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AsstrACT. With regard to the one sided hypothesis test, we pro-
pose a likelihood ratio that might be viewed as a Bayes/Non-Bayes
compromise in the spirit of I. J. Good (1983). The influence of A.
W. F. Edwards (1972) will also be apparent. Although we will de-
velop some general ideas, most of our effort will focus on tests of a
single unknown mean and the specific case of a sample from a normal
population with unknown mean and known variance.

1. THE FRAMEWORK

Suppose we have a random sample from a normal distribution with
known variance and unknown mean (NUK). Neyman and Pearson pro-
posed an NUK test of the form Hy : p = pq versus Hy : p = po. Neyman
and Pearson [2] framed the problem as that of making a decision about
the two hypotheses, with the underlying notion of type I and type II error
associated with the decision. In this framework, if the p-value is less than
some preset level, called «, a decision will be made to adopt the second
hypothesis, if the p-value is greater than «, the decision will be made to
adopt the first hypothesis.

Fisher proposed a different way of thinking about hypotheses of the form
Hy : i = po with no explicit alternative hypothesis given. In this context
a p-value is also computed (as a two-sided p-value) and we claim to have
evidence against the null hypothesis when the p-value is sufficiently small,
and take a neutral stance if the p-value is large. In no case can there be
evidence for the null hypothesis in this context. It is now well understood
that the approaches of Neyman-Pearson and Fisher are completely different
[2].

The most common test found in introductory textbooks is of the form of
either Hy : pn = po or versus Hy : o # po (the two forms of the formulation
already hint at a possible conceptual confusion), and can be viewed as some
hybrid of these two ideas. These tests are often presented with « levels and
decisions (the Neyman-Pearson approach) or with the p-values and stated
levels of evidence for the alternative hypothesis. Often, textbooks alternate
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between these two approaches without explanation, this can be verified with
almost any introductory or intermediate level textbook.

2. A. W. F. EDWARDS APPROACH

Edwards [4] identified a way of thinking about simple tests of the form
Hy : = py versus Hs : o = po which are different from the approach of
Neyman and Pearson. Edwards is a frequentist and does not, in general,
believe in the doctrine of inverse probability, the use of Bayes Theorem
to derive Pr(H|data) from Pr(data|H) but does believe there are specific
cases where inverse probability is possible [4, p. 44].

Furthermore Edwards, as a scientist, has little interest in statistical anal-
ysis as a decision making exercise. In fact, his contempt for the decision
theory approach is apparent from the very first pages of his book. Decisions
are often based on statistical analysis (clinical trials, process optimization,
quality control, etc), but practicing scientists are often more interested in
compiling and summarizing many studies, not in making some sort of im-
mediate decision about each individual study Rosenbaum [9] and Ramsey
and Schafer [8, pp. 48-49].

Where Neyman and Pearson were thinking of the comparison of the
hypotheses as resulting in a decision about which hypothesis to act upon,
Edwards was thinking more along the lines of the relative evidence for each
hypothesis and proposed that likelihood ratios were a way of assessing the
relative odds of the two hypothesis using Bayes Theorem (along with a
prior belief each hypothesis was equally likely). He reasoned

Pr(Hy|data)  L(data|H,)Pr(Hy)  L(data|H,)

Pr(Hs|data) — L(data|H)Pr(Hy) — L(data|H>)
= LRjs(the likelihood ratio) — (1)

is a measure of the odds of the hypotheses, given the data.
(L(data|H;),i = 1,2 is the likelihood of the data under specified hypothe-
sis).

Although the argument involves inverse probability, it is among the least
offensive to frequentists. Indeed, if all likelihood ratios had a simple inter-
pretation as the relative odds of the two competing hypotheses, and all
priors were so uncontroversial, there might not be a distinction between
Bayesians and Frequentists in this special context.

Expression (1) would now be recognized as a Bayes factor [5, 6, 7]. How-
ever, the form is particularly pure, because we do not need to form an
integral involving the prior, nor is the prior particularly subjective.

In particular Good [5, 6] identifies this specific ratio, without the sim-
plifying assumption Pr(H,) = Pr(Hz) as a Bayes factor, as an odds ra-
tio comparing the weight of evidence in favor of each hypothesis, and as
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something non-Bayesian could accept in the case of two simple hypothe-
ses. Incidentally, despite the apparently similar intentions of Edwards and
Good, neither author cited the other in our references, although two of the
references are books and both discuss this ratio extensively in these books.

3. SoME USEFUL PROPERTIES OF LIKELIHOOD RATIO (NUK CASE)

(1) LR12 =1 when ”1;”‘2 = z and both hypotheses are equally likely.

(2) If LR12 > 1, then H; is more plausible than Hs and vice-versa.

(3) If Hy is true, as n — oo, LRjs — oo. If Hy is true, as n — oo,
LR12 — 0.

(4) Pr(H;|data) = 1i£{}1§12 and Pr(Hs|data) = 1 — Pr(H;|data)

4. ANOTHER WAY OF THINKING ABOUT INVERSE PROBABILITY

For the non-Bayesian, another kind of evidence, related to the basic ratio,
could be useful. DeGroot and Schervish [3, pp. 304-307] discuss a court
case in which the amount of prior weight must be placed on a hypothesis, for
the posterior probability to be reasonable. For example, we could consider
the minimum value Pr(H;) such that

Pr(H|data)  L(Data|Hy)Pr(Hy) 1

Pr(Hs|data) — L(data|H3)(1 — Pr(Hz))
Good [5, pp. 36-37] argues similarly for a value of inverse probabilities even
when priors are not known. Here, as before, the fact that the prior is a fixed
value, and not a continuous distribution, makes things more manageable
and less controversial.

5. ONE SIDED TESTS

We accept the argument made by Edwards (and reinforced by Good),
and wish to extend the idea to a new context. We also accept the following
notions held by Edwards. Entities like Bayes factors or likelihood ratios
are more informative that reject/don’t reject decisions and that inverse
probability arguments are sometimes possible, but a non-Bayesian needs a
rationale for the plausibility of the prior in each case.

Consider an alternative formulation of the typical Neyman-Pearson test:
Hy : = py versus Hy @ p = pa. Let ¢ = %, then the test could be
stated as: Hy : = ¢+ A versus Hy : g = ¢ — A where A > 0 and the
likelihood ratio would be:

Pr(Hy|data)  L(data|H) LR

Pr(Hs|data) ~ L(data|Hy) %
Specializing to NUK case we have LR12 = exp (2An(c — z)/0?). The term
(¢ — ) determined whether LRy is greater than, or less than 1. We now
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consider a variation of this situation. We still have the hypotheses: H; :
uw=c+ A versus Hs : = ¢ — A, but suppose now that ¢ is known but
A > 0 and is unknown (this is the matter in which introductory textbooks
present such tests). This is similar to the test of the form H; : u < ¢ versus
Hsy : p > c. We assume Pr(Hy,) = Pr(Hz) = 0.5, as did Edwards. In many
real problems the choice of ¢ is obvious, we want to assume (due to fairness)
that prior to the collection of the data we show no bias (a prior judicial
belief that each hypothesis is equally likely). In this case the likelihood
ratio becomes:

L(data|Hy) c¢— A _LR*
L(data|Hy) ¢+ A '

Specializing the result to NUK, we have A = |¢ — Z| and
LR" = exp (ZAn(c - 3‘:)/02) ,

this is the likelihood ratio for a Neyman-Pearson test in which p; and pe
are unknown but the midpoint between them is known.

6. SOME USEFUL PROPERTIES OF LIKELIHOOD RaATIO (NUK)

(1) LR* =1 when ¢ = Z and both hypotheses are equally likely.
(2) If LR > 1, then ¢ > Z and H; is more plausible than Hs and

vice-versa.

(3) If Hy is true, as n — oo, LR* — oco. If Hs is true, as n — oo,
LR* — 0.

(4) We know Z — y, so A — A, and {/LR}, — /LRi. So that
asymptotically

Pr*(Hi|Data) = (LRT5/(1 4+ LRJ5)) = (LR12/(1 + LRq2))
= Pr(H;|Data).

7. BAYESIAN FACTORS, POSTERIOR PROBABILITIES, AND p-VALUES

If any continuous prior is placed on A such that A > 0 and each hy-
pothesis is equally likely so that half the time y = ¢ — A, and half the time
1= c+ A, could produce a Bayes factor. Our approach does not place a
prior on A, but treats it as fixed, but unknown. We do, however, assume
that half the time y = ¢ — A, and half the time y = ¢+ A.

The relationship between frequentist p-values and Bayesian posterior
probabilities has been the topic of much discussion [1, p. 414]. In broad
strokes, for two-sided tests p-values are generally much smaller than Bayesian
posterior probabilities. On the other hand, for one sided tests p-values can
be larger or smaller than posterior probabilities. It is a simple task to com-
pute both p-values and posterior probabilities using the formulas found in
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this paper, because Pr*(H;|Data) and the p-value are both functions of
z — score = (T — ¢)y/n/o.

TABLE 1. Hy : p < cand Hs : ¢ > ¢. A comparison of
p-values and posterior prababilities

z—score LR" p-value Pr*(H;|Data)

0.00 1.000  0.50 0.50
-0.45 1.500 0.674 0.60
-0.65 2333 0.742 0.70
-0.83 4.000 0.797 0.80
-1.05 9.000 0.853 0.90
-1.21 19.00 0.887 0.95
-1.52 99.00 0.936 0.99
-1.62 199.0  0.947 0.995

Plot of absolute value of z vs. P-val and z vs. Posterior Probability
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Although not much can be said from Table 1 and Figure 1, as we know
there is no particular expected relationship between one sided p-values and
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Bayesian posterior probabilities, so there is no pattern to confirm, never-
theless the comparison is intrinsically interesting. The table and the plot
(Figure 1) show that, as the z-score increases in magnitude, the posterior
probability grows faster than the p-value.

8. SUMMARY

We begin with the assumption of Edwards [4, Chapter 4] that the original
derivation is sound, a position confirmed by Good [5, 6]. In that derivation
Bayes Theorem, and a prior assumption both hypotheses are equally likely
to be true, were combined to produce a likelihood ratio that can be under-
stood as a Bayes factor and also the relative odds of the two hypotheses
given the data.

By reformulating the Neyman-Pearson framework, we develop an Ed-
wards-like approach for the case of one-sided tests. We would argue that
our approach is a minimal extension of Edwards program and allows for the
computation of inverse probabilities. We would argue that at least some
non-Bayesians will accept our development of an inverse probability, one
that does not put a prior on the unknown parameter. We further view
this as an example of a Bayes/non-Bayes compromise, often advocated by
Good.
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Appendix
Note as long as A;” is constant,

log(LR12) = — QA"G(;E*C) = _2AU\/5 ﬁ(f’gﬂ‘*c) — 2Aa\/ﬁz+ 2ﬁ§" is a nor-

mal random variable with mean and variance:

E(log(LR12)) = E (_ 2Ag\/ﬁz + 2§§n) _ 2A%

o2

Var (log(LR12)) = E (_Maﬁz i mzn) _ aA%

o2 o2

o o, _ 2
Now: lOg(LRTQ) _ 2An(£§fc) _ 2n(§;c) _ 2n(m7;;;r,ufc) — 9,2 _ 4%7\2/524_
2A%n

o2
The estimated log(LR) is a linear combination of x? and a standard normal
plus a constant, where the normal dominated for large n. The mean and
variance are:

E(log(LRiy)) = E (222 — $8%5 4 2000} — 9 (4 2800

Var (log(LR},)) = Var (222 - 2852 4 2850 ) — 4Var(x}) + 1957 =
8 + 16A%n

o2

, z and 22 are uncorrelated.
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