K- and KO-Rings of the Lens Space $L^n(p^2)$ for Odd Prime p

Toshihisa Kawaguchi and Masahiro Sugawara (Received September 20, 1971)

§1. Introduction

In the previous note [4], the structures of the K- and KO-rings of the standard lens space $L^n(4) = S^{2n+1}/Z_4$ are investigated, by considering the canonical complex line bundle and the non-trivial real line bundle over $L^n(4)$.

In this note, we shall study the (2n+1)-dimensional standard lens space mod p^r :

$$L^{n}(p^{r})(=L^{n}(p^{r}; 1, ..., 1)) = S^{2n+1}/Z_{p^{r}},$$

for prime p, by the similar methods to those which were used to determine the K- and KO-rings of $L^n(p)$ due to T. Kambe $\lceil 3 \rceil$.

Let η be the canonical complex line bundle over $L^n(p^r)$, and

$$\sigma = \eta - 1 \in \widetilde{K}(L^n(p^r)) \text{ and } \overline{\sigma} = r\sigma \in \widetilde{KO}(L^n(p^r))$$

be the stable class of η and the real restriction of σ . Then we have

THEOREM 1.1. (i) Let p be a prime and $r \ge 1$. Then, the order of the element σ^k of $\tilde{K}(L^n(p^r))$ is equal to p^{r+h} , $h = \lfloor (n-k)/(p-1) \rfloor$, for $1 \le k \le n$; and $\sigma^{n+1} = 0$.

(ii) Let p be an odd prime and $r \ge 1$. Then, the order of the element $\bar{\sigma}^k$ of $\widetilde{KO}(L^n(p^r))$ is equal to $p^{r+h'}$, $h' = \lfloor (n-2k)/(p-1) \rfloor$, for $1 \le k \le \lfloor n/2 \rfloor$; and $\bar{\sigma}^{\lfloor n/2 \rfloor + 1} = 0$.

For the case r=2, the additive structures of $\widetilde{K}(L^n(p^2))$ for prime p and $\widetilde{KO}(L^n(p^2))$ for odd prime p are determined as follows. Let

$$(1.2) n-p^i+1=a_i(p^{i+1}-p^i)+b_i (0 \leq b_i < p^{i+1}-p^i) \text{for } i=0, 1,$$

and consider the following elements of $\tilde{K}(L^{n}(p^{2}))$:

(1.3)
$$\sigma(1, k) = \begin{cases} \sigma(1)\sigma^k + p^{\lceil (n-k)/p \rceil}\sigma^{p+k} \\ \text{ (if } b_1 \leq k < b_1 + p - 1 \text{ or } k < b_1 - (p-1)^2) \\ \sigma(1)\sigma^k \text{ (otherwise),} \end{cases}$$

for $0 \le k \le \min(p^2 - p - 1, n - p)$. Then we have the following

THEOREM 1.4. Let p be a prime. Then

$$\tilde{K}(L^n(p^2)) \cong \sum_{k=1}^m Z_{t_k}, m = \min(p^2 - 1, n) (direct sum),$$

where Z_t indicates a cyclic group of order t and

(1.5)
$$t_k = \begin{cases} p^{2-i+a_i} \ (if \ p^i \leq k < p^i + b_i \ (i=0, 1)) \\ p^{1-i+a_i} \ (if \ p^i + b_i \leq k < p^{i+1} \ (i=0, 1)). \end{cases}$$

Also, the k-th direct summand Z_{t_k} is generated by the element

$$\sigma^k(if \ 1 \leq k < p), \quad \sigma(1, k-p) \ (if \ p \leq k < p^2).$$

Moreover, the ring structure of $\tilde{K}(L^n(p^2))$ is given by

$$\sigma^{p^2} = -\sum_{i=1}^{p^2-1} \binom{p^2}{i} \sigma^i, \qquad \sigma^{n+1} = 0.$$

Let p=2q+1 be an odd prime, and consider the following elements of $\widetilde{KO}(L^n(p^2))$:

$$\bar{\sigma} = r\sigma, \ \bar{\sigma}(1) = \sum_{i=1}^{q+1} \frac{p}{2i-1} \binom{q+i-1}{2i-2} \sigma^i,$$

$$(1.6) \quad \bar{\sigma}(1, k) = \begin{cases} \bar{\sigma}(1)\bar{\sigma}^k + p^{\lceil (n-2k-1)/p \rceil}\bar{\sigma}^{q+k+1} \\ (\text{if } \lceil b_1/2 \rceil \leq k < \lceil b_1/2 \rceil + q \text{ or } k < \lceil b_1/2 \rceil - 2q^2) \\ \bar{\sigma}(1)\bar{\sigma}^k \quad \text{(otherwise)}, \end{cases}$$

for $0 \le k \le \min(pq-1, \lceil n/2 \rceil - q - 1)$.

Theorem 1.7. Let p=2q+1 be an odd prime. Then

$$\widetilde{KO}(L^n(p^2)) \cong \left\{egin{array}{ll} \sum\limits_{k=1}^{m'} Z_{s_k} & (if \ n \!\equiv\! 0 mod 4) \ \sum\limits_{k=1}^{m'} Z_{s_k} \!\oplus\! Z_2 & (if \ n \!\equiv\! 0 mod 4), \end{array}
ight.$$

where $m' = \min(q(p+1), \lceil n/2 \rceil)$ and $s_k = t_{2k}$ (the number given by (1.5)). Also, the k-th summand Z_{s_k} is generated by the element

$$\bar{\sigma}^k \ (if \ 1 \underline{\leq} k \underline{\leq} q), \quad \bar{\sigma}(1, \, k-q-1) \ (if \ q \! < \! k \underline{\leq} q(p+1)).$$

¹⁾ We notice that these generators are slightly different from those in [4, Th. A] for p=2.

Moreover, the ring structure of $\widetilde{KO}(L^n(p^2))$ is given by

$$\bar{\sigma}^{q(p+1)+1} \! = \! \sum_{i=1}^{q(p+1)} - \! \frac{p^2}{2i\!-\!1} \binom{q(p+1)\!+\!i\!-\!1}{2i\!-\!2} \! \bar{\sigma}^i, \quad \bar{\sigma}^{\lceil n/2 \rceil + 1} \! = \! 0.$$

In §2, we prepare some known results of $\widetilde{K}(L^n(m))$ for any m and $\widetilde{KO}(L^n(m))$ for odd m. Th. 1.1 is proved in §3 by studying some relations on $\sigma^k(1 \le k \le n)$ by means of the two relations:

$$(1+\sigma)^{p^r}=1$$
 and $\sigma^{n+1}=0$.

Also we have a non-immersion (-embedding) theorem for $L^n(p^r)$ as a corollary (Cor. 3.6), by the methods of M. F. Atiyah $\lceil 2 \rceil$.

In §4, we study some relations on $\sigma(1)^l \sigma^k$ and prove Th. 1.4. The proofs are based only on the above two relations and the known facts that $\tilde{K}(L^n(m))$ contains exactly m^n elements.²⁾ Th. 1.7 is proved in §5, by making use of the 2n-skeleton $L_0^n(m)$ of the standard cell complex $L^n(m)$, and the complexification

$$c: \widetilde{KO}(L_0^n(m)) \rightarrow \widetilde{K}(L_0^n(m)) \cong \widetilde{K}(L^n(m))$$

which is a monomorphism for odd m.

§2. Some results on $\widetilde{K}(L^n(m))$ and $\widetilde{KO}(L^n(m))$

The standard lens space mod m is defined to be the orbit space:

$$L^n(m) = S^{2n+1}/Z_m, n > 1,$$

where the operation on S^{2n+1} of Z_m generated by γ is given by

$$\gamma(z_0, z_1, \dots, z_n) = (e^{2\pi i/m} z_0, e^{2\pi i/m} z_1, \dots, e^{2\pi i/m} z_n).$$

As is well known, $L^{n}(m)$ has a cell structure given by

$$L^n(m) = e^0 \cup e^1 \cup \cdots \cup e^{2n} \cup e^{2n+1}$$

and let $L_0^n(m)$ be the 2n-skeleton of this CW-complex:

$$L_0^n(m) = e^0 \cup e^1 \cup \cdots \cup e^{2n}$$

then

²⁾ According to N. Mahammed [5], it is announced that $K(L^n(m)) = Z[\eta]/<(\eta-1)^{n+1}, \eta^m-1>$ for any m.

(2.1)
$$L_0^n(m)/L_0^{n-1}(m) = S^{2n-1} \bigcup_m e^{2n}$$

where the attaching map $m: S^{2n-1} \to S^{2n-1}$ means the map of degree m. The following lemmas are proved by the same way as $[3, \S\S2-3]$.

Lemma 2.2. (i)
$$\tilde{K}(S^{2n-1} \bigcup e^{2n}) \cong Z_m$$
,

and $\tilde{K}^{\pm 1}(S^{2n-1} \bigcup_{m} e^{2n}) = 0$. Also, the induced homomorphism

$$\pi^!: \tilde{K}(S^{2n}) \rightarrow \tilde{K}(S^{2n-1} \bigcup_{n} e^{2n})$$

is an epimorphism, where $\pi: S^{2n-1} \bigcup_{m} e^{2n} \to S^{2n}$ is the projection collapsing S^{2n-1} to a point.

(ii) If m is an odd number, then

$$\widetilde{KO}(S^{2n-1} \bigcup_{m} e^{2n}) \cong Z_m \text{ (for even } n), = 0 \text{ (for odd } n);$$

and the other results of (i) hold for \widetilde{KO} instead of \widetilde{K} .

PROOF. (i) In the Puppe exact sequence

$$\cdots \to \widetilde{K}^{-1}(S^{2n-1}) \xrightarrow{\delta} \widetilde{K}(S^{2n}) \xrightarrow{\pi^1} \widetilde{K}(S^{2n-1} \setminus e^{2n}) \to \widetilde{K}(S^{2n-1}) \to \cdots,$$

the boundary homomorphism $\delta \colon \tilde{K}^i(S^{2n-1}) \to \tilde{K}^{i+1}(S^{2n}) \cong \tilde{K}^i(S^{2n-1})$ is equal to $m^!$, and $m^!(x) = mx$. Therefore, we have (i) since $\tilde{K}(S^i) \cong Z$ (for even i) and = 0 (for odd i). Similarly we have (ii) using the exact sequence for \widetilde{KO} , since $\widetilde{KO}(S^i) \cong Z$ (for $i \equiv 0, 4 \mod 8$), $\cong Z_2$ (for $i \equiv 1, 2 \mod 8$) and = 0 (otherwise). q.e.d.

Lemma 2.3. (i) The following sequence is exact:

$$0 {\rightarrow} \tilde{K}(S^{2n-1} {\scriptstyle \bigvee_{m}} e^{2n}) {\rightarrow} \tilde{K}(L_0^n(m)) {\rightarrow} \tilde{K}(L_0^{n-1}(m)) {\rightarrow} 0,$$

and $\tilde{K}(L_0^n(m))$ contains exactly m^n elements. Also $\tilde{K}^{\pm 1}(L_0^n(m)) = 0$.

(ii) If m is odd, then $\widetilde{KO}(L_0^n(m))$ contains exactly $m^{\lceil n/2 \rceil}$ elements, and $\widetilde{KO}^{\pm 1}(L_0^n(m)) = 0$.

PROOF. Considering the Puppe exact sequence of (2.1), we can prove inductively the desired results by the above lemma. q.e.d.

Lemma 2.4. Let $i: L_0^n(m) \to L^n(m)$ be the inclusion. Then

(i)
$$i!: \tilde{K}(L^n(m)) \cong \tilde{K}(L_0^n(m)).$$

(ii) If m is odd, then we have the following split exact sequence:

$$0 {\longrightarrow} \widetilde{KO}(S^{2n+1}) {\longrightarrow} \widetilde{KO}(L^n(m)) \stackrel{i!}{\longrightarrow} \widetilde{KO}(L^n_0(m)) {\longrightarrow} 0.$$

PROOF. This lemma follows immediately from the above lemma and the Puppe exact sequence of $L^n(m)/L_0^n(m) = S^{2n+1}$. q.e.d.

We shall identify the rings of (i) of the above by i!, and denote the element of $\tilde{K}(L^n(m))$ and its i!-image by the same letter.

Let $CP^n = S^{2n+1}/S^1$ be the *n*-dimensional complex projective space, and

$$\pi: L^n(m) \rightarrow CP^n \text{ and } \pi: L^n_0(m) \rightarrow CP^n$$

be the natural projection and its restriction. Then, it is clear that the map $\pi: (L_0^n(m), L_0^{n-1}(m)) \to (CP^n, CP^{n-1})$ induces the projection

$$\pi: S^{2n-1} \bigcup_{m} e^{2n} = L_0^n(m)/L_0^{n-1}(m) \rightarrow CP^n/CP^{n-1} = S^{2n}$$

of Lemma 2.2.

Lemma 2.5. We have the following commutative diagram of the Puppe exact sequences:

$$0 \longrightarrow \tilde{K}(S^{2n}) \longrightarrow \tilde{K}(CP^n) \longrightarrow \tilde{K}(CP^{n-1}) \longrightarrow 0$$

$$\downarrow^{\pi^!} \qquad \downarrow^{\pi^!} \qquad \downarrow^{\pi^!}$$

$$0 \longrightarrow \tilde{K}(S^{2n-1} \bigcup_{m} e^{2n}) \longrightarrow \tilde{K}(L_0^n(m)) \longrightarrow \tilde{K}(L_0^{n-1}(m)) \longrightarrow 0$$

where all of $\pi^!$ are epimorphic.

PROOF. The upper sequence is the Puppe sequence of $CP^n/CP^{n-1} = S^{2n}$ (cf. [1, Th. 7.2]). Since $\pi^!$ in the left is epimorphic by Lemma 2.2 (i), we see inductively that $\pi^!$ in the middle is also epimorphic. q.e.d.

Let η be the canonical complex line bundle over $\mathbb{C}P^n$, and denote also by η the canonical complex line bundle $\pi^!\eta$ over $L^n(m)$ or $L^n_0(m)$, and by

$$\sigma = \eta - 1 \in \tilde{K}(L^n(m)) = \tilde{K}(L^n(m))$$

the stable class of η . Then

PROPOSITION 2.6. The ring $\tilde{K}(L^n(m))$ is generated by σ and contains exactly m^n elements. Furthermore

$$(2.7) (1+\sigma)^m = 1.$$

$$\sigma^{n+1} = 0.$$

(2.9) The order of the element σ^n is equal to m.

PROOF. (2.7) follows from the fact that the first Chern class $c_1(\eta^m)$ is equal to $mc_1(\eta)=0$ in $H^2(L^n(m))\cong Z_m$.

The ring $\tilde{K}(CP^n)$ is generated by $\eta-1$ and $(\eta-1)^{n+1}=0$, and also the element $(\eta-1)^n$ generates the subgroup of $\tilde{K}(CP^n)$ which is the image of $\tilde{K}(S^{2n})\cong Z$ in the diagram of Lemma 2.5, (cf. [1, Th. 7.2]). Therefore we have the desired results by Lemmas 2.5 and 2.4 (i).

Consider the complexification $c: \widetilde{KO}(X) \to \widetilde{K}(X)$ and the real restriction $r: \widetilde{K}(X) \to \widetilde{KO}(X)$ (cf. $\lceil 1 \rceil$), and the element

(2.10)
$$\bar{\sigma} = r\sigma \in \widetilde{KO}(L^n(m)) \text{ or } \widetilde{KO}(L_0^n(m)).$$

Proposition 2.11. Let m be an odd number. Then

(i)
$$c: \widetilde{KO}(L_0^n(m)) \rightarrow \widetilde{K}(L_0^n(m)) = \widetilde{K}(L^n(m))$$

is a monomorphism. Also, the ring $\widetilde{KO}(L_0^n(m))$ is generated by $\bar{\sigma}$ and contains exactly $m^{\lceil n/2 \rceil}$ elements, and it holds $\bar{\sigma}^{\lceil n/2 \rceil+1}=0$.

and the subring of $\widetilde{KO}(L^n(m))$ generated by $\bar{\sigma}$ is isomorphic to $\widetilde{KO}(L_0^n(m))$.

(iii) The following equality holds:

(2.12)
$$c\bar{\sigma} = \sigma^2/(1+\sigma) = \sigma^2 - \sigma^3 + \sigma^4 - \cdots$$

PROOF. (i) It is well-known that rc=2, and so this is isomorphic for $\widetilde{KO}(L_0^n(m))$ by Lemma 2.3 (ii). Therefore c is monomorphic and r is epimorphic. We see $\sigma^{\lfloor n/2 \rfloor + 1} = 0$ by (iii) and (2.8). In the commutative diagram

 $\pi^!$ on the left side is epimorphic by Lemma 2.5, and hence $\pi^!$ on the right is also so. Therefore we see the desired results because the ring $\widetilde{KO}(CP^n)$ is generated by $r(\eta-1)$ [6, Th. (3.9)].

- (ii) σ is of odd order by the above proposition, and so is $\sigma \in \widetilde{KO}(L^n(m))$. Therefore (ii) follows from (i) and Lemma 2.4 (ii).
- (iii) This equality is well known since $\sigma+1=\eta$ is a complex line bundle (cf. [3, Lemma (3.5), ii)]). q.e.d.

§3. Proof of Theorem 1.1

Henceforth, we consider the case $m = p^r$ where p is a prime and $r \ge 1$.

Let $B \in K(L^n(p^r))$ be the element such that

$$B = \sum_{i=1}^{p-1} \frac{1}{p^r} \binom{p^r}{i} \sigma^{i-1} = \sum_{i=1}^{p-1} \frac{1}{i} \binom{p^r - 1}{i - 1} \sigma^{i-1},$$

then we have

Proposition 3.1. In $\tilde{K}(L^n(p^r))$,

(3.2)
$$p^{r-2+h}(pB\sigma^k + \sigma^{k+p-1}) = 0$$
 for $1 \le k \le n-p+1$,

$$(3.3) p^{r+h}\sigma^k = 0 for 1 \leq k \leq n,$$

where $h = \lceil (n-k)/(p-1) \rceil$. Furthermore,

$$(3.4) p^{r-2+h}\sigma^{n-(h-1)(p-1)} = -p^{r-1+h}\sigma^{n-h(p-1)},$$

for $n-h(p-1) \ge 1$, h > 0.

PROOF. Multiplying σ^{k-1} to $(1+\sigma)^{p^r}-1=0$ of (2.7), we have

(*)
$$p^r B \sigma^k + {p^r \choose p} \sigma^{k+p-1} + \sum_{i=p+1}^{p^r} {p^r \choose i} \sigma^{i+k-1} = 0.$$

Since the constant term of B is 1, this equality and $\sigma^{n+1}=0$ of (2.8) imply (3.3) for $k=n, n-1,\dots, n-p+2$, i.e., for h=0.

Assume (3.3) inductively for $h < h_0$, and consider the case $h = h_0$. In the equality (*) $\times p^{h-1}$,

$$p^{h-1}\binom{p^r}{p}\sigma^{k+p-1} = p^{r-2+h}\binom{p^r-1}{p-1}\sigma^{k+p-1} = p^{r-2+h}\sigma^{k+p-1},$$

because $\binom{p^r-1}{p-1}\equiv 1 \mod p$ and $p^{r-1+h}\sigma^{k+p-1}=0$ by the inductive assumptions. Also, if $i=jp^s>p$ and (j,p)=1, then

$$(p-1)(h-s)-(n-k-i+1) \ge jp^s-(s+1)(p-1)>0,$$

and so $p^{h-1}\binom{p^r}{i}\sigma^{k+i-1}=0$ for i>p by the inductive assumptions. Therefore, we have (3.2) for $h=h_0$, and so (3.3) for $h=h_0$ multiplying p to (3.2). Thus we have (3.2-3).

Consider (3.2) for k=n-h (p-1), then we have

$$p^{r-2+h}\sigma^{n-(h-1)(p-1)} = -p^{r-1+h}B\sigma^{n-h(p-1)}$$

and so (3.4), since the constant term of B is equal to 1 and $p^{r-1+h}\sigma^{n-h(p-1)+i}=0$ for i>0 by (3.3). q.e.d.

Remark. By the above proofs, we see that the above proposition follows

from (2.7) for $m = p^r$ and

$$(3.5) p^{r-k}\sigma^{n+k} = 0 \text{for } 0 < k \le r,$$

instead of (2.8).

Now, we are ready to prove Th. 1.1.

PROOF OF THEOREM 1.1. (i) The order of σ^k is a power of p by Prop. 2.6 for $m=p^r$, and $p^{r+h}\sigma^k=0$ by (3.3). Assume $p^{r-1+h}\sigma^k=0$ for some $k\leq n$. Then $p^{r-1+h}\sigma^{n-h(p-1)}=0$ since $n-h(p-1)\geq k$, and hence $p^{r-1}\sigma^n=0$ by (3.4). This contradicts to (2.9) for $m=p^r$.

(ii) Since the complexification c is a ring homomorphism, we have

$$c(\bar{\sigma}^k) = \sigma^{2k}/(1+\sigma)^k$$

by (2.12), and so the desired results by (i) and Prop. 2.11.

q.e.d.

COROLLARY 3.6. For an odd prime p and $r \ge 1$, the lens space $L^n(p^r)$ cannot be immersed in the Euclidean space $R^{2n+2L(n,p^r)}$, and cannot be embedded in $R^{2n+2L(n,p^r)+1}$, where

$$L(n, p^r) = \max \left\{ i \mid i \leq \lfloor n/2 \rfloor, \binom{n+i}{i} \geq 0 \mod p^{r+\lfloor (n-2i)/(p-1) \rfloor} \right\}.$$

PROOF. By the methods of M. F. Atiyah [2] using the γ -operation of the stable tangent bundle, we have the desired results by taking

$$L(n, p^r) = \max \left\{ i \left| {n+i \choose i} \bar{\sigma}^i \rightleftharpoons 0 \right\}, \right.$$

(cf. [4, Prop. 7.6]). This number is equal to the above one by (ii) of Th. 1.1. q.e.d.

§4. Proof of Theorem 1.4

Now, consider the following elements of $\tilde{K}(L^n(p^r))$ if $n \ge p$ and $r \ge 2$:

(4.1)
$$\sigma(1) = \eta^{b} - 1 = (1 + \sigma)^{b} - 1 = pA\sigma + \sigma^{b},$$

where

$$A = \sum_{i=1}^{p-1} \frac{1}{p} \binom{p}{i} \sigma^{i-1} = \sum_{i=1}^{p-1} \frac{1}{i} \binom{p-1}{i-1} \sigma^{i-1}.$$

Then we have the following lemmas in $\tilde{K}(L^n(p^r))$.

LEMMA 4.2. Let
$$h = \lceil (n-k)/(p-1) \rceil$$
, then

(4.3)
$$p^{r-2+h}(pA\sigma^k + \sigma^{k+p-1}) = p^{r-2+h}\sigma(1)\sigma^{k-1} = 0,$$

(4.4)
$$p^{r-2+h}\sigma^{k+p-1} = -p^{r-1+h}A\sigma^{k},$$

for $1 \le k \le n-p+1$; and

(4.5)
$$p^{r-1+h}\sigma^k = -p^{r-1+h+p}\sigma^{k-p(p-1)}$$
 for $p(p-1) < k \le n$.

PROOF. Since $\frac{1}{i} \binom{p^r-1}{p-1} \equiv \frac{1}{i} \binom{p-1}{i-1} \mod p$ for $1 \leq i < p$, we have

(4.3-4) by Prop. 3.1 and the definitions of B and A. By (4.4),

$$p^{r-1+h}\sigma^k = (-1)^p p^{r-1+h+p} A^p \sigma^{k-p(p-1)}.$$

It is easy to see that the constant term of the integral polynomial A^p of σ is equal to 1 and the coefficient of σ^i is a multiple of p for $1 \le i < p-1$. Therefore, we have (4.5) using (3.3).

Lemma 4.6. Let

$$l_k = \lceil (n+p-1-k)/p \rceil$$
, i.e., $n \leq pl_k + k \leq n+p-1$,

then we have

$$p^{r-1-l}\sigma(1)^{l_k+l}\sigma^k = 0$$
 for $0 < l \le r-1$.

Proof. In fact, the left hand side is equal to

$$p^{r-1-l}(pA\sigma+\sigma^{p})^{l'}\sigma^{k} = \sum_{i=0}^{l'} {l' \choose i} A^{i} p^{r-l-1+i} \sigma^{pl'+k-i(p-1)}, \ l' = l_{k} + l,$$

and each term of this summation is 0 by (3.3), since $[(n-(pl_k+pl+k)+i(p-1))/(p-1)] \le -l-1+i$ by the definition of l_k . q.e.d.

By this lemma and the equality

$$(4.7) \qquad ((1+\sigma(1))^{p^{r-1}}-1)\sigma^k = 0,$$

which follows from (2.7) for $m=p^r$ and (4.1), we have the following

Proposition 4.8. Let $r \ge 2$ and $n \ge p$. In $\tilde{K}(L^n(p^r))$,

(4.9)
$$p^{r-1+j}\sigma(1)^{l}\sigma^{k} = 0, \ j = [(n+p-1-pl-k)/p(p-1)],$$

for $l \ge 1$, $k \ge 0$ and j < r.

$$(4.10) p^{r-3+j}\sigma(1)^{l_k-(j-1)(p-1)}\sigma^k = -p^{r-2+j}\sigma(1)^{l_k-j(p-1)}\sigma^k$$

for $l_k-j(p-1)\geq 1$ and j>0, where l_k is the number defined in the above lemma.

PROOF. We notice that j of (4.9) is equal to $\lceil (l_k - l)/(p-1) \rceil$. Then, we can prove (4.9-10) using the above lemma and (4.7), by the same methods to prove (3.3-4) using (3.5) and (2.7) for $m=p^r$, (cf. Remark after Prop. 3.1).

q.e.d.

Lemma 4.11. If
$$n < pl + k \le n + p - 1$$
, then
$$p^{r-2+j}\sigma(1)^{l-j(p-1)}\sigma^k = -p^{r-2+jp}\sigma^{pl+k-jp(p-1)},$$

for
$$l-j(p-1) \ge 1, j>0$$
.

PROOF. By the definition of l_k in Lemma 4.6 and the assumption, we have $l=l_k$. Therefore,

$$\begin{split} p^{r-2+j}\sigma(1)^{l-j(p-1)}\sigma^k &= (-1)^j p^{r-2}\sigma(1)^l \sigma^k & \text{(by (4.10))} \\ &= (-1)^j \sum_{i=0}^{l-1} \binom{l-1}{i} A^i p^{r-2+i}\sigma(1)\sigma^{pl+k-p-i(p-1)} & \text{(by (4.1))} \\ &= (-1)^j p^{r-2}\sigma(1)\sigma^{pl+k-p} & \text{(by (4.3) and the assumption)} \\ &= (-1)^j p^{r-1} A \sigma^{pl+k-p+1} & \text{(by the assumption and (2.8))} \\ &= p^{r-1+jp} A \sigma^{pl+k-p+1-jp(p-1)} & \text{(by (4.5))} \\ &= -p^{r-2+jp}\sigma^{pl+k-jp(p-1)} & \text{(by (4.4)).} \end{split}$$

Remark. By the same proofs, we have the following equality for j=0:

$$p^{r-2}\sigma(1)^l\sigma^k = p^{r-1}A\sigma^{pl+k-p+1}, \quad \text{if} \quad n < pl+k \le n+p-1, \ l \ge 1.$$

According to this lemma, we consider the following elements of (1.3):

$$\sigma(1, k) = \begin{cases} \sigma(1)\sigma^k + p^{a_1(p-1)}\sigma^{p+k} & \text{ (if } b_1 \leq k < b_1 + p - 1) \\ \sigma(1)\sigma^k + p^{(a_1+1)(p-1)}\sigma^{p+k} & \text{ (if } k < b_1 - p^2 + 2p - 1) \\ \sigma(1)\sigma^k & \text{ (otherwise),} \end{cases}$$

for $0 \le k \le \min(p^2 - p - 1, n - p)$, where

$$n-p+1=a_1(p^2-p)+b_1$$
, $0 \le b_1 < p^2-p$.

Lemma 4.12. $t_{p+k}\sigma(1, k) = 0$ in $\tilde{K}(L^n(p^r))(r \ge 2, n \ge p)$, where

$$t_{p+k} = p^{r+1+\lceil (n-p-k)/p(p-1)\rceil} = \begin{cases} p^{r-1+a_1} & \text{for } 0 \leq k < b_1 \\ p^{r-2+a_1} & \text{for } b_1 \leq k < p^2 - p \end{cases}$$

is the number of (1.5) if r=2.

Proof. For the case $b_1 \leq k < b_1 + p - 1$ or $k < b_1 - p^2 + 2p - 1$, it holds

$$n ,$$

where $j = [(n-p-k)/p(p-1)]+1=a_1$ or a_1+1 , and j>0 since $k \le n-p < b_1$ if $a_1=0$. Thus we have the desired equality by the above lemma.

For the other cases, we have [(n-p-k)/p(p-1)] = [(n-1-k)/p(p-1)], and so the desired equality by (4.9). q.e.d.

Now, we are ready to prove Th. 1.4 which gives the additive structure of $\tilde{K}(L^n(p^2))$.

PROOF OF THEOREM 1.4. $\tilde{K}(L^n(p^2))$ is generated additively by the elements σ^k , $1 \le k \le \min(p^2-1, n)$, and the order of σ^k is a power of p, by Prop. 2.6 for $m=p^2$. On the other hand, the integral polynomial $\sigma(1, k-p)$ on σ is $\sum_{i=k-p+1}^k \alpha_i \sigma^i$ with $\alpha_k=1$ or $1+p^{j(p-1)}$, $j=a_1$ or a_1+1 , and j>0 (cf. the proofs of the above lemma). Therefore, we see that $\tilde{K}(L^n(p^2))$ is generated additively by the first n elements of

(*)
$$\sigma, \dots, \sigma^{p-1}, \sigma(1, 0), \dots, \sigma(1, p^2-p-1).$$

Hence, the number of the elements of $\tilde{K}(L^n(p^2))(n \ge p^2 - 1)$ is not larger than

$$(p^{2+a_0})^{b_0}(p^{1+a_0})^{p-1-b_0}(p^{1+a_1})^{b_1}(p^{a_1})^{p(p-1)-b_1} = p^{2n}$$

by (3.3) and the above lemma for r=2, and is equal to p^{2n} by Prop. 2.6. Thus the theorem is proved for $n \ge p^2 - 1$.

Similarly, we have the theorem for the case $n < p^2 - 1$ considering the first n elements of (*), since

$$(p^{2+a_0})^{b_0}(p^{1+a_0})^{p-1-b_0}(p^{1+a_1})^{b_1} = p^{2n} \qquad \text{if} \quad p-1 \leqq n < p^2-1, \\ (p^{2+a_0})^{b_0} = p^{2n} \quad \text{if} \quad n < p-1. \qquad \qquad \text{q.e.d.}$$

In connection to Th. 1.1 (i) and (4.9), we have

Proposition 4.13. The order of $\sigma(1)^l \sigma^k$ of $\tilde{K}(L^n(p^2))$ is equal to p^{1+j} , $j = \lfloor (n+p-1-pl-k)/p(p-1) \rfloor$, for $l \ge 1$, $k \ge 0$, pl+k < n+p; and $\sigma(1)^l \sigma^k = 0$ if $pl+k \ge n+p$.

PROOF. Assume $p^j\sigma(1)^l\sigma^k=0$ for some l and k. Since $k'=n+p-1-jp(p-1)-pl\ge k$, we have $p^j\sigma(1)^l\sigma^{k'}=0$. On the other hand,

$$p^{j}\sigma(1)^{l}\sigma^{k'} = -p^{jp}\sigma^{pl+k'}$$
 if $j > 0$

by Lemma 4.11 for r=2, and the order of $\sigma^{pl+k'}$ is equal to p^{jp+1} by Th. 1.1 (i), which is a contradiction. If j=0,

$$\sigma(1)^l \sigma^{k'} = pA\sigma^{pl+k'-p+1} = pA\sigma^n = p\sigma^n \rightleftharpoons 0$$

by Remark after Lemma 4.11 and Th. 1.1 (i) for r=2, which is a contradiction. Therefore, we have the desired results using (4.9) for r=2. q.e.d.

Concerning with $L^n(p^r)(r \ge 3)$, the above proofs based on Prop. 2.6, (3.3) and Lemma 4.12 are efficient for the special case $n < p^2$, and we have

THEOREM 4.14. Let p be a prime, $r \ge 3$ and $1 \le n < p^2$. Then

$$\tilde{K}(L^n(p^r)) \cong \sum_{k=1}^n Z_{t_k} \quad (direct \ sum)$$

where $t_k = p^{r-1}$ if $p \le k \le n$, $= p^{r+\lceil (n-k)/(p-1)\rceil}$ if $1 \le k < p$. Also the k-th summand Z_{t_k} is generated by

$$\sigma^k$$
 (if $1 \leq k < p$), $\sigma(1, k-p)$ (if $p \leq k \leq n$),

where $\sigma(1, k-p)$ is the element of (1.3), i.e.,

$$\sigma(1, k-p) = \begin{cases} \sigma(1)\sigma^{k-p} + p^{p-1}\sigma^k & (if \ p \leq k < n-p^2 + 2p) \\ \sigma(1)\sigma^{k-p} & (if \ n-p^2 + 2p < k \leq n). \end{cases}$$

§5. Proof of Theorem 1.7

Now, let p=2q+1 be an odd prime.

Using the element $\bar{\sigma} = r\sigma$ of (2.10), we define the element

(5.1)
$$\bar{\sigma}(1) = \sum_{i=1}^{q+1} \frac{p}{2i-1} {q+i-1 \choose 2i-2} \bar{\sigma}^{i}$$

of $\widetilde{KO}(L^n(p^r))$ or $\widetilde{KO}(L_0^n(p^r))$.

Lemma 5.2. For the complexification c,

$$c\bar{\sigma}(1) = ((1+\sigma)^p - 1)\sigma/(1+\sigma)^{q+1} = \sigma(1)\sigma/(1+\sigma)^{q+1}.$$

Proof. By (2.12),

$$\begin{split} c\bar{\sigma}(1) &= \sum_{i=1}^{q+1} \frac{p}{2i-1} \binom{q+i-1}{2i-2} \frac{\sigma^{2i}}{(1+\sigma)^i} \\ &= \frac{1}{(1+\sigma)^{q+1}} \sum_{j=2}^{p+1} \Bigl\{ \sum_{i=1}^{j-1} \frac{p}{2i-1} \binom{q+i-1}{2i-2} \binom{q+1-i}{j-2i} \Bigr\} \sigma^j \\ &= \frac{1}{(1+\sigma)^{q+1}} \sum_{j=2}^{p+1} \frac{p}{j-1} \Bigl\{ \sum_{i=1}^{j-1} \binom{q+i-1}{j-2} \binom{j-1}{2i-1} \Bigr\} \sigma^j \end{split}$$

$$= \frac{1}{(1+\sigma)^{q+1}} \sum_{j=2}^{p+1} \binom{p}{j-1} \sigma^j = \frac{\sigma(1)\sigma}{(1+\sigma)^{q+1}},$$

using the lemma due to T. Kambe [3, Lemma (3.7)].

q.e.d.

LEMMA 5.3. In $\widetilde{KO}(L_0^n(p^2))$ and $\widetilde{KO}(L^n(p^2))$, it holds

$$\bar{\sigma}^{q(p+1)+1} = \sum_{i=1}^{q(p+1)} -\frac{p^2}{2i-1} \binom{q(p+1)+i-1}{2i-2} \bar{\sigma}^i.$$

PROOF. We can show that the c-image of the left hand side minus the right hand side is equal to $((1+\sigma)^{p^2}-1)\sigma/(1+\sigma)^{q(p+1)+1}$ similarly as the proofs of the above lemma. Thus we have the lemma by (2.7) and Prop. 2.11 for $m=p^2$.

PROOF OF THEOREM 1.7. By Prop. 2.11 and the above lemma, $\widetilde{KO}(L_0^n(p^2))$ is generated additively by the elements $\bar{\sigma}^k$, $1 \leq k \leq \min (q(p+1), \lceil n/2 \rceil)$, and the order of $\bar{\sigma}^k$ is a power of p. On the other hand $\bar{\sigma}(1, k-q-1)$ of (1.6) is $\sum_{i=k-q}^k \beta_i \bar{\sigma}^i$ with $\beta_k = 1 + p^{j(p-1)}$, $j = a_1$ or $a_1 + 1$, and j > 0 by definition. Therefore, $\widetilde{KO}(L_0^n(p^2))$ is generated additively by the first $\lceil n/2 \rceil$ elements of

$$\bar{\sigma}, \dots, \bar{\sigma}^q, \bar{\sigma}(1, 0), \dots, \bar{\sigma}(1, pq-1).$$

Now, we see that

$$c\bar{\sigma}(1, k) = \sigma(1, 2k+1)/(1+\sigma)^{q+k-1}$$

by (2.12), Lemma 5.2, (1.5) and (1.3), and hence the order of $\bar{\sigma}(1, k)$ is

$$p^{1+a_1}$$
 (if $0 \leq k < \lceil b_1/2 \rceil$), p^{a_1} (if $\lceil b_1/2 \rceil \leq k < pq$),

by Th. 1.4 and Prop. 2.11 (i). Also, the order of $\bar{\sigma}^k$ is equal to

$$p^{2+a_0}$$
 (if $1 \leq k \leq \lceil b_0/2 \rceil$), p^{1+a_0} (if $\lceil b_0/2 \rceil < k \leq q$)

by Th. 1.1 (ii). Therefore, the theorem follows from these facts, Prop. 2.11 and

$$(p^{2+a_0})^{\lceil b_0/2 \rceil}(p^{1+a_0})^{q-\lceil b_0/2 \rceil}(p^{1+a_1})^{\lceil b_1/2 \rceil}(p^{a_1})^{pq-\lceil b_1/2 \rceil} = p^{2\lceil n/2 \rceil}$$

if $\lceil n/2 \rceil \ge q(p+1)$,

$$(p^{2+a_0})^{\lceil b_0/2 \rceil}(p^{1+a_0})^{q-\lceil b_0/2 \rceil}(p^{1+a_1})^{\lceil b_1/2 \rceil} \!=\! p^{2\lceil n/2 \rceil}$$

if $q \leq \lfloor n/2 \rfloor < q(p+1)$, and $(p^{2+a_0})^{\lfloor b_0/2 \rfloor} = p^{2\lfloor n/2 \rfloor}$ if $\lfloor n/2 \rfloor < q$, together with Lemma 5.3. q.e.d.

The following result follows immediately from Prop. 2.11, Lemma 5.2

and Prop. 4.13.

Proposition 5.4. For an odd prime p, the element $\bar{\sigma}(1)^l \bar{\sigma}^k$ of $\widetilde{KO}(L^n(p^2))$ or $\widetilde{KO}(L^n(p^2))$ is of order p^{1+j} , $j = \lceil (n+p-1-(pl+l+2k))/(p^2-p) \rceil$, for $l \ge 1$, $k \ge 0$, pl+l+2k < n+p; and $\bar{\sigma}(1)^l \bar{\sigma}^k = 0$ if pl+l+2k > n+p.

We notice that the above proofs are valid for $L^n(p^r)(r \ge 3)$ with $n < p^2$ according to Th. 4.14, and we have

THEOREM 5.5. Let p be an odd prime, p = 2q + 1, $r \ge 3$ and $1 \le n < p^2$. Then

$$\widetilde{KO}(L^n(p^r)) \cong \left\{egin{array}{ll} \sum\limits_{k=1}^{\lceil n/2
ceil} Z_{s_k} & (if \ n
otin 0 \ \mod 4) \ \sum\limits_{k=1}^{\lceil n/2
ceil} Z_{s_k} \oplus Z_2 & (if \ n
otin 0 \ \mod 4), \end{array}
ight.$$

where $s_k = p^{r-1}$ if $q < k \leq \lfloor n/2 \rfloor$ and

$$s_k = t_{2k} = p^{r+\lceil (n-2k)/(p-1)\rceil}$$
 if $1 \le k \le q$.

Also, the k-th summand Z_{s_k} is generated by

$$\bar{\sigma}^k$$
 (if $1 \leq k \leq q$), $\bar{\sigma}(1, k-q-1)$ (if $q < k \leq \lceil n/2 \rceil$)

where

$$ar{\sigma}(1,\,k-q-1) = \left\{egin{array}{l} ar{\sigma}(1)ar{\sigma}^{k-q-1} + p^{b-1}\sigma^k \; (if \; q \!<\! k \!\leq\! \! \lceil b_1/2
ceil - 2q^2 + q) \ ar{\sigma}(1)ar{\sigma}^{k-q-1} \; (if \; \lceil b_1/2
ceil - 2q^2 + q \!<\! k \!\leq\! \lceil n/2
ceil). \end{array}
ight.$$

References

- [1] J. F. Adams: Vector fields on spheres, Ann. of Math., 75 (1962), 603-632.
- [2] M. F. Atiyah: Immersions and embeddings of manifolds, Topology, 1 (1962), 125-132.
- [3] T. Kambe: The structure of K_A -rings of the lens space and their applications, J. Math. Soc. Japan, 18 (1966), 135-146.
- [4] T. Kobayashi and M. Sugawara: K_{4} -rings of lens spaces $L^{n}(4)$, this journal, 253-271.
- [5] N. Mahammed: A propos de la K-théorie des espaces lenticulaires, C. R. Acad. Sci. Paris, 271 (1970), 639-642.
- [6] B. J. Sanderson: Immersions and embeddings of projective spaces, Proc. London Math. Soc. (3), 14 (1964), 137-153.

Kurayoshi-Higashi Senior High School and Department of Mathematics Faculty of Science Hiroshima University