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§1. Introduction

In the previous note [47], the structures of the K- and KO-rings of the
standard lens space L"(4)=S?"*'/Z, are investigated, by considering the ca-
nonical complex line bundle and the non-trivial real line bundle over L”(4).

In this note, we shall study the (2n+1)-dimensional standard lens space
mod p”:

L"(p")(=L"(p"; 1,..., 1))= 8"/ Z,,,

for prime p, by the similar methods to those which were used to determine
the K- and KO-rings of L"(p) due to T. Kambe [3].
Let » be the canonical complex line bundle over L"(p”), and

c=7—1¢ R(L"(p") and 6=ro € KO(L"(p"))
be the stable class of 7 and the real restriction of 6. Then we have

Tueorem 1.1. (i) Let p be a prime and r—=1. Then, the order of the
element a* of K(L"(p")) is equal to p"*", h=[(n—k)/(p—1)], for 1<k<n; and
" 1=0.

(ii) Let p be an odd prime and r—=1. Then, the order of the element &*

of @(L"(p’)) is equal to p™*"', k' =[(n—2k)/(p—1)], for 1<k=<[n/2]; and
6_[n/Zj+1:0.

For the case r=2, the additive structures of K(L"(p*)) for prime p and
@(L”( p?) for odd prime p are determined as follows. Let

1.2) n—p' +1=a;(p""'—pH)+b; (0=b;<p'**—p') for i=0,1,
and consider the following elements of K(L"(p?)):
c=9—1, c()=9"—1=1+0)?—1,
o(1)a* 4 pL=wisigp sk
I (Gf 6:<k<bi+p—1lor k<b,—(p—1)*

13)  oQ, b=
16(1)0’3 (otherwise),
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for 0<k< min (p’—p—1, n—p). Then we have the following

TreorEM 1.4. Let p be a prime. Then
R(L"(p*)= X Z;,, m= min (p*—1, n) (direct sum),
k=1

where Z, indicates a cyclic group of order t and

Pz-i+ai (ifpi§k<Pi+ b; (i=0, 1))
(1.5) lr=

P Gf PP b=k <p'tt (i=0, 1)).
Also, the k-th direct summand Z,, is generated by the element
ok (if 1=<k<p), (1, k—p) (f p<k<p®.P
Moreover, the ring structure of K(L*( p?) is given by

) -1 72\ |
o'=— 12 )o“, "1 =0,
i=1

Let p=2¢+1 be an odd prime, and consider the following elements of
KO(L"(p):

q+1 ; — .
i=r0, 10=5 L (1550

21
( 5‘(1)6‘k+PE("'2k>1)/PJ6-q+k+1
J (f [b:/2]<k<[b:/2]+q or k<[b:/2]—2q%)

1.6) o, k)=
1 (1)a* (otherwise),

for 0<k< min (pg—1, [n/2]—q—1).
TueoreM 1.7. Let p=2q+1 be an odd prime. Then

J, kg:l Z., (if n=0 mod 4)
KO (p?)=(

k% VARSI YA (if n=0 mod 4),
-1

where m'=min (¢(p+1), [n/2]) and s,=ts, (the number given by (1.5)). Also,
the k-th summand Z;, is generated by the element

ot (f 1=k=q), (1, k—q—1) (if g<k=q(p+1)).

1 We notice that these generators are slightly different from those in [4, Th. A] for p=2.
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Moreover, the ring structure of KO(L*(p?)) is given by

6q<p+1)+1:‘”%”_ P’ <q<p+2})——;i—1>6i’ Fn2141 g

o1 2i—

In §2, we prepare some known results of K(L"(m)) for any m and

@(L"(m)) for odd m. Th. 1.1 is proved in §3 by studying some relations or
0*(1<k<n) by means of the two relations:

(140)*"=1 and ¢"*'=0.

Also we have a non-immersion (-embedding) theorem for L*(p”) as a corollary
(Cor. 8.6), by the methods of M. F. Atiyah [2].

In §4, we study some relations on ¢(1)'6* and prove Th. 1.4. The proofs
are based only on the above two relations and the known facts that K(L*(m)
contains exactly m” elements.? Th. 1.7 is proved in §5, by making use of
the 2n-skeleton LZ(m) of the standard cell complex L*(m), and the complexifica
tion

¢ : KO(Li(m))—R(Li(m)) = R(L"(m))

which is a monomorphism for odd m.

§2. Some results on K(L"(mm)) and I&)(L"(m))

The standard lens space mod m is defined to be the orbit space:
L'(m)=S**/Z,, n>1,
where the operation on S***! of Z, generated by 7 is given by
7(20y 2150y 2n) =(e2 ™ z4, 2™ IMz,,..., e27iImz ),
As is well known, L”*(m) has a cell structure given by
L'(m)=e’Uer\U---Ue e+,
and let LZ(m) be the 2n-skeleton of this C# -complex:
Li(m)=e"UelU---\Ue?”,

then

2 According to N. Mahammed [5], it is announced that K(L"(m))=Z[y]/<(y—1)"*1, ym—1>
for any m.
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@1 Ly(m)/ L™ (m) = $ 1\ Je

where the attaching map m: S 1— S?*~! means the map of degree m.
The following lemmas are proved by the same way as [ 3, §§2-37].

Lemma 2.2. (i) K(S§* 1\ Je*~2Z,,
and K*'(S**-1\ Je®")=0. Also, the induced homomorphism
A K(SZn)__)[Z(SZn—l\/eZn)

18 an epimorphism, where m: S?" 1\ Je?"— S?" is the projection collapsing S~ 1
m

to a point.

(i1) If m s an odd number, then
KO(S2" 1\ Je*")=Z,, (for even n), =0 (for odd n);

and the other results of (i) hold for KO instead of K.
Proor. (i) In the Puppe exact sequence
. b__)I'“{~1(SZn—1)LK(SZn)_n’_>K(SZn‘IUeZn)ﬁ)Iz(Sm%l)__)_ ey

the boundary homomorphism ¢: K/(S?*1)—K+1(S?)~K/(§?"-1) is equal to
m', and m'(x)=mx. Therefore, we have (i) since K(S")~Z (for even i) and

=0 (for odd 7). Similarly we have (ii) using the exact sequence for I?O, since

KNO(S");Z (for i=0, 4 mod 8), =7, (for i=1, 2 mod 8) and =0 (otherwise).
q.e.d.

LemMma 2.3. (i) The following sequence is exact:
0—>K(S* "\ Je*)—> R(Ly(m))—>K(Lg(m))—0,

and K(L2(m)) contains exactly m" elements. Also K*'(L2(m))=0.
(1) If m is odd, then I?b(Lg(m)) contains exactly mt"?! elements, and

KO*'(L1(m))=0.

Proor. Considering the Puppe exact sequence of (2.1), we can prove in-
ductively the desired results by the above lemma. q.e.d.

Lemma 2.4, Let i: Li(m)—L*(m) be the inclusion. Then
(1) i K(L"(m))=~K(L2(m)).

(i) If m 1is odd, then we have the following split exact sequence :
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0——KO(S*"*1)——KO(L"(m))->KO(Li(m))—>0.

Proor. This lemma follows immediately from the above lemma and the
Puppe exact sequence of L"(m)/Li(m)=S*"*1, q.e.d.

We shall identify the rings of (i) of the above by i', and denote the
element of K(L*(m)) and its i!-image by the same letter.
Let CP"=S?"*!/S' be the n-dimensional complex projective space, and

7: L"(m)—>CP" and 7 : L%(m)—>CP"

be the natural projection and its restriction. Then, it is clear that the map
7. (L2(m), Lt~Y(m))—(CP", CP"') induces the projection

n: S\ Je? = Li(m)/ Ly (m)—>CP"/CP" "' = §*

of Lemma 2.2.

Lemma 2.5. We have the following commutative diagram of the Puppe
exact sequences .

0—K(S*)—K(CP") — K(CP" ") — 0
! ! !

0—K(S* M\ Je*)—K(Lj(m))—K(L3 " (m))—0
where all of 7' are epimorphic.

Proor. The upper sequence is the Puppe sequence of CP"/CP" '=S*"
(cf. [1, Th. 7.27]). Since 7' in the left is epimorphic by Lemma 2.2 (i), we see
inductively that z' in the middle is also epimorphic. q.e.d.

Let 7 be the canonical complex line bundle over CP”, and denote also by
7 the canonical complex line bundle 7'y over L”(m) or LZ(m), and by

o=7—1€ K(L"(m))=K(Li(m))
the stable class of . Then

ProrositionN 2.6. The ring K(L"(m)) 1is generated by ¢ and contains ex-
actly m” elements. Furthermore

2.7 A+4o0)"=1.
(2.8) 0" 1=0.
(2.9) The order of the element 6" is equal to m.

Proor. (2.7) follows from the fact that the first Chern class c;(3™) is
equal to mci()=0 in H*(L"(m))>=Z,,.
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The ring K(CP”) is generated by 7—1 and (y—1)**'=0, and also the
element (y—1)" generates the subgroup of K(CP”) which is the image of
K(S*)~Z in the diagram of Lemma 2.5, (cf.[1, Th. 7.27]). Therefore we
have the desired results by Lemmas 2.5 and 2.4 (i). g.e.d.

Consider the complexification c: I?O(X)—»K’(X) and the real restriction
r: R(X)—~>KO(X) (cf. [1]), and the element
(2.10) g=ra € KO(L*(m)) or KO(Lz(m)).

Proposition 2.11. Let m be an odd number. Then
() ¢: KO(Ly(m))—>R(Li(m)) =K (L"(m))

18 a monomorphism. Also, the ring I?O(L{,’(m)) 18 generated by ¢ and contains
exactly mt™?) elements, and it holds ¢-*/?3+1=0.

KO(L2(m)) (for m =0 mod 4)

(if) K”O(L"(m»;{ -
KO(Lz(m)) 6@ Z, (for m =0 mod 4),

and the subring of I?O(L”(m)) generated by G is isomorphic to I’(\O(Lg(m)).
(iii) The following equality holds:
(2.12) cd=0*/(1+0)=0%—0+0*— - .

Proor. (i) It is well-known that rc¢=2, and so this is isomorphic for

I?D(Lg(m)) by Lemma 2.3 (ii). Therefore ¢ is monomorphic and r is epimor-
phic. We see ¢t"/?1*1 =0 by (iii) and (2.8). In the commutative diagram

R(CP"—-KO(CP™)
! 2!

R(L#(m)—>KO(Li(m)),

7' on the left side is epimorphic by Lemma 2.5, and hence 7' on the right is
also so. Therefore we see the desired results because the ring I?O(CP”) is
generated by r(y—1) [6, Th. (3.9)].

(ii) o is of odd order by the above proposition, and so is ¢ € I?O(L”(m)).

Therefore (ii) follows from (i) and Lemma 2.4 (ii).
(iii) This equality is well known since 6+ 1= is a complex line bundle

(cf. [ 8, Lemma, (3.5), ii)]). q.e.d.

§3. Proof of Theorem 1.1

Henceforth, we consider the case m=p” where p is a prime and r=1.
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Let B ¢ K(L"(p")) be the element such that

-_p 11 (p) gil— ‘ji 3 i—11>0-i_1’

then we have
ProrosiTion 3.1.  In K(L"(p")),
(3.2) p M (pBat 4t =0 for 1<k<n—p+1,
(3.3) p et =0  for 1<k<n,
where h=[(n—k)/(p—1)]. Furthermore,
(3.4) pr gD — _ pr-Lehgn-h(p-1)
for n—h(p—1)=1, h>0.

Proor. Multiplying ¢*~! to (14 0)?"—1=0 of (2.7), we have
r " r

* r k P> k+p—1 P ivk=1_(),

() PBG+<PG +i=Zp:+1<l>o- 0
Since the constant term of B is 1, this equality and ¢”*!=0 of (2.8) imply
3.3) for k=n,n—1,..., n—p+2, ie., for h=0.

Assume (8.3) inductively for A<k, and consider the case h=h,. In the
equality (*) xp"~1,

h—1 Pr>0-k+p~1___ r—2+h Pr—
P ()i pran(2

i>0k+p—1:Pr—2+hO-k+p—1’
because (5 T > 1 mod p and p”~***¢**#~1=0 by the inductive assumptions.
Also, if i=jp*>p and (j,p)=1, then

(p—D)(h—s5)—(n—k—i+1)=jp*—(s+1)(p—1)>0,

and so p"“(loir)d’”"*:O for i>p by the inductive assumptions. Therefore,

we have (8.2) for h=h,, and so (3.3) for A=h, multiplying p to (3.2). Thus
we have (3.2-3).
Consider (3.2) for k=n—h (p—1), then we have

r—2+ho-n—(h—1)(pA1): r—1+hBO-n—h(p—1),

p —-P

and so (3.4), since the constant term of B is equal to 1 and p”~'*"g"#¢-D+i=(Q
for ;>0 by (3.3). q.e.d.

Remark. By the above proofs, we see that the above proposition follows
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from (2.7) for m=p” and
(8.5) p’Fem k=0 for 0<k<r,

instead of (2.8).
Now, we are ready to prove Th. 1.1.

Proor oF Tueorem 1.1. (i) The order of ¢* is a power of p by Prop. 2.6
for m=p’, and p"*"¢*=0 by (8.3). Assume p’ '*'¢*=0 for some £=n. Then
ptthe MDD =0 since n—h(p—1)=k, and hence p’~'¢"=0by (3.4). This
contradicts to (2.9) for m=p’.

(ii) Since the complexification ¢ is a ring homomorphism, we have

c(@)=a*/(1+0)*
by (2.12), and so the desired results by (i) and Prop. 2.11. q.e.d.

CoroLLARY 3.6. For an odd prime p and r=1, the lens space L"(p")
cannot be immersed in the Euclidean space R*"**L™?7) and cannot be embed-
ded in R*"*+2LpM+1 aphere

Ln, p)=max{i |i<[n/2], (" T)20 mod p -2~
P ; P

Proor. By the methods of M. F. Atiyah [2] using the 7-operation of
the stable tangent bundle, we have the desired results by taking

(sl

(cf. [4, Prop. 7.6]). This number is equal to the above one by (ii) of Th. 1.1.
q.e.d.

L(n, p")=max {i

§4. Proof of Theorem 1.4

Now, consider the following elements of K(L"(p")) if n=p and r=2:
(4.1) 6(1)=7P—1=(1+0)?—1=pAo+a?,

where

=1 i \i—1

B O R D

Then we have the following lemmas in K(L"(p")).

Lemma 4.2. Let h=[(n—k)/(p—1)], then
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(4.3) P (pAet 4 gty = pr -G (1)gh 1 =0,
(4.4) - trhgher et gk

for 1=k=n—p+1;and
(45)  prlthgh= —prlekgkbo-l fop p(p—1)<k=n.

Proor. Since 7«7L<P"1>~7L<§j> mod p for 1<i<p, we have

i\p —1)" i
(4.3-4) by Prop. 3.1 and the definitions of B and 4. By (4.4),
pr—1+ho-k:(_l)pprfl+h+pApo-k—p(17—1)-

It is easy to see that the constant term of the integral polynomial A? of ¢ is
equal to 1 and the coefficient of ¢’ is a multiple of p for 1<<i <p—1. Therefore,
we have (4.5) using (3.3). q.e.d.

LemmA 4.6. Let
L=[(n+p—1—k)/p], t.e, n<pli+k<n+p—1,
then we have
p o) gk =0 Sor 0<I<r—1.

Proor. In fact, the left hand side is equal to

1l
prgl—l(PAo-_i_O-,b)l’o-k: Z(l

i=o\?7

>Aipr—l—1+idpl’+k—i(p—l), l,:lk—}‘l,

and each term of this summation is 0 by (3.3), since [(n— (pli+pl+Ek)+
i(p—1))/(p—1)]J<—1—1+: by the definition of /,. q.e.d.

By this lemma and the equality
4.7 (@40 =1a*=0,
which follows from (2.7) for m=p” and (4.1), we have the following
ProprosiTioN 4.8. Let r=2 and n=p. In K(L"(p")),
@9)  pe)'et=0, j=[(n+p—1—pl—k)/p(p—1)J,
Jor [=1, k=0 and j<r.
(4.10) P (L) UGk — _ pr-2tig(1)le-ite- gk

for L—j(p—1D=1 and j>0, where I, is the number defined in the above
lemma.
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Proor. We notice that j of (4.9) is equal to [({,—1?)/(p—1)]. Then, we
can prove (4.9-10) using the above lemma and (4.7), by the same methods to

prove (3.3-4) using (3.5) and (2.7) for m=p’, (cf. Remark after Prop. 3.1).
q.e.d.

Lemma 4.11. If n<pl+k=n-+p—1, then
P1f2+jo-(1)l—i(p~1)o-k: _PrAZJrjpo-ka—jﬁ(bfl)’
Sfor I—j(p—1)=1, j>0.

Proor. By the definition of [, in Lemma 4.6 and the assumption, we
have /=1,. Therefore,

P (L) 0Nt = (— 1)p 20 (1) (by (4.10))

—(-'% (l_i1)14"1)’*“"o(l)of"”"’-"“’"” (by (4.1))

i=0

=(—1)p" 26 (1)o?+*-* (by (4.3) and the assumption)
=(—1)ip" 1 Ag?i+h-r*1 (by the assumption and (2.8))
=Pr—1+J‘pA0-pl+k—p+1—J'1>(lz—1) (by (4.5))

— —pr g i1 (by (4.4)). g.e.d.

Remark. By the same proofs, we have the following equality for j=0:
p o)t =p -t AgttHE-p+ if n<pl+k<n+p—1,I=1
According to this lemma, we consider the following elements of (1.3):
J oc(1)g* 4 phr-Dgr+k (f 6:=<k<bi+p—1)
01, k)= { c(1)g* 4 plart De-Dgh+k Gf k<bi—p*+2p—1)
1 a(1)a* (otherwise),
for 0<<k<< min (p*—p—1, n—p), where
n—p+l=a,(p*—p)+b1, 0=b,<p’—p.
Lemma 4.12. 4,01, k)=0 in K(L*(p")(r=2, n=p), where

r—1l+a; 0<k b
tlHk:Pr+1+[(n—p_k)/p(1>_1)]: P for = <b;
p172+a1 fO’I’ bl§k<P2—P

18 the number of (1.5) 1f r=2.
Proor. For the case b;<k<b,+p—1 or k<b,—p®’+2p—1, it holds
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n<p+jp(p—D+k=n+p—1,

where j=[(n—p—k)/p(p—1)]+1=a, or a;+1, and j >0 since k=n—p<b, if
a1=0. Thus we have the desired equality by the above lemma.

For the other cases, we have [(n—p—k)/p(p—1)]=[(n—1—k)/p(p—1)],
and so the desired equality by (4.9). q.e.d.

Now, we are ready to prove Th. 1.4 which gives the additive structure of
K(L"(p*)).

Proor or TueorEM 1.4.  K(L*(p®) is generated additively by the ele-
ments ¢*, 1<<k<<min(p®—1, n), and the order of ¢* is a power of p, by Prop.
2.6 for m=p®. On the other hand, the integral polynomial ¢(1, k—p) on o is

k . .
>, a0" with a,=1o0r 14+p’? Y, j=a; or a;+1, and j>0 (cf. the proofs of

i=k—p+1 o oy
the gbove lemma). Therefore, we see that K(L"(p?)) is generated additively
by the first n elements of

™ Oy Gp_l: o1, 0),---, 0(, PZ_P_l)
Hence, the number of the elements of K(L"(p*))(n=p®—1) is not larger than
(P2+a0)bu(p1+ao)p—1—bo(Pl+a1)b1(Pa1)p(p~1)—b1 :PZn

by (3.3) and the above lemma for r=2, and is equal to p** by Prop. 2.6. Thus
the theorem is proved for n=>p*—1.

Similarly, we have the theorem for the case n<p®’—1 considering the
first n elements of (*), since

(P2+a0)b0(p1+a0)p—1—bD(Pl+a1)b, :PZn if p— 1§n <P2 . 1,
(P2+a0)b0:p2n if n<P_1 q.e-d.
In connection to Th. 1.1 (i) and (4.9), we have

Prorosrtion 4.13.  The order of (1)'c* of K(L"(p*)) 1s equal to p'*/, j=
[(n+p—1—pl—k)/p(p—1)T, for 1=1, k=0, pl-+k<n-+p; and o(1)'c*=0if
pl+k=n+p.

Proor. Assume p’c(1)'¢*=0 for some ! and k. Since k¥'=n+p—1—
jp(p—1)—pl=Fk, we have p'o(1)'¢*=0. On the other hand,

pj(T(l)IO‘k,: _Pjﬁo-puk’ if j>0

by Lemma 4.11 for r=2, and the order of ¢?**" is equal to p/**! by Th. 1.1 (i),
which is a contradiction. If j=0,

6(1)lak’:pAo-pl+k’—P+1:PAO.n :PO‘nAFO
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by Remark after Lemma 4.11 and Th. 1.1 (i) for =2, which is a contradic-
tion. Therefore, we have the desired results using (4.9) for r=2. q.e.d.

Concerning with L"(p")(r==3), the above proofs based on Prop. 2.6, (3.3)
and Lemma 4.12 are efficient for the special case n <p? and we have

Tueorem 4.14.  Let p be a prime, r==3 and 1<n<p®>. Then
K@ (p)= Zn} Z,, (direct sum)
k=1

where ty=p" ' if p<k=<n, =p L@ ROV jf 1<k <p. Alsothe k-th summand
Z;, 1s generated by

ot if 1=k<p), o(, k—p) (if p<k=n),
where o(1, k—p) s the element of (1.3), i.e.,
ook +p*~lo* (if p<k<n—p*+2p)

01, k—p)=
o(L)o*-? Gf n—p*+2p<k=<n).
p Tap

§5. Proof of Theorem 1.7

Now, let p=2¢+1 be an odd prime.

Using the element =rc of (2.10), we define the element
_ P g+i—1
G.) W=z 5" 1 (5% )7

of KO(L"(p")) or KO(L(p").
Lemma 5.2.  For the complexification c,
ci()=(A+0)?*—1)o/A+0)*'=c1)s/A+0)7"".
Proor. By (2.12),

B _q+1 P q+t—1 O-Zi
Ca(l)—i§1 2i—1\ 22 )(1—{-0’)'

e P (A (R )

1 p+1 p i-1 +i—1 1
S g J—
(l—l-()')‘”1 Z y j—1 {Z j—2 > 2i—1 }
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. 1 p+1 i 0‘(1)0'
*(1+o)4+12<] 1)‘7 A+0)r 1

using the lemma due to T. Kambe [ 3, Lemma (8.7)]. q.e.d.

Lemva 5.3. In KO(L(p) and KO(L"(p?)), it holds

q(p+1)
FAP+D+1 l](P+1)+l——l)_,
d Z - 2;—1( 2i—2

Proor. We can show that the c-image of the left hand side minus the
right hand side is equal to ((1+0)? —1)6/(1+0)¢?*V+! similarly as the proofs
of the above lemma. Thus we have the lemma by (2.7) and Prop. 2.11 for

m=p?. q.e.d.

Proor oF Turorem 1.7. By Prop. 2.11 and the above lemma, I?Z)(L{,’( )29))
is generated additively by the elements ¢*, 1<t<C min (¢(p+1), [n/2]), and
the order of ¢* is a power of p. On the other hand (1, k—¢—1) of (1.6) is

_Z:] B;a° with 8, =14p’®?"Y, j=a; or a;+1, and j>0 by definition. Therefore,
1[2(7(;;3( p%)) is generated additively by the first [n/2] elements of

Gy, 0%, 6(1, 0),..., (1, pg—1).

Now, we see that

ci(1, k)y=0c(1, 2k+1)/(A+0o)?+*1

by (2.12), Lemma 5.2, (1.5) and (1.3), and hence the order of (1, k) is
P GE 0=k <[6:/2]),  p™ (if [5:/2]<k<pg),

by Th. 1.4 and Prop. 2.11 (i). Also, the order of 5* is equal to
prre (i 1<k<<[8o/2]), p'™ (if [bo/2]<k=qg)

by Th. 1.1 (ii). Therefore, the theorem follows from these facts, Prop. 2.11
and

<p2+a0)Fbo/2](p1 +a0)q—[bo/2](P1 +d1>[b1/2](Pax)M—[b1/2] :pz[n/ﬂ
if [n/2]=¢(p+1),

(P2+an)[bO/ZJ(Pl+a0)q—[b0/2](p1+a,)[b,/2]=P2[n/2]

if g<[n/2]<q(p+1), and (p*+*)t0/2I=p>"2] if [n/2]<q, together with
Lemma 5.3. q.e.d.

The following result follows immediately from Prop. 2.11, Lemma 5.2
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and Prop. 4.13.

ProposiTiON 5.4. For an odd prime p, the element 5(1)'c* of KO(L"( §29))
or I?O(Lg(pz)) is of order p**/, j=[(n+p—1—(pl+1+2k))/(p*—p)], for I=1,
k=0, pl+1+2k<n-+p; and 7(1)'c* =0 if pl+1+2k>n+p.

We notice that the above proofs are valid for L"(p")(r=3) with n <p?
according to Th. 4.14, and we have

Turorem 5.5.  Let p be an odd prime, p=2q+1,r=3 and 1<n <p®. Then

[n12]
Z/? Zs, (if n=<0 mod 4)
k=1

KNO(L”(Pr));J Cnl2]
2 Zs, D Z (tf n=0 mod 4),
k=1

where sy=p" " iof ¢<k<[n/2] and
sk:tZk:PH[(n—Zk)/(p—l)] 'if 1§k§q.

Also, the k-th summand Z,, is generated by
¢t (if 1=k=q), (L, k—g—1) (if ¢<k=[n/2])

where
s(D)a*- 1+ pt~lo* (if q<k<[b:/2]—2¢%+¢q)

i1, k—g—1)=
F)a* 7t (of [6:/2]—2¢°+q<k=<[n/2])).
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