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1. Introduction

This paper deals with various estimates for the Riesz potentials and the
heat kernel acting on the spaces of Radon measures fi on Rn whose total
variation |/i| satisfies

(1.1)

for some 1 ̂  p ^ oo. Here B(z9 r) denotes the open ball with radius r centered
at z e Rn and the constant C is independent of r and z. The spaces of measures
of the form fi = fdx, with f e L\oc and dx the Lebesgue measure, satisfying
(1.1) are called Morrey spaces and have been extensively studied in connection
with the regularity theory for weak solutions of nonlinear elliptic equations
(see [1, 2, 5]). However, those measures are considered mostly on bounded
domains since the main interest is in the local behavior of the densities.

In this paper we consider the measures satisfying (1.1) on the whole space
Rn and discuss the boundedness of the Riesz potentials and the heat kernel
acting on such measures. Our results are stated in the same way as in
the well-known case of LP spaces and seem to be more or less known to
mathematical publicity. For example, Peetre [6] states a more general result
than ours without proof; however, it seems to be not so easy to guess a proof of
his result by reading the other parts of [6]. For this reason we give in this
paper the detailed proofs of our results for later use.

The author encountered the spaces of measures satisfying (1.1) during the
study of viscous vortex flow in three-dimensional space [3]. Although some
parts of the results in this paper are already included in [3], we present here the
full version of the results for the reader's convenience. In Section 2 we define
the Morrey spaces of measures and investigate their elementary structures. In
particular, we shall show that the norms of the Morrey spaces possess several
properties in common with the norms of the Lebesgue spaces LP and the
Lorentz-Marcinkiewicz spaces L£. It should be noticed that, contrary to the
case of LP and LPW spaces, the interpolation property of the Morrey spaces with
respect to various bounded linear operators still remains an open problem.
Section 3 is the main part of this paper, in which we discuss the boundedness of
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the Riesz potentials and the heat kernel acting on the Morrey spaces. The
estimates given there possess the same form as in the case of those potentials
acting on Lp spaces.

The author is grateful to Professors S. Oharu and F-Y. Maeda for their
interest in this work and for helpful discussions. The present work was initiated
while the author was visiting the University of Paderborn in Federal Republic
of Germany as an Alexander von Humboldt research fellow. The support and
the warm hospitality of the Alexander von Humboldt Foundation and of the
University of Paderborn are gratefully acknowledged here.

2. Definition and basic properties of Morrey spaces

We employ the standard notation: LP = Lp(Rn) denotes the usual Lebesgue
space and LJ, = L^iR") the Lorentz-Marcinkiewicz space of measurable functions
/ such that X((x) = meas {x; \f(x)\ > a}, a > 0, satisfies

DEFINITION 2.1. A Radon measure \i on Rn belongs to the Morrey space
p, 1 ̂  p g oo, if there exists a constant C such that the total variation |/x|

satisfies

for all z e Rn and r > 0, where B(z, r) is the open ball with radius r and center z.
We set Mp = LlocnJ?p.

PROPOSITION 2.2. Mp is a Banach space with norm

and Mp is a closed subspace of Jip.

PROOF. Let \im be an arbitrary Cauchy sequence; for each s > 0 there is
an N so that

(2.1) llA*» - ftll, < c for all mJ^N9

and, moreover, there is a C > 0 with

(2.2) I k X ^ C for all m.

By (2.2), nm is uniformly bounded in total variation on each fixed open ball; so
we can extract a subsequence \im, which converges weakly to some measure \i
on each open ball. Since (2.2) implies
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\H\{B(Z, r)) ^ lim inf \fim.\(B(z, r)) S Cr"*1"1"1 ,
m'->ao

it follows that /u e Jip and

Applying the same argument to \im, — iix yields, by (2.1),

\\x — \ix\p ^ lim inf \\im. — \ix\p g £ for / ^ N .
m'-*co

This shows the first assertion. The second assertion is easily verified if we note
that this time the functions \im converge in L\oc topology.

PROPOSITION 2.3. (i) Jt1 is the set of finite measures; and M1 = L1.
(ii) ^ ° ° = M00 = L00 with equivalent norms.

PROOF. Statement (i) is obvious from the definition. Let \i e Jt™; then
|ju|(£) ^ C ||/i || a, 12* |, where |JB| is Lebesgue measure of open balls B and C
depends only on n. From this we easily see that \fi\(E) ^ CHJHHJEI for all
Borel sets E and hence ft is absolutely continuous with respect to Lebesgue
measure. By Lebesgue's theorem on differentiation, the density / of \x is
bounded in absolute value by C||//||oo almost everywhere, and we get Jt™ a L00

with the continuous injection. The reverse inclusion is obvious. This proves
(ii).

PROPOSITION 2.4. (i) Lp c LJ c Mp, 1 < p < oo, with continuous in-
jections.

(ii) Mp(Kn~^) c Mnpl{JX~x\Rn\ 1 ^ p ^ oo, under the map: fi-^fix dxn.

PROOF, (i) The first inclusion is well known. To show the second, we
have only to show that / e LJ, if and only if there is a constant C so that

(2.3) | / | dx ^ C\E\x~l/p for all Borel sets E .
JE

Assume first that / e L J , and let A£(a) be the distribution function of f\E.
Since we may assume that | £ | is finite, XE(OL) ̂  min (A(a), |£|) ^ min (Ca~p, \E\).
Thus, denoting p = (C/|£|)1/p, we obtain

f |/| dx = f" kM da = T kE(a) da + f °° ̂ (a) da
JE JO JO Jfi

g \E\fi + C I °° a~p da =
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Conversely, suppose / satisfies (2.3). Setting E = J3(0, r)n{x; \f(x)\ > a}, ap-
plying Tschebyscheff's inequality and then letting r -» oo yields od(a)1/p ^ C.
This proves (i). For (ii), direct calculation gives

f [ [ \ii\{dx')dxn
B(z,r) Jzn-r JB'(z',r)

where z = (z\ zn\ and B' stands for open balls in Rn~x. This proves (ii).

PROPOSITION 2.5. Let fix(E) = Xnii(E/X) for X > 0. Then

PROOF. That \\nx\\p ^ XnlP\\n\\p is directly verified. This in turn implies
that \\n\\p = ||(AIA)IMIIJ, ^ ^"n/pll^llp- This completes the proof.

PROPOSITION 2.6. Let po^pu 0 ^ 0 ^ 1, anrf 1/p = (1 - 0)/po +
Then M*« n ^rP l c= ̂  and ||/i||p g | | / / | | ^ | ^ l l ^ .

PROOF. In fact, we have

\li\(B(z, r)) = [|//|(5(z, rMl^'ClAilWz, r))]"

PROPOSITION 2.7. / / \itJlp and V G J 1 , tften tfte convolution ju*v /i^s in
a n d satisfies the estimate \ \ n * v \ \ p ^ H M I I P I | V | | I .

PROOF. Denoting by XzAx) ^ e indicator function of B(z, r), we have

\l**v\(B(z9r))£ !\v\(dy) !x*.r(x +y)\n\(dx)= f \n\(B(z - y, r))\v\(dy)

This proves the result.

PROPOSITION 2.8. / / \izJtp, then J(l + Ix Ip ' ^Kdx) is ./inite; in
particular, n is a tempered distribution.

PROOF. Indeed, direct calculation gives
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The last term is estimated as

l[{x;|x|-w-1> s}]d5= f
Jo

\ 5-"/<-+1>'f ds = C||/i | |p ,
Jo

This completes the proof.

3. Potential estimates

In this section we denote A = ( — A)1/2; so A'*, 0 < a < n, is the Riesz
potential of order a. We begin by establishing the Sobolev type estimates.

PROPOSITION 3.1. (i) Let 0 g a < n/p. If Aaf e J?p, then f e Mq with
\/q= 1/p — (x/n and the estimate

(3.1) \\f\\qSC\\A*f\\p

holds with a constant C independent off.
(ii) / / Aaf eJtvr\Jlq and n/p < a < n/q, then f e L°° and we have

PROOF. We set fi = Aaf so that /' = A~a\x. For fixed A > 0, we
decompose the kernel function cntOL\x\a~n as

A1 \X) := \ . 1 /v^lXj ^ Cn n\X\ — /vi (Xj .

[0 otherwise '

Then we have

and

f _ [A°~n

J2(x) ^ C |x — y\a n\fi\(dy) = C IMI[ |X — y|a " > s] ds
J|x-y|>A Jo

Hence

(3.3)

= C |/i|(B(x, 5"1/(n"a)) d5 g C||/i||p
Jo Jo

f
J«(2,r)
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On the other hand, denoting by izr the indicator function of B(z9 r),

/i(x) dx s \xM \KI(X - y)\n\(dy) =
JJB(B(z,r)

= f K^xMiBiz - x, r)) dx ̂

Combining this with (3.3) yields

dx ^ C\\ii\\p(A
a-n/prn1B(z,r)

Taking the minimum with respect to A > 0 gives (3.1). We next prove (3.2).
This time, we estimate Ix and I2 above as

I2(x)^C\\ii\\qA*-nlq; / t (x )^

Adding these and taking the minimum with respect to A > 0 yields (3.2).

PROPOSITION 3.2. Let exA\i(x) = $Et(x - y)ii{dy\ Et(x) = (4nt)~n/2 x
exp(-|x|2/4t).

(i) \\etAfi\\pSM\P for all p with l ^ p ^ w ,

(ii) \\VketApL\\q^Crkl2-(nlp-nlq)l2\\pi\\p whenever l^p^q^oo, where Vk

stands for the k-th derivatives with respect to x.

PROOF, (i) Using the identity $Et(x) dx = 1, we have

f \e"n\ dx ^ f Et(x)\fx\(B{z - x, r)) dx ^ ll/ill^1-1^ .
JB(z,r) J

(ii) Using the well-known estimate

117*17 /VM <T /^ *"(fc+n)/2 /aVt-. r /^ I v l 2 / f l

1̂  ^tWI ^ c i c e x P L — ̂ l ^ l /tJ

we see that

\\FketAfi\\p g Crk/2||^||p ; I I F V ^ L ^ Cfk'2--^||Ai||p , 1 ̂  P ^ oo .

For p < q < oo, Proposition 2.6 gives

The proof is complete.

The following corresponds to Gagliardo-Nirenberg inequality in U case.
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PROPOSITION 3.3. / / n/p <a,feMp and Aaf e Jtp, then / e L00 and

with a constant C independent of f

PROOF. First observe that under our assumption the operator

(1 - A)-"12 = rioi/2)-1
 t*/2-ie-t(i-*) dt 9

Jo
where r(j3) is the gamma function, is bounded from J/p to L00. Indeed, the
foregoing result gives the estimate

- z*r/2/<lloo ̂  C f°° t'^We-^-yWn dt ̂  C\\n\\p f °° t^-^-'e-'
Jo Jo

Since (1 — A)"/2 = v1 * + v2 * A* (see [7]) for some vt e Jl1^ i = 1, 2, we obtain

- Afl2f\\p ̂  C{\\f\\p + \\A*f\\p).

Here we have used Proposition 2.7. Substituting fx(x) = f(x/X), X > 0, and
applying Proposition 2.5, we obtain

Taking the minimum with respect to X > 0 gives the desired result.
We finally establish Morrey and John-Nirenberg type estimates ([1, 2, 4, 5]).

DEFINITION. A measurable function / is said to be in BMO if

LHBMO = supze*n,r>o r~n \f - fr(z)\ dx < oo ,
JB(z,r)

where fr(z) is the average: fr(z) = \B(z9 r ) | - 1 / dx.
JB(z,r)

To estimate the Holder seminorm

[/]/»= s"P,6«« ll/(- + y) - /(OL/lyl", o < p g l ,

we use the following result of Campanato ([1], [2]).

LEMMA 3.4. A function f is uniformly Holder continuous on Rn with ex-
ponent /} if and only if there is a constant C > 0 so that, for all z e Rn and r > 0,

f \f-fr(z)\dx^Crn+r
JB(z,r)

The infimum of C on the right-hand side is equivalent to
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Our result is now stated in the following way:

PROPOSITION 3.5. (i) / / A"f e Mp, a = n/p, then f e BMO and we have

with a constant C independent of f
(ii) / / Aaf e Jfp and 1 > a — n/p > 0, then f is uniformly Holder continuous

with exponent a — n/p and we have

with a constant C independent of f

We begin the proof by establishing the following

LEMMA 3.6. Let 0 < a < 1 and let Ra(x) = cM>a|x|a~n be the kernel of A~a.
Then there is a constant C so that

a(x + y)-Ra(x)\dx£C\y\< for all y e Rn.

PROOF. We write the above integral as

[\Ra(x + y) - Ra(x)\ dx=[ + f =JX+J2.

We easily see that

Jt g I (\Ra(x + y)\ + \Ra(x)\) dx g f \Ra(x)\ dx
J\x\^2\y\ J\x\£3\y\

To estimate J2 observe that since |x| ^ 2\y\ implies |x + 0y\ ^ |x| — \y\ ^ |x|/2
for 0 ^ 6 ^ 1, we obtain

\u\( y)£\y\\r*-1 for
o

Integrating this yields J2 S C\y\a, and this proves Lemma 3.6.

PROOF OF PROPOSITION 3.5. Let pi = A*f so that / = A~aii and \i e Jtp.
We first assume that 0 < a < 1. Since

, r)\ |/(x) - fr(z)\ = I f (f(x) - f(y)) dy ^ f |/(x) ~ f(y)\ dy ,
IJu(z.r) JB(z,r)
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we obtain

f jfe \\ x dy
B(z,r)xB(z,r)

U)l \f-fr(z)\dx:
JB(z,r)

drj I
\2r JB(z,r)

Using Lemma 3.6, we see that

JB(z,r)

if) - H.(y)| ||i|(B(z - y, r))

and hence

f - fr(z)\ dxf |
JB(z,r)

This proves assertions (i) and (ii) in case 0 < a < 1. The case a ^ 1 is proved
by applying Proposition 3.1 and thereby reducing the problem to the case
0 < a < 1. The proof is complete.

Proposition 3.5 (ii) does not include the case a — n/p = 1. To treat this
case, we have to modify the definition of seminorm [ / ] x to the form

*- ||/(- + y) + /(• - y) - 2f(-)\\J\y\ .

Using this seminorm, we can show the following

PROPOSITION 3.7. / / Aaf e Mp with a — n/p = 1 and f e Mq for some q,
then

with a constant C independent of f

PROOF. Consider the Poisson semigroup [7]

= « " W Jo
Then Proposition 3.2 yields the estimates
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\\A'e-tAii\\q ^ Ct-t-W'

For / satisfying the assumption, we consider the regularization fe = eE/if which
is in L00 and satisfies

M ^ / l o o ^ ct-2+*-*i>\\Ay\\P = cr'WATh ^ cr1 \\A*f\\p.
Hence one can apply the results of [7, Chap. V, Sect. 4] to obtain

ll/loo + LTL ^ Cdl/loo + Ma/llp)

with C independent of / and e > 0. Inserting (/fi)A(x) = (fE)(x/k\ k > 0, and
applying Proposition 2.5 now gives

ii/ioo + ̂ ini ^ C(II/EL + X-'\\AJWP).

Multiplying both sides by k and then letting k -> 0, we obtain

where C is independent of s. Since fe is bounded in L\oc, a simple limiting
argument yields the desired assertion. This completes the proof.
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