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Abstract

We study the number of local configurations in a discrete plane. We con-
vert this problem into a computation of a double sequence complexity. We
compute the number C(n,m) of distinct n ×m patterns appearing in a dis-
crete plane. We show that C(n,m) = nm for all n and m positive integers.
The coding of this sequence by a Z2-action on the unidimensional torus gives
information about the structure of a discrete plane. Furthermore, this se-
quence is a generalized Rote sequence with complexity P (n,m) = 2nm for all
n and m positive integers and with a symmetric complementary language for
rectangular words.

1 Introduction

In this article, we use the notion of complexity for a double sequence to study local
configurations in a discrete plane. The complexity function p(n) for a sequence in
a finite alphabet is defined from N to N and gives the number of distinct words of
length n appearing in the sequence. The survey [1] for sequences with one index
and values in a finite alphabet is a good reference with an extensive bibliography.
We extend the notion of complexity to double sequences in a finite alphabet. The
complexity function P (n,m) is defined from N× N to N. Consider a sequence U =
(Un,m)(n,m)∈Z2 and the language of blocks L(U, n,m) which is the set of all the blocks
n×m appearing in the sequence. We define the complexity function as P (n,m) =
Card L(U, n,m). This complexity measures how “complicated the sequence is” and
it is related to the topological entropy.
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The study of double sequences is recent. Salon studies double sequences but in
terms of substitutions in two dimensions and formal series with two indices ([12]).
In [4], Berthé and Vuillon give the complexity of a tiling with lozenges arising from
a discrete plane (i.e. the discretization of a plane in R3 : the upper profile of the set
of all unit cube with vertices in integer coordinate having a non-empty intersection
with the plane). The method uses a double sequence in a three-letters alphabet
and a coding in the one-dimensional torus. They approach the problem of minimal
complexity for double sequences. In [2], Allouche and Berthé give the complexity of
the Pascal triangle modulo 2:

P (n,m) = n2 +m2 + 2nm− 3n− 3m+ 4, ∀(n,m) ∈ N2.

Furthermore, they find an explicit formula for the complexity of the Pascal triangle
modulo d when d is a prime number, and bounds in the other cases.

The structure of discrete planes is intimately related to multi-dimensional con-
tinued fractions. In particular, Ito showed that the discrete plane is generated by
substitutions on faces using the Jacobi-Perron algorithm (see [9]). The discrete plane
can also be seen by a natural generalization of the Sturmian sequences (see [4],[5],[6]
and [14]).

In this article, we study discrete planes by counting the number of local configu-
rations. We convert this problem into the computation of double sequence complex-
ity. This approach may have applications in computer science in the field of discrete
plane recognition (see [8] and [10]). In particular our coding by two rotations in the
one-dimensional torus could be a good tool for computer scientists.

Let a plane in R3 be defined by z = −αx−βy+γ. We construct a discrete plane
by a discretization of the plane. The discretization is given by three square faces
oriented according to the three coordinate planes. Let (Hi,j)(i,j)∈Z2 be the infinite
array giving the height of horizontal faces. We consider the finite pattern (n ×m)
which is called plane partition by combinatorialists (see [13]):

PP (n,m; i, j) =

Hi−n+1,j−m+1 −Hi,j Hi−n+1,j−m+2 −Hi,j · · · Hi−n+1,j −Hi,j

Hi−n+2,j−m+1 −Hi,j Hi−n+2,j−m+2 −Hi,j · · · Hi−n+2,j −Hi,j
...

...
...

Hi,j−m+1 −Hi,j Hi,j−m+2 −Hi,j · · · Hi,j −Hi,j .

The goal of this article is to show that the number of elements of the set

{PP (n,m; i, j)|(i, j) ∈ Z2}

(i.e. the number of distinct n×m patterns appearing in the discrete plane) is

C(n,m) = nm, ∀(n,m) ∈ N2.

The structure of the article is the following: in the second section, we give a
brief exposition of the construction of the discrete plane. In the third section, we
construct a sequence

(Ui,j = Hi,j mod 2)(i,j)∈Z2
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with double indices and values in the alphabet {0, 1} associated to the discrete
plane and a coding by a Z2-action of the one-dimensional torus. In section four, we
compute the complexity of such a sequence (i.e. the number of n ×m rectangular
words appearing in the sequence) which is

P (n,m) = 2nm, ∀(n,m) ∈ N2.

In section five, we introduce a method which associates a plane partition to a rect-
angular word in the alphabet {0, 1} appearing in the sequence and the converse. We
establish the number of distinct n × m plane partitions appearing in the discrete
plane. In section six, we study the language of the double sequence. In the last
section, we give the generalization of the results to all dimensions.

2 Construction of the discrete plane.

Consider the plane P in R3 : z = −αx − βy + γ with α and β positive irrationals
and with the vector (1, α, β) totally irrational (i.e. l + mα+ nβ = 0 for (l,m, n) ∈
Z3 ⇒ (l,m, n) = (0, 0, 0)). Consider the following square faces:

E1 = {λ~e2 + µ~e3|(λ, µ) ∈ [0, 1]};

E2 = {λ~e1 + µ~e3|(λ, µ) ∈ [0, 1]};

E3 = {λ~e1 + µ~e2|(λ, µ) ∈ [0, 1]},

where (O, ~e1, ~e2, ~e3) is a orthonormal basis of R3.

We associate a discrete plane to the plane P as follows: let S be the set of
translates of the unit cube interior with integer vertices that P intersects. The
discrete plane is defined as the upper side of the boundary of S. The discretization
is given by the following method : we compute for all integers n and m the height
Hn,m of the face E3 with coordinates (n,m,Hn,m) given the position of the face
origin (i.e. λ = 0 and µ = 0 in the definition of E3). We note E3 (n,m,Hn,m) the
face E3 with coordinates (n,m,Hn,m).

We have for all n and m integers:

Hn,m = d−nα−mβ + γe.

In the lattice Z3, we place for all (n,m) ∈ Z2, a face of type E3 in position
(n,m,Hn,m). For fixed n, we connect each face of type E3 (n,m,Hn,m) m ∈ Z
to the face E3 (n,m+ 1, Hn,m+1) by |Hn,m+1 −Hn,m| faces of type E2. For fixed m,
we connect each face of type E3 (n,m,Hn,m) n ∈ Z, to the face E3 (n+1, m,Hn+1,m)
by |Hn+1,m −Hn,m| faces of type E1. This object is the discrete plane associated to
the plane P . It has been studied by several authors [4],[9] and [14]. For discussion of
recognition of discrete plane, Françon and Reveillès consider finite parts of a discrete
plane (see [8] and [10]).
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Figure 1: Discrete plane and height array.

3 Construction of the double sequen ces.

The coordinates of all horizontal faces are given by the triplet (i, j, Hi,j) on
the lattice Z3. Let H be the infinite array of integers given by the height array
H = (Hi,j)(i,j)∈Z2 (see Figure 1). To study the plane partitions appearing in the
discrete plane, we look at the sequence U = (Ui,j)(i,j)∈Z2 defined by:

Ui,j = Hi,j mod 2, ∀(i, j) ∈ Z2.

Let Rα be the rotation of angle α on [0, 1[ defined by:

Rα(x) = {x+ α},
where { } denotes the usual fractional part.

Theorem 3.1. Let P be a plane z = −αx− βy+ γ with α and β positive reals and
(1, α, β) totally irrational. Let U be the sequence constructed by Ui,j = Hi,j mod 2,
for all (i, j) ∈ Z2. Then the sequence (Ui,j)(i,j)∈Z2 is given by the coding of a rotation
on the unit circle:

Ui,j = I
(
Ri
−α

2
Rj

−β
2

(
γ

2

))
,

where I(x) = 1 if x ∈]0, 1
2
] and I(x) = 0 if x ∈] 1

2
, 1[∪{0}.

Proof : We consider the sequence Hi,j mod 2. For each (i, j) ∈ Z2, we have to
study the parity of Hi,j. Let (i, j) ∈ Z2. By definition of the sequence, if there exists
an integer n such that Hi,j = 2n + 1 then Ui,j = 1 otherwise Ui,j = 0. Furthermore
Hi,j is the height of a face E3 and we have Hi,j = d−iα − jβ + γe. Thus if there
exists an integer n such that −iα− jβ + γ ∈]2n, 2n+ 1] then Ui,j = 1 else Ui,j = 0.

If {−iα−jβ+γ
2

} ∈]0, 1
2
] then Ui,j = 1 or if {−iα−jβ+γ

2
} ∈] 1

2
, 1[∪{0} then Ui,j = 0.

In terms of rotation

Ui,j = I
(
Ri
−α

2
Rj

−β
2

(
γ

2

))
,

where I(x) = 1 if x ∈]0, 1
2
] and I(x) = 0 if x ∈] 1

2
, 1[∪{0}. �

This theorem gives informations about the heights of a discrete plane modulo
2: this is a coding of a Z2 action on the one-dimensional torus with the partition
I1 =]0, 1

2
] and I0 =] 1

2
, 1]. It also gives a characterization of the discrete plane.
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4 Words, languages and complexity.

For all the following sections, we fix α, β, γ and a sequence U arising from a discrete
plane associated to a given plane P with totally irrational normal. Let α′ = α

2
,

β ′ = β
2

and γ′ = γ
2
. A word w defined on {0, 1}n×m,by

w =

wn,1 . . . wn,m
...

...
w1,1 . . . w1,m

is defined to be a factor of the sequence U = (Ui,j)(i,j)∈Z2 if and only if there exists
integers k, l such that

{kα′ + lβ ′ + γ′} ∈ I(w),

where
I(w) =

⋂
1≤i≤n,1≤j≤m

Ri−1
α′ R

j−1
β′ Iwi,j ,

with I1 =]0, 1
2
] and I0 =] 1

2
, 1] (see [7]).

Indeed, if w is a factor of the sequence U, we have x and y such that for 1 ≤
i ≤ n and 1 ≤ j ≤ m, wi,j = Ux+i−1,y+j−1. Then wi,j = I(Ri−1+x

−α′ Rj−1+y
−β′ (γ′)) =

I(Ri−1
−α′R

j−1
−β′ (ρ)), where ρ = Rx

−α′R
y
−β′(γ

′). In other words: for 1 ≤ i ≤ n and 1 ≤
j ≤ m, wi,j = Ux+i−1,y+j−1 if and only if Ri−1

−α′R
j−1
−β′ (ρ) ∈ Iwi,j . That is for 1 ≤ i ≤ n

and 1 ≤ j ≤ m, wi,j = Ux+i,y+j if and only if ρ ∈ ⋂1≤i≤n,1≤j≤m R
i−1
α′ R

j−1
β′ Iwi,j .

I(w) is a segment on the unit circle associated to the word w. As α is irrational,
the sequence ({γ′+ kα′}) is dense in the unit circle, which implies that w is a factor
of U if and only if I(w) 6= ∅.

Examples: The 1 × 1 rectangular words 0 and 1 are factors of the double se-
quence because I(0) = I0 and I(1) = I1 are non empty intervals. Consider the
1× 2 rectangular words and let β ′ < 1/2 I(w) =

⋂
1≤j≤mR

j−1
β′ Iw1,j . I(11) =]β ′, 1/2],

I(00) =]β ′+1/2, 1], I(01) =]1/2, 1/2+β ′] and I(10) =]0, β ′]. All these four intervals
are non empty then 11, 00, 01 and 10 are factors of the double sequence U. An
other way to build these intervals for 1 × 2 rectangular words is to put extremal
points on the unit circle: the points {jβ ′} with 0 ≤ j ≤ 1 and {1/2 + jβ ′} with
0 ≤ j ≤ 1. More generally, the intervals associated to 1×m rectangular words are
built by putting the following extremal points on the unit circle: the points {jβ ′}
with 0 ≤ j ≤ m− 1 and {1/2 + jβ ′} with 0 ≤ j ≤ m− 1.

Let L(U, n,m) = {W ∈ {0, 1}n×m|I(W ) 6= ∅} be the language of n×m rectangu-
lar words of the sequence U and the language of the sequence U is defined to be the
union of the languages of n×m for all n and m positive integers. We define the com-
plexity function for rectangular words as the number of distinct rectangular words
appearing in the tiling. The complexity function of U is the function P : N×N→ N
defined by:

P (n,m) = Card L(U, n,m).

Theorem 4.1. The complexity of the sequence U is P (n,m) = 2nm, ∀(n,m) ∈ N2

Proof : Consider a n ×m rectangular word w. Thus we have w is a factor of
the sequence if and only if I(w) 6= ∅. Then the number of distinct n ×m words is
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equal to the number of intervals on the unit circle

⋂
1≤i≤n,1≤j≤m

Ri−1
α′ R

j−1
β′ Iwi,j .

The extremal points of the intervals are given by the points {iα′+ jβ ′} with 0 ≤
i ≤ n − 1, 0 ≤ j ≤ m − 1 and {1

2
+ iα′ + jβ ′} with 0 ≤ i ≤ n − 1, 0 ≤ j ≤ m − 1.

There are 2nm such points. As the vector (1, α, β) is totally irrational, all these
points are distinct. Thus there exists 2nm distinct intervals. That is, we have 2nm
intervals corresponding to distinct patterns n×m. Therefore the complexity of the
tiling is P (n,m) = 2nm for all (n,m) ∈ N2. �

This is a generalization of Rote sequences [11]. Indeed, he studied the sequences
in finite alphabet with complexity p(n) = 2n for all n positive integer. As P (1, m) =
2m for all m ∈ N and P (n, 1) = 2n for all n ∈ N and by the coding of the Z2-action,
we find the Rote sequences for each row and column.

5 Plane partitions and n×m patterns.

5.1 Plane partitions

A plane partition of an integerm is an array of l×k integers (l rows and k columns)
{zi,j} satisfying:

0 ≤ zi,j ≤ m, zi,j ≤ zi+1,j and zi,j ≤ zi,j+1.

The number of plane partitions Gklm(1) for fixed k, l and m was found by Mac
Mahon and is given by

Gklm(x) =
Fk+l+m(x) Fk(x) Fl(x) Fm(x)

Fk+l(x) Fl+m(x) Fk+m(x)

where Fn(x) = (1− x)n−1(1− x2)n−2 · · · (1− xn−1).

There exists a three-dimensional representation of a plane partition. We replace
all integer zi,j by a tower of cubes of height zi,j.

In our case, we would like to count the number of plane partitions arising from
a discrete plane:

PP (n,m; i, j) =

Hi−n+1,j−m+1 −Hi,j Hi−n+1,j−m+2 −Hi,j · · · Hi−n+1,j −Hi,j

Hi−n+2,j−m+1 −Hi,j Hi−n+2,j−m+2 −Hi,j · · · Hi−n+2,j −Hi,j
...

...
...

Hi,j−m+1 −Hi,j Hi,j−m+2 −Hi,j · · · Hi,j −Hi,j

.

Since α > 0 and β > 0 the sequences in rows and columns are decreasing sequences
and therefore this is a plane partition.
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Figure 2: 3× 3 pattern, plane partition and binary word.

5.2 Binary words and reconstruction of the plane partition.

We easily associate to a plane partition PP (n,m; i, j) a binary n×m word by way
of the transformation: B(n,m; i, j) = PP (n,m; i, j) mod 2. Conversely, given a
sequence U , we would like to associate to each word w ∈ L(U, n,m) a unique plane
partition.

By construction of the discrete plane, we have

Hi,j = d−iα− jβ + γe.

Thus, Hi,j − Hi,j+1 = d−iα − jβ + γe − d−iα − (j + 1)β + γe. Then the quantity
Hi,j −Hi,j+1 takes only two values dβe and dβe − 1. We note the odd value Oh and
the even value Eh. In columns, we have Hi,j − Hi+1,j = d−iα − jβ + γe − d−(i +
1)α−jβ+γe. Then the quantity Hi,j−Hi+1,j takes only two values dαe and dαe−1.
We note the odd value Ov and the even value Ev.

Take w ∈ L(U, n,m). Recall that w is an array

wn,1 . . . wn,m
...

...
w1,1 . . . w1,m

.

The complement of a binary word w is w = w + 1 mod 2. In other words, w is the
word w where 1 is replaced by 0 and 0 is replaced by 1. In what follows, if w1,m = 1
then we consider the word w, otherwise we work on the word w. Put H ′0,0 = 0. In
rows, if wi,j = wi,j+1 then H ′i,j = H ′i,j+1 + Ev else H ′i,j = H ′i,j+1 + Ov. In columns,
if wi,j = wi+1,j then H ′i,j = H ′i+1,j + Eh else H ′i,j = H ′i+1,j + Oh. We can therefore
construct the plane partition PP with height H ′i,j for 1 ≤ i ≤ n and 1 ≤ j ≤ m
associated to the binary word w ∈ L(U, n,m).

Notice that we associate to the words w and w the same plane partition. Consider
a plane partition PP appearing in the discrete plane; this means that there exists
(i, j) ∈ Z2 such that PP (n,m; i, j) = PP. Thus Hi,j can take either an odd or an
even value. We show in proposition 5.1 that if a plane partition appears in an odd
position, then it also appears in an even position, and conversely.
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5.3 Language.

Consider the language of the sequence U = (Ui,j)(i,j)∈Z2 defined by

Ui,j = Hi,j mod 2, ∀(i, j) ∈ Z2.

We have the following proposition.

Theorem 5.1. If the rectangular word x is an element of L(U, n,m) then the word
x is also an element of L(U, n,m).

Proof : The word x is a factor of the sequence U . This means that there exist i
and j such that x = B(n,m; i, j).Then the interval I(x) =

⋂
1≤i≤n,1≤j≤m R

i−1
α′ R

j−1
β′ Ixi,j

is non-empty. The extremal points of the intervals are given by the points {iα′ +
jβ ′} with 0 ≤ i ≤ n − 1, 0 ≤ j ≤ m − 1 and {1

2
+ iα′ + jβ ′} with 0 ≤ i ≤

n− 1, 0 ≤ j ≤ m− 1. The translation on the torus by 1
2

translates extremal points
to extremal points. Thus the interval I(w) + 1

2
is non empty and I(x) + 1

2
=⋂

1≤i≤n,1≤j≤m R
i−1
α′ R

j−1
β′ (Iwi,j + 1

2
). The translation by 1

2
is a geometrical realization

of the complement transformation. Thus by a translation of 1
2
, we have I(x) + 1

2

which corresponds to x. By density of the irrational rotation on unit circle, we have
the result. �

Corollary 5.2. If a plane partition PP (n,m; i, j) appears in some fixed discrete
plane with Hi,j odd (respectively even) then there exist i′, j′ such that the plane
partition PP (n,m; i, j) = PP (n,m; i′, j′) and Hi′,j′ is even (respectively odd).

Proof : Suppose that the plane partition PP (n,m; i, j) appears in the dis-
crete plane with Hi,j odd. We can construct the binary word B(n,m; i, j). By
proposition 5.1 the binary word B(n,m; i, j) appears in the discrete plane. This
means there exist i′, j′ integers such that B(n,m; i′, j′) = B(n,m; i, j). As the
method of reconstruction associates the same plane partition to x and x, then
PP (n,m; i′, j′) = PP (n,m; i, j) and Hi′,j′ is even. �

Theorem 5.3. The number of n×m plane partition is C(n,m) = nm for all n and
m positive integers.

Proof : We partition the set of binary words n×m into two classes. The class
of words w ∈ L(U, n,m) such that w1,m = 0 and the class of w ∈ L(U, n,m) such
that w1,m = 1. As the number of distinct n × m binary words is 2nm and by the
previous proposition, the two classes have the same number of elements, equal to
nm. Distinct plane partitions are associated to distinct binary words of the first
class. Indeed, consider w and w′ in L(U, n,m) with w 6= w′ and w1,m = w′1,m = 0.
By the method of reconstruction of the plane partitions, we associate to w and w′

distinct plane partitions. Thus, the number of plane partitions is C(n,m) = nm. �

We show that the number of n×m plane partitions appearing in a discrete plane
associated to a given plane P is nm for all n and m positive integers.
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Figure 3: Two symmetric complementary patterns.

6 Symmetric complement.

We define the symmetric complement of a plane partition

PP (n,m; i, j) =

Hi−n+1,j−m+1 −Hi,j · · · Hi−n+1,j −Hi,j
...

...
Hi,j−m+1 −Hi,j · · · Hi,j −Hi,j

.

as:

P̃P (n,m; i, j)

−Hi,j +Hi−n+1,j−m+1 · · · −Hi,j−m+1 +Hi−n+1,j−m+1
...

...
−Hi−n+1,j +Hi−n+1,j−m+1 · · · −Hi−n+1,j−m+1 +Hi−n+1,j−m+1

.

The symmetric complement of a plane partition PP (n,m; i, j) is in geometrical
terms the central symmetry by the center of the box n ×m× Hi−n+1,j−m+1 − Hi,j

of the three-dimensional representation of the plane partition.

Theorem 6.1. Consider a plane partition PP (n,m; i, j) appearing in a discrete
plane. Then the symmetric complement P̃P (n,m; i, j) appears in the discrete plane.

Proof : We have to show that if PP (n,m; i, j) appears in the discrete plane,

PP (n,m; i, j) =

Hi−n+1,j−m+1 −Hi,j · · · Hi−n+1,j −Hi,j
...

...
Hi,j−m+1 −Hi,j · · · Hi,j −Hi,j

.

then there exists (i′, j′) such that

PP (n,m; i′, j′) =

−Hi,j +Hi−n+1,j−m+1 · · · −Hi,j−m+1 +Hi−n+1,j−m+1
...

...
−Hi−n+1,j +Hi−n+1,j−m+1 · · · −Hi−n+1,j−m+1 +Hi−n+1,j−m+1

.
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The coding by rotation is independent of the height of the plane. That is, if we
consider the plane partitions appearing in the discretization of the plane P : z =
−αx− βy + γ and the plane partitions appearing in the discretization of the plane
P ′ : z = −αx − βy + γ′, then every plane partition appearing in the first discrete
plane appears in the second. In particular, we can take γ equal to 0. If a plane
partition PP (n,m; i, j) appears in place (i, j), this plane partition arises from the
height array:

Hi−n+1,j−m+1 · · · Hi−n+1,j
...

...
Hi,j−m+1 · · · Hi,j

.

By central symmetry relative to the origin we have:

H−i,−j · · · H−i,−j+m−1
...

...
H−i+n−1,−j · · · H−i+n−1,−j+m−1

=

−Hi,j · · · −Hi,j−m+1
...

...
−Hi−n+1,j · · · −Hi−n+1,j−m+1

.

Then PP (n,m; i′, j′) = PP (n,m;−i+n−1,−j+m−1). This shows the symmetric
property. �

For binary words, we define the symmetric complement of

w =

wn,1 . . . wn,m
...

...
w1,1 . . . w1,m

as the word

w̃ =

w1,m . . . w1,1
...

...
wn,m . . . wn,1

Corollary 6.2. Consider a binary word B(n,m; i, j) appearing in U. Then, the
symmetric complement B̃(n,m; i, j) appears in U.

Proof : This is obvious by the previous proposition. Indeed, consider the
n×m binary word B(n,m; i, j) associated to PP (n,m; i, j) in the plane of height 0
(z = −αx − βy). Thus, the binary word B(n,m;−i+ n − 1,−j +m − 1) is either

B̃(n,m; i, j) (if Hi,j −Hi−n+1,j−m+1 is odd) or B̃(n,m; i, j) (if Hi,j −Hi−n+1,j−m+1 is
even). As x and x both appear in L(U, n,m), we have the result. �

We have a new necessary condition for discrete plane. If an array of height
H = (Hi,j)(i,j)∈Z2 remains from a discrete plane, then the associated sequences U
have complexity P (n,m) = 2nm for all n and m positive integers and for all x
in L(U, n,m), x̃, x and x̃ are elements of L(U, n,m)). We think that the previous
property (Complexity P (n,m) = 2nm and for all x we have x̃, x and x̃ are factors
of the double sequence ) is sufficient to show that the sequence U remains from a
discrete plane. In other words, we guess that this property on U is a characterization
of the discrete plane.
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7 Generalizations.

The Theorem 5.3 is robust in all dimensions. Consider a hyperplane in Rk for k
positive integer (xk = −α1x1 − α2x2 · · · − αkxk−1) then the number of n1 × n2 ×
· · · × nk−1 patterns corresponding to the faces of height Hn1,n2,··· ,nk−1

= d−α1n1 −
α2n2 · · · − αknk−1e is

C(n1, n2, · · · nk−1) = n1n2 · · ·nk−1.

In dimension 2, if we consider the sequence Ui,j = Hi,j mod d for d a positive
integer greater than 1, then the number of n×m modulo d words is

P (n,m) = dnm.

Consider the words modulo d in dimension k then the number of words is

P (n1, n2, · · · nk−1) = dn1n2 · · · nk−1.
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[1] J.-P. Allouche Sur la complexité des suites infinies, Bull. Belg. Math. Soc., 1
(1994),2 133–143.
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