A Note on Finite Groups which Act Freely on Closed Surfaces II*

Kensô Fujii

(Received April 28, 1976)

§1. Introduction

This note is a continuation of the previous note [2].

Let T_m or U_m be the orientable or non-orientable closed surface of genus m. In [2], we studied finite groups which act freely on the Klein bottle U_2 and the torus T_1 , and on T_m preserving the orientation. In this note, we study what kind of finite groups can act freely on U_m , and on T_m reversing the orientation. Here we say that a finite group G acts on T_m reversing the orientation if some element of G reverses the orientation of T_m .

Let F_n be the free group generated by x_1, \ldots, x_n , and set $s_n = \prod_{i=1}^n x_i^2 \in F_n$. We say that an element w of F_n is even if w is a product of even times of generators, i.e., a form $\prod_{j=1}^{2k} x_{ij}$, and is odd if it is not even; and also a subgroup K of F_n is even if any element of K is even, and is odd if it is not even. Also we denote by *G the order of a finite group G. Then we have the following propositions.

PROPOSITION 1.1 (cf. [2, Prop. 3.2]). (i) A finite group G acts freely on T_m reversing the orientation if and only if there exists an even normal subgroup K of F_n such that

(1.2)
$$G \cong F_n/K, \quad K \ni s_n, \quad 2(1-m) = (2-n)(*G).$$

For this case, the orbit surface T_m/G is homeomorphic to U_n .

(ii) A finite group G acts freely on U_m if and only if there exists an odd normal subgroup K of F_n such that

(1.3)
$$G \cong F_n/K, \quad K \ni s_n, \quad 2-m = (2-n)(*G).$$

For this case, U_m/G is homeomorphic to U_n .

PROPOSITION 1.4 (cf. [2, Prop. 3.3]). (i) Let G be a finite 2-group and assume that the minimum number of generators of G is n. Then G acts freely on T_m reversing the orientation, where m=1+(n-1)(*G).

(ii) Let G be a finite group and assume that the number of generators of G is less than n+1. Then G acts freely on U_m , where m=2+(2n+l-2)(*G)

^{*} This paper was partially supported by Yukawa fellowship.

and $l \ge 1$. Moreover, if *G is odd, G acts freely on U_m , where m=2+(2n-2) (*G).

Now, we say that a finite abelian group G, having a basis with at most n elements, is of type $e_1(n)$, $e_2(n)$ or o(n), according to each case of the following:

 $e_1(n)$: G includes a cyclic group Z_2 as a direct summand,

 $e_2(n)$: *G is even and G does not include Z_2 as a direct summand,

o(n): #G is odd.

Then we obtain the following results for an abelian group G by Proposition 1.1.

THEOREM 1.6 (cf. [2, Th. 1.10]). (i) A finite abelian group G acts freely on T_m reversing the orientation if and only if there exists an integer n such that 2(1-m)=(2-n)(*G) and one of the following holds:

(1) G is of type $e_1(n)$, (2) n is even and G is of type $e_2(n-1)$. For this case, T_m/G is homeomorphic to U_n .

(ii) A finite abelian group G acts freely on U_m if and only if there exists an integer n such that 2-m=(2-n)(*G) and one of the following holds:

- (3) G is of type $e_1(n)$ and dim $(G \otimes Z_2) < n$,
- (4) G is of type $e_2(n-1)$ and $\dim(G \otimes Z_2) < n-1$,
- (5) *n* is odd, G is of type $e_2(n-1)$ and dim $(G \otimes Z_2) = n-1$,
- (6) G is of type o(n-1).

For this case, U_m/G is homeomorphic to U_n .

Here, dim $(G \otimes Z_2)$ is the dimension of a vector space $G \otimes Z_2$ over Z_2 .

The author wishes to express his gratitude to Professor M. Sugawara for his valuable suggestions and reading this manuscript carefully.

§2. Proofs of Propositions 1.1, 1.4 and 1.5

In this note, we use the following notations:

- F_n : the free group generated by x_1, \ldots, x_n .
- $\{w_1, \dots, w_k\}$: the minimal normal subgroup of F_n containing the elements w_1, \dots, w_k .
- $H \cup K$: the minimal normal subgroup of F_n including the subgroups H and K.

As is well known, the fundamental group $\pi_1(U_n)$ of U_n is given by

(2.1)
$$\pi_1(U_n) = F_n/\{s_n\}, \quad s_n = \prod_{i=1}^n x_i^2.$$

And also the Euler characteristics of T_m and U_n are given by

(2.2)
$$\chi(T_m) = 2(1-m), \quad \chi(U_n) = 2-n.$$

Let M be an orientable manifold and assume that a discrete group π acts

458

properly discontinuously on M. Then we see easily that the orbit space M/π is a manifold and

(2.3) M/π is orientable if and only if the action of π preserves the orientation of M.

Consider the universal covering

(2.4)
$$u: S \longrightarrow S/\pi_1(U_n) = U_n$$

over U_n . Then S is an orientable surface, and

(2.5) (cf. [1, 5.4]) we can choose the generators $x_1, ..., x_n$ of $\pi_1(U_n)$ in (2.1) so that each x_i reverses the orientation of S.

From now on, we fix such generators x_1, \ldots, x_n .

PROOF OF PROPOSITION 1.1. Let X_m denote T_m or U_m . For the case $X_m = T_m$, we only consider actions on T_m reversing the orientation.

Suppose that a finite group G acts freely on X_m . Then the orbit space X_m/G is homeomorphic to U_n for some n by (2.3), and there is a normal covering $p: X_m \to X_m/G \approx U_n$. Therefore, $p_*\pi_1(X_m)$ is a normal subgroup of $\pi_1(U_n)$ such that

(2.6)
$$\pi_1(U_n)/p_*\pi_1(X_m) \cong G,$$

and

(2.7)
$$\chi(X_m) = ({}^*G)\chi(U_n).$$

By (2.7) and (2.2), we have the desired equalities

$$2(1-m) = (2-n)(*G)$$
 or $2-m = (2-n)(*G)$.

From the universal covering (2.4), we obtain the coverings

$$S \longrightarrow S/p_*\pi_1(X_m) = X \longrightarrow S/\pi_1(U_n) = U_n$$

and X is a closed surface by (2.6). Also $\pi_1(X) \cong p_*\pi_1(X_m) \cong \pi_1(X_m)$, and so X is homeomorphic to X_m by the classification theorem of closed surfaces. Therefore, according to $X_m = T_m$ or U_m , the action of $p_*\pi_1(X_m)$ on S preserves or reverses the orientation, and hence there exists an even or odd normal subgroup K of F_n such that $K \ni s_n$ and $p_*\pi_1(X_m) = K/\{s_n\}$ by (2.1) and (2.5). Also, $G \cong F_n/K$ by (2.1) and (2.6), and the necessity is proved.

Conversely assume that there is an even or odd normal subgroup K of F_n satisfying (1.2) or (1.3), according to $X_m = T_m$ or U_m . Then $K/\{s_n\}$ is a normal subgroup of $\pi_1(U_n)$ by (2.1), and $K/\{s_n\}$ acts freely on S preserving or reversing

Kensô Fujii

the orientation by (2.3). Therefore, the orbit surface $X = S/(K/\{s_n\})$ is orientable or non-orientable by (2.3). Consider the normal covering

$$p: X = S/(K/\{s_n\}) \longrightarrow S/(F_n/\{s_n\}) = U_n$$

with the transformation group $G \cong F_n/K$. Then we have $\chi(X) = ({}^*G)\chi(U_n) = \chi(X_m)$ by (2.2) and (1.2) or (1.3). Therefore, X is homeomorphic to X_m by the classification theorem of closed surfaces, and so $G \cong F_n/K$ acts freely on X_m by (2.3), and the sufficiency is proved. q.e.d.

Let G be a finite 2-group and G^* be the Frattini subgroup of G, i.e., the intersection of all maximal subgroups of G. Then the following is well known.

LEMMA 2.8 (cf. [3, Th. 10.4.3, 10.3.4, 12.2.1]). G^* includes the commutator subgroup DG of G, and G/G^* is a vector space over Z_2 and its dimension is equal to the minimum number of generators of G.

PROOF OF PROPOSITION 1.4. (i) By the assumption, G is isomorphic to F_n/K' . Consider the projections

$$F_n \xrightarrow{\pi} F_n / DF_n \xrightarrow{p} F_n / K' \cup DF_n \cong G / DG \xrightarrow{q} G / G^*.$$

The projection qp induces an isomorphism $(F_n/DF_n)\otimes Z_2 \cong G/G^*$ by the above lemma. Since DF_n is even, this shows that $\operatorname{Ker}(qp\pi)$ is even, and $K'(\subset \operatorname{Ker}(qp\pi))$ is also so. By considering the projection $\phi: F_{2n} \to F_n$, $\phi(x_{2i-1}) = \phi(x_{2i}^{-1}) = x_i$ $(1 \le i \le n)$, we have $G \cong F_n/K' \cong F_{2n}/K$, where $K = \phi^{-1}(K')$. Since $\operatorname{Ker} \phi = \{x_1x_2, \dots, x_{2n-1}x_{2n}\}$ and K' is even, we see that $K \ni s_{2n} = \prod_{i=1}^{2n} x_i^2$ and K is even. Hence, the desired result follows immediately from Proposition 1.1 (i).

(ii) By the assumption, G is isomorphic to F_n/K' . By considering the projection $\psi: F_{2n+l} \to F_n$, $\psi(x_{2i-1}) = \psi(x_{2i}^{-1}) = x_i$ $(1 \le i \le n)$, $\psi(x_{2n+j}) = 1$ $(1 \le j \le l)$, we have $G \cong F_n/K' \cong F_{2n+l}/K$, where $K = \psi^{-1}(K')$. Since Ker $\psi = \{x_1 x_2, ..., x_{2n-1} x_{2n}, x_{2n+1}, ..., x_{2n+l}\}$, we see that $K \ni s_{2n+l} = \prod_{i=1}^{2n+l} x_i^2$ and also K is odd if $l \ge 1$. Suppose that *G is odd and consider the projection

$$G \cong F_n/K' \xrightarrow{p} F_n/K' \cup \{x_1 x_2^{-1}, \dots, x_{n-1} x_n^{-1}\} = G'.$$

Then G' is a cyclic group of odd order, and we see that $K' \cup \{x_1x_2^{-1}, ..., x_{n-1}x_n^{-1}\}$ is an odd subgroup. Therefore K' is odd, and the above K for l=0 is also so. Hence, the desired results follow immediately from Proposition 1.1 (ii).

q.e.d.

§3. Proof of Theorem 1.6

In this section, we set

(3.1)
$$G_n = F_n/\{s_n\} \cup DF_n = Z_2 \oplus Z^{n-1}, \quad Z^{n-1} = Z \oplus \cdots \oplus Z \quad ((n-1) - \text{copies}),$$

generated by $x = x_1 + \dots + x_n$, x_1, \dots, x_{n-1} , where x_i is the image of $x_i \in F_n$ by the projection $\pi: F_n \to G_n$. Also, we say that an element $\sum_{i=1}^n a_i x_i \in G_n$ is even if $\sum_{i=1}^n a_i$ is even, and a subgroup H of G_n is even if any element of H is even, and is odd if it is not even.

Then it is easy to see that H is an even subgroup of G_n if and only if $\pi^{-1}(H)$ is an even subgroup of F_n . Therefore, we have the following lemma.

LEMMA 3.2. The condition of Proposition 1.1 (i) or (ii) holds for a finite abelian group G if and only if there exists an even or odd subgroup H of G_n such that $G \cong G_n/H$ and

$$2(1-m) = (2-n)(*G)$$
 or $2-m = (2-n)(*G)$.

LEMMA 3.3. A finite abelian group $G = G_n/H$ is of type $e_1(n)$, $e_2(n-1)$ or o(n-1).

PROOF. Consider the projection

$$\varphi \colon G_n = Z_2 \oplus Z^{n-1} \longrightarrow G_n/H = G,$$

and the generator x of the summand Z_2 of (3.1). For the case $\varphi(x) \neq 0$, G is of type $e_1(n)$ or $e_2(n)$ by the definition. If G is of type $e_2(n)$ in addition, then $\varphi(x) = 2\varphi(y)$ for some $y \in G_n$, and so G is of type $e_2(n-1)$. For the case $\varphi(x)=0$, the lemma is clear. q.e.d.

LEMMA 3.4. Let $G = G_n/H$ be a finite abelian group.

(i) If G is even and H is even, then (1) or (2) in Theorem 1.6 holds.

(ii) If H is odd, then (3), (4), (5) or (6) in Theorem 1.6 holds.

PROOF. (i) Suppose that H is even. It is sufficient to show that G is not of type $e_2(n-1)$ if n is odd, by the definition of types and the above lemma. If n is odd, then the generator $x = x_1 + \dots + x_n$ of Z_2 is not even and so $x \notin H$. Hence $\varphi(x) \in G$ is of order 2, where φ is the projection in the above proof. If G is of type $e_2(n-1)$ in addition, then there exists an element $y \in G_n$ such that $\varphi(x) = 2\varphi(y)$, i.e., $x - 2y \in H$. Since x - 2y is not even, this contradicts the assumption that H is even.

(ii) By tensoring with Z_2 , we have the commutative diagram

(3.5)
$$G_{n} = Z_{2} \oplus Z^{n-1} \xrightarrow{\varphi} G = G_{n}/H$$

$$\downarrow^{\otimes Z_{2}} \qquad \qquad \qquad \downarrow^{\otimes Z_{2}}$$

$$Z_{2} \oplus (Z_{2})^{n-1} \xrightarrow{\overline{\varphi}} G \otimes Z_{2},$$

where the induced homomorphism $\overline{\varphi}$ is also epimorphic. We denote by \overline{w} the

image of w by the vertical arrow.

Suppose that H is odd and an element y of H is not even. Then

(3.6)
$$\varphi(y) = 0 \text{ and } \bar{y} \neq 0,$$

and so $\overline{\varphi}$ in (3.5) is not isomorphic. Thus dim $(G \otimes Z_2) < n$. Therefore by the above lemma, it is sufficient to show that

(3.7) *n* is odd if G is of type $e_2(n-1)$ and dim $(G \otimes Z_2) = n-1$.

If $\overline{\varphi}(\overline{x}) \neq 0$ for the generator x of $Z_2 \subset G_n$, then $\varphi(x) \in G$ is of order 2 and $\varphi(x) = 2\varphi(w)$ for some element $w \in G_n$, by the assumption that G is of type $e_2(n-1)$. This is a contradiction since $0 \neq \overline{\varphi}(\overline{x}) = 2\overline{\varphi}(\overline{w}) = 0$, and we see $\overline{\varphi}(\overline{x}) = 0$. Therefore, Ker $\overline{\varphi}$ is Z_2 generated by \overline{x} by the assumption dim $(G \otimes Z_2) = n-1$, and we see $\overline{x} = \overline{y}$ for an element y of (3.6). Since y is not even, $\overline{x} = \overline{y}$ implies that $x = x_1 + \dots + x_n$ is not even, i.e., n is odd. Thus we have (3.7). q.e.d.

LEMMA 3.8. The necessity of Theorem 1.6 is valid.

PROOF. If G acts on T_m reversing the orientation, then we see easily that *G is even. Therefore, the necessity of Theorem 1.6 follows immediately from Lemmas 3.2 and 3.4. q.e.d.

Now, we prove the sufficiency of Theorem 1.6. For any sequence

$$\tau = (t_1, ..., t_{n-1}), t_i:$$
 even $(i < k_i), t_j:$ odd $(j \ge k_i),$

and t=0, 1, we consider the subgroups

(3.9)
$$H_{1}(\tau, t) = \{tx, t_{i}x_{i} (i < k_{\tau}), (t+1)t_{k}(x+x_{k}), t_{j+1}(x_{j}+x_{j+1}) (j \ge k_{\tau})\},$$
$$H(\tau) = \{x, t_{i}x_{i} (i < k_{\tau}), t_{j}(x_{j-1}+x_{j}) (j \ge k_{\tau})\},$$
$$H_{2}(\tau, t) = \{tx, t_{1}x_{1}, \dots, t_{n-1}x_{n-1}\}$$

of G_n . Then we have easily the following

LEMMA 3.10. The factor group G_n/H is isomorphic to $Z_2 \oplus Z_{t_1} \oplus \cdots \oplus Z_{t_{n-1}}$ if $H = H_1(\tau, 0)$ or $H_2(\tau, 0)$, or $H = H_1(\tau, 1)$ and $k_{\tau} \leq n-1$, $Z_{t_1} \oplus \cdots \oplus Z_{t_{n-1}}$ if $H = H(\tau)$ or $H_2(\tau, 1)$.

LEMMA 3.11. The sufficiency of Theorem 1.6 is valid.

PROOF. By the above lemma, we see easily that any finite abelian group G of (h) $(1 \le h \le 6)$ in Theorem 1.6 is isomorphic to G_n/H , where H is given as follows:

(1) $H = H_1(\tau, 0)$ and $k_\tau = n$, or $H = H_1(\tau, 1)$, $k_\tau < n$ and n is even, or $H = H_1(\tau, 0)$

462

and n is odd.

- (2) $H = H(\tau)$, *n* is even and $4|t_i (i < k_\tau)$.
- (3) $H = H_2(\tau, 0)$ and $k_{\tau} < n$.
- (4) $H = H_2(\tau, 1), k_\tau < n \text{ and } 4|t_i (i < k_\tau).$
- (5) $H = H_2(\tau, 1), k_\tau = n, n \text{ is odd and } 4|t_i (i < k_\tau).$
- (6) $H = H_2(\tau, 1)$ and $k_\tau = 1$.

By the definition (3.9), it is clear that H of (h) is even for h=1, 2, and is odd for $3 \le h \le 6$. Therefore, we obtain the sufficiency of Theorem 1.6 by Lemmas 3.2 and 3.4. q. e. d.

By Lemmas 3.8 and 3.11, Theorem 1.6 is proved completely.

References

- [1] H. S. M. Coxeter and W. D. J. Moser: Generators and relations for discrete groups, Erg. d. Math. 14, Springer, 1957.
- [2] K. Fujii: A note on finite groups which act freely on closed surfaces, Hiroshima Math. J., 5 (1975), 261-267.
- [3] M. Hall: The Theory of Groups, Macmillan Co., 1959.

Department of Mathematics, Faculty of Science, Hiroshima University