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§1. Introduction

This note is a continuation of the previous note [2].

Let Tm or Um be the orientable or non-orien table closed surface of genus m.

In [2], we studied finite groups which act freely on the Klein bottle U2 and the
torus Γl9 and on Tm preserving the orientation. In this note, we study what

kind of finite groups can act freely on L/m, and on Tm reversing the orientation.
Here we say that a finite group G acts on Tm reversing the orientation if some

element of G reverses the orientation of Tm.

Let Fn be the free group generated by x l v..,xπ, and set sw = Π?=ι*? E^n-
We say that an element w of Fn is even if w is a product of even times of generators,

i.e., a form YljiiXij9 and is odd if it is not even; and also a subgroup K of Fn

is even if any element of K is even, and is odd if it is not even. Also we denote

by *G the order of a finite group G. Then we have the following propositions.

PROPOSITION 1.1 (cf. [2, Prop. 3.2]). (i) A finite group G acts freely

on Tm reversing the orientation if and only if there exists an even normal sub-
group K of Fn such that

(1.2) G^FJK, K3sn9 2(l-m) = (2-n)(«G).

For this case, the orbit surface TJG is homeomorphic to Un.
(ii) A finite group G acts freely on Um if and only if there exists an odd

normal subgroup K of Fn such that

(1.3) GsέFJK,

For this case, Um/G is homeomorphic to Un.

PROPOSITION 1.4 (cf. [2, Prop. 3.3]). (i) Let G be a finite 2-group

and assume that the minimum number of generators of G is n. Then G acts

freely on Tm reversing the orientation, where m = l-h(rc — 1)(*G).
(ii) Let G be a finite group and assume that the number of generators of

G is less than n + 1. Then G acts freely on Um, where m = 2-f (2n-h/ — 2)(*G)

* This paper was partially supported by Yukawa fellowship.
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and l^\. Moreover, if *G is odd, G acts freely on Um, where m = 2 + (2n — 2)

(*G).

Now, we say that a finite abelian group G, having a basis with at most n
elements, is of type e^(n), e2(n) or o(n), according to each case of the following:

βj(n): G includes a cyclic group Z2 as a direct summand,
e2(n) : *G is even and G does not include Z2 as a direct summand,
o(ή): *G is odd.

Then we obtain the following results for an abelian group G by Proposition 1.1.

THEOREM 1.6 (cf. [2, Th. 1.10]). (i) A finite abelian group G acts
freely on Tm reversing the orientation if and only if there exists an integer n
such that 2(1 — m) = (2 — w)(*G) and one of the following holds:

(1) G is of type e^n), (2) n is even and G is of type e2(n — 1).
For this case, Tm/G is homeomorphίc to Un.

(ii) A finite abelian group G acts freely on Um if and only if there exists
an integer n such that 2 — m = (2 — n)(*G) and one of the following holds:

(3) G is of type e±(n) and dim(G®Z2)<n,
(4) G is of type e2(n-l) and dim(G®Z2)<n-l,
(5) n is odd, G is of type e2(n — \) and dim(G®Z2) = n — 1,
(6) G is of type o(n — 1).

For this case, UJG is homeomorphίc to Un.
Here, dim(G®Z2) is the dimension of a vector space G®Z2 over Z2.

The author wishes to express his gratitude to Professor M. Sugawara for
his valuable suggestions and reading this manuscript carefully.

§2. Proofs of Propositions 1.1, 1.4 and 1.5

In this note, we use the following notations :
Fn: the free group generated by x lv.., xn.
{wj,..., wk}: the minimal normal subgroup of Fn containing the elements

Wi,.. ., Wk.

H\JK: the minimal normal subgroup of Fn including the subgroups H
andK.

As is well known, the fundamental group π^UJ of Un is given by

(2.1) πι(UJ = FJ{sn}9 sB = Π?-ιX?.

And also the Euler characteristics of Tm and Un are given by

(2.2) χ(ΓJ = 2(l-m), χ(Un) = 2-n.

Let M be an orientable manifold and assume that a discrete group π acts
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properly discontinuously on M. Then we see easily that the orbit space M/π
is a manifold and

(2.3) M/π is orientable if and only if the action of π preserves the orienta-

tion of M.

Consider the universal covering

(2.4) u:S - > S/πάUJ = UH

over ί/n. Then S is an orientable surface, and

(2.5) (cf. [1, 5.4]) we can choose the generators jc1,...,xn of π1(l/Λ) in
(2.1) so that each xi reverses the orientation of S.

From now on, we fix such generators x lv.., xn.

PROOF OF PROPOSITION 1.1. Let Xm denote Tm or Um. For the case Xm =
Tm, we only consider actions on Tm reversing the orientation.

Suppose that a finite group G acts freely on Xm. Then the orbit space
XJG is homeomorphic to Un for some n by (2.3), and there is a normal covering
p: Xm->XJGttUn. Therefore, p*πι(Xm) is a normal subgroup of π^l/J such
that

(2.6) πiWJIp+πάXJ s G,

and

(2.7) *(*J = («G)χ(L/Π).

By (2.7) and (2.2), we have the desired equalities

2(l-m) = (2-n)(*G) or 2-m = (2-n)(»G).

From the universal covering (2.4), we obtain the coverings

S - > Slp+πάXJ = X - > S/πΛE/J = UΛ9

and X is a closed surface by (2.6). Also π1(X)^p#π1(Xm)^π1(Xm), and so
X is homeomorphic to Xm by the classification theorem of closed surfaces. There-
fore, according to Xm— Tm or Um, the action of p^π^X^ on S preserves or reverses
the orientation, and hence there exists an even or odd normal subgroup K of
Fn such that K3sn and p*π1(Xm) = K/{sn} by (2.1) and (2.5). Also, G^FJK
by (2.1) and (2.6), and the necessity is proved.

Conversely assume that there is an even or odd normal subgroup K of Fn

satisfying (1.2) or (1.3), according to Xm=Tm or Um. Then K/{sn} is a normal
subgroup of π^l/J by (2.1), and K/{sn} acts freely on S preserving or reversing
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the orientation by (2.3). Therefore, the orbit surface X = S/(K/{sn}) is orientable
or non-orientable by (2.3). Consider the normal covering

p: X = S/(KI{sn}) — , SI(FJ{sn}) = UH

with the transformation group G^FJK. Then we have χ(X) = (*G)χ(Un) —
χ(Xm) by (2.2) and (1.2) or (1.3). Therefore, X is homeomorphic to Xm by the
classification theorem of closed surfaces, and so G^FJK acts freely on Xm

by (2.3), and the sufficiency is proved. q. e. d.

Let G be a finite 2-group and G* be the Frattini subgroup of G, i.e., the
intersection of all maximal subgroups of G. Then the following is well known.

LEMMA 2.8 (cf. [3, Th. 10.4.3, 10.3.4, 12.2.1]). G* includes the com-
mutator subgroup DG of G, and G/G* is a vector space over Z2 and its dimension
is equal to the minimum number of generators of G.

PROOF OF PROPOSITION 1.4. (i) By the assumption, G is isomorphic to
FJK'. Consider the projections

Fn ^U FJDFn -JU FnIK' U DFn * G/DG -<U G/G*.

The projection qp induces an isomorphism (/7

n/DFn)®Z2 = G/G* by the above
lemma. Since DFn is even, this shows that Ker(gpπ) is even, and K'( c Ker (qpπ))

is also so. By considering the projection φ: F2n->Fn, 0(x2i-ι) = 0(^2 /)==**
(l^i^w), we have G^FJK'^F2n/K, where K = φ~i(Kf). Since Kerψ =

{x1x2» - » X2n-ιx2n} anc^ K' *s even, we see that K 9 52n = Π?=ι^? and K is even.
Hence, the desired result follows immediately from Proposition 1.1 (i).

(ii) By the assumption, G is isomorphic to FJK'. By considering the

projection ψ:F2n+l->Fn, ^(χ2._1) = ̂ (χ2/) = xί (1^/^n), ιK*2»+, )=l (l^J^O.
we have G^Fn/K'^F2n+l/K, where K = φ~l(Kf). Since Ker^ = {x1x2,...,

^2n-i x 2n^2n+i^" ?

x 2n+/}, we see that K 3 s2Λ + ι = Πf=ί/*i2 and also K is odd
if / jg 1. Suppose that *G is odd and consider the projection

GϊίFJK'^FJK' U {x1x51,...,xll-1x;1} = G'.

Then G' is a cyclic group of odd order, and we see that K' U {x^1,..., x n _ιX^ 1}
is an odd subgroup. Therefore K' is odd, and the above K for ί = 0 is also so.
Hence, the desired results follow immediately from Proposition 1.1 (ii).

q.e.d.

§3. Proof of Theorem 1.6

In this section, we set
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(3.1) G,, = Fn/{sn} U DFn = Z2®Z«-ί, Z"'1 = ZΘ-0Z ((n-1) -copies),

generated by x = x 1 H ----- hxπ, Xι,. » *π-u where xf is the image of x^eF,, by the
projection π: Fn-*Gn. Also, we say that an element Σ?=ιαi*iΞGΛ *s even if
Σ?=ιαi is even, and a subgroup H of GΠ is even if any element of H is even, and
is odd if it is not even.

Then it is easy to see that H is an even subgroup of Gn if and only if n~l(H)
is an even subgroup of Fn. Therefore, we have the following lemma.

LEMMA 3.2. The condition of Proposition 1.1 (i) or (ii) holds for a finite
abelian group G if and only if there exists an even or odd subgroup H of Gn

such that G^GJH and

2(1 -m) = (2-n)(*G) or 2-ro = (2-n)(*G).

LEMMA 3.3. A finite abelian group G = Gn/H is of type e^(n\ e2(n — \)

or o(n — 1).

PROOF. Consider the projection

φ:GΛ = Z2®Z"-ι - » GJH = G,

and the generator x of the summand Z2 of (3.1). For the case (p(x)^O, G is of
type βι(n) or e2(n) by the definition. If G is of type e2(n) in addition, then φ(x)
= 2φ(y) for some yeGn, and so G is of type e2(n — 1). For the case φ(x) = 0,
the lemma is clear. q.e.d.

LEMMA 3.4. Let G = Gn/H be a finite abelian group.
(i) 7/*G /s even and H is even, then (1) or (2) in Theorem 1.6 holds.

(ii) // H is odd, ίften (3), (4), (5) or (6) in Theorem ί. 6 ' holds.

PROOF, (i) Suppose that H is even. It is sufficient to show that G is not
of type e2(n — 1) if n is odd, by the definition of types and the above lemma. If
n is odd, then the generator χ = χί-\ ----- h xn of Z2 is not even and so x φ H. Hence
φ(x) e G is of order 2, where φ is the projection in the above proof. If G is
of type e2(n — 1) in addition, then there exists an element yeG n such that φ(x)
= 2φ(y)9 i.e., x — 2yeH. Since x — 2y is not even, this contradicts the assumption

that H is even.
(ii) By tensoring with Z2, we have the commutative diagram

where the induced homomorphism φ is also epimorphic. We denote by w the
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image of w by the vertical arrow.
Suppose that H is odd and an element y of H is not even. Then

(3.6) φ(y) = 0 and y Φ 0,

and so φ in (3.5) is not isomorphic. Thus dim(G®Z2)<rc. Therefore by the
above lemma, it is sufficient to show that

(3.7) n is odd if G is of type e2(n-\) and dim(G(χ)Z2) = n-l.

If φ(x) Φ 0 for the generator x of Z2 <= Gn, then φ(x) e G is of order 2 and φ(x)
= 2φ(w) for some element weG π , by the assumption that G is of type e2(n — 1).
This is a contradiction since Q^φ(x) = 2φ(w) = Q9 and we see <p(x) = 0. There-

fore, Kerφ is Z2 generated by x by the assumption dim(G®Z2) = n — 1, and
we see x = y for an element y of (3.6). Since y is not even, x = y implies that
Λ: = xί H ----- h xn is not even, i.e., n is odd. Thus we have (3.7). q. e. d.

LEMMA 3.8. The necessity of Theorem 1.6 is valid.

PROOF. If G acts on Tm reversing the orientation, then we see easily that
*G is even. Therefore, the necessity of Theorem 1.6 follows immediately from
Lemmas 3.2 and 3.4. q. e. d.

Now, we prove the sufficiency of Theorem 1.6. For any sequence

τ = (ίls..., f^), ti'. even (i < /ct), tf. odd (j ;> /ct),

and ί = 0, 1, we consider the subgroups

(3.9) f/iίτ, 0 = {tx, ttxt (i < /cτ), (ί + l)ίfc(x + xk), ^(X + X + O (j ^ kτ)} ,

H(τ) = {x, fΛ (i < fcτ), ί/xy. ! +x7 ) (7 ̂  fcτ)} ,

H2(τ, i) = {ίx, ί̂ ,..., ίπ-ιxn-.ι}

of Grt. Then we have easily the following

LEMMA 3.10. The factor group GJH is isomorphic to

Z2 ® Ztί e-θ ̂ .i ifH = Hι(τ, 0) or H2(τ, 0), or H = tf^τ, 1
Zfl e-e Z^^ i/ if = H(τ) or H2(τ, 1).

LEMMA 3.11. T/iβ sufficiency of Theorem 1.6 is valid.

PROOF. By the above lemma, we see easily that any finite abelian group
G of (h) (l^/ι^6) in Theorem 1.6 is isomorphic to GJH, where H is given as
follows :

(1) /f = //1(τ, 0) and feτ = w,ΌΓ /ί = J/1(τ, 1), /cτ<n and n is even, or H = Hl(τ, 0)
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and n is odd.
(2) H = H(τ\ n is even and 4|f, (z'</cτ).
(3) H = H2(τ, 0)and/c τ<n.
(4) H = #2(τ, 1), kτ < n and 4|ίf (i < fcτ).
(5) H = H2(τ, 1), fct = n, n is odd and 4|ί, (i<fct).
(6) H = H2(τ, l )and/c t =l.
By the definition (3.9), it is clear that # of (/i) is even for h = 1, 2, and is odd for
3^/ιg6. Therefore, we obtain the sufficiency of Theorem 1.6 by Lemmas
3.2 and 3.4. q. e. d.

By Lemmas 3.8 and 3.11, Theorem 1.6 is proved completely.
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