
EXTENDING EDWARDS LIKELIHOOD RATIOS TOSIMPLE ONE SIDED HYPOTHESIS TESTSDEWAYNE DERRYBERRY AND MILAN BIMALIAbstract. With regard to the one sided hypothesis test, we pro-pose a likelihood ratio that might be viewed as a Bayes/Non-Bayescompromise in the spirit of I. J. Good (1983). The in�uence of A.W. F. Edwards (1972) will also be apparent. Although we will de-velop some general ideas, most of our e�ort will focus on tests of asingle unknown mean and the speci�c case of a sample from a normalpopulation with unknown mean and known variance.1. The FrameworkSuppose we have a random sample from a normal distribution withknown variance and unknown mean (NUK). Neyman and Pearson pro-posed an NUK test of the form H0 : µ = µ1 versus H1 : µ = µ2. Neymanand Pearson [2] framed the problem as that of making a decision aboutthe two hypotheses, with the underlying notion of type I and type II errorassociated with the decision. In this framework, if the p-value is less thansome preset level, called α, a decision will be made to adopt the secondhypothesis, if the p-value is greater than α, the decision will be made toadopt the �rst hypothesis.Fisher proposed a di�erent way of thinking about hypotheses of the form
H0 : µ = µ0 with no explicit alternative hypothesis given. In this contexta p-value is also computed (as a two-sided p-value) and we claim to haveevidence against the null hypothesis when the p-value is su�ciently small,and take a neutral stance if the p-value is large. In no case can there beevidence for the null hypothesis in this context. It is now well understoodthat the approaches of Neyman-Pearson and Fisher are completely di�erent[2].The most common test found in introductory textbooks is of the form ofeither H0 : µ = µ0 or versus H1 : µ 6= µ0 (the two forms of the formulationalready hint at a possible conceptual confusion), and can be viewed as somehybrid of these two ideas. These tests are often presented with α levels anddecisions (the Neyman-Pearson approach) or with the p-values and statedlevels of evidence for the alternative hypothesis. Often, textbooks alternateMISSOURI J. OF MATH. SCI., SPRING 2014 57



D. DERRYBERRYbetween these two approaches without explanation, this can be veri�ed withalmost any introductory or intermediate level textbook.2. A. W. F. Edwards ApproachEdwards [4] identi�ed a way of thinking about simple tests of the form
H1 : µ = µ1 versus H2 : µ = µ2 which are di�erent from the approach ofNeyman and Pearson. Edwards is a frequentist and does not, in general,believe in the doctrine of inverse probability, the use of Bayes Theoremto derive Pr(H |data) from Pr(data|H) but does believe there are speci�ccases where inverse probability is possible [4, p. 44].Furthermore Edwards, as a scientist, has little interest in statistical anal-ysis as a decision making exercise. In fact, his contempt for the decisiontheory approach is apparent from the very �rst pages of his book. Decisionsare often based on statistical analysis (clinical trials, process optimization,quality control, etc), but practicing scientists are often more interested incompiling and summarizing many studies, not in making some sort of im-mediate decision about each individual study Rosenbaum [9] and Ramseyand Schafer [8, pp. 48�49].Where Neyman and Pearson were thinking of the comparison of thehypotheses as resulting in a decision about which hypothesis to act upon,Edwards was thinking more along the lines of the relative evidence for eachhypothesis and proposed that likelihood ratios were a way of assessing therelative odds of the two hypothesis using Bayes Theorem (along with aprior belief each hypothesis was equally likely). He reasoned

Pr(H1|data)
Pr(H2|data)

=
L(data|H1)Pr(H1)

L(data|H2)Pr(H2)
=

L(data|H1)

L(data|H2)

= LR12(the likelihood ratio) − (1)is a measure of the odds of the hypotheses, given the data.(L(data|Hi), i = 1, 2 is the likelihood of the data under speci�ed hypothe-sis).Although the argument involves inverse probability, it is among the leasto�ensive to frequentists. Indeed, if all likelihood ratios had a simple inter-pretation as the relative odds of the two competing hypotheses, and allpriors were so uncontroversial, there might not be a distinction betweenBayesians and Frequentists in this special context.Expression (1) would now be recognized as a Bayes factor [5, 6, 7]. How-ever, the form is particularly pure, because we do not need to form anintegral involving the prior, nor is the prior particularly subjective.In particular Good [5, 6] identi�es this speci�c ratio, without the sim-plifying assumption Pr(H1) = Pr(H2) as a Bayes factor, as an odds ra-tio comparing the weight of evidence in favor of each hypothesis, and as58 MISSOURI J. OF MATH. SCI., VOL. 26, NO. 1



EXTENDING EDWARDS LIKELIHOOD RATIOSsomething non-Bayesian could accept in the case of two simple hypothe-ses. Incidentally, despite the apparently similar intentions of Edwards andGood, neither author cited the other in our references, although two of thereferences are books and both discuss this ratio extensively in these books.3. Some Useful Properties of Likelihood Ratio (NUK Case)(1) LR12 = 1 when µ1+µ2

2 = x̄ and both hypotheses are equally likely.(2) If LR12 > 1, then H1 is more plausible than H2 and vice-versa.(3) If H1 is true, as n → ∞, LR12 → ∞. If H2 is true, as n → ∞,LR12 → 0.(4) Pr(H1|data) = LR12

1+LR12

and Pr(H2|data) = 1− Pr(H1|data)4. Another Way of Thinking about Inverse ProbabilityFor the non-Bayesian, another kind of evidence, related to the basic ratio,could be useful. DeGroot and Schervish [3, pp. 304�307] discuss a courtcase in which the amount of prior weight must be placed on a hypothesis, forthe posterior probability to be reasonable. For example, we could considerthe minimum value Pr(H1) such that
Pr(H1|data)
Pr(H2|data)

=
L(Data|H1)Pr(H1)

L(data|H2)(1− Pr(H2))
= 1.Good [5, pp. 36�37] argues similarly for a value of inverse probabilities evenwhen priors are not known. Here, as before, the fact that the prior is a �xedvalue, and not a continuous distribution, makes things more manageableand less controversial. 5. One Sided TestsWe accept the argument made by Edwards (and reinforced by Good),and wish to extend the idea to a new context. We also accept the followingnotions held by Edwards. Entities like Bayes factors or likelihood ratiosare more informative that reject/don't reject decisions and that inverseprobability arguments are sometimes possible, but a non-Bayesian needs arationale for the plausibility of the prior in each case.Consider an alternative formulation of the typical Neyman-Pearson test:

H1 : µ = µ1 versus H2 : µ = µ2. Let c = µ1+µ2

2 , then the test could bestated as: H1 : µ = c + ∆ versus H2 : µ = c − ∆ where ∆ > 0 and thelikelihood ratio would be:
Pr(H1|data)
Pr(H2|data)

=
L(data|H1)

L(data|H2)
= LR12.Specializing to NUK case we have LR12 = exp
(

2∆n(c− x̄)/σ2
). The term

(c − x̄) determined whether LR12 is greater than, or less than 1. We nowMISSOURI J. OF MATH. SCI., SPRING 2014 59



D. DERRYBERRYconsider a variation of this situation. We still have the hypotheses: H1 :
µ = c + ∆ versus H2 : µ = c − ∆, but suppose now that c is known but
∆ > 0 and is unknown (this is the matter in which introductory textbookspresent such tests). This is similar to the test of the form H1 : µ < c versus
H2 : µ > c. We assume Pr(H1) = Pr(H2) = 0.5, as did Edwards. In manyreal problems the choice of c is obvious, we want to assume (due to fairness)that prior to the collection of the data we show no bias (a prior judicialbelief that each hypothesis is equally likely). In this case the likelihoodratio becomes:

L(data|H1)

L(data|H2)
=

c− ∆̂

c+ ∆̂
= LR∗.Specializing the result to NUK, we have ∆̂ = |c− x̄| andLR∗ = exp

(

2∆̂n(c− x̄)/σ2
)

,this is the likelihood ratio for a Neyman-Pearson test in which µ1 and µ2are unknown but the midpoint between them is known.6. Some Useful Properties of Likelihood Ratio (NUK)(1) LR∗ = 1 when c = x̄ and both hypotheses are equally likely.(2) If LR > 1, then c > x̄ and H1 is more plausible than H2 andvice-versa.(3) If H1 is true, as n → ∞,LR∗ → ∞. If H2 is true, as n → ∞,LR∗ → 0.(4) We know x̄ → µ, so ∆̂ → ∆, and n

√LR∗
12 → n

√LR12. So thatasymptotically
Pr∗(H1|Data) = (LR∗

12/(1 + LR∗
12)) = (LR12/(1 + LR12))

= Pr(H1|Data).7. Bayesian Factors, Posterior Probabilities, and p-valuesIf any continuous prior is placed on ∆ such that ∆ ≥ 0 and each hy-pothesis is equally likely so that half the time µ = c−∆, and half the time
µ = c + ∆, could produce a Bayes factor. Our approach does not place aprior on ∆, but treats it as �xed, but unknown. We do, however, assumethat half the time µ = c−∆, and half the time µ = c+∆.The relationship between frequentist p-values and Bayesian posteriorprobabilities has been the topic of much discussion [1, p. 414]. In broadstrokes, for two-sided tests p-values are generally much smaller than Bayesianposterior probabilities. On the other hand, for one sided tests p-values canbe larger or smaller than posterior probabilities. It is a simple task to com-pute both p-values and posterior probabilities using the formulas found in60 MISSOURI J. OF MATH. SCI., VOL. 26, NO. 1



EXTENDING EDWARDS LIKELIHOOD RATIOSthis paper, because Pr∗(H1|Data) and the p-value are both functions of
z − score = (x̄− c)

√
n/σ.Table 1. H1 : µ < c and H2 : µ > c. A comparison ofp-values and posterior prababilities

z − score LR∗ p-value Pr∗(H1|Data)0.00 1.000 0.50 0.50-0.45 1.500 0.674 0.60-0.65 2.333 0.742 0.70-0.83 4.000 0.797 0.80-1.05 9.000 0.853 0.90-1.21 19.00 0.887 0.95-1.52 99.00 0.936 0.99-1.62 199.0 0.947 0.995
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Although not much can be said from Table 1 and Figure 1, as we knowthere is no particular expected relationship between one sided p-values andMISSOURI J. OF MATH. SCI., SPRING 2014 61



D. DERRYBERRYBayesian posterior probabilities, so there is no pattern to con�rm, never-theless the comparison is intrinsically interesting. The table and the plot(Figure 1) show that, as the z-score increases in magnitude, the posteriorprobability grows faster than the p-value.8. SummaryWe begin with the assumption of Edwards [4, Chapter 4] that the originalderivation is sound, a position con�rmed by Good [5, 6]. In that derivationBayes Theorem, and a prior assumption both hypotheses are equally likelyto be true, were combined to produce a likelihood ratio that can be under-stood as a Bayes factor and also the relative odds of the two hypothesesgiven the data.By reformulating the Neyman-Pearson framework, we develop an Ed-wards-like approach for the case of one-sided tests. We would argue thatour approach is a minimal extension of Edwards program and allows for thecomputation of inverse probabilities. We would argue that at least somenon-Bayesians will accept our development of an inverse probability, onethat does not put a prior on the unknown parameter. We further viewthis as an example of a Bayes/non-Bayes compromise, often advocated byGood. 9. AcknowledgmentsThe authors are grateful to the statistics referees of the Missouri Journalof Mathematical Sciences for their role in polishing the paper and strength-ening its results. References[1] G. Casella and R. Berger, Reconciling Bayesian and frequentist evidence in theone-sided testing problem, Journal of the American Statistical Association, 82.397(1987), 106�111.[2] R. Christensen, Testing, Fisher, Neyman, Pearson, and Bayes, The AmericanStatistician, 59.2 (2005), 121�126.[3] M. H. DeGroot and M. J. Schervish, Probability and Statistics, 3rd ed., Addison-Wesley, 2002.[4] A. W. F. Edwards, Likelihood, Cambridge University Press, Cambridge (expandededition, 1992, Johns Hopkins University Press, Baltimore), 1972.[5] I. J. Good, Good Reasoning: The Foundations of Probability and Its Applications,University of Minnesota Press, 1983.[6] I. J. Good, The Bayes/non-Bayes compromise: a brief review, Journal of the Amer-ican Statistical Association, 87.419 (1992), 576�606.[7] R. E. Kass and A. E. Raftery, Bayes factors, Journal of the American StatisticalAssociation, 90.430 (1995), 791.[8] F. L. Ramsey and D. W. Schafer, The Statistical Sleuth, Brooks/Cole, 1953.[9] P. R. Rosenbaum, Observational Studies, 2nd ed., Springer, New York, 2002.62 MISSOURI J. OF MATH. SCI., VOL. 26, NO. 1



EXTENDING EDWARDS LIKELIHOOD RATIOSMSC2010: 62A01Keywords: Bayes factor, inverse probability, weight of evidence.AppendixNote as long as ∆2n
σ2 is constant,

log(LR12) = − 2∆n(x̄−c)
σ2 = − 2∆

√
n

σ

√
n(x̄−µ+µ−c)

σ
= − 2∆

√
n

σ
z+ 2∆2n

σ2 is a nor-mal random variable with mean and variance:
E (log(LR12)) = E

(

− 2∆
√
n

σ
z + 2∆2n

σ2

)

= 2∆2n
σ2

V ar (log(LR12)) = E
(

− 2∆
√
n

σ
z + 2∆2n

σ2

)

= 4∆2n
σ2Now: log(LR∗

12) =
2∆̂n(x̄−c)

σ2 = 2n(x̄−c)2

σ2 = 2n(x̄−µ+µ−c)2

σ2 = 2z2 − 4∆
√
n

σ2 z +
2∆2n
σ2The estimated log(LR) is a linear combination of χ2

1 and a standard normalplus a constant, where the normal dominated for large n. The mean andvariance are:
E (log(LR∗

12)) = E
(

2z2 − 4∆
√
n

σ
z + 2∆2

n
σ2

)

= 2− 0 + 2∆2
n

σ2

V ar (log(LR∗
12)) = V ar

(

2z2 − 4∆
√
n

σ
z + 2∆2n

σ2

)

= 4.V ar(χ2
1) +

16∆2n
σ2 =

8 + 16∆2n
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