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Abstract

For any collection of spaces A, we investigate two non-negative integer
homotopy invariants of maps: LA(f), the A-cone length of f , and LA(f),
the A-category of f . When A is the collection of all spaces, these are the
cone length and category of f , respectively, both of which have been studied
previously. The following results are obtained: (1) For a map of one homotopy
pushout diagram into another, we derive an upper bound for LA and LA of
the induced map of homotopy pushouts in terms of LA and LA of the other
maps. This has many applications, including an inequality for LA and LA of
the maps in a mapping of one mapping cone sequence into another. (2) We
establish an upper bound for LA and LA of the product of two maps in terms
of LA and LA of the given maps and the A-cone length of their domains. (3)
We study our invariants in a pullback square and obtain as a consequence an
upper bound for the A-cone length and A-category of the total space of a
fibration in terms of the A-cone length and A-category of the base and fiber.
We conclude with several remarks, examples and open questions.

1 Introduction

In this paper we continue our investigation, begun in [A-S-S], of the cone length and
category of maps relative to a fixed collection of spaces. For a collection A of spaces
we consider two non-negative integer homotopy invariants of maps: the A-category,
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denoted LA, and the A-cone length, denoted LA. When A is the collection of all
spaces, LA(f) is the category of the map f as defined and studied in [Fa-Hu] and
[Co2] and LA(f) is the cone length of the map f as defined and studied in [Mar2] and
[Co1]. If, in this special case, f is the inclusion of the base point into Y , then LA(f)
is just the category of the space Y , which was introduced in 1934 by Lusternik and
Schnirelmann in their work on the number of critical points of smooth functions on
a manifold [L-S]. In addition, LA(f) is the cone length of Y which has been studied
by several people [Co1, Co3, Co4, Ga1, Mar2, St1, Ta] in the context of homotopy
theory. For an arbitrary collection A, the A-category and the A-cone length of the
inclusion of the basepoint into Y coincide with the A-category and A-cone length
of Y . Variants of this concept have been studied previously [S-T].

Thus our invariants are common generalizations of the category and cone length
of a map and theA-category andA-cone length of a space. In addition to providing a
general framework for many existing notions and retrieving known results as special
cases, they have led to several new concepts and results. To discuss this, we first
briefly summarize that part of our previous work which is relevant to this paper.
More details are given in §2.

In [A-S-S] we introduced, for a fixed collection A, five simple axioms which an
integer valued function of based maps may satisfy. Then LA was defined as the
maximum of all such functions. Similarly, LA was defined as the maximum of all
functions which satisfy an analogous set of five axioms. We then gave alternate
characterizations of these invariants in terms of certain decompositions of maps.
For instance, LA(f) is essentially the smallest integer n such that f admits a de-
composition up to homotopy as

X = X0
j0−→X1

j1−→ · · · jn−1−→Xn = Y,

where Li−→Xi
ji−→Xi+1 is a mapping cone sequence with Li ∈ A. When f is the

inclusion of the base point into Y , we obtain catA(Y ) and clA(Y ), as noted above,
and when g is the map of X to a one point space, we obtain two new invariants
of spaces, the A-kitegory of X, kitA(X) = LA(g), and the A-killing length of X,
klA(X) = LA(g). In [A-S-S] we made a preliminary study of these invariants and
their interrelations.

From the time the concept of category was first introduced to the present, many
people have been interested in the following questions: What is the relationship
between the categories of the spaces which appear in a homotopy pushout [Mar2,
Ha1]? What is the category of the product of two spaces in terms of the categories of
the factors [A-Sta, Bas, C-P2, Ga2, Iw, Ro, St2, Ta, Van]? What is the relationship of
the categories of the spaces which appear in a fiber sequence [Ha2, J-S, Var]? Similar
questions have also been considered for cone length. In this paper we study these
questions for the A-category and A-cone length of maps, and provide reasonably
complete answers. This gives both new and known results for the A-category and
A-cone length of spaces as well as new results for the A-kitegory and the A-killing
length.

We now summarize the contents of the paper. In §2 we give our terminology and
notation and discuss our earlier work in more detail. In §3 we prove one of our main
results, the Homotopy Pushout Mapping Theorem. This theorem gives an inequality
for the A-categories and the A-cone lengths of the four maps which constitute a map
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of one homotopy pushout square into another. Many applications are given in §4. In
particular, we obtain results about the A-categories and A-cone lengths of the maps
which appear in a mapping of one mapping cone sequence into another. In §5 we
establish an upper bound for the A-category (resp., A-cone length) of the product
of two maps in terms of the A-categories (resp., A-cone lengths) of the original maps
and the A-cone lengths of their domains. By specializing to spaces and letting A
be the collection of all spaces, we retrieve classical results on the category and cone
length of the product of two spaces. We study pullbacks in §6. As a consequence
of our main result on pullbacks we obtain an inequality for the A-category of the
total space of a fiber sequence in terms of the A-category of the base and fiber,
and a similar result for A-cone length. Section 7 contains a potpourri of results,
examples and questions. We begin by presenting a few simple, but useful, results
about A-category and A-cone length. We then give some examples to illustrate
the difference between these invariants for different collections A. In particular, we
show that some results that are known for the collection of all spaces do not hold
for arbitrary collections. Finally, we state and discuss some open problems.

We conclude this section by emphasizing two important points. First of all, there
are several different notions of the category of a map in the literature. The one that
we generalize here to the A-category of a map has been studied in [Fa-Hu] and
[Co2]. It is not the same as the one considered in [Fo, B-G]. In addition, Clapp and
Puppe have considered the category of a map with respect to a collection of spaces
[C-P1, C-P2]. However, their notion is completely different from ours. Secondly,
although we state and prove our results in the category of well-pointed spaces and
based maps, it should be clear that nearly all our results hold in a (closed) model
category [Qu] and that all of our results hold in a J-category [Do1, H-L].

2 Preliminaries

In this section we give our notation and terminology and also recall some results
from [A-S-S] which will be needed later.

All topological spaces are based and have the based homotopy type of CW-
complexes, though we could more generally consider well-pointed based spaces. All
maps and homotopies are to preserve base points. We do distinguish between a map
and a homotopy class. By a commutative diagram we mean one which is strictly
commutative.

We next give some notation which is standard for homotopy theory: ∗ denotes the
base point of a space or the space consisting of a single point, ' denotes homotopy
of maps and ≡ denotes same homotopy type of spaces. We let 0 : X −→Y stand
for the constant map and id: X −→X for the identity map. We use Σ for (reduced)
suspension, ∗ for (reduced) join, ∨ for wedge sum and ∧ for smash product.

We call a sequence A
f−→X

j−→C of spaces and maps a mapping cone sequence
if C is the mapping cone of f and j is the standard inclusion. Then j is a cofibration
with cofiber ΣA. Using the mapping cylinder construction, we see that the concept
of a cofiber sequence and the concept of a mapping cone sequence are equivalent
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[Hi, Ch. 3]. For maps C
g←−A

f−→B we can form the homotopy pushout Q

A
f //

g

��

B

��
C // Q

by defining Q to be the quotient of B ∨ (A × I) ∨ C under the equivalence rela-
tion (∗, t) ∼ ∗, (a, 0) ∼ f(a) and (a, 1) ∼ g(a) for t ∈ I and a ∈ A. Note that
A

f−→X
j−→C is a mapping cone sequence if and only if

A
f //

��

X

j

��
∗ // C

is a homotopy pushout square. The pullback P of C
g−→A

f←−B is defined by

P = {(b, c) | b ∈ B, c ∈ C, f(b) = g(c)} ⊆ B × C.

We only use this construction when f is a fibration. Thus all our pullbacks are
homotopy pullbacks as well. Given a map f : X −→Y we say that a map g :
X ′−→Y ′ homotopy dominates f (or f is a homotopy retract of g) if there is a
homotopy-commutative diagram

X
i //

f

��

X ′ r //

g

��

X

f

��
Y

j // Y ′ s // Y

such that ri ' id and sj ' id. If the diagram is strictly commutative and both
homotopies are equality, we delete the word ‘homotopy’ from the definition. If g
homotopy dominates f as above and in addition ir ' id and js ' id (i.e., r and s
are homotopy equivalences with homotopy inverses i and j), we say that f and g
are homotopy equivalent.

Next we recall some definitions and results from [A-S-S] which will be used in the
sequel. By a collection A we mean a class of spaces containing ∗ such that if A ∈ A
and A ≡ A′, then A′ ∈ A. We say that (1) A is closed under suspension if A ∈ A
implies ΣA ∈ A, (2) A is closed under wedges if A, A′ ∈ A implies A∨A′ ∈ A and (3)
A is closed under joins if A, A′ ∈ A implies A∗A′ ∈ A. Examples of collections that
we consider are (1) the collection A = {all spaces} of all spaces, (2) the collection Σ
of all suspensions, and (3) the collection S of all wedges of spheres (including S0).

Let A be a collection and `A a function which assigns to each map f an integer
0 ≤ `A(f) ≤ ∞. We say that `A satisfies the A-cone axioms if

(1) (Homotopy Axiom) If f ' g, then `A(f) = `A(g).

(2) (Normalization Axiom) If f is a homotopy equivalence, then `A(f) = 0.

(3) (Composition Axiom) `A(fg) ≤ `A(f) + `A(g).
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(4) (Mapping Cone Axiom) If A−→X
f−→Y is a mapping cone sequence with

A ∈ A, then `A(f) ≤ 1.

(5) (Equivalence Axiom) If f and g are homotopy equivalent, then `A(f) = `A(g).

We say that `A satisfies the A-category axioms if `A satisfies (1) – (4) and

(5′) (Domination Axiom) If f is dominated by g, then `A(f) ≤ `A(g).

Definition 2.1. We denote by LA(f) the maximum of all `A(f) where `A satisfies
(1)–(5) and by LA(f) the maximum of all `A(f) where `A satisfies (1)–(4) and (5′).
We call LA(f) the A-cone length of f and LA(f) the A-category of f .

Since (5) is weaker than (5′), LA(f) ≤ LA(f). In [A-S-S] it is proved that when
A = {all spaces}, LA(f) is the cone length of f as defined in [Co2, Mar2], and LA(f)
is the category of f as defined in [Fa-Hu, Co2].

One of the main results of [A-S-S] gives alternate characterizations of LA(f) and
LA(f) in terms of decompositions of the map f . If f : X −→Y is a map, then an
A-cone decomposition of length n of f is a homotopy-commutative diagram

X0
j0 // X1

j1 // · · · jn−2 // Xn−1
jn−1 // Xn

fn

��
X

f // Y

s

OO

in which fn is a homotopy equivalence with homotopy inverse s and each map

ji is part of a mapping cone sequence Ai
//Xi

ji //Xi+1 with Ai ∈ A. Thus
fnjn−1 · · · j0 ' f , sf ' jn−1 · · · j0, fns ' id and sfn ' id. The homotopy-
commutative diagram above is an A-category decomposition of f of length n if s
is simply a homotopy section of fn, i.e., if fnjn−1 · · · j0 ' f , sf ' jn−1 · · · j0 and
fns ' id, but sfn need not be homotopic to the identity. We prove in [A-S-S,
Thm. 3.7] that

LA(f) =


0 if f is a homotopy equivalence
∞ if there is no A−cone decomposition of f
n if n is the smallest integer such that there exists an
A−cone decomposition of length n of f.

We similarly characterize LA(f) using A-category decompositions instead of A-cone
decompositions. Observe that if the induced map π0(f) : π0(X) → π0(Y ) on path
components is not surjective, then LA(f) and LA(f) are infinite for every collection
A.

We have also studied four numerical invariants of spaces, defined in terms of the
invariants LA and LA as follows:

clA(X) = LA(∗−→X) catA(X) = LA(∗−→X)
klA(X) = LA(X −→∗) kitA(X) = LA(X −→∗).

When A = {all spaces}, catA(X) = cat(X), the reduced Lusternik-Schnirelmann
category of X [A-S-S, Prop. 4.1], and clA(X) = cl(X), the cone length of X. More-
over, kitA(X) ≤ 1 and klA(X) ≤ 1 for every space X in this case.
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3 The Homotopy Pushout Mapping Theorem

In this section we prove the first main result of this paper. This consists of two
inequalities, one for the A-cone length and one for the A-category of the maps from
one homotopy pushout square to another. In Section 4 we will derive numerous
consequences of this result.

We begin with a technical result that plays a key role in the proof of the main
theorem.

Lemma 3.1. Let f : X −→Y be a map with LA(f) = n. Then there exists a map
g : X −→Z and maps i : Y −→Z and r : Z −→Y such that the diagram

X
f

xxqqqqqqqqqqqqq
f

&&MMMMMMMMMMMMM

g

��
Y

i
// Z r

// Y,

commutes, ri = id and LA(g) = n.

Proof By [A-S-S, Cor. 4.4] there is a homotopy-commutative diagram

X
f

xxppppppppppppp

h
��

f

&&NNNNNNNNNNNNN

Y
j

//W s
// Y

with sj ' id and LA(h) = n. We factor s as W
s0

−→E
s1

−→Y , where s0 is a homotopy
equivalence and s1 is fibration [Hi, Ch. 3]. Then s0j : Y −→E and s1s0j ' id. Thus
there is a map t : Y −→E such that t ' s0j and s1t = id. Now we have a homotopy-
commutative diagram

X
f

xxppppppppppppp

s0h
��

f

&&NNNNNNNNNNNNN

Y t
// E

s1
// Y.

This proves the lemma with g = tf , Z = E, i = t and r = s1. �

Theorem 3.2. Let A be a collection of spaces that is closed under wedges and
suspension and let

C

c

��

A
goo f //

a

��

B

b
��

C ′ A′g′oo f ′ // B′

be a commutative diagram. Let D be the homotopy pushout of the top row, D′ be
the homotopy pushout of the bottom row, and d : D−→D′ the induced map. Then

1. LA(d) ≤ LA(a) + max(LA(b), LA(c));

2. LA(d) ≤ LA(a) + max(LA(b),LA(c)).
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Proof First we prove (1). We factor the given diagram as

C

c

��

A
goo f // B

b
��

C ′ A
cgoo bf //

a

��

B′

C ′ A′g′oo f ′ // B′

and let D denote the homotopy pushout of the middle row. Then we have a factor-
ization

D

d′ ��?
??

??
??

?
d // D′

D

d′′

>>}}}}}}}}

of d. Since LA(d) ≤ LA(d′)+LA(d′′) by the Composition Axiom, it suffices to prove
the result in the two special cases

(a) A = A′ and a = id,

(b) B = B′, C = C ′, b = id and c = id.

We begin with (a) and let m = max(LA(b), LA(c)). We consider an A-cone
decomposition of b of length m. This yields a homotopy factorization of b '
him−1 · · · i1i0:

B = X0
i0−→X1

i1−→ · · · im−1−→Xm
h−→B′,

where Al−→Xl
il−→Xl+1 is a mapping cone sequence with Al ∈ A for each l and

h is a homotopy equivalence. Since im−1 · · · i1i0 is a cofibration, h is homotopic to
a map (also called h) such that b = him−1 · · · i1i0. Similarly, we have an A-cone
decomposition of c of length m which gives a factorization c = kjm−1 · · · j1j0:

C = Y0
j0−→Y1

j1−→ · · · jm−1−→ Ym
k−→C ′,

where Bl−→Yl
jl−→Yl+1 is a mapping cone sequence with Bl ∈ A for each l and k
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is a homotopy equivalence. Thus we have a commutative diagram

Y0 = C

j0
��

A
goo f // B = X0

i0
��

Y1

j1
��

A
j0goo i0f // X1

i1
��

...

��

...
...

��
Ym−1

jm−1

��

A
jm−2···j0goo im−2···i0f // Xm−1

im−1

��
Ym

k
��

A
jm−1···j0goo im−1···i0f // Xm

h
��

C ′ A
cgoo bf // B′.

We number the rows 0, 1, . . . ,m + 1 and let Dl be the homotopy pushout of the
lth row, with induced maps dl : Dl−→Dl+1. Then D0 = D, Dm+1 = D and
dm · · · d0 = d′ : D−→D. Thus it suffices to prove

(i) LA(dl) ≤ 1 for l = 0, . . . ,m− 1,

(ii) LA(dm) = 0.

We first establish (i). Consider the commutative diagram

Bl

��

∗oo //

��

Al

��

Al ∨Bl

��
Yl

jl

��

Aoo // Xl

il
��

homotopy
pushout // Dl

��
Yl+1 Aoo // Xl+1 Dl+1,

where the columns are regarded as mapping cone sequences. The homotopy pushouts
of the rows form a sequence Al ∨ Bl−→Dl−→Dl+1. By the Four Cofibrations
Theorem, this is a cofiber sequence (see [Do2, p. 21]). Since A is closed under
wedges, Al ∨ Bl ∈ A. Therefore LA(dl) ≤ 1 by the Mapping Cone Axiom. For (ii)
we note that dm : Dm−→D is a homotopy equivalence since h and k are homotopy
equivalences [B-K, Ch.XII, § 4.2]. Thus LA(dm) = 0, which completes the proof of
(a).

For (b) we proceed similarly by assuming that LA(a) = m and taking an A-cone
length decomposition of a of length m:

A = X0
i0−→X1−→ · · · −→Xm−1

im−1−→Xm
h−→A′,
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where Al−→Xl
il−→Xl+1 is a mapping cone sequence with Al ∈ A, h a homotopy

equivalence and a = him−1 · · · i0. This yields a commutative diagram

C ′ A = X0
cgoo bf //

i0
��

B′

C ′ X1
g′him−1···i1oo f ′him−1···i1 //

i1
��

B′

...
...

��

...

C ′ Xm−1
g′him−1oo f ′him−1 //

im−1

��

B′

C ′ Xm
g′hoo f ′h //

h
��

B′

C ′ A′g′oo f ′ // B′.

We number the rows 0, 1, . . . ,m + 1 and let D̃l be the homotopy pushout of the
lth row with induced maps d̃l : D̃l−→ D̃l+1. Then D̃0 = D, D̃m+1 = D′ and
d′′ = d̃m · · · d̃1d̃0. It suffices to show (i) LA(d̃l) ≤ 1 for l = 0, . . . ,m − 1 and (ii)
LA(d̃m) = 0. The argument is similar to (a), and so we content ourselves with noting
that

∗

��

Al
oo //

��

∗

��

ΣAl

��

C ′ Xl
oo //

il

��

B′
homotopy
pushout // D̃l

d̃l
��

C ′ Xl+1
oo // B′ D̃l+1

determines a sequence ΣAl−→ D̃l
d̃l−→Dl+1 since ΣAl is the homotopy pushout of

the top row. By the Four Cofibrations Theorem this is a cofiber sequence. Since A
is closed under suspension, ΣAl ∈ A, and so LA(d̃l) ≤ 1. This completes the proof
of (1).

To prove (2), we apply Lemma 3.1. Thus, there are commutative diagrams

A
a

  A
AA

AA
AA

A
a

~~}}
}}

}}
}}

α

��
A′ i // X

r // A′

B
b

  A
AA

AA
AA

b

~~}}
}}

}}
}
β

��
B′ j // Y

s // B′

and

C
c

  A
AA

AA
AA

c

~~}}
}}

}}
}
γ

��
C ′ k // Z

t // C ′

with ri = id, sj = id, and tk = id, and LA(α) = LA(a), LA(β) = LA(b), and
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LA(γ) = LA(c). Thus we have a diagram

C

c

��0
00

00
00

00
00

00
00

γ

��

c

����
��
��
��
��
��
��
�

A

g

jjUUUUUUUUUUUUUUUUUUUUUUU

f

**UUUUUUUUUUUUUUUUUUUUUUU

a

��0
00

00
00

00
00

00
00

a

����
��
��
��
��
��
��
�

α

��

C ′ k // Z
t // C ′ B

b

��0
00

00
00

00
00

00
00

b

����
��
��
��
��
��
��
�

β

��

A′ i //

g′

jjUUUUUUUUUUUUUUUUUUUUUUU

f ′

**UUUUUUUUUUUUUUUUUUUUUUU X
r //

v

jjUUUUUUUUUUUUUUUUUUUUUUU

u

**UUUUUUUUUUUUUUUUUUUUUUU A′

g′
jjUUUUUUUUUUUUUUUUUUUUUUU

f ′

**UUUUUUUUUUUUUUUUUUUUUUU

B′
j
// Y s

// B′

where u = jf ′r : X −→Y and v = kg′r : X −→Z. All triangles and rectangles
in the above diagram are commutative. If we denote by E the homotopy pushout
of Z

v←−X
u−→Y and the induced maps of homotopy pushouts by e : D−→E,

l : D′−→E and m : E−→D′, then we have a commutative diagram

D
d

&&NNNNNNNNNNNNN
d

xxppppppppppppp

e

��
D′ l // E

m // D′

with ml = id. Therefore

LA(d) ≤ LA(e) since e dominates d
≤ LA(e)
≤ LA(α) + max(LA(β), LA(γ)) by part (1)
= LA(a) + max(LA(b),LA(c)).

�

Remark 3.3. Our proof of Theorem 3.2 shows that if A is only assumed to be
closed under wedges, then (1) and (2) hold when A = A′ and a = id. Moreover the
proof also shows that if A is only assumed to be closed under suspensions, then (1)
and (2) hold with B = B′, C = C ′, b = id and c = id. In Corollary 3.4 below we
derive some slightly weaker inequalities than those in Theorem 3.2 that require only
closure under suspension.

Corollary 3.4. Assume the hypotheses of Theorem 3.2, except that A is not neces-
sarily closed under wedges. Then

1. LA(d) ≤ LA(a) + LA(b) + LA(c);

2. LA(d) ≤ LA(a) + LA(b) + LA(c).

The result remains true without assuming that A is closed under suspensions if
A = A′ and a = id.
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Proof We simply decompose the given map of homotopy pushouts into a com-
position of three maps:

C

c

��

A
goo f // B

C ′ A
cgoo f // B

b
��

C ′ A
cgoo bf //

a

��

B′

C ′ A′g′oo f ′ // B′.

The method of the proof of Theorem 3.2 is then applied to each factor. �

4 Applications of the Homotopy Pushout Mapping Theorem

In this section we illustrate the power of the homotopy pushout mapping theorem
by obtaining as a consequence a large number of results, some known (in the case
A = {all spaces}), and some new.

4.1 Homotopy Pushouts

Corollary 4.1. Let A be any collection of spaces. Let

A //

��

B

��
C // D

be a homotopy pushout square. Then

1. (a) LA(B−→D) ≤ LA(A−→C),

(b) LA(B−→D) ≤ LA(A−→C);

2. (a) clA(D) ≤ clA(B) + LA(A−→C),

(b) catA(D) ≤ catA(B) + LA(A−→C);

3. (a) klA(B) ≤ LA(A−→C) + klA(D),

(b) kitA(B) ≤ LA(A−→C) + kitA(D).

4. If A is closed under wedges, then

(a) LA(A−→D) ≤ max(LA(A−→B), LA(A−→C)),

(b) LA(A−→D) ≤ max(LA(A−→B),LA(A−→C)).
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Proof The proof of each part amounts to constructing the correct diagram.

Proof of 1 Apply Corollary 3.4 to the diagram

A //

~~
~~

~~
~

~~
~~

~~
~

B

}}
}}

}}
}}

}}
}}

}}
}}

A //

��

B

��

A //

��~~
~~

~~
~

B.

~~}}
}}

}}
}}

C // D

Proof of 2 and 3 Apply (1) to the diagram

∗

��
A //

��

B

��
C // D

��
∗.

Proof of 4 Map the trivial homotopy pushout diagram

A A

A A

into the given one, and apply Theorem 3.2. �

Corollary 4.2. Let A be a collection of spaces that is closed under wedges and
suspension and let

A //

��

B

��
C // D

be a homotopy pushout square. Then

1. (a) clA(D) ≤ clA(A) + max(clA(B), clA(C)),

(b) catA(D) ≤ catA(A) + max(catA(B), catA(C));

2. (a) klA(D) ≤ klA(A) + max(klA(B), klA(C)),

(b) kitA(D) ≤ kitA(A) + max(kitA(B), kitA(C)).
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Proof For (1), apply Theorem 3.2 to the map of the trivial homotopy pushout
diagram

∗ ∗

∗ ∗

into the given homotopy pushout; for (2), map the given homotopy pushout into
the trivial one. �

Remark 4.3. In the special case A = {all spaces}, Marcum [Mar2] has proved
Corollary 4.1(1a) and Hardie [Ha1] has proved Corollary 4.2(1b) (see also [Co3]).

4.2 Mapping Cone Sequences

As noted in §2, a mapping cone sequence A−→B−→C can be regarded as a homo-
topy pushout square. Therefore the results of 4.1 apply to mapping cone sequences.

Corollary 4.4. Let A be any collection of spaces. Let A−→B−→C be a mapping
cone sequence. Then

1. (a) clA(C) ≤ LA(A−→B),

(b) catA(C) ≤ LA(A−→B);

2. (a) LA(B−→C) ≤ klA(A),

(b) LA(B−→C) ≤ kitA(A);

3. (a) clA(C) ≤ klA(A) + clA(B),

(b) catA(C) ≤ kitA(A) + catA(B);

4. (a) klA(B) ≤ klA(A) + klA(C),

(b) kitA(B) ≤ kitA(A) + kitA(C).

Proof of 1 and 2 Immediate from Corollary 4.1(1).
Proof of 3 and 4 Immediate from (2) and (3) of Corollary 4.1. �

Remark 4.5. Corollary 4.4(4) shows that klA and kitA are subadditive on cofi-
brations in the following sense (we only state this for klA): If A−→X −→Q is a
cofiber sequence, then klA(X) ≤ klA(A) + klA(Q) (see [A-Str, Thm. 3.4]). This fol-
lows (when A is closed under wedges) since every cofiber sequence is equivalent to a
mapping cone sequence. This inequality is not generally true for clA or catA as the
cofiber sequence

S2−→CP3−→S4 ∨ S6

shows for the collections A = S, Σ and {all spaces}.
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Corollary 4.6. Let A be a collection of spaces that is closed under suspension. Con-
sider the map of one mapping cone sequence into another given by the commutative
diagram

A //

��

B //

��

C

��
A′ // B′ // C ′.

Then

1. LA(C −→C ′) ≤ LA(A−→A′) + LA(B−→B′),

2. LA(C −→C ′) ≤ LA(A−→A′) + LA(B−→B′).

Proof Apply Corollary 3.4 to the homotopy pushouts obtained from the mapping
cone sequences. �

4.3 Other Consequences

Corollary 4.7. Let A be any collection of spaces. Then for any space B,

1. clA(ΣB) ≤ klA(B);

2. catA(ΣB) ≤ kitA(B).

Proof Apply Corollary 4.1(1) to the homotopy pushout square

B //

��

∗

��
∗ // ΣB.

�

Corollary 4.8. Let A be a collection of spaces that is closed under suspension.

1. For any map f : A−→B,

(a) LA(f) ≤ clA(A) + clA(B),

(b) LA(f) ≤ catA(A) + catA(B);

2. For any space A,

(a) klA(A) ≤ clA(A),

(b) kitA(A) ≤ catA(A);

3. If f : A−→B and g : B−→C, then

(a) LA(g) ≤ LA(f) + LA(gf),

(b) LA(g) ≤ LA(f) + LA(gf);
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4. If f : A−→B and g : B−→A with gf = id, then

LA(g) ≤ catA(B);

5. If f : A−→B and g : B−→A with gf = id, then

(a) LA(g) ≤ LA(f),

(b) LA(g) ≤ LA(f).

Proof Again, the proofs depend on finding the appropriate diagram.

Proof of 1 Apply Corollary 3.4 to the diagram

∗

~~}}
}}

}}
}

��

∗

��

}}||
||

||
||

A A

��

A //

��
��

��
�

��
��

��
�

B.

}}
}}

}}
}}

}}
}}

}}
}}

A // B

Proof of 2 Apply (1) to the map A−→∗.
Proof of 3 Apply Corollary 3.4 to the diagram

A //

~~
~~

~~
~

~~
~~

~~
~

��

B

}}
}}

}}
}}

}}
}}

}}
}}

A //

��

B

��

B

��~~
~~

~~
~

B.

~~}}
}}

}}
}}

C C

Proof of 4 We consider the following mapping of homotopy pushout squares

∗ //

��~~
~~

~~
~~

��

B

{{vvvvvvvvv

A // A ∨B

(id,g)

��

B

g
��~~

~~
~~

~
B.

g

{{vvvvvvvvv

A A
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By Corollary 3.4, we immediately conclude that L(id, g) ≤ cat(B). Now the com-
mutative diagram

B

g

��

// A ∨B

(id,g)
��

(f,id) // B

g

��
A A A

shows that g is dominated by (id, g). Thus L(g) ≤ L(id, g) ≤ cat(B).
Proof of 5 Apply (3), using the fact that L(id) = L(id) = 0.

�

Corollary 4.9. Let A be a collection that is closed under suspension and let f :
A−→B. Then

1. (a) LA(f) ≥ |klA(B)− klA(A)|,
(b) LA(f) ≥ |kitA(B)− kitA(A)|;

2. (a) LA(f) ≥ clA(B)− clA(A),

(b) LA(f) ≥ catA(B)− catA(A).

Proof We only prove (1a); the other parts are similar. The Composition Axiom,
applied to A

f−→B−→∗, implies that

klA(A) = LA(A−→∗) ≤ LA(B−→∗) + LA(f) = klA(B) + LA(f),

so LA(f) ≥ klA(A)− klA(B). On the other hand, Corollary 4.8(3) shows that

klA(B) = LA(B−→∗) ≤ LA(A−→∗) + LA(f) = klA(A) + LA(f),

so LA(f) ≥ klA(B)− klA(A). This proves (1a). �

Remark 4.10. Assume A is closed under suspension. Then by Corollary 4.8,
klA(A) ≤ clA(A) and kitA(A) ≤ catA(A) (the first inequality was also proved in
[A-Str, Thm. 3.3]). Corollary 4.7 then shows that clA and klA agree stably (this
was proved by Christensen in [Ch]), and similarly for catA and kitA. Additionally,
Cornea [Co2] has given a completely different proof of Corollary 4.8(4) in the case
A = {all spaces}.

4.4 Partial Converse to Theorem 3.2

In this section we show that the formulas of Theorem 3.2 very nearly characterize
those collections A which are closed under wedges or under suspensions.

We introduce the following new construction: for any collectionA, The collection
A is defined to be

A = {X | klA(X) ≤ 1}.
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Remark 4.11. Clearly A ⊆ A. We note that for certain collections A, A 6= A.
We follow the example in Whitehead [Wh, Ex. 3, p. 183]. Let A be the collection of
spheres (or wedges of spheres) and let X = S1∨S2. If ξ ∈ π1(X) and α ∈ π2(X) are
generators, let h : S2 → X be the map whose homotopy class is 2α− ξ · α ∈ π2(X).
We set Y = X ∪h e3, the mapping cone of h, and let i : S1 → Y be the inclusion.
Then the cofiber of i is contractible, so klA(Y ) ≤ 1. Thus Y ∈ A, but Y /∈ A. Note
that A = A if every space in A is simply-connected.

Our first result shows that passing fromA toA has no effect on the corresponding
cone length and category invariants.

Proposition 4.12. For any map f : X −→Y ,

1. LA(f) = LA(f),

2. LA(f) = LA(f).

Proof If suffices to prove (1), because for any collection A, LA(f) is the least n
for which f is a retract of a map g with LA(g) ≤ n [A-S-S, Prop. 4.3].

Since A ⊆ A, we have LA(f) ≤ LA(f) for any map f , so it remains to prove the
reverse inequality. Suppose LA(f) = n, and that

A0

��

A1

��

An−1

��
X0

j0 // X1
j1 // · · · jn−2 // Xn−1

jn−1 // Xn

X
f // Y

is a minimalA-cone decomposition for f . Thus each Ai ∈ A and each Ai−→Xi
ji−→Xi+1

is a mapping cone sequence. Since Ai ∈ A, klA(Ai) ≤ 1, and hence LA(ji) ≤ 1 by
Corollary 4.4(2a). By the Composition Axiom, LA(f) ≤ n = LA(f). �

We next show that the collection A satisfies the inequality of Theorem 3.2(1) if
and only if A is closed under both wedges and suspension. For this it suffices to
prove the following corollary.

Corollary 4.13. Let A be any collection and consider commutative diagrams of the
form

C

c

��

A
goo f //

a

��

B

b
��

C ′ A′g′oo f ′ // B′.

If the inequality

1. LA(d) ≤ LA(a) + max(LA(b), LA(c))

of Theorem 3.2 holds for any such diagram, then A is closed under both wedges and
suspension.
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Proof We show thatA is closed under suspension; the proof of the other assertion
is similar. Let A ∈ A and consider the commutative diagram

∗

��

Aoo

��

// ∗

��
∗ ∗oo // ∗.

By (1), we have
klA(ΣA) = LA(ΣA−→∗)

≤ LA(A−→∗)
= klA(A) ≤ 1,

so ΣA ∈ A by definition. �

Remark 4.14. To conclude that A is closed under suspension, it suffices to consider
only diagrams in which b = id and c = id, and to conclude that A is closed under
wedges, we only need to consider diagrams with a = id.

5 Products

The following is our main result on products of maps.

Theorem 5.1. Let A be a collection that is closed under wedges and joins and let
f : A−→X and g : B−→Y be maps. Then

1. LA(f × g) ≤ LA(f) + LA(g) + max(clA(A), clA(B)),

2. LA(f × g) ≤ LA(f) + LA(g) + max(clA(A), clA(B)).

Proof In the proof of (1) we write a = clA(A), b = clA(B), m = LA(f) and
n = LA(g) and assume that a ≥ b.

Now consider the A-cone decompositions of ∗−→A and f

K0

��

K1

��

Ka−1

��

Ka

��

Km+a−1

��
A0

// A1
// · · · // Aa−1

// Aa
// · · · // Am+a−1

// Am+a

∗ // A
f

// X

and of ∗−→B and g

L0

��

L1

��

Lb−1

��

Lb

��

Lm+a−1

��
B0

// B1
// · · · // Bb−1

// Bb
// · · · // Bn+b−1

// Bn+b

∗ // B g
// Y,
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where we identify A with Aa and B with Bb. Since Ai ⊆ Ai+1 and Bj ⊆ Bj+1, we
may define, for 0 ≤ k ≤ n + m + a + b,

Ck = A×B ∪
⋃

i+j=k

Ai ×Bj ⊆ Am+a ×Bn+b.

Observe that Cb = A×B, Cn+m+a+b = X × Y and up to homotopy the composite

Cb−→Cb+1−→ · · · −→Cn+m+a+b

is f × g. From this, we see that it suffices to show that LA(Ck−→Ck+1) ≤ 1 for
each k ≥ b.

For 0 ≤ i ≤ a + m and 0 ≤ j ≤ b + n, define

Pij = Ai ×Bj, Tij = Ai ×Bj−1 ∪ Ai−1 ×Bj, and Qij = Ci+j−1 ∪ Pij.

Then Ck+1 is obtained as the pushout of all the maps Ck−→Qij with i + j = k + 1.
By an induction based on Corollary 4.1(4) it follows that

LA(Ck−→Ck+1) ≤ max(LA(Ck−→Qij)).

Thus, it suffices to show that for i + j = k + 1, LA(Ck−→Qij) ≤ 1. Applying
Corollary 4.1(1) to the pushout diagram

Tij
//

��

Ck

��
Pij

// Qij,

we have LA(Ck−→Qij) ≤ LA(Tij −→Pij). According to a result of Baues [Bau1]
(see also [St2]), there is a mapping cone sequence

Ki−1 ∗ Lj−1−→Tij −→Pij

when i, j > 0, a mapping cone sequence

Lj−1
// T0j

// P0j

Bj−1 Bj

when i = 0 and a mapping cone sequence

Ki−1
// Ti0

// Pi0

Ai−1 Ai

when j = 0. Since A is closed under joins, LA(Tij −→Pij) ≤ 1, and this completes
the proof of (1).

For (2) we take f ′ to be a map which dominates f , has the same domain and
such that LA(f) = LA(f ′), and g′ is similarly chosen for g (Lemma 3.1). Then (2)
is a consequence of (1) since f ′ × g′ dominates f × g. �
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Corollary 5.2. If A is closed under wedges and joins, then

1. (a) clA(X × Y ) ≤ clA(X) + clA(Y ),

(b) klA(X × Y ) ≤ klA(X) + klA(Y ) + max(clA(X), clA(Y ));

2. (a) catA(X × Y ) ≤ catA(X) + catA(Y ),

(b) kitA(X × Y ) ≤ kitA(X) + kitA(Y ) + max(clA(X), clA(Y )).

Remark 5.3. In the case A = {all spaces}, Corollary 5.2(2a) is a classical result
due to Bassi [Bas]. Part (1a) has been obtained by Takens [Ta], Clapp and Puppe
[C-P2], and Cornea [Co4].

It is possible to improve the inequalities in Corollary 5.2 by imposing stronger
conditions on the collection A. To illustrate this, we state and sketch a proof of
Proposition 5.4 below. We say that a collection A is a ∧-ideal if for any A ∈ A and
any space B, the smash product A ∧B ∈ A.

Proposition 5.4. If A is a ∧-ideal and is closed under wedges and suspensions,
then

1. klA(X × Y ) ≤ klA(X) + klA(Y ) and

2. kitA(X × Y ) ≤ kitA(X) + kitA(Y ).

Proof We only prove (1) since the proof of (2) is similar. By applying Corollary
4.4(4) to the sequence X ∨ Y −→X × Y −→X ∧ Y we conclude that klA(X × Y ) ≤
klA(X ∨Y )+klA(X ∧Y ). By Corollary 4.2(2), klA(X ∨Y ) ≤ max(klA(X), klA(Y )).
Furthermore, a simple argument using the fact thatA is a ∧-ideal shows that klA(X∧
Y ) ≤ min(klA(X), klA(Y )). This completes the sketch of the proof. �

6 Pullbacks and Fibrations

We prove a result on pullbacks which yields inequalities for the A-cone length and
A-category of the spaces which appear in a fiber sequence.

We begin with a lemma which may be of independent interest. In the proof
we denote the half-smash (X × Y )/X by X o Y and the quotient map by q :
X × Y −→X o Y .

Lemma 6.1. (Cf. [Mar2, Ex. 5.4]) Let A be a collection which is closed under joins
and let A ∈ A. If p2 : A×B−→B is the projection, then

(1) LA(p2) ≤ clA(B) + 1

(2) LA(p2) ≤ catA(B) + 1.



The Cone Length and Category of Maps: Pushouts, Products and Fibrations 537

Proof Consider the map p : A o B−→B induced by p2. The main step in the
proof is to show

LA(p) ≤ clA(B) and LA(p) ≤ catA(B).

Suppose we have a diagram:

L0

��

L1

��

Ln−1

��
∗ = B0

j0 // B1
j1 // · · · // Bn−1

jn−1 // Bn

and a map fn : Bn−→B with Li ∈ A. Define Di as the homotopy pushout in the
diagram

A o Bi
qi //

idofnjn−1...ji

��

Bi

ri

��
A o B

si // Di,

where qi is the projection. Then there are maps ki : Di−→Di+1 with kisi = si+1.
When i = 0 we have D0 = A o B and when i = n we have

A o Bn
qn //

idofn

��

Bn

rn

��
A o B

sn // Dn.

From the above diagram and the maps

fn : Bn−→B and p : A o B−→B,

we obtain a map gn : Dn−→B such that gnsn = p and gnrn = fn. It then follows
that

gnkn−1 · · · k0 = p.

Now we prove (1). Suppose fn is a homotopy equivalence so our given decomposition
is an A-cone decomposition of B of length n. By the previous homotopy pushout
diagram, rn is a homotopy equivalence and from gnrn = fn we obtain that gn is
a homotopy equivalence. Since gnkn−1 . . . k0 = p, we get LA(p) ≤ LA(k0) + · · · +
LA(kn−1). To complete the proof that LA(p) ≤ n = clA(B), it suffices to show that
LA(ki) ≤ 1. But Li−→Bi

ji−→Bi+1 is a mapping cone sequence and so

A o Li−→A o Bi−→A o Bi+1

is also a mapping cone sequence. Thus we have a commutative diagram

∗

��

A o Li
oo //

��

Li

��
A o B

��

A o Bi
oo qi //

��

Bi

��
A o B A o Bi+1

oo qi+1 // Bi+1.
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Since each column is a cofiber sequence, P −→Di
ki−→Di+1 is a cofiber sequence by

the Four Cofibrations Theorem, where P is the homotopy pushout of the top line.
However it is easily seen that P = A ∗ Li, the join of A and Li. But P ∈ A since A
is closed under joins. Thus LA(ki) ≤ 1 and so LA(p) ≤ n = clA(B). Part 1 of the
lemma now follows by factoring p2 : A×B−→B as

A×B
q−→A o B

p−→B.

Since A−→A × B
q−→A o B is mapping cone sequence with A ∈ A, LA(q) ≤ 1.

Thus LA(p2) ≤ LA(p) + LA(q) ≤ clA(B) + 1 by the Composition Axiom.
The proof of (2) is similar. Instead of taking an A-cone decomposition of B,

we take an A-category decomposition of B of length n. Thus instead of having
fn : Bn−→B a homotopy equivalence, we have a map s : B−→Bn with fns ' id.
We define σ : B−→Dn by σ = rns. Then the following are easily checked:

(a) gnσ ' id (b) σp ' kn−1 · · · k0 (c) gnkn−1 · · · k0 ' p.

Using the maps (id, σ) and (id, gn) we see that p is homotopy dominated by kn−1 · · · k0.
Therefore LA(p) ≤ LA(k0) + · · · + LA(kn−1). The rest of the proof is the same as
the proof of (1), using L for L. �

Now we prove our pullback theorem.

Theorem 6.2. Let A be a collection that is closed under wedges and joins and let

A //

��

B

��
C // D

be a pullback diagram. Let B−→D be a fibration with fiber F . Then

1. LA(A−→B) ≤ LA(C −→D)(clA(F ) + 1);

2. LA(A−→B) ≤ LA(C −→D)(catA(F ) + 1).

Proof We prove (1). Let

K0

��

K1

��

Kn−1

��
C0

// C1
// · · · // Cn−1

// Cn

C // D

be a minimal A-cone decomposition for C −→D. For 0 ≤ i ≤ n, define Bi to be the
pullback indicated by the square

Bi
//

��

B

��
Ci

// D.
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Thus B0 = A, Bn ≡ B and we obtain maps Bi−→Bi+1. With these identifications,
the composition B0−→B1−→ · · · −→Bn is simply A−→B. Hence, it suffices to
show that L(Bi−→Bi+1) ≤ clA(F ) + 1. Consider the cube diagram

Ki × F //

{{wwwwwwwww

��

F

��

}}zz
zz

zz
zz

Bi
//

��

Bi+1

��

Ki
//

{{www
ww

ww
ww

w
∗

}}zz
zz

zz
zz

z

Ci
// Ci+1.

In this diagram, the bottom square is a homotopy pushout and the sides are pull-
backs. This assertion is obvious for all squares except the left side square

Ki × F //

��

Bi

��
Ki

// Ci.

To see that this is a pullback square, let P be the pullback of Bi−→Ci←−Ki.
Then P is also the pullback of Bi+1−→Ci+1←−Ci←−Ki. Since the composite
Ci+1←−Ci←−Ki is the constant map, the latter pullback is Ki × F .

Now by the Mather’s second cube theorem [Mat], the top square is a homotopy
pushout. By Corollary 4.1(1), LA(Bi−→Bi+1) ≤ LA(Ki × F −→F ). By Lemma
6.1(1), LA(Ki × F −→F ) ≤ clA(F ) + 1. This proves (1).

The proof of (2) is similar and uses Lemma 6.1(2) and we omit it. �

Corollary 6.3. Let A be a collection that is closed under wedges and joins and let
F −→E−→B be a fibration. Then

1. clA(E) + 1 ≤ (clA(B) + 1)(clA(F ) + 1);

2. catA(E) + 1 ≤ (catA(B) + 1)(catA(F ) + 1).

Proof We prove (1). Applying Theorem 6.2 to the pullback square

F //

��

E

��
∗ // B,

we obtain LA(F −→E) ≤ clA(B)(clA(F ) + 1). Now the Composition Axiom shows
that

clA(E) ≤ clA(F ) + LA(F −→E),

so
clA(E) + 1 ≤ clA(F ) + LA(F −→E) + 1

≤ clA(B)(clA(F ) + 1) + (clA(F ) + 1)
= (clA(B) + 1)(clA(F ) + 1).

�
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Remark 6.4. In the special case A = {all spaces} we retrieve Varadarajan’s result
[Var]

cat(E) + 1 ≤ (cat(B) + 1)(cat(F ) + 1).

Hardie has obtained a further improvement in [Ha2], but that involves a different
notion of the category of a map from the one we consider here [B-G, Fo].

7 Miscellaneous Results and Problems

In this section we consider several topics. We first establish some elementary, but
useful, facts about LA and LA. We then show that some known results for the
collection A = {all spaces} do not hold for an arbitrary collection A. Finally, we
conclude the section by stating a number of open questions and discussing them
briefly.

We begin with a few elementary results.

Proposition 7.1. Let f : X −→Y and let A be any collection. Then

1. LA(f) = 0 if and only if f is a homotopy equivalence;

2. LA(f) = 0 if and only if f is a homotopy equivalence.

Proof We prove (1) and (2) at the same time. By the axioms, if f is a homotopy
equivalence, then LA(f) = LA(f) = 0. Conversely, define a function `A by

`A(f) =

 0 if f is a homotopy equivalence
1 otherwise.

It is trivial to check that `A satisfies the A-category axioms, so

`A(f) ≤ LA(f) ≤ LA(f)

for every map f . Consequently, if f is not a homotopy equivalence, then LA(f) ≥
LA(f) ≥ `A(f) = 1. �

Proposition 7.2. Let f : X −→Y and g : X ′−→Y ′ be maps and let A be a
collection that is closed under wedges. Then

(a) LA(f ∨ g) ≤ max(LA(f), LA(g));

(b) LA(f ∨ g) = max(LA(f),LA(g)).

Proof Since both X∨X ′ and Y ∨Y ′ are homotopy pushouts, the inequality LA(f∨
g) ≤ max(LA(f),LA(g)) is a consequence of Theorem 3.2. This same argument
shows LA(f ∨ g) ≤ max(LA(f), LA(g)). The reverse inequality for LA(f ∨ g) follows
since f and g are both retracts of f ∨ g. �
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An example due to Dupont [Du] can be used to show that equality does not
generally hold in (a). Other such examples can be found in [St1], where spaces Xn

with category n and cone length n+1 are constructed. According to an observation
of Ganea [Ta] (see also [Co2]), this implies that there is a space A such that cl(Xn∨
ΣA) = cat(Xn). If we let A = {all spaces}, f : ∗−→Xn and g : ∗−→ΣA, then we
have

LA(f) = cl(Xn) > cat(Xn) = cl(Xn ∨ ΣA) = LA(f ∨ g).

Corollary 7.3. Let X and Y be spaces and A a collection that is closed under
wedges. Then

(a) LA(X
∗−→Y ) ≤ max(klA(X), clA(Y ));

(b) LA(X
∗−→Y ) = max(kitA(X), catA(Y )).

Proof The trivial map X
∗−→Y is the wedge of the maps X −→∗ and ∗−→Y .

The result follows from Proposition 7.2. �

Next we turn to some known results for the collection A = {all spaces}. For this
collection we delete the subscript A and write LA as L, LA as L, etc.

For any map f : X −→Y , it has been proved that L(f) ≤ cl(Y ) + 1 [Mar2]
and L(f) ≤ cat(Y ) + 1 [Co2]. We show that this may not be true for an arbitrary
collection A.

Example 7.4. By Corollary 4.9, klA(X) ≤ LA(f) + klA(Y ). Thus if LA(f) ≤
clA(Y ) + 1 were true, we would have

klA(X) ≤ clA(Y ) + klA(Y ) + 1,

for any X and Y . This cannot hold for any collection A such that there are spaces
X with arbitrarily large killing length (e.g., for A = S or Σ). The analogous
observation holds for LA.

Another classical result concerns the homotopy pushout square

A //

��

B

��
C // D.

It has been shown that cl(D) ≤ cl(B) + cl(C) + 1 [Ha1]. We show that this is not
true for A = S, the collection of wedges of spheres.

Example 7.5. Consider the homotopy pushout

CPt //

��

∗

��
∗ // ΣCPt.

As t increases, the length of the longest nontrivial composition of Steenrod squares
in H∗(ΣCPt; Z2) also becomes arbitrarily large. It follows from [A-S-S, Prop. 7.5]
that clS(ΣCPt) increases as t increases. This contradicts the S-analog of Hardie’s
result.
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We conclude the paper by stating and discussing three open problems.

Problem 7.6 We have seen in [A-S-S, Prop. 7.3] that for certain collections A,
wcat(X) ≤ 2klA(X) − 1, where wcat(X) is the weak category of X (see [Gi, Ja]).
Since wcat(X) ≤ cat(X) ≤ catA(X) for any collection A, it is reasonable to ask for
which collections A is catA(X) ≤ 2klA(X)−1. Of course A must not be {all spaces},
since klA(X) ≤ 1 for every space X in that case. We note that the conjecture has
been verified in the case A = S and X = Sn

1 × · · · × Sn
r [A-M-S, Prop. 6.2]. Other

evidence for the conjecture in the case A = Σ, the collection of suspensions, has
been given in [A-Str], where a weaker form of this problem has been posed [A-Str,
§7,No. 5].

Problem 7.7 Given f : X −→Y . Is LA(f) ≤ klA(X) + clA(Y ), and is LA(f) ≤
kitA(X) + catA(Y )?

We discuss the evidence in the case of LA (the discussion is analogous for LA).
First of all, if C is the cofiber of f , it is true that clA(C) ≤ klA(X) + clA(Y )
(Corollary 4.4(3a)) and also clA(C) ≤ LA(f) (Corollary 4.4(1a)). Secondly, we have
that LA(f) ≤ clA(X) + clA(Y ) (Corollary 4.8(1a)) and klA(X) ≤ clA(X). Finally,
when A = {all spaces} then klA(X) = 1 for every X, and in this case it is known
that L(f) ≤ cl(Y ) + 1 [Mar2].

Problem 7.8 It is well known that cl(X) ≤ cat(X) + 1 [Ta]. If A is a collection
different from {all spaces}, is there an upper bound for clA(X) in terms of catA(X)?
This question was asked by Scheerer-Tanré in [S-T]. Analogously, is there an upper
bound for klA in terms of kitA?

We can show that kitΣ(X) ≤ 1 implies klΣ(X) ≤ 3 as follows. If kitΣ(X) ≤ 1
then there is a mapping cone sequence A−→X

∗−→Y with A ∈ Σ. It follows that
ΣA = Y ∨ ΣX, and so there is a retraction map α : ΣA−→Y . The cofiber of α is
Σ2X, and hence we have a decomposition

A

��

ΣA

��

Σ2X

��
X // Y // Σ2X // ∗.

This proves that klΣ(X) ≤ 3.
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