =

∑
r1 ⊗ r2 = r, R−1 = U =∑

U1 ⊗ U2 =
∑

u1 ⊗ u2 = u and B = τ (R) =
∑

R2 ⊗ R1.
Let H(R) be equal to H as a k-algebra, with comultiplication ∆(R) given by

∆(R)(h) = R∆(h)R−1 =
∑

R1h(1)U
1 ⊗ R2h(2)U

2 (4)



Coalgebra deformations of bialgebras, copairings of Hopf algebras 651

for all h ∈ H. The starting point for this Section is the following question: When is
H(R) a bialgebra? We call R ∈ H ⊗H a Harrison cocycle if
(CH)

∑
R1r1

(1) ⊗R2r1
(2) ⊗ r2 =

∑
R1 ⊗ r1R2

(1) ⊗ r2R2
(2)

Examples 2.1. 1. Let H be a Hopf algebra. Then any cleft H-coextension of k
provides a Harrison cocycle for H.
Cleft coextensions have been introduced in [9]. In [5], where it is shown that for
any right H-module coalgebra C , the H-coextension C/C (where C = C/CH+) is
cleft if and only if C is isomorphic to a crossed coproduct C >/α H with invertible
cocycle α : C → H ⊗H. If C = k, then a cleft coextension C/k produces a cocycle
α : k → H ⊗H, and α(1) is a Harrison cocycle.
2. If (H, R) is a quasitriangular Hopf algebra, then R is a Harrison cocycle of H
(see Proposition 2.5).

Lemma 2.2. Let H be a bialgebra, and R ∈ H ⊗ H an invertible cocycle, and let
U be the inverse of R. Then

1.
∑

ε(R1)ε(R2)ε(U1)ε(U2) = 1;

2.
∑

R1ε(R2) =
∑

ε(R1)R2 =
∑

ε(R1)ε(R2)1H ;

3.
∑

U1
(1)u

1 ⊗ U1
(2)u

2 ⊗ U2 =
∑

U1 ⊗ U2
(1)u

1 ⊗ U2
(2)u

2;

4.
∑

U1ε(U2) =
∑

ε(U1)U2 =
∑

ε(U1)ε(U2)1H ;

5. If H has an antipode S, then α =
∑

R1S(R2) is an invertible element of H
and α−1 =

∑
S(U1)U2;

6. If H is cocommutative, and B = τ (R), then

• U13B23 =
∑

r1
(2)U

1 ⊗ r2U2
(1) ⊗ r1

(1)U
2
(2);

• U13B12 =
∑

r2
(2)U

1
(1) ⊗ r1U1

(2) ⊗ r2
(1)U

2.

Proof. 1) Apply ε⊗ ε to RU = 1⊗ 1.
2) First we apply I ⊗ ε⊗ I to both sides of (CH). We obtain∑

R1 ⊗ ε(R2)1H ⊗ 1H =
∑

1H ⊗ ε(r1)1H ⊗ r2 (5)

and it follows that
∑

R1ε(R2) =
∑

ε(R1)R2. Applying I ⊗ ε ⊗ ε to (5) we obtain
that

∑
R1ε(R2) = ε(R1)ε(R2)1H .

3) The left hand side of this equation is the inverse of the left hand side of (CH);
the right hand side is the inverse of the right hand side of (CH).
4) follows from 3) in exactly the same way as 2) follows from (CH).
5) We will show that ∑

R1S(R2)S(U1)U2 = 1 (6)

Left multiplication both sides of (CH) by U23, and application of mH ◦ (I ⊗ S ⊗ I)
to both sides yields:∑

R1r1
(1)S(r1

(2))S(R2)S(U1)U2r2 =
∑

R1S(R2
(1))R

2
(2)
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or (use 2))∑
R1S(R2)S(U1)U2ε(r1)r2 =

∑
R1ε(R2) =

∑
ε(R1)ε(R2)1H

If we multiply both sides by
∑

ε(u1)ε(u2), then we obtain (6). A similar computa-
tion, now using 3) instead of (CH), shows that

∑
S(U1)U2R1S(R2) = 1.

6) The first formula is equivalent to (multiply both sides by R13):

B23 =
∑

R1r1
(2)U

1 ⊗ r2U2
(1) ⊗R2r1

(1)U
2
(2)

We now easily compute that∑
R1r1

(2)U
1 ⊗ r2U2

(1) ⊗ R2r1
(1)U

2
(2)

=
∑

(R1r1
(2) ⊗ r2 ⊗ R2r1

(1))(U
1 ⊗ U2

(1) ⊗ U2
(2))

=
∑

(R1r1
(1) ⊗ r2 ⊗ R2r1

(2))(U
1 ⊗ U2

(2) ⊗ U2
(1))

(H is cocommutative)

=
∑

(R1 ⊗ r2R2
(2) ⊗ r1R2

(1))(U
1 ⊗ U2

(2) ⊗ U2
(1))

(using(CH))

=
∑

1⊗ r2 ⊗ r1 = B23

The second formula follows in a similar way. �

The following result may be found in [17]. For completeness sake, we give a brief
account of the proof.

Theorem 2.3. Let H be a bialgebra, R ∈ H ⊗H an invertible cocycle.Then:

1. H(R) is a bialgebra.

2. If H has an antipode S and α =
∑

R1S(R2) then H(R) is a Hopf algebra with
antipode SR given by the formula

SR(h) = αS(h)α−1

3. If H is a cocommutative Hopf algebra and R̃ = τ (R)R−1 then (H(R), R̃) is a
triangular Hopf algebra.

Proof. 1) Using 1), 2) and 4) in Lemma 2.2, we easily obtain that∑
R1h(1)U

1ε(R2h(2)U
2) =

∑
ε(R1h(1)U

1)R2h(2)U
2 = h

Using (CH) and 3) in Lemma 2.2, we find that (I ⊗∆(R))∆(R)(h)

=
∑(

R1 ⊗ r1R2
(1) ⊗ r2R2

(2)

)(
h(1) ⊗ h(2) ⊗ h(3)

)(
U1 ⊗ U2

(1)u
1 ⊗ U2

(2)u
2
)

=
∑(

r1R1
(1) ⊗ r2R2

(1) ⊗ R2
)(

h(1) ⊗ h(2) ⊗ h(3)

)(
U1

(1)u
1 ⊗ U1

(2)u
2 ⊗ U2

)
= (∆(R) ⊗ I)∆(R)(h)
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and it follows that ∆(R) is coassociative. It is clear that ∆(R) is an algebra map,
hence H(R) is a bialgebra.
2) For all h ∈ H, we have that∑

SR(R1h(1)U
1)R2h(2)U

2 =
∑

r1S(u1R1h(1)U
1r2)u2R2h(2)U

2

=
∑

r1S(r2)S(U1)S(h(1))S(R1)S(u1)u2R2h(2)U
2

=
∑

r1S(r2)S(U1)S(h(1))S(u1R1)u2R2h(2)U
2

=
∑

r1S(r2)S(U1)S(h(1))h(2)U
2

=
∑

r1S(r2)S(U1)U2ε(h) = ε(h)

where we used 5) of Lemma 2.2 in the last step. A similar computation shows that
SR is also the right convolution inverse of the identity.
3) Since H is cocommutative, S2 = IH, and therefore

S2
R(h) = SR(αS(h)α−1) = αS(α−1)S2(h)S(α)α−1 = βhβ−1

where β = αS(α−1). Therefore the antipode SR is bijective. Write B = τ (R). A
straightforward computation shows that

R̃13R̃23 =
∑

B13(U1 ⊗ r2 ⊗ U1r1)u23 = B13U13B23U23

On the other hand

(∆(R) ⊗ I)(R̃) =
∑

(r1R2
(1) ⊗ r2R2

(2) ⊗ R1)(U1
(1)u

1 ⊗ U1
(2)u

2 ⊗ U2)

=
∑

(R2r1
(2) ⊗ r2 ⊗ R1r1

(1))(U
1 ⊗ U2

(1)u
1 ⊗ U2

(2)u
2)

(by (CH) and 3) from lemma 2.2)

= B13(
∑

r1
(2)U

1 ⊗ r2U2
(1) ⊗ r1

(1)U
2
(2))U

23

= B13U13B23U23 (by 6) from lemma 2.2)

and (QT1) holds. A similar argument shows that (QT3) holds. Using the fact that
H is cocommutative, we obtain

R̃∆(R)(h)R̃−1 = τ (R)R−1R∆(h)R−1Rτ (R−1)

= τ (R)∆(h)τ (R−1) = τ (∆(R)(h))

and (QT5) follows. Finally observe that R̃−1 = τ (R̃). Indeed

R̃τ (R̃) = τ (R)R−1Rτ (R−1) = τ (R)τ (R−1) = 1⊗ 1

and this finishes our proof. �

Example 2.4. If (H, R) is a quasitriangular Hopf algebra, then H(R) = Hcop. In-
deed, it follows from (QT5) that R∆(x)R−1 = ∆cop(x).

In the following Proposition, we will present an important class of cocycles.
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Proposition 2.5. Let H be a Hopf algebra and R ∈ H ⊗ H satisfying (QT1) and
(QT3). Then R is a Harrison cocycle if and only if R is a solution of the Yang-
Baxter equation. In particular, if R satisfies (QT1), (QT3) and (QT5) (this is
the case when (H, R) is quasitriangular), then R is a solution of the Yang-Baxter
equation (cf. [16]), and therefore a Harrison cocycle.

Proof. Multiply (QT1) on the left side by R12. This gives∑
R1r1

(1) ⊗ R2r1
(2) ⊗ r2 = R12R13R23

Multiplying (QT3) on the left side by R23, we obtain∑
R1 ⊗ r1R2

(1) ⊗ r2R2
(2) = R23R13R12

Equality of two left hand sides is therefore equivalent to equality of the right hand-
side, so R is a solution of the Yang-Baxter equation if and only if R is a Harrison
cocycle. �

Now let R ∈ H⊗H be an invertible cocycle. We define a new comultiplication on
H as follows. Let RH = H, as a vector space, and define R∆ : RH → RH ⊗ RH by

R∆(h) := R∆(h), for all h ∈ H. We say that the cocycle R is normal if
∑

ε(R1)R2 =
1H . From 2) of lemma 2.2 it then follows that

∑
R1ε(R2) = 1H .

Lemma 2.6. Let H be a Hopf algebra and let R ∈ H ⊗ H be a normal cocycle.
Then RH is a right H-module coalgebra with R∆(h) = R∆(h), and with H-action
given by right multiplication.

Proof. We only prove that RH = H is a coalgebra, as the rest is obvious. We have:

(I ⊗R ∆)R∆(h) =
∑

(R1 ⊗ r1R2
(1) ⊗ r2R2

(2))(h(1) ⊗ h(2) ⊗ h(3))

=
∑

(R1r1
(1)h(1) ⊗ R2r1

(2)h(2) ⊗ r2h(3))

(by (CH))

=
∑

R∆(r1h(1))⊗ r2h(2) = (R∆⊗ I)R∆(h)

i.e. R∆ is coassociative. �

Theorem 2.7. Let H be a Hopf algebra, and consider two normal invertible cocycles
R, W ∈ H ⊗H. The following statements are equivalent:

1. RH ∼= WH as right H-module coalgebras;

2. there exists an invertible x ∈ H such that

W = (x−1 ⊗ x−1)R∆(x).

In this case, the Hopf algebras H(R) and H(W ) are isomorphic.
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Proof. 1) ⇒ 2). Let ϕ : WH → RH be an isomorphism of right H-module coalge-
bras, and take x = ϕ(1). We have

1 = ϕ−1(ϕ(1)) = ϕ−1(x) = ϕ−1(1)x

and
1 = ϕ(ϕ−1(1)) = xϕ−1(1)

and therefore x is invertible. ϕ and ϕ−1 are H-linear, and so we have ϕ(h) = xh
and ϕ−1(h) = x−1h for all h ∈ H.
Also ϕ−1 is an H-coalgebra map and therefore

(W∆ ◦ ϕ−1)(1) = ((ϕ−1 ⊗ ϕ−1) ◦ R∆)(1)

This is equivalent to

W∆(x−1) =
∑

ϕ−1(R1)⊗ ϕ−1(R2)

or
W∆(x−1) = (x−1 ⊗ x−1)R

or
W = (x−1 ⊗ x−1)R∆(x)

2) ⇒ 1). Suppose that W = (x−1 ⊗ x−1)R∆(x) for some invertible x ∈ H. We
define ϕ : WH → RH by

ϕ(h) = xh

for all h ∈ H. It is clear that ϕ is right H-linear, and it is not difficult to see that
ϕ is a coalgebra map. Indeed, for all h ∈ H, we have that(

(ϕ⊗ ϕ) ◦ W∆
)
(h) = (ϕ⊗ ϕ)(W∆(h))

= (ϕ⊗ ϕ)
∑

(x−1R1x(1)h(1) ⊗ x−1R2x(2)h(2))

=
∑

R1x(1)h(1) ⊗ R2x(2)h(2)

=
∑

R∆(xh) = R∆(xh) = (R∆ ◦ ϕ)(h)

The inverse of ϕ is given by the formula ϕ−1(h) = x−1h, so ϕ is an isomorphism of
right H-comodule algebras.
Let us finally show that H(R) and H(W ) are isomorphic as Hopf algebras. Define
ψ : H(R) → H(W ) by ψ(h) = x−1hx for all h ∈ H. It is clear that ψ is an algebra
map. It is also a coalgebra map: for all h ∈ H, we have

(∆(W ) ◦ ψ)(h) = W∆(x−1hx)W−1

= (x−1 ⊗ x−1)R∆(x)∆(x−1)∆(h)∆(x)∆(x−1)R−1(x⊗ x)

= (x−1 ⊗ x−1)R∆(h)R−1(x⊗ x)

and

((ψ ⊗ ψ) ◦∆(R))(h) =
∑

ψ(R1h(1)U
1)⊗ ψ(R2h(2)U

2)

=
∑

x−1R1h(1)U
1x⊗ x−1R2h(2)U

2x

= (∆(W ) ◦ ψ)(h)
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ψ is bijective, its inverse is given by ψ−1(h) = xhx−1 for all h ∈ H. We therefore have
that ψ is an isomorphism of bialgebras. Let us show that ψ respects the antipode.
For all h ∈ H, we have

SW (h) =
∑

x−1R1x(1)S(x−1
(1)U

1xx−1hxx−1R2x(2))x
−1
(2)U

2x

=
∑

x−1R1x(1)S(x(2))S(R2)S(h)S(U1)S(x−1
(1))x

−1
(2)U

2x

=
∑

x−1R1ε(x)S(U1hR2)ε(x−1)U2x

= x−1S(R)(h)x = ψ(S(R)(h))

and this finishes our proof. �

Remarks 2.8. 1) If x is an invertible element of H, then the inner automorphism
ϕx : H → H : h 7→ xhx−1 is not necesarry a Hopf algebra automorphism. The last
statement of Theorem 2.7 shows us how we can modify the comultiplication on H
such that ϕx becomes a Hopf algebra isomorphism.
2) In the case where H is commutative, the equivalence a)⇔ b) can also be obtained
from a long exact sequence of cohomology groups, we refer to [4].

3 Bialgebra Copairings

Let B and H two bialgebras. We say that (B, H, N) is a bialgebra copairing if
N =

∑
N1 ⊗ N2 ∈ B ⊗ H (we will also denote N = n = ν) satisfies the following

properties:
(CP1)

∑
N1

(1) ⊗N1
(2) ⊗N2 =

∑
N1 ⊗ n1 ⊗N2n2

(CP2)
∑

N1 ⊗N2
(1) ⊗N2

(2) =
∑

N1n1 ⊗ n2 ⊗N2

(CP3)
∑

ε(N1)N2 = 1H

(CP4)
∑

N1ε(N2) = 1B

Remark 3.1. If N is invertible, then (CP3) follows from (CP1), and (CP4) from
(CP2). Indeed, if we denote x =

∑
ε(N1)N2, then x is an invertible idempotent, so

x = 1.

Examples 3.2. 1. Suppose that (H, R) is a quasitriangular bialgebra. Then
(H, H, R) is a bialgebra copairing.
2. Let H be a finite dimensional bialgebra with basis (ei)i=1,··· ,n, and let (e∗i )i=1,··· ,n
be the dual basis of H∗. Then (H, H∗,

∑
i=1,n ei ⊗ e∗i ) is a bialgebra copairing.

3. Any skew pairing of bialgebras (B, H, σ) (in the sense of [8]) with B and H finite
dimensional provides a bialgebra copairing (B∗, H∗, σ∗(1)).

Proposition 3.3. Let (B, H, N) be a bialgebra copairing with invertible N . Let
A = B ⊗ H and R =

∑
(1B ⊗ N2) ⊗ (N1 ⊗ 1H) ∈ A ⊗ A. Then R is an invertible

Harrison cocycle of A⊗ A. If M =
∑

M1 ⊗M2 is the inverse of N , then then the
inverse of R is R−1 =

∑
(1B ⊗M2)⊗ (M1 ⊗ 1H).
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Proof. It is clear that
∑

(1B ⊗M2)⊗ (M1 ⊗ 1H) is an inverse of R. Now∑
R1r1

(1) ⊗R2r1
(2) ⊗ r2

=
∑

(1B ⊗N2)(1B ⊗ n2)(1) ⊗ (N1 ⊗ 1H)(1B ⊗ n2)(2) ⊗ (n1 ⊗ 1H)

=
∑

(1B ⊗N2)(1B ⊗ n2
(1))⊗ (N1 ⊗ 1H)(1B ⊗ n2

(2))⊗ (n1 ⊗ 1H)

=
∑

1B ⊗N2n2
(1) ⊗N1 ⊗ n2

(2) ⊗ n1 ⊗ 1H

=
∑

1B ⊗N2ν2 ⊗N1 ⊗ n2 ⊗ n1ν1 ⊗ 1H (using (CP2) )

and ∑
r1 ⊗R1r2

(1) ⊗ R2r2
(2)

=
∑

(1B ⊗ n2)⊗ (1B ⊗N2)(n1 ⊗ 1H)(1) ⊗ (N1 ⊗ 1H)(n1 ⊗ 1H)(2)

=
∑

(1B ⊗ n2)⊗ (1B ⊗N2)(n1
(1) ⊗ 1H)⊗ (N1 ⊗ 1H)(n1

(2) ⊗ 1H)

=
∑

1B ⊗ n2 ⊗ n1
(1) ⊗N2 ⊗N1n1

(2) ⊗ 1H

=
∑

1B ⊗ n2ν2 ⊗ n1 ⊗N2 ⊗N1ν1 ⊗ 1H (by (CP1) )

=
∑

R1r1
(1) ⊗ R2r1

(2) ⊗ r2

and this means that R is a cocycle. �

Remark 3.4. In particular, if H is a Hopf algebra and N =
∑

N1 ⊗ N2 is an
invertible element of H ⊗ H which satisfies (QT 1) and (QT 3) then R =

∑
(1H ⊗

N2)⊗(N1⊗1H) ∈ A⊗A is an invertible Harrison cocycle of A⊗A, where A = H⊗H.

Consider now a bialgebra copairing (B, H, N) with invertible N . From the results
of Section 2, it follows that we can change the coalgebra structure of A = B ⊗ H
(with the tensor product bialgebra structure) using the element R constructed in
proposition 3.3. We obtain a bialgebra A(R), and we denote this bialgebra by B >/N

H. The coalgebra structure is given by (let M = N−1):

∆(b >/ h) =
∑

b(1) >/ N2h(1)M
2 ⊗N1b(2)M

1 >/ h(2)

and
ε(b >/ h) = εB(b)εH(h)

for any b ∈ B and h ∈ H.

Proposition 3.5. Let (B, H, N) be a bialgebra copairing with N invertible. Then
the bialgebra B >/N H is a universal object among bialgebras J having the property
that there exist bialgebra maps α : J → Band β : J → H such that∑

N1α(x(1))⊗N2β(x(2)) =
∑

α(x(2))N
1 ⊗ β(x(1))N

2 (7)

for any x ∈ J .

Proof. First define α′ : B >/N H → B and β ′ : B >/N H → H by

α′(b >/ h) = εH(h)b and β ′(b >/ h) = εB(b)h



658 S. Caenepeel – S. Dǎscǎlescu – G. Militaru – F. Panaite

It is clear that α′ and β ′ are bialgebra maps that satisfy (7). Indeed, the left hand
side of 7 is ∑

n1b(1)εH(N2h(1)M
2) >/ N2h(2)εB(N1b(2)M

1)

=
∑

n1b >/ n2h

while the right hand side amounts to∑
N1b(2)M

1εH(h(2))n1 >/ εB(b(1))N
2h(1)M

2n2

=
∑

N1bM1n1 >/ N2hM2n2

=
∑

n1b >/ n2h

Now suppose that α : J → B and β : J → H satisfy (7). We define f : J →
B >/N H by the following formula

f(x) =
∑

α(x(1))⊗ β(x(2)) (8)

for all x ∈ J . We then have that

f(xy) =
∑

α(x(1)y(1))⊗ β(x(2)y(2)) =
∑

α(x(1))α(y(1))⊗ β(x(2))β(y(2)) = f(x)f(y)

and f(1) = α(1) ⊗ β(1) = 1⊗ 1, so f is an algebra morphism.
To see that f is a coalgebra morphism, observe that:

∆(R)(f(x))

=
∑

α(x(1))(1) ⊗N2β(x(2))(1)M
2 ⊗N1α(x(1))(2)M

1 ⊗ β(x(2))(2)

=
∑

α(x(1))⊗N2β(x(3))M
2 ⊗N1α(x(2))M

1 ⊗ β(x(4))

=
∑

α(x(1))⊗ β(x(2))N
2M2 ⊗ α(x(3))N

1M1 ⊗ β(x(4))

(by the condition in the hypothesis )

=
∑

α(x(1))⊗ β(x(2))⊗ α(x(3))⊗ β(x(4)) =
∑

f(x(1))⊗ f(x(2))

and
ε(f(x)) =

∑
εB(α(x(1)))εH(β(x(2))) =

∑
εJ (x(1))εJ (x(2)) = εJ(x)

Finally, it is clear that α′ ◦ f = α and β ′ ◦ f = β, and this finishes the proof. �

Proposition 3.6. Let (B, H, N) be a bialgebra copairing with invertible N . More-
over, suppose that (H, σ) is a braided bialgebra. Then the map j : H → B >/N H
defined by j(h) =

∑
σ(N2, h(1))N

1 ⊗ h(2), is an injective bialgebra morphism.

Proof. Let us define α : H → B and β : H → H by α(h) =
∑

σ(N2, h)N1 and
β = Id.
Then j(h) =

∑
α(h(1))⊗ β(h(2)), so according to the previous proposition, to prove

that j is a bialgebra morphism is enough to show that α is a bialgebra morphism,
and that the relation∑

N1α(x(1))⊗N2x(2) =
∑

α(x(2))N
1 ⊗ x(1)N

2 (9)



Coalgebra deformations of bialgebras, copairings of Hopf algebras 659

holds for any x ∈ H. We then have that:

α(xy) =
∑

σ(N2, xy)N1

=
∑

σ(N2
(1), y)σ(N2

(2), x)N1 (by (BB3) )

=
∑

σ(n2, y)σ(N2, x)N1n1

=
∑

σ(N2, x)N1σ(n2, y)n1 = α(x)α(y)

and
α(1H) =

∑
σ(N2, 1H)N1 =

∑
ε(N2)N1 = 1B

(by (BB4) and (CP4)). Hence α is an algebra map. On the other hand

∆(α(x)) =
∑

σ(N2, x)N1
(1) ⊗N1

(2)

=
∑

σ(N2n2, x)N1 ⊗ n1 (by (CP1) )

=
∑

σ(N2, x(1))σ(n2, x(2))N
1 ⊗ n1 (by (BB2) )

=
∑

σ(N2, x(1))N
1 ⊗ σ(n2, x(2))n

1

=
∑

α(x(1))⊗ α(x(2))

and

ε(α(x)) =
∑

σ(N2, x)ε(N1) =
∑

σ(ε(N1)N2, x) = σ(1H , x) = ε(x)

(by (BB4) and (CP3)), and it follows that α is a bialgebra morphism. To prove that
(9) holds, we proceed as follows.∑

N1α(x(1))⊗N2x(2) =
∑

N1σ(n2, x(1))n
1 ⊗N2x(2)

=
∑

N1σ(N2
(1), x(1))⊗N2

(2)x(2) (by (CP2) )

=
∑

N1 ⊗ σ(N2
(1), x(1))N

2
(2)x(2)

=
∑

N1 ⊗ x(1)N
2
(1)σ(N2

(2), x(2)) (by (BB1) )

=
∑

N1n1 ⊗ x(1)n
2σ(N2, x(2))

=
∑

α(x(2))n
1 ⊗ x(1)n

2

Suppose finally j(h) =
∑

σ(N2, h(1))N
1 ⊗ h(2) = 0. Applying ε⊗ I to this equality,

and using (CP3) we obtain that
∑

σ(1H, h(1))h(2) = 0. It then follows from (BB4)
that h = 0 and this shows that j is injective. �

Proposition 3.7. Let H be a bialgebra and suppose that R ∈ H ⊗ H is invertible
and satisfies (QT1) and (QT3). Then H is a quasitriangular bialgebra if and only
if ∆ = ∆H : H → H >/R H is a coalgebra morphism.

Proof. We denote the inverse of R by U . Of course (H, R) is a quasitriangular
bialgebra if and only if (QT5) holds. First suppose that (QT5) holds; then

∆(R)(∆(a)) =
∑

a(1) ⊗R2a(3)U
2 ⊗R1a(2)U

1 ⊗ a(4)

=
∑

a(1) ⊗ a(2)R
2U2 ⊗ a(3)R

1U1 ⊗ a(4) (by (QT5) )

=
∑

a(1) ⊗ a(2)⊗ a(3) ⊗ a(4)

= (∆⊗∆)(∆(a))
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so ∆ is a coalgebra morphism (the counit property is clear).
Conversely, suppose that ∆ is a coalgebra morphism. Then writing ∆(R)(∆(a)) =
(∆⊗∆)(∆(a)) and applying ε⊗ I ⊗ I ⊗ ε we obtain∑

R2a(2)U
2 ⊗R1a(1)U

1 =
∑

a1 ⊗ a2

Multiplying both sides on the right by
∑

R2 ⊗ R1, we obtain (QT5). �

The following lemma shows that the inverse of N in a bialgebra copairing satisfies
relations similar to (CP1)-(CP4).

Lemma 3.8. Let (B, H, N) be a bialgebra copairing and suppose that N is invert-
ible. Denote N−1 = M = m = µ. Then:
(CP1’)

∑
M1

(1) ⊗M1
(2) ⊗M2 =

∑
M1 ⊗m1 ⊗m2M2

(CP2’)
∑

M1 ⊗M2
(1) ⊗M2

(2) =
∑

M1m1 ⊗M2 ⊗m2

(CP3’)
∑

ε(M1)M2 = 1H

(CP4’)
∑

M1ε(M2) = 1B

Proof. For i = 1, 2, 3, 4, (CPi’) is nothing else then the inverse of (CPi). �

Lemma 3.9. Let (B, H, N) be a bialgebra copairing. If B has an antipode S (re-
spectively H has a pode S), then N is invertible with inverse N−1 =

∑
SB(N1)⊗N2

(respectively N−1 =
∑

N1 ⊗ SH(N2)).

Proof. Straightforward. �

Proposition 3.10. Let (B, H, N) be a bialgebra copairing. Suppose that both B
and H are Hopf algebras with antipodes SB and SH (respectively both B and H are
anti-Hopf algebras with podes SB and SH). Let us denote by M the inverse of N
(which exits by the previous lemma). Then

1.
∑

M1 ⊗ SH(M2) = N (resp.
∑

SB(M1)⊗M2 = N):

2.
∑

SB(N1)⊗ SH(N2) = N (resp.
∑

SB(N1)⊗ SH(N2) = N).

Proof. Suppose that B and H are Hopf algebras (the proof in the case where B and
H are anit-Hopf algebras is similar).
1. Using (CP2’) and (CP4’), we obtain that

M(
∑

m1 ⊗ SH(m2)) =
∑

M1m1 ⊗M2SH(m2)

=
∑

M1 ⊗M2
(1)SH(M2

(2)) =
∑

M1 ⊗ ε(M2) = 1⊗ 1

This shows that N = M−1 =
∑

M1 ⊗ SH(M2).
2. We know from Lemma 3.9 that M = N−1 =

∑
SB(n1)⊗ n2. It then follows from

1. that
N =

∑
M1 ⊗ SH(M2) =

∑
SB(N1)⊗ SH(N2)

�
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Remark 3.11. If (B, H, N) is a bialgebra copairing , then N also defines a bialgebra
copairing (Bcop, Hop, N). Moreover, if both B and H are Hopf algebras (respectively
anti-Hopf algebras), then N is invertible in Bcop ⊗ Hop. This follows easily from
(CP1) and (CP2).

Proposition 3.12. Let (A, N) be a quasitriangular bialgebra. Then there exists a
map f : A0 → A >/N A which is a coalgebra morphism and an antimorphism of
algebras (here A0 is the finite dual of the bialgebra A).

Proof. We define the maps

µl : A0 → A and µr : A0 → A

by

µl(a
∗) =

∑
a∗(N1)N2 and µr(a

∗) =
∑

a∗(N2)N1

for any a∗ ∈ A0. It may be checked easily that µr is a coalgebra morphism and an
antimorphism of algebras, and µl is an algebra morphism and an antimorphism of
coalgebras. Moreover, µl is convolution invertible and µ−1

l (a∗) =
∑

a∗(M1)M2, and
µ−1
l is a coalgebra morphism and an antimorphism of algebras. Regarding µr and

µ−1
l as maps from (A0)op to A, we obtain that the map f : A0 → A >/N A defined

by

f(a) =
∑

µr(a(1))⊗ µ−1
l (a(2))

is an algebra antimorphism and a coalgebra morphism if we can prove that µr and
µ−1
l satisfy the relation:∑

N1µr(a
∗
(1))⊗N2µ−1

l (a∗(2)) =
∑

µr(a
∗
(2))n

1 ⊗ µ−1
l (a∗(1))n

2

or, equivalently∑
a∗(n2M1)N1n1 ⊗N2M2 =

∑
a∗(m1N2)N1n1 ⊗m2n2

So we are done if we prove that∑
N1n1 ⊗N2M2 ⊗ n2M1 =

∑
N1n1 ⊗m2n2 ⊗m1N2

But this follows directly from (QT5) and the proof is finished. �

4 Double Crosscoproducts

The purpose of this Section is to carry out the construction of the new ”product”
of Hopf algebras that was suggested by Radford in [16]. This will shed more light
on the constructions from the previous Section.
Troughout this Section, B and H will be bialgebras, B will be a left H-comodule
algebra, with the comodule structure given by ρ : B → H ⊗ B (we will denote
ρ(b) =

∑
b[−1]⊗ b[0] ), and H will be a right B-comodule algebra, with the comodule
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structure given by ψ : H → H ⊗ B ( we will denote ψ(h) =
∑

h<0> ⊗ h<1>).
We define a comultiplication map ∆ and a counit map ε on B ⊗H as follows

∆(b⊗ h) =
∑

b(1) ⊗ b(2)[−1]h(1)<0> ⊗ b(2)[0]h(1)<1> ⊗ h(2)

ε(b⊗ h) = εB(b)εH(h)

for all b ∈ B and h ∈ H, and we also consider the tensor product algebra structure
on K = B ⊗H. In the next Theorem, we introduce the construction of the double
crosscoproduct.

Theorem 4.1. Let B and H be bialgebras such that B is a left H-comodule algebra
and H is a right B-comodule algebra as above. Then K = B⊗H is a bialgebra with
the tensor product algebra structure and coalgebra structure defined by ∆ and ε as
above if and only if the following relations are satisfied for all h ∈ H and b ∈ B :

(i1)
∑

b[−1]εB(b[0]) = εB(b)1H

(i2)
∑

b[−1] ⊗ b[0](1)⊗ b[0](2) =
∑

b(1)[−1]b(2)[−1]<0>⊗ b(1)[0]b(2)[−1]<1> ⊗ b(2)[0]

(ii1)
∑

εH(h<0>)h<1> = εH(h)1B

(ii2)
∑

h<0>(1)⊗h<0>(2)⊗h<1> =
∑

h(1)<0>⊗h(1)<1>[−1]h(2)<0>⊗h(1)<1>[0]h(2)<1>

(iii)
∑

h<0>b[−1] ⊗ h<1>b[0] =
∑

b[−1]h<0> ⊗ b[0]h<1>

In this situation, we call K the double crosscoproduct of the bialgebras B and H.
Moreover, if B and H are Hopf algebras with antipodes SB and SH , then K is also
a Hopf algebra with antipode given by :

S(b⊗ h) =
∑

SB(b[0]h<1>)⊗ SH(b[−1]h<0>) (10)

If SB and SH are bijective, then S is bijective with inverse:

S−1(b⊗ h) =
∑

S−1
B (b[0]h<1>)⊗ S−1

H (b[−1]h<0>)

Proof. Since B is a left H-comodule algebra we have that:

(B1)
∑

b[−1](1)⊗ b[−1](2) ⊗ b[0] =
∑

b[−1] ⊗ b[0][−1] ⊗ b[0][0]

(B2)
∑

εH(b[−1])b[0] = b
(B3)

∑
(1B)[−1] ⊗ (1B)[0] = 1H ⊗ 1B

(B4)
∑

(bc)[−1] ⊗ (bc)[0] =
∑

b[−1]c[−1] ⊗ b[0]c[0]

Since H is a right B-comodule algebra we have that:

(H1)
∑

h<0> ⊗ h<1>(1) ⊗ h<1>(2) =
∑

h<0><0> ⊗ h<0><1> ⊗ h<1>

(H2)
∑

h<0>εB(h<1>) = h
(H3)

∑
(1H)<0> ⊗ (1H)<1> = 1H ⊗ 1B

(H4)
∑

(hg)<0> ⊗ (hg)<1> =
∑

h<0>g<0> ⊗ h<1>g<1>

If we apply I ⊗ I ⊗ ρ to (i2) we obtain that:∑
b[−1] ⊗ b[0](1)⊗ b[0](2)[−1]⊗ b[0](2)[0]

=
∑

b(1)[−1]b(2)[−1]<0>⊗ b(1)[0]b(2)[−1]<1> ⊗ b(2)[0][−1]⊗ b(2)[0][0] (11)
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From (H1), it follows that:∑
h<0> ⊗ h<1>(1) ⊗ h<1>(2)[−1] ⊗ h<1>(2)[0]

=
∑

h<0><0> ⊗ h<0><1> ⊗ h<1>[−1] ⊗ h<1>[0] (12)

We obtain from (B1) that:∑
b[−1](1)<0>⊗ b[−1](1)<1>⊗ b[−1](2) ⊗ b[0]

=
∑

b[−1]<0> ⊗ b[−1]<1> ⊗ b[0][−1] ⊗ b[0][0] (13)

and we obtain from (ii2) that:∑
h<0>(1)<0> ⊗ h<0>(1)<1> ⊗ h<0>(2) ⊗ h<1>

=
∑

h(1)<0><0> ⊗ h(1)<0><1> ⊗ h(1)<1>[−1]h(2)<0> ⊗ h(1)<1>[0]h(2)<1> (14)

Suppose now that the relations (i)-(iii) hold. We prove that K is a bialgebra. The
computations are tedious, but straightforward, so we only give a brief sketch of the
proof.
When computing ((I ⊗∆)∆)(b⊗ h), we apply (B4) for b(2)[0](2) and h(1)<1>(2), (11)
for b(2), and (12) for h(1). When computing ((∆ ⊗ I)∆)(b⊗ h) we apply (H4) for
b(2)[−1](1) and h(1)<0>(1), (13) for b(3), and (14) for h(1). After a long computation, we
obtain that

((I ⊗∆)∆)(b⊗ h)

= ((∆⊗ I)∆)(b⊗ h)

=
∑

b(1) ⊗ b(2)[−1]b(3)[−1]<0>h(1)<0><0> ⊗ b(2)[0]b(3)[−1]<1>h(1)<0><1>

⊗b(3)[0][−1]h(1)<1>[−1]h(2)<0> ⊗ b(3)[0][0]h(1)<1>[0]h(2)<1> ⊗ h(3)

We check now that ε is a counit map.∑
ε((b⊗ h)(1))(b⊗ h)(2)

=
∑

ε(b(1) ⊗ b(2)[−1]h(1)<0>)b(2)[0]h(1)<1> ⊗ h(2)

=
∑

εB(b(1))εH(b(2)[−1])εH(h(1)<0>)b(2)[0]h(1)<1> ⊗ h(2)

= b⊗ h (by (B2) and (ii1))

and ∑
(b⊗ h)(1)ε((b⊗ h)(2))

=
∑

b(1) ⊗ b(2)[−1]h(1)<0>εB(b(2)[0])εB(h(1)<1>)εH(h(2))

=
∑

b(1) ⊗ b(2)[−1]εB(b(2)[0])h<0>εB(h<1>)

= b⊗ h (by (H2) and (i1))

Therefore (K, ∆, ε) is a coalgebra.
It is obvious that ε is an algebra morphism. Let us show that ∆ is also an algebra
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morphism.

∆((b⊗ g)(c⊗ h))

=
∑

b(1)c(1) ⊗ (b(2)c(2))[−1](g(1)h(1))<0> ⊗ (b(2)c(2))[0](g(1)h(1))<1> ⊗ g(2)h(2)

=
∑

b(1)c(1) ⊗ b(2)[−1]c(2)[−1]g(1)<0>h(1)<0>⊗ b(2)[0]c(2)[0]g(1)<1>h(1)<1>g(2)h(2)

(by (B4) and (H4))

=
∑

b(1)c(1) ⊗ b(2)[−1]g(1)<0>c(2)[−1]h(1)<0>⊗ b(2)[0]g(1)<1>c(2)[0]h(1)<1> ⊗ g(2)h(2)

(by (iii))

= ∆(b⊗ g)∆(c⊗ h)

and

∆(1B ⊗ 1H) =
∑

1B ⊗ (1B)[−1](1H)<0> ⊗ (1B)[0](1H)<1> ⊗ 1H = 1B ⊗ 1H ⊗ 1B ⊗ 1H

where we used (B3) and (H3) for the last equality. Thus we have proved that K is
a bialgebra.
Conversely, suppose that K is a bialgebra, and write

∆((b⊗ g)(c ⊗ h)) = ∆(b⊗ g)∆(c⊗ h)

with b = 1B , h = 1H . Applying εB ⊗ I ⊗ I ⊗ εH to both sides, we obtain (iii).
Now write

∑
ε((b⊗ h)(1))(b⊗ h)(2) = b⊗ h

with b = 1 and apply I ⊗ εHto both sides. Then (ii1) follows. Similarly, if we apply
εB ⊗ I to both sides of the other counit property, with h = 1, then we obtain (i1).
Now we write

((I ⊗∆)∆)(b⊗ h) = ((∆⊗ I)∆)(b⊗ h) (15)

with h = 1, and apply ε on the first and the fourth factor of both sides. Using (B2)
we obtain (i2).
Take b = 1 in (15), and apply ε to the second factor. Then use (H2) and apply ε on
the fourth position. This yields (ii2).
Let us suppose now that B and H are Hopf algebras. To prove that K is a Hopf
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algebra it is enough to show that (10) provides an antipode S for K. We have that

∑
S((b⊗ h)(1))(b⊗ h)(2)

=
∑

S(b(1) ⊗ b(2)[−1]h(1)<0>)(b(2)[0]h(1)<1> ⊗ h(2))

=
∑

(SB(b(1)[0](b(2)[−1]h(1)<0>)<1>)

⊗SH(b(1)[−1](b(2)[−1]h(1)<0>)<0>))(b(2)[0]h(1)<1> ⊗ h(2))

=
∑

SB(b(1)[0]b(2)[−1]<1>h(1)<0><1>)b(2)[0]h(1)<1>

⊗SH(b(1)[−1]b(2)[−1]<0>h(1)<0><0>)h(2)

(by (H4) )

=
∑

SB(b[0](1)h(1)<0><1>)b[0](2)h(1)<1> ⊗ SH(b[−1]h(1)<0><0>)h(2)

(by (i2) )

=
∑

SB(b[0](1)h(1)<1>(1))b[0](2)h(1)<1>(2) ⊗ SH(b[−1]h(1)<0>)h(2)

(by (H1) for h(1) )

=
∑

ε(b[0])ε(h(1)<1>)⊗ SH(b[−1]h(1)<0>)h(2)

=
∑

1⊗ ε(b)SH(h(1))h(2)

(by (i1) and (H2) )

= ε(b⊗ h)1⊗ 1

and it follows that S is a left convolution inverse of I . A similar computation shows
that S is also a right convolution inverse of I .
Finally, suppose that SB and SH are bijective. Let us recall the well-known fact that
for a Hopf algebra A with antipode S, if there exists a k-linear map S ′ satisfying∑

S ′(h(2))h(1) =
∑

h(2)S
′(h(1)) = ε(h)1 for any h ∈ A, then S is bijective and

S−1 = S ′.
Define S ′ by the formula

S ′(b⊗ h) =
∑

S−1
B (b[0]h<1>)⊗ S−1

H (b[−1]h<0>)

The proof is finished if we can show that

∑
S ′((b⊗ h)(2))(b⊗ h)(1) =

∑
(b⊗ h)(2)S

′((b⊗ h)(1)) = ε(b⊗ h)1⊗ 1
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Indeed, we have:∑
S ′((b⊗ h)(2))(b⊗ h)(1)

=
∑

S ′(b(2)[0]h(1)<1> ⊗ h(2))(b(1) ⊗ b(2)[−1]h(1)<0>)

=
∑

(S−1
B ((b(2)[0]h(1)<1>)[0]h(2)<1>)⊗ S−1

H ((b(2)[0]h(1)<1>)[−1]h(2)<0>))

(b(1) ⊗ b(2)[−1]h(1)<0>)

=
∑

S−1
B (b(2)[0][0]h(1)<1>[0]h(2)<1>)b(1)

⊗S−1
H (b(2)[0][−1]h(1)<1>[−1]h(2)<0>)b(2)[−1]h(1)<0>

(by (B4) )

=
∑

S−1
B (b(2)[0]h<1>)b(1) ⊗ S−1

H (b(2)[−1](2)h<0>(2))b(2)[−1](1)h<0>(1)

(by (ii2) and (B1) )

=
∑

S−1
B (b(2)[0]h<1>)b(1) ⊗ ε(h<0>)ε(b(2)[−1])1

=
∑

S−1
B (b(2))b(1) ⊗ ε(h)1

(by (B2) and (ii1) )

= ε(b⊗ h)1⊗ 1

The proof of the second equality is similar. �

We will now show that the construction of the bialgebra B >/N H in Section 3 is
a double crosscoproduct. Consider a bialgebra copairing (B, H, N) with invertible
N ∈ B ⊗H. Let M = N−1. We define:

ρ : B → H ⊗ B, ρ(b) =
∑

N2M2 ⊗N1bM1

for all b ∈ B, and

ψ : H → H ⊗ B, ψ(h) =
∑

N2hM2 ⊗N1M1

for any h ∈ H.

Proposition 4.2. Let (B, H, N) be a bialgebra copairing with invertible N . Then
the above structures make B into a left H-comodule algebra, and H into a right
B-comodule algebra. Moreover, the conditions (i)-(iii) hold, and the double crossco-
product of B and H is just the bialgebra B >/N H.

Proof. We check only that B is a left H-comodule algebra. Indeed:

(∆H ⊗ I)ρ(b)

=
∑

N2
(1)M

2
(1) ⊗N2

(2)M
2
(2) ⊗N1bM1

=
∑

n2M2 ⊗N2m2 ⊗N1n1bM1m1

(by (CP2) and (CP2′) )

and

((I ⊗ ρ)ρ)(b) =
∑

N2M2 ⊗ ρ(N1bM1)

=
∑

N2M2 ⊗ n2m2 ⊗ n1N1bM1m1 = (∆H ⊗ I)ρ(b)
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The counit property is clear, so B is a left H-comodule. To prove that ρ is an
algebra morphism, we observe that:

ρ(b)ρ(c) = (
∑

N2M2 ⊗N1bM1)(
∑

n2m2 ⊗ n1cm1)

=
∑

N2M2n2m2 ⊗N1bM1n1cm1

=
∑

N2m2 ⊗N1bcm1 = ρ(bc)

for all b, c ∈ B. It is clear that ρ(1) = 1 ⊗ 1. We already know from the second
section that B >/N H is a bialgebra with certain coalgebra and algebra structures,
and these structures are just the ones we have defined at the beginning of this
section for K = B ⊗ H. Therefore we obtain the required statement directly from
the theorem. �

Corollary 4.3. Let (B, H, N) be a bialgebra copairing such that B and H are Hopf
algebras with antipodes SB and SH. Let M = N−1. Then B >/N H is a Hopf algebra
with antipode:

S(b⊗ h) =
∑

SB(N1bM1)⊗ SH(N2hM2)

Moreover, if SB and SH are bijective, then S is bijective with inverse given by:

S−1(b⊗ h) =
∑

S−1
B (N1bM1)⊗ S−1

H (N2hM2)

Examples 4.4. 1. If B and H are finite dimensional bialgebras and B >/ H
is a double crossproduct in the sense of Majid ([11]), then its dual is a double
crosscoproduct of B∗ and H∗.
2. In particular, the dual of the Drinfeld double D(H) is the double crosscoproduct,
as Radford suggested in [16, Proposition 11].
3. Let B and H be two bialgebras as in the beginning of this section, such that the
coaction of B on H is trivial, that is ψ(h) = h ⊗ 1B , for all h ∈ H. Then observe
the following:

• (i1) and (i2) mean that B is a left H-comodule coalgebra;

• (ii1) and (ii2) are clearly satisfied;

• (iii) means that
∑

hb[−1] ⊗ b[0] =
∑

b[−1]h⊗ b[0].

In this case the coalgebra structure of K = B ⊗ H is just the smash coproduct of
Molnar ([12]).
4. Take H = B in 3., and suppose that H is a commutative Hopf algebra. We define
ρ : B → H ⊗ B by ρ(b) =

∑
b(1)S(b(3))⊗ b(2) =

∑
b[−1] ⊗ b[0], ψ : H → H ⊗ B by

ψ(h) = h⊗ 1B =
∑

h<0> ⊗ h<1>.
If G = Mk(H, k) is the affine algebraic group corresponding to H (see [1, p.175]),then
ρ is H-comodule algebra structure map on H corresponding to the left action of G
on itself, namely σ : G ×G → G : (g, h) 7→ ghg−1. In fact, ρ is also H-comodule
coalgebra structure map on H, named the coadjoint action in [12].
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The conditions (i)-(iii) are satisfied according to 3. Thus H ⊗ H is a commuta-
tive Hopf algebra, with the tensor product algebra multiplication, and the smash
coproduct comultiplication given by:

∆(b⊗ h) =
∑

b(1) ⊗ b(2)S(b(4))h(1) ⊗ b(3) ⊗ h(2) =
∑

b(1) ⊗ b(2)[−1]h(1) ⊗ b(2)[0] ⊗ h(2)

The antipode is :

S(b⊗ h) =
∑

S(b(2))⊗ S(b(1)S(b(3))h)

=
∑

S(b(2))⊗ S(b(1))b(3)S(h)

since H is commutative.

5 Inner coactions and crossed copr oducts

Let C be a coalgebra and A an algebra over a field k. A k-linear map

ν : C−→A⊗C : c 7→ c〈−1〉 ⊗ c〈0〉

is called a comeasuring if the following conditions hold for all c ∈ C :
(W1)

∑
c〈−1〉 ⊗ c〈0〉(1)

⊗ c〈0〉(2)
=
∑

c(1)〈−1〉c(2)〈−1〉 ⊗ c(1)〈0〉 ⊗ c(2)〈0〉;
(W2)

∑
ε(c〈0〉)c〈−1〉 = ε(c)1A.

A comeasuring ν : C → A⊗C is called inner if there exists a convolution invertible
map v : C → A such that

ν(c) =
∑

v(c(1))v
−1(c(3))⊗ c(2)

for all c ∈ C . The standard example of an inner comeasuring is the adjoint coaction
of a Hopf algebra H on itself:

H−→H ⊗H : h 7→
∑

h(1)S(h(3))⊗ h(2)

In this Section, we will show that the crossed coproduct over an inner coaction is
isomorphic to a twisted coproduct. The advantage of this twisted coproduct is that
the formula for the comultiplication is easier.

Theorem 5.1. Let C >/α H be a crossed coproduct, and assume that the weak
coaction ω : C → H ⊗ C is inner. Then C >/α H is isomorphic as a right
H-module coalgebra to a twisted coproduct Cτ [H], for some cocycle τ .

Proof. Let v : C → H be convolution invertible, and assume that

ω(c) =
∑

v(c(1))v
−1(c(3))⊗ c(2)

for all c ∈ C . Define τ : C → H ⊗H as follows:

τ (c) =
∑

v−1(c(2))α1(c(3))v(c(4))(1) ⊗ v−1(c(1))α2(c(3))v(c(4))(2)
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for all c ∈ C . We will show that the map

g : C >/α H−→Cτ [H] : c >/α h 7→
∑

c(1) >/τ v−1(c(2))h

is an isomorphism of right H-module coalgebras. It is clear that g is H-linear. We
also have that[

(g ⊗ g) ◦∆α

]
(c >/α h)

= (g ⊗ g)
(
c(1) >/α v(c(2))v

−1(c(4))α1(c(5))h(1) ⊗ c(3) >/α α2(c(5))h(2)

)
(using the definition of ∆α)

=
∑

c(1) >/τ v−1(c(2))v(c(3))v
−1(c(6))α1(c(7))h(1) ⊗ c(4) >/τ v−1(c(5))α2(c(7))h(2)

=
∑

c(1) >/τ v−1(c(4))α1(c(5))h(1) ⊗ c(2) >/τ v−1(c(3))α2(c(5))h(2)

and

(∆τ ◦ g)(c >/α h)

= ∆τ(
∑

c(1) >/τ v−1(c(2))h)

=
∑

c(1) >/τ τ1(c(3))v
−1(c(4))(1)h(1) ⊗ c(2) >/τ τ2(c(3))v

−1(c(4))(2)h(2)

=
∑

c(1) >/τ v−1(c(4))α1(c(5))v(c(6))(1)v
−1(c(7))(1)h(1)

⊗ c(2) >/τ v−1(c(3))α2(c(5))v(c(6))(2)v
−1(c(7))(2)h(2)

=
∑

c(1) >/τ v−1(c(4))α1(c(5))h(1) ⊗ c(2) >/τ v−1(c(3))α2(c(5))h(2)

and it follows that g is a coalgebra map. Now define f : Cτ [H]−→C >/α H by

f(c >/τ h) =
∑

c(1) >/α v(c(2))h

for all c ∈ C and h ∈ H. It is easy to show that f and g are each others inverses,
and it follows that g is an isomorphism of right H-module coalgebras. From the
fact that C >/α H is coassociative and counitary, it follows that Cτ [H] is also
coassociative and counitary, and that τ satisfies the conditions (CU), (C) and (CC)
(see [6, Lemma 2.2 and 2.3]) �

We will give an application of the above theorem. We say that a comeasuring
ω : C → H ⊗ C is strongly inner if there exists v : C → H a coalgebra map
such that ω(c) =

∑
v(c(1))S(v(c(3))) ⊗ c(2), for all c ∈ C . It is easy to see that if

ω : C → H ⊗ C is a weak coaction which is also strongly inner, then ω is just a
structure of H-comodule algebra and we can construct the usual smash coproduct
C >/ H.

Corollary 5.2. Let C be a left H-comodule algebra such that the left coaction of H
on C, C → H ⊗ C is strongly inner. Then

C >/ H ' C ⊗H

as right H-module coalgebras.

Proof. We apply theorem 3.1 for the trivial cocycle α : C → H ⊗ H, α(c) =
ε(c)1H ⊗ 1H .In this case the cocycle τ given in the proof of theorem 3.1 is also
trivial. Hence the twisted coproduct Cτ [H] reduced to the usual tensor product of
coalgebras. �
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