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1. Introduction

Consider the boundary value problem

(1.1) ~^ = X(x, 0, a^t^b,

(1.2) /M = 0,

where x and X(x, f) are real n-vectors, / is an operator from Dc=C[J] into Rn

which is continuously Frechet differentiable in Z), and C[J] is the space of n-

vector functions continuous on J = [0, ft].

In our previous paper [2], replacing (1.1) with an equivalent system of integral
equations, we obtained a posteriori error estimates of continuous approximate

solutions of (1.1), (1.2). In those estimates the fundamental matrix of a linear
homogeneous system of differential equations plays an important role and its
inverse matrix is also required. In many practical applications, however, exact

fundamental matrices and their exact inverses are not available, so that the esti-

mates are not always applicable.
The object of this paper is to give error estimates of approximate solutions

in terms of approximate fundamental matrices and their approximate inverses.

In Section 3 error estimates are obtained in the case where approximate funda-

mental matrices are continuous and also in the case where they are continuously

differentiable. The results are illustrated with a numerical example.

In Section 4 we treat the case where the boundary condition depends on the

fundamental matrices of the first variation equation of (1.1).

2. Notations and preliminaries

Let Rn denote a real n-space with any norm || || and let C[J] be the Banach

space of all real n-vector functions x(ί) continuous on the interval J = [α, ft] with
the norm || x \\ c = sup || x(t) \\. For any fixed ί0 β J let
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Then B0 = C0[J] x Rn is a Banach space with the norm

\\y\\b = max(||ιι||c, ||*||) for y = (tι, e)e£0.

Let M[J] denote the Banach space of all real n x n matrix functions A(t) con-
tinuous on J with the norm

The identity operator and the unit matrix are denoted by the same symbol
/. The sum F + G and the product FG of two operators F and G are defined in
the usual manner.

For two Banach spaces X and Y, we denote by L(X, 7) the set of all bounded
linear operators from X into Y. When the operator F: D<=X-*Y is Frechet
different! able at x e D, we denote by F'(x) the Frechet derivative of F at x. A
linear operator K: Y^X is said to be invertible if the equation Ky = x has a unique
solution ye Y for each xeX. By the argument similar to the one used in [1,
p. 50] we can show the following

LEMMA 1 . Let L: X-+Y beα linear operator and K : Y^X be an invertible
linear operator. Then L is invertible if

(2.1) \\I-LK\\ <1

or

(2.2) ||/ - XL|| < 1.

Let A = (al9 02,..., 0n)eM[J] and for any ΓeL(C[J], C[J]) define TA
eM[J]by

TA = (Tai9 Ta29...,Tan).

Then we have

(2.3)

so that Tcan be considered to be an element of L(M[J], M[J]).
Let Ω' be a domain of the fx-space intercepted by two hyperplanes t = a and

t = b such that the cross sections Ra and Rb at t = a and t = b make an open set in
each hyperplane. Put Ω = Ra [) Ω' u Rb and let

D = {x e C[J] I (ί, x(ί)) e Ω for all ί e J} .

Let us consider the system of differential equations

(2.4) **- = χ(χ9t\ tεJ

with the boundary condition
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(2.5) /[x] = 0,

where x and X(x, i) are n-vectors, X(x, i) is continuous in Ω and continuously
differentiable with respect to x in Ω, and the operator /: D-*Rn is continuously
Frechet differentiable in D. We assume that (2.4) has at least one solution in D.

Let Q: D-»C0[J] and F: D-+B0 be the operators defined by

(2.6) Qx = x(f) - x(f0) - Γ X(x(s), s)ds for xεD9Jto

(2.7) Fx = (βx,/[x]) for xeD.

Then the boundary value problem (2.4), (2.5) is equivalent to the problem of
finding a solution x e D of the equation

(2.8) Fx = 0.

Let Xx(x, 0 be the Jacobian matrix of X(x, i) with respect to x. Then
F'(x)A (x e D) is given by

(2.9) F'(x)h = (Q\x)h9 /'(x)/ι) for h e C[J] ,

where

(2.10) β'(x)Λ

Let L e L(C[J], i50) be the operator independent of x which approximates F'(x)
and is defined by

(2. 11) LA = (PA, /[A]) for A e C[J] ,

where

(2.12) PA = A(0 - A(r0) - (' A(s)h(s)ds,
Jto

A eM[J] and /eL(C[J], Λ»).
Let Φ(t) be the fundamental matrix of the system

with Φ(to) = I and put

(2.13) G=/[Φ].

We denote by Φj(i) the inverse matrix of Φ(i) and put
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(2.14) S = ΦG~1

if G is nonsingular.

Let E, El9 5λ and H be the elements of L(C[J], C[J]) defined by

(2.15) Efc = Φ(t)Φj(s)h(s)ds for ΛeC[J],
Jίo

(2.16) E^J + EΛ, S1 = / -S/, // = 51£

and let Γ: D-»C[,7] and 7\: D->L(C[J], C[J]) be the operators such that

(2.17) Tx = X(x(t), t) - A(i)x(t) for xeD,

(2.18) 7\(jc)Λ = {AΊ[x](ί)- A(0}/z(0 for x e D, Λ e C[J] ,

where

(2.19) ΛΓ^x] = XJix(t)9 t) for xεD.

In our previous paper [2] we have shown the following results: L has an
inverse operator L7 if and only i/detG^O. If G is nonsingular, then

(2.20) Ljy = S^jM + Se for y = (M,

(2.21) Kx = K\x for xeD,

where K and K^ are the operators from D into C[J] defined by

(2.22) K = / - L7F,

(2.23) X j =HT+ S(l - f ) .

THEOREM 1. Let x(0) eD be an approximate solution of (2.8) and suppose
there exist an operator L, a positive number δ and nonnegative constants η, K

such that

( i ) det G ?6 0,

(ii) />, = {* e CD/] I \\x - x^L ί* δ} c: D,

(iii) \\Kx - Ky\\c ^ κ\\x - y||c /or ill x,yεDδ,

(iv) HL.FxWL^i f ,

(v) A = η/(l-κ)£δ.

Then the sequence {x(k)} defined by
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(2.24) x<*+1> = Kx<*> (fc = 0, 1,...)

converges to %eDδ as /c->oo. £ is the unique solution 0/(2.8) in Dδ, and

(2.25) P - x < * > | l c ^ ι A l (/c = 0, 1,...).

REMARK. Let K be a constant satisfying

(2.26) ||H||cMl + | |S | |^ 2 ^K<l,

where μt and μ2 are constants such that

(2.27) HT^l ^ μ, for all xeD,,

(2.28) ||/'(x) -/|| ^ μ2 for all χsί>,.

Then the condition (iii) is satisfied.

In this theorem the matrices Φ(t) and Φ/f) play important roles. But in

practical applications we are often obliged to use the approximate fundamental

matrices. In the next section we study how to modify this theorem in such a

case.

3. Approximate fundamental matrices

Let $ and $f be the matrices that approximate Φ and Φj respectively. For
any operator R = R(Φ, Φ/) depending on Φ and Φ/ we denote by R the operator

j). Put

(3.1)

(3.2)

(3.3) p = max(ί? - ί0, ί0 - α).

We consider the following two cases for practical applications.

Case 1. $(t) and $j(f) are continuous on J.

Case 2. Φ(0 and Φ/(0 are continuously differentiable on J.

3.1. Casel

Put

(3.4) r(0 = ̂ (0 - * - Γ A(s)$(s)ds,

(3.5)
ίo
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(3.6) r2(i)

Let R9 RΛ eL(C[J], C[J]) and R2: £-»C[J] be defined by

(3.7) Rh = r2(ί)Γ h(s)ds - $(t) Γ rl(s)h(s)ds for h e C[J] ,
JtQ JtQ

(3.8) R 1 h = r2/z(f o) + Λ A/i for h e C[J] ,

(3.9) R2x = r2x(t0) + £*[>] for x 6 D,

where Z[x]=^Γ(x(ί), t). Then we have the following

LEMMA 2. L7 ex/sίs and is invertible if

(3.10) detS^O,

(3.11) llδ-MI Pll | |r| |cexp(pM||c)<l,

(3.12)

PROOF. By (3.10) L7 can be defined.
Let α(ί) = ̂ (0 - Φ(r). Since

Φ(f) - / - X(s)Φ(s)Λ = 0,
fo

by (3.4) we have

which yields

By GronwalΓs inequality we have

(3.13) \\Φ-Φ\\C^ ||r||cexp(p||A||c)

and by (3. 11)

\\G~i\\ \\G-G\\^ \\G-i\\ PI! ||α||c<l.

Hence detG^O, and L is invertible.
We show next that

(3.14) ||J - LtL\\c < 1.

Let
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(3.15) β(t) = Φ/ί) - Φj(t\ q(t) = {' β(s)A(s)ds.
Jlo

Then by (3.5)

(3.16)

because

r0

&i(s)A(s)ds = 0.

For any pe C[J] let w(ί)= \ p(s)ds. Since Φj = — Φ/^4, the integration by parts
Jίo

shows that

(3.17) f Φ^Mίsίi/Csίds = - ΦMu(t) + f Φ/sMs)̂ ,
Jro Jfo

(3.18) ί' ^(sM(s)u(5)ί/s = q(t)u(t) - (' q(s)p(S)dS.
JtQ JtQ

By (3.15)-(3.18) we have

(3.19) EAu =

= ~ w + £p -h JRp.

From this and (3.8) it follows that

(3.20) E,Ph = h - ίΛ(ίo) - Λ^ for h e C[J] .

Since by (2.13) and (2.14)

(3.21) S,$ = (I - ΦG~Ί)Φ = 0,

by (2.20), (3.20) and (3.21) we have

(/ - LjL)h = h- S.E^h - Sl[h] = S^h.

Hence (3.14) is valid by (3.12), and L/ is invertible by Lemma 1.

LEMMA 3 . // det G ̂  0, t hen

(3.22) Kx = Kix + K2x for xeD,

where

(3.23) K2x=S1R2x for xeD.
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PROOF. For any x e D by (2.22), (2.20) and (2.7)

(3.24) £x = (/ - LjF)x = x- S.E.Qx -

By (3.19) we have

(3.25) E&x = x- ETx - $x(tQ) - R2x

and by (3.21)

S.E.Qx = x - Sl[x] .- fΪTx - S

Substitution of this into (3.24) yields (3.22) by (3.23).

We have the following

THEOREM 2. Let x(0) eD be an approximate solution of (2.8) and suppose

there exist an operator L7, a positive number δ and nonnegative constants η,

κ9 κl9 κ2 such that

(i) Lj is invertible;

(ii) D, = {xeC[J] I | | x - x < ° > L ^ δ } c : D ;

(iii) /c = κ1 + κ2 < 1,

(3.26) \\B\\^ + ||§||cμ2 ^ id,

(3.27) IIS^Lμa + II^^H, ^ κ2,

where μί9 μ2 and μ3 are constants such that

(3.28) IIΪΊOOH^/i! /orβ/ί xeί),,

(3.29) \\Γ(x)-l\\ύμ2 for all xeD,,

(3.30) I I X i M l l c ^ A ί s /ore// xeD,;

(iv) nVxWJI, ^ ι/;

(v) A = i f / ( l -κ)^λ

T/te« ί/ie conclusion of Theorem 1 is υa/id with K replaced by £.

PROOF. For any x, yeDδ by the mean value theorem we have

(3.31) £tx -Rίy = R Γ 7\0> + 0Jt)ω0 + S Γ {/ -/'(j; + θh)}hdθ,
Jo Jo

(3.32) Λ2x - R2y = R Γ X^y + θh^hdθ + r2h(t0),
Jo
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where h = x-y. Since y + θheDδ, by (3.31), (3.28), (3.29) and (3.26)

U^x - Zιy\\c ^ (\\H\\cμί + ||S||cμ2) ||h||c ^ KI\\X - y\\c9

and by (3.23), (3.32), (3.30) and (3.27)

\\R2χ - &2yL ^ (H3i*llcP3 + \\Slr2\\c)\\h\\c ^ κ2\\x - y\\c.

Hence by (3.22) and (iii)

\\Rx - Ky\\c ^ κ\\x - y\\c.

Since fc<l, by the contraction mapping theorem [1, pp. 65-66] £ has a unique
fixed point £ in Dδ and the estimate (2.25) holds. From £ = K£ it follows that
L/F^ = 0, which is equivalent to F£ = 0 by (i). Since any solution of Fx = 0 is
a fixed point of X, £ is the unique solution of (2.8) in Dδ. This completes the

proof.

Let α0 and oq be constants such that

(3.33)

(3.34)

Then by (3.7) for any h e C[J]

Hence (3.12) and (3.27) can be replaced respectively by

(3.35)

(3.36)

3.2. Case 2

Put

(3.37)

(3.38)

Let P2, Λ3, Λ4 e L(C[J], C[J]) and Λ5 : D->C[J] be defined by

(3.39) P2h = h(ί) - Λ(ί0) - Γ ^!(s)/z(s)ds for h e C[J] ,
r0

(3.40) R3h = £(,4 - A2)h + y^h for Λ e C[J] ,

(3.41) ^4/z = R3(h - P2fc) - E(A - XJft for /ι e C[J] ,
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(3.42) R5x = R3(x - Qx) for xeD.

Then we have the following

LEMMA 4. Let

(3.43) detδ^O.

Then Lj is invertible if

(3.44) p\\A, - yA\\e< 1

or

(3.45) IIS^L < 1.

PROOF. Let Lί be the operator defined by

L X Λ = (P2hf /[ft]) for /i e C[J] .

Then it is invertible by (3.43).
For any y = («, e) e£0 by (2.20)

(3.46) Lιy = EiU - S{llElu'] - e} .

Since P2$ = 0 and (j = /[4>], we have

(3.47) P2S = (P )̂δ-1 = 0,

(3.48) /[§] = /[W-1 = /.

Suppose first (3.44) holds. By (3.46) and (3.48)

(3.49) HLjy-] = e.

By (3.46) and (3.47) the integration by parts yields

P2Lιy = P2EίU = ιι(ί) - (' (A,(s) - γ(s)A(s)}u(s)dst
ίo

because $' = Aί$ and M e C0[/] By this and (3.49) we have

(3.50) (/ - LjLύy = {̂ ŝ) - y(s)A(s)}u(s)ds, o.

Hence

||(J - L,Lί)y\\b ^ p\\A, - yA\\c\\y\\b,

and Lj is invertible by (3.44) and Lemma 1.
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We treat next the case where (3.45) is valid. For any geC[J] let w(ί) =

\ q(s)ds. Since $/= —$jA29 by integration by parts we have
Jto

(3.51) EAu = E(A - A2)u - yu + Eq = - u + R3u + £4,

so that

(3.52) E^P2h = Λ - <2><£/(ίo)fc(Ό) ~ K4/ι for /ι e C[J] .

Substitution ofu = P2h and e =/[/*] into (3.46) yields by (3.52) and (3.21)

(/ - LjLJh = SiR4h.

Hence Lt is invertible by (3.45) and Lemma 1.

LEMMA 5. // det G Φ 0, then

(3.53) Rx = K^ + K2x for xεD,

-where

(3.54) J?2x = 51Λ5x for xeD.

PROOF. For any x e D by (3.51) we have

(3.55) E,Qx = x-ETx- MiOoXfo) - R*x'

By (2.20) and (3.21)

LjFx = Sjfijβx + Sflx]

= x - 5Tx - S(l[χ] - /[x]) - S^sX,

from which (3.53) follows.

We have the following

THEOREM 3. Suppose the assumptions of Theorem 2 are satisfied with
(3.27) replaced by

(3.56) H

Then the conclusion of Theorem 2 is valid.

PROOF. For any x, y eDδ let h = x — y. Then by the mean value theorem

(3.57) R5x - R5y = K3 {/ - Q'(y + θh)}hdθ.
Jo

Since y + θh e Dδ, we have by (3.30)
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II {/ - Q'(y + θh)}h\\c = κ<o)
II to

g ( l + p p 3 ) H Λ | l c for all θe [0,1],

and by (3.54), (3.57) and (3.56)

A* - K*y\\c ^ HSiΛslUi + «*3) H A L ^ "all* - jΊlc

The proof is completed by the same argument as in the proof of Theorem 2.

Suppose ||yjc<l and let σ=l/(l-||y1||c). Then since ||y"1|lc^σ we have
the following inequalities :

(3.58) Ui - γA\\c Z σ\\$'$, - yAy\\c,

(3.59) \\A - A,\\c ^ σ\\Ay - $'Φ,\\C,

(3.60) \\A - A2\\c ί£ σ\\yA + $$ί\\c,

(3.61) MJ, g σll^'^L.

For any constant α2 such that

(3.62) \\H\\C\\A - A2\\c + \\S,\\c\\yΛ\\c ^ α2,

we have

HM3*llc^«2 | | fc| | c for ΛeC[J],

so that

(3.63) IISΛL ^ «2(1 + PMiL) + \\H\\c\\A - V4JI,,

(3.64) l lSiΛallcίl + pμ3) ^ «2(1 +

Hence by (3.58)-(3.61), we can estimate the left sides of (3.44), (3.45) and (3.56)
without computing Φ"1 and Φj1.

3.3. Treatment in the original form

In this subsection we treat the boundary value problem (2.4), (2.5) directly
without replacing (2.4) by a system of integral equations.

Let CX[J] denote the space of all real n-vector functions continuously differ-
entiable on J with the norm || ||c and let

D1 = {x e CJ[J] I (ί, x(0) e Ω for all t e J} .

Let B = C[J] x Rn be a Banach space with the norm

\\y\\b = max(||M||c, ||*||) for y = (u, e)eB.
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Let us consider the equation

(3.65) &x = - X(x, ί), / M =0 for x e D1

and introduce the linear operator 3? defined by

(3.66) 3>h = ( - - A(ί)h, /[h] for

The following results have been obtained in [4]: // det G + 0, -then & has
an inverse operator «£?/, which is defined by

(3.67) &tf = Hu + Se for y = (w, e) εB.

Let JT and JTA be the operators from D1 into CX[J] defined by

(3.68) JΓx = (7 - & j&)χ for

(3.69) JΓiX = ^f/jδf - &)x for

Then

(3.70) JΓx = jΓ1x = K1x for

Suppose Φ and Φr are continuously differentiable on J and let K2 be the
operator defined by

(3.71) K2x = {H(A - A2) + Sf

1y1}x for

Then we have the following

THEOREM 4. Let x^eD1 be an approximate solution of (3.65) and

suppose there exist an operator &I9 a positive number δ and nonnegative con-
stants η, K such that

( i ) detδ^O, | |y , | | c <l;

(ii) Di = {xeC1[J] I | | x-χW| | e ^5}q:

(iii) \\β\\cμι + ||S||cμ2 + ||X2||C g K < 1,

w/ierc /ίj and μ2 are constants such that

\\T,(X)\\C ^ μι for all

»/'(*) - /|| g μ2 / o r e / /

(iv) ||

(v) λ =
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Then the conclusion of Theorem 1 is valid with K and Dδ replaced by tf and D\
respectively.

PROOF. Let 3? ^ be the operator from Cl{J~\ into B defined by

for

Then by (i) & ± is invertible.
For any y = (u, e)eB we have by (3.67)

(3.72) z = &ry = (I - Sϊ)Eu + Se = Eu - $G'\l\Eu\ - e)

and by (3.37)

(3.73) ^ = A,(f)$(t)^ ΦI(s)u(s)ds 4- $(f)^(f)u(i)

- Aι(t)9{ί)G-i(l\Eu\ - e)

= A±z + γu.

Since 3=/[Φ], from (3.72) it follows that

(3.74) /[z] = /[£w] -'/[ilC-K/CJSii] - β) = e.

By (3.73) and (3.74) we have

(/-^1^/)>; = (y1M,0),

so that

Hence &l is invertible by (i) and Lemma 1.
For any x e/)1 by (3.69) and (3.67) we have

(3.75) jf jjc = &!(& - J^)x = βTx -h

and by (3.38)

= yh - E(A - A2)h -

Hence by (3.21)

(3.76) (/ - yty}x = {H(A -

and by (3.68), (3.75) and (3.76)
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*&* v — ζfl ( (0 — ζSF\ v - I (T (0 (P\ v — If v I Ίf v
I/I Λ — 2t J\~& ** /J* I* \* 3& J ^ /-^ ~~" *» lΛ l " XV^Λ.

For any x, y e D j by (3.31) and (iii) we have

^ κ||x - >;||c.

The proof is completed by the same argument as in the proof of Theorem 2.

3.4. A numerical example

We consider the two-point boundary value problem [3]

(3.77) ^ = X(x, 0 = (
dt \ - Xi - (Xi - O3 + t + 0.1

xΛ- 1) + 0.9
(3.78) /[x] Ξ ( 1 = 0.

Let

(3.79) xj<»(ί) = t + 0.1, x£"(ί) = 1

be an approximate solution of this problem, ί0 = — 1,

0 1
(3.80) A(ί) =

' . - 1 0

and / be the operator defined by

/ 1 0 \ / 0 0
(3.81) /[A]= A ( - l ) + lft(l) for AeC[J].

\ 0 0 / \ 1 0

Then

0 0
(3.82) Xx(x, ί) - A(ί) =

' -ί)2 0

(3.83) /'(x) = /.

For simplicity we put

c(ί) = cos(l + ί), s(ί) = sin(l + ί), "(0 = cos(l - t).

υ(t) = sin (1 - ί), XO = 2s(ί)c(ί), q(f) = 1 - 2s(t)2,
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m = 10~3, σ = (1 — c)/s, s = sin2, c = cos 2.

For any constant ε (|ε| < 1) let μ = 1 + ε, v = 1 — ε,

μc(t) μs(t) \ _ / c(ί) - V5(ί)
(3.84) Φ(ί)=

\ - μs(t) vc(ί) / \ s(ί) μc(t)

Then by (3.81) and (3.84) we have

0 \ _ / μv(t) μs(i)
(3.85)

c s I - C(t) vc(ί)

(3.86) Rh = Γ R(t, τ)h(τ)dτ for /ιeC[J],

where

- μvv(i)s(τ)
H(t, τ) = s-

vC(ί)s(τ)

μs(t)u(τ) μs(t)D(τ)
H(t, τ )=-s- '

vc(ί)«(τ)

C(ί) = u(ί) - εcos(3 + ί)» i>W = v(τ) + εsin(3 + τ).

Hence

μ{l - c(t) - σs(t)}
(3.87) L^x*0' = m

v{s(ί) - σc(t)} + ε{(l + ί)«(0 + 2s(ί) -

αs(t) + J3c(0 + εμXO + μ(l - εq(t))(t + 0.099)
(3.88)

_ - vc(t) - σlS(ί) -
(3.89) tfj^xW = m

v{μs(ί) - σj

where

α = mσ + ε{ε(0.901c + 1.099)/s - 2μ(1.099s + c)} ,

β = m - 0.901ε2, σt = σ + εσ(l + 2c) .

We have
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-1 -
(3.90)

KO

2s(ί) \ / φ) - 1 s(0
(3.91)

0 1 - 2c(0 / V - s(0 Φ)

μq(t) - c(ί) - 1 0
(3.92)

μs(t)

-μp(t) μq(i)
(3.93) yA + ΦΦ',=ε

e - <?(0 - KO

(3.94)
- εμ - q(t) - εp(02 μv(l

Let us put e = 10~3 and use the infinity norm || !!„. Then

C g 2max ||H(ί, s)|L g 3.11104,
t,seJ

c ^ ^ = 1.55712m.

By (3.82) and (3.83) we may choose

μι = '3(δ + O.I)2, w2 = 0, μ3 = l + / i x .

In the remainder of this subsection we omit the subscript oo for simplicity.

(i) The case where Theorem 2 is applied.

We have

||5-1 ^ 1.55586, ||r||c ^ 3.0m, ||rjc ^ 2.32544m, ||r2||c ^ 2.12613m

£ 2.81522m, 11^11,^3.1995, ||Φ||C g 1.41563,

11 Hr| | cexp(2| |X| | c)^ 0.0689,

|r 2 | lc + I I Φ L I k i l l c ) + ||^r2||c g 0.0375,

so that Lj is invertible by Lemma 2.

The choice δ = 1.8008m yields

K = 0.13528, λ = η/(i - K) = 1.80074m = X

and an error estimate P — x(0)||c = Λ i *s obtained.
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(ii) The case where Theorem 3 is applied.
We have

(3.95) l l y j || c ^ 2.001m, ||Φ'Φ7 - yλy\\c ^ 3.23516m.

Hence by (3.58) and Lemma 4 L7 is invertible. The constant κ2 is determined
with the aid of (3.60) and (3.64). With the choice δ = 1. 19m we have

K = 0.12982, λ = 1.78942m = λ2.

Now we consider two cases where Theorem 1 is applied incorrectly with $
and Φr regarded as Φ and Φl respectively.

(iii) The case where Theorem 1 is applied with K regarded as K.
The choice δ = 1. 124m yields

K = 0.096576, λ = 1.72357m = A3.

In this case K2 is neglected, so that λ3 is not necessarily a bound of ||Λ — x(0)||c.

(iv) The case where Theorem 1 is applied with K^ regarded as K.
We have

χ(o)||c ^ ηι = l.07349m,

and the choice η = η^ and δ = 1.1 87m leads to

K = 0.09556, λ = 1.18691m = A4.

It is to be noted that λ4 is a bound of \\y — x(0)||c and is not always that of ||A —
x(0)||c, where y is the limit of the sequence y ( f c> defined by
(fc = 0, 1,...) with 3;(°) = χ(°). Hence the use of the iteration

(fc = 0, 1,...)

is not recommended, though (2.21) is valid.

(v) The case where Theorem 1 is applied with ε = 0.
In this case Φ and $f are identical with Φ and Φ/ respectively. We have

||c ^ 3.11056, \\LjFχM\\c ^η2 = 1.55741m

and the choice η = η2 and δ = 1. 1239m yields

K = 0.096561, λ = 1.72387m = λs.

(vi) The case where Theorem 4 is applied.
Since detS = μs^O, by (3.95) the condition (i) of Theorem 4 is satisfied and

&j is invertible. From (3.62) and (3.71) it follows that ||K2||c^α2. We have
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\\c ^η3 = 1.55687m, α2 = 10.81511m

and the choice 77 = 773 and 5 = 1.745m leads to

K = 0.107432, A = 1.744m = A6.

It seems that A l 5 A2 and A6 are not so greater than A 5. It is to be noted that

A3 differs slightly from A5 but A4 does much. It is seen that A 1 >A 2 >A 6 >A 5 .

The same conclusions are valid also when the norms || ||2 and || 1̂  are used.

The results are listed in Table 1, where ή = η/m, £ = <5/m, κ = 10/c and I = A/m.

Table 1.

norm

H~

Hs

Hi

\. c
e \v

?

,5
A:

Λ

Ϋ

<5

£

λ

?

5
/c

Λ

i

1.55712

1.80080

1.35286

1.80073

1.55712

1.72700

0.97929

1.72616

1.61719

1.91010

1.53316

1.91002

ii

1.55712

1.79000

1.29820

1.78942

1.55712

1.71300

0.90973

1.71295

1.61719

1.87200

1.35658

1.87101

iii

1.55712

1.72400

0.96577

1.72358

1.55712

1.67200

0.68295

1.67126

1.61719

1.79100

0.96806

1.79052

iv

1.07349

1.18700

0.95560

1.18691

1.25924

1.35100

0.67864

1.35092

1.77919

1.97100

0.97149

1.97063

V

1.55741

1.72400

0.96562

1.72387

1.55741

1.67200

0.68209

1.67142

1.61745

1.79100

0.96689

1.79058

vi

1.55687

1.74500

1.07432

1.74426

1.55687

1.68500

0.75700

1.68437

1.61704

1.81600

1.09490

1.81586

4. A special boundary value problem

4.1. Problems and notations

Let W[J~\ = C[7] x M[J] be a Banach space with the norm

Kllc, ^Klϋ for υ = (v0, i^e

where p and q are arbitrary positive constants. Let B0 = C0[J] xM[J] xR"

be a Banach space with the norm

\\φ\\b = max(||ιι0||c, ||wιL, for φ = (MO, uί9

We assume that X(x, t) is continuous in Ω and twice continuously differ-

entiable with respect to x in Ω9 and denote by Xxx(x, i) the second Frechet deriva-

tive of X(x9 i) with respect to x. For any x e D let Φ(Jc)(f) be the fundamental
matrix of the system
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(4.1) ^ = Xx(x(t\f)z

with Φ(jc)0o) = Λ and put D1 = D x (7, where 17 = {Φ(je) 6 M[J] | x e D} .
Let us consider the boundary value problem (2.4) and

(4.2) / b O = 0 for >> = (x,Φ(x)),

where the operator /: D^^R" is continuously Frechet differentiable in D1. For
example, this problem arises from boundary value problems of the least squares

type [2].
In the sequel the C[J]- and M[J]-components of any element of W\_J~\ are

represented with subscripts 0 and 1 respectively, so that x = (x0, Xj).
Let F: D*-+BΌ be defined by

(4.3) f*

where

(4.4) QiX = Xi(t) - I -
to

Qx0 and AΊ[x0]
 are given by (2.6) and (2.19) respectively. Then the problem

(2.4), (4.2) is equivalent to that of finding a solution x e D1 of the equation

(4.5) Fx = 0.

Let fceD1 be the exact solution of (4.5), and x^eD1 be an approximate

solution. Then our object is to estimate the error of XQO) and that of XIG).
We denote by λ(p, q) an error bound of x(0) such that ||*-x<0>||w^A(p, q).
Since

we have estimates

||*0 - x£»||c g λ(l, g), H*! - xi°>||c ^ A(p, 1).

The parameters p and g are introduced so as to make the bounds λ(l, ^r) and
A(p, 1) small.

Let

fteC[J].

For a bilinear operator JV from C[J] into C[J] we define N[_h, F] by

, F] =
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For ΓieLtqV], C[J]) (ί = l, 2,..., n) let YeL(C[J], M[J]) be the operator

defined by

Ύh = (Y,h9 Y2h,...9 Ynh)

and let

YV = (Y1V, Y2V,...,YnV).

For x eD1 the Frechet derivative F'(x) is defined by

(4.6) F'(x)h = (β'(x0)A0, βi(x)ft, f'(x)h) for h e W[f] ,

where β'(x0)Ao is given by (2.10),

(4.7) βί(x)A = Λ I - Γ *ι[*o] (*)Λι(s)ds - Γ *2(*o) [Λ0> ^J W*,
^ίo w ' ί o

(4.8) Γ(

(4.9) Z2

/o and /! are partial Frechet derivatives of / with respect to x0 and x{ respec-

tively.
Let T2: D

1->L(C[J], M[J]) be the operator such that

(4. 10) T2(x)h = ̂ 2(^o) [A, Λ j - Ύh for x e D1, h e C[J] .

Let LeL(W\_J~\, B0) be the operator independent of x which approximates F'(x)

and is defined by

(4. 11) Lh = (PΛ0, PI A, /[A]) for ft e

where Pft0 is given by (2.12),

(4.12) P,h = h,

(4.13)

, /0eL(C[J], Rn) and / t eL(M[J], Λ").
Let /2 e L(C[J], Λ") be defined by

(4.14)

and put

(4.15)
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When detG^O, we define the operators Sj0 = 0, 1,..., 5), H0 and H1 by the fol-
lowing formulas:

(4.16) S0 = ΦG-1, S^EYSo, S2 = S0ll9 S3 = SJ, - /,

04 = I — ^o^2> ^5 == EYSfa J * o = ^4-^9 •"! == SζE.

In 4.2 an analogue of Theorem 1 is given for x(0) and in 4.3 the error of
x(0) is estimated in terms of the approximate matrices of Φ and Φ/.

4.2. Exact fundamental matrices

We have the following

LEMMA 6. L has an inverse operator Lj if and only if

(4.17) detG^O.

Suppose (4.17) is satisfied. Then for any φ=(u0ί ui9 e)eB0

(4.18) Lιφ = h,

where

(4.19) ^ = S^^fio - Si+2ElUl + 5fe (ί = 0, 1).

PROOF. By (4.11) the equation Lh = φ is equivalent to the system

(4.20) Ph0 = u09

(4.21) P,h = f i l f

(4.22) /0[Λ0] + /ι[ΛJ = .̂

The general solution of (4.20) is given by

(4.23) Λ0 = *c + £ι«o

with an arbitrary c e Λw. The solution of (4.21) is

Λ! = EiUi + EY/ϊo,

and substitution of (4.23) into this yields

(4.24) Λ! = Eίu1 + EF^i/o + EYΦc.

By (4.15), (4.23) and (4.24) from (4.22) it follows that
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Hence L/ exists and is unique if and only if c is determined uniquely for φ e Bθ9

that is, detG^O.
If (4. 17) holds, then

Substituting this into (4.23) and (4.24) we have (4.18) and the proof is complete.

Let K and K^ be the operators from D1 into W[f\ defined by

(4.25) K = / - L7F,

(4.26) K^ = y for xe/)1,

where

(4.27) Λ = HiTxQ - Si+2E{T,(xQ)Xi - YxQ} + Sf(/[x] - /[x]) - Sί+2Φ

(i = 0, 1),

T and T^XQ) are given by (2.17) and (2.18) respectively. The integration by
parts yields

- Φx0(ί0),

Since Sί4.4Φ = 0 (ί = 0, 1), by (4.3) and (4.19) we have

(4.28) Kx = K^x for xeD 1.

We have the following analogue of Theorem 1.

THEOREM 5. Let x(0) eD1 be an approximate solution of (4.5) and suppose
there exist an operator L, a positive number δ and nonnegatiυe constants η, K
such that

( i )

(ii) DJ

(iii) K =

where KQ and κί are constants satisfying

(4.29) p^H^μ, + 115,11̂  + ||Si+2£||c(^1 + pμj ^ K, (i = 0, 1),

and μί9 μ2 and μ4 are constants such that

(4.30) IITΛxo)!!,^! for all xeDJ,
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(4.31)

(4.32)

(iv)

||/'(x) - l\\ ^ μ2 for all xeDJ,

l|T2(x)||e^/ι4 for all xe£>$;

L ί η;

(v) λ = ηl(l - K) g 5.

TΛen ίΛe sequence {x< k)} defined by

(4.33) x<*+1> = KxW (k = 0, 1,...)

remains in £>J and converges to xeDJ as fc->oo. £ is ί/ie unique solution of

(4.5) in Z>J, and

(4.34) \\x - χW\\w ^ κkλ (fc = 0, 1,...).

PROOF. For any x, _y e DJ let h = y — x. Then by the mean value theorem

(4.35) 7>0 - Γx0 = Γ T!(XO + Θh0)h0dθ,

(4.36) - T1(x0)x1 = Ti

ΓJo
Yh0,

where x(

(4.32)

(4.37)

(4.38) \\Tί(y0)y1 - T1(x0)x1 -

and also by (4.31)

(4.39)

> xt). Since x(0)eZ)J (O^θgl), we have by (4.30) and

- *

Let u = Ky - Kx. Then by (4.28) and (4.26)

u, = Hι(Ty0 - Γx0) + S,(/[y - x] -/|>]

- St+2E{T1(y0)y1 - T^x^x, - Yy0 + yχ0}

so that by (4.37H4.39) and (4.29)

(i - 0, 1) ,
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^ {PllHiLμ, + ||S,||ji2 + \\Si+2E\\c(qμι + pμ4)} ||y - x||w

£κ,| |y-x|L 0* = 0, 1).

Hence by (iii) we have

\\Ky - KxL = maxQrlwoL «-ΊI"ιU

^ maxQr^o, ^'^i) l l j - *L ^ ^ll^ - *IL

The proof is completed by the same argument as in the proof of Theorem 2.

4.3. Approximate fundamental matrices

In this subsection error bounds of x(0) are given in terms of the approximate
matrices $ and $r.

4.3.1. Case 1

Let R6 eL(W [J], M[J]) and £7: D^MCJ] be defined by

(4.40) R6h = RAh^ + RYh0 for A e W\T\ ,

(4.41)

where r2 and Λ are given by (3.6) and (3.7) respectively. Then we have the
following

LEMMA 7. Lf exists and is invertible if

(4.42) detδ^O,

(4.43) US-MI {β,\\U + P/y / i l l πwi + nίiϋ) < i,
(4.44) maxίp-^o, ί'^i) < 1,

where βί9 β2, v0 and V! are constants such that

(4.45) /? = exp(pμ||c), ^ - \\r\\cβ, β2 = (β1 + l*Urίteβ,

(4.46) Pl|5|+4«iBc + ll S l + 2Λ6H e ̂
 vi (' = 0. 1).

and K! is given by (3.8).

PROOF. We show first that

(4.47) llδ-1! ||δ - G|| < 1.

Let φ(t, s)=^(ί)^/(s)-Φ(ί)ΦXs) Then by (3.13)
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\\φ(t, 5)|| ̂  ||£(f) - Φ(ί)|| + llίWi-iWII + <P(t, τ)A(τ)dτ
to

because

' Φ,(τμ(τXτ} = 0,

ίo

GronwalΓs inequality yields

Since

(£ - E)h = Γ φ(ί, s)h(s)ds for ft 6 C[J] ,
Jίo

we have

(4.48) \\E-E\\c^pβ2.

By (4.15)

G-G = 1Q[$ - Φ] + l^EYδ - E 7Φ]

and so by (3.13) and (4.48)

||δ - G|| ^ \\l2\\β, + \\lΛpβ2\\Y\\c(βι

Hence by (4.43) we have (4.47), which implies detG^O, and L is invertible by
Lemma 6.

We show next that

(4.49) ||J - £,LL < 1.

By (3.19) and (4.40) we have

(4.50) E^P^h = hl- EYh0 - R6h for h e PF[J] .

Since Si+4$=Q (i=0, 1) and

0 = 0, 1),
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by (4.18), (3.20) and (4.50)

(/ - LxL)h = M,

where

ιι, = S,+A*o - Si+2R6h (i = 0, 1).

By (4.46) we have

Me ^ {pllSι+4*ιlle + \\Si+2Rβ\\c} PL ^ vJifcL (i = o, 1),

and it follows that

||(J - IjDAL = maxQrΊiΌL <ΓΊI"ιU

Hence (4.49) is valid by (4.44), and L7 is invertible by Lemma 1. This com-
pletes the proof.

Let α3 and α4 be constants such that

(4.51) ||r2||c + α0 ^ α3, ζfα0 + p^\\Y\\c ^ α4,

where α0 and αx are given by (3.33) and (3.34) respectively. Then by (3.8) and

(4.40)

^ α4.

Hence (4.46) can be replaced by

(4.52) P\\Sί+4\\c*3 + ||5ί+2||cα4 ^ vf (i = 0, 1).

LEMMA 8. // det & Φ 0, ί/ien

(4.53) Kx = Kίx + K2x for

(4.54) K2x = ιι,

(4.55) it, = Sί+4£2x0 - §ί+2^7^ 0* = 0, 1)

and R2 is the operator given by (3.9).

PROOF. By (4.25), (4.18) and (4.3) we have Kx = y, where

(4.56) Λ = x, - Si+4E,Qx0 + Si+2E,QιX - %/[>] (i = 0, 1) .
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By (3.19) and (4.41)

(4.57) E&x = x, - ET^x^ -$- RΊx.

Substitution of (3.25) and (4.57) into (4.56) yields

(4.58) y, = β(Tx0 - S^ίTίfro)*, - Yx0} + Stf[x] -/[*])

- Si+2$ + Sι+4R2x0 - Sί+2RΊx (i = 0, 1),

because Sl+ 4$=Q (i=0, 1) and

(4.59) x, - Sί+4x0 + Si+2x1 = Stl[x] + Si+2EYx0 (i = 0, 1) .

Hence (4.53) follows from (4.58) by (4.26) and (4.54).

Now we prove the following

THEOREM 6. Let x(0) eD1 be an approximate solution of (4.5) and suppose
there exist an operator Lj, a positive number δ and nonnegative constants η, K,
KJ (j = 0, 1, 2, 3) such that

(i ) L[ is invertible;

(ii) Dl = {xeWUl I B*-*<°>IL £«}=*>!;

(iii) K = max(p-1(κ0 + κ2), q~1(κl + κ3)) < 1,

(4.60) pllfl.lUi + ll^ll^ + \\Sl+2E\\c(qμι + pμ*) ^ K, (i = 0, 1),

(4.61) p\\Si+4R\\cμ3 + \\Si+2R\\c(qμ3 + pμs) + P\\$l+4r2\\c g κt+2

O' = 0, 1),

where μ^ (j=l, 2, 3, 4, 5) are constants such that

(4.62) IIΓΛxofl leSμt for all xeDJ,

(4.63) ||/'(x) - ί|| g μ2 for all xeDJ,

(4.64) \\X, [x0] lie gμ3 for all xeDJ,

(4.65) ΪTa(x)Bc^μ4 /we// xeOJ,

(4.66)

(iv)

(v) A =

Then the conclusion of Theorem 5 is valid with K replaced by S..
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PROOF. For any x, y e D\ let

h = y — x, u = Kίy — Xxx, v = K2y — K2x.

Then by (4.26), (4.37), (4.38), (4.39) and (4.60)

(4.67) lliiJI, ^ Ki\\y - x|L 0 = 0,1).

By (4.64), (4.66) and the mean value theorem we have

(4.68) \\Xilyolyi -X

which yields by (4.41)

(4.69) \\Sfcy - StR7x\\c £ llS.RUqμ, + pμ5) \\y - x\\w9 (i = 2, 3) .

Similarly by (3.32) and (4.64)

(4.70) \\SjR2yQ - SjR2x0\\c ^ {\\SjR\\cμ3 + ||S/2||C} \\yQ - x0||c, ( = 4, 5).

By (4.54), (4.69), (4.70) and (4.61) we have

(4.71) \\Vi\\c ^ {P\\Si+4R\\cμ3 + \\Si+2R\\c(qμ3 + pμ5) + p||Sl+4r2||c} ||j; - x||w

Let z = Ky - Kx. Then by (4.53), (4.67) and (4.71)

Me = ll«ι + "illc ^ fa + *i+2) \\y - xL 0 = o, i),

so that by (iii)

\\Ky - Kx\\w = maxCp-MlzoL rMkiL)

^ maxίp-^ico -f κ2), ^-^fCj + κ3)) ||y - x||w ^ κ||.y - x||w.

The proof is completed by the same argument as in the proof of Theorem 2.

4.3.2. Case 2

Let P3, Rs eL(W [J], M[J]) and Λ9: D^CEJ] be defined by

(4.72) P3fc = ΛtίO - Xι(s)Λ!(s)d5 - [Y/ι0](s)^ for
Jίo J^o

(4.73) Rsh = R3(hί - P3h) - £(̂ 1 - A O f t j for h e
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(4.74) R9x = R3(x, - QiX) + ΦίΦ/ίo) - /) for x e Ό\

where the matrix A± is given by (3.37) and the operator R3 is given by (3.40).
Then we have the following

LEMMA 9. Let

(4.75) detCz^O.

Then Lj is invertible if one of the following two conditions is satisfied:

(4.76) v = p{\\A, - yA\\c + \\yιY\\cσ} < 1,

(4.77) max (/?-%, q-hj < 1,

where σ, v0 and vί are constants such that

(4.78) ll^ιllc+ iSjfii IU + ||SoL g σ,

(4.79) P\\St+4R4\\c + \\St+2R6\\c g vf (i = 0, 1),

and R4 is the operator given by (3.41).

PROOF. Let Lx be the operator defined by

(4.80) L,h = (PA, P3h, /[ft]) for Λ

where P2 is given by (3.39). Then it can be shown that L1 is invertible by the

same argument as in the proof of Lemma 6.
Suppose (4.76) holds. For any φ=(uQ, ui9 e)eB0 let /ι = Ljφ. Then by

(4.18).

(4.81) h{ = Si+4ElUo - Si+2Elu1 + Ste (i = 01),

and in the same manner as for (3.50) we have

(4.82) (/ - LΛ)? = ("0,^,0),

where

(4.83) ι;0(0 = Γ {̂ ^5) - y(s)A(s)}u0(s)ds9
Jίo

(4.84) v,(t) = {A,(s) - y(s)A(s)}u1(s)ds
Jtθ

By (4.81), (4.78)

(4.85) ||/t0L ^ (llS+fiJc + ll^ilU + llSΌϋ II<?>L ^ σ\\ΨL,
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and by (4.83), (4.84), (4.85) and (4.76) we have

K||C ^ p\\A, - yA\\c\\Uί\\c

so that by (4.82)

= max(K||c, IKD ̂

Hence L7 is invertible by (4.76) and Lemma 1.
We treat next the case where (4.77) is valid. By (3.51) we have

(4.86) EίP2v0 = v0- ΦΦ/ίoKOo) - #4*>o>

(4.87) EiPsV = Vί- EYv0 - R8v for v e

Substituting w0 = P2t;0, uί=P3v and e=l[v~] into (4.81) and making use of (4.86)
and (4.87), we obtain

(J- L/L1> = (w0, wO,

where

w, = Si+4R4v0 - Sί+2K8t; (i = 0, 1).

Since by (4.79)

||(/ - L.L^L = maxίp-MlwoL, <rΊK||c) ̂

Lj is invertible by (4.77) and Lemma 1.

LEMMA 10. //detδ^O, then the conclusion of Lemma $ is valid with
(4.55) replaced by

(4.88) ti, = Si+4R5x<> - Sί+2£9x (i = 0, 1),

w/ίere jR5 is ί/ze operator given by (3.42).

PROOF. By (3.51) we have

(4.89) £ιβι* = *ι - ET1(x0)x1 - Φ - K9x for xeD 1.

Substitution of (3.55) and (4.89) into (4.56) completes the proof by the same

argument as in the proof of Lemma 8.

THEOREM 7. Suppose the assumptions of Theorem 6 are satisfied with

(4.61) replaced by

(4.90) p||5/+4K3||c(l + pμ3) + \\Si+2R3\\cp(qμ3 + pμ5)£ κi+2 (i = 0, 1).
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Then the conclusion of Theorem 6 is valid.

PROOF. For any x, y e Dl

δ we have by (3.57)

(4.91) llff^o - 3,*5*ollc ̂  felUl + P/*3) IIJO - *oL (* = 4, 5)

and by (4.74) and (4.68)

(4.92) \\SjR9y - SjR9x\\c g ||S 3̂||cp( 3̂ + pμs) \\y - x||w ϋ = 2, 3).

Let v = K2y-K2x. Then by (4.91), (4.92) and (4.90) it follows that

(4.93) IHL ^ {p||5ί+4Λ3||c(l + pμ3) + ||3l+2Λ3||cp(βA£3 + «ι5)> II^ " xL

The proof is completed by the same argument as in the proof of Theorem 6.

Let σ0, σί and σ2 be constants such that

and let α, O' = 0, 1, 2, 3) be constants satisfying

||Sfl+4R3||c ^ \\Hi\\cσ2 + ||S,+4||cσ0 = α, (i = 0, 1),

Then (4.79) and (4.90) can be replaced respectively by

0 = 0,1),

(4.95) pat + αί+4μ3 + pai+2ρμ5 ^ κi+2 (i = 0, 1),

where

Hence by (3.58)-(3.61) we can estimate the left sides of (4.76) and (4.90) without
computing $~l and $jl.

4.3.3. Treatment in the original form

In this subsection we treat the boundary value problem (2.4), (4.2) directly
without replacing (2.4) and (4.1) by systems of integral equations.

Let Cl{J~\ be the space of all real n-vector functions continuously differ-
entiable on J with the norm || ||c and denote by MJ[J] the space of all real n x n
matrix functions continuously differentiable on /. Let "/ιrπ_^ιrπ^ i^im



On a posteriori Error Estimation in the Numerical Solution 233

be the space with the norm || ||w and put D2 = D1Γ\ Wl\f\. Let B = C[J]x
M[J] xRnx Mn be a Banach space with the norm

|M0||c, ||ιiιl|c, \\e0\\, KH) for φ= (ιι0, ul9 e

where Mn = L(jR", Rn).
We consider the equation

(4.96) ^x = 0 for

where the operator & : Z)2->B is defined by

(4.97) &x = (4*SL - ̂ r(xo, 0, -̂  -

for

Let Jδf : ̂ [J]-*!* be the linear operator defined by

(4.98) &h = (-̂ δ- -^(/)Ao, ̂ - - ^W*ι ~ Yho

for he

Then we have the following analogue of Lemma 6.

LEMMA 11. 3? has an inverse operator JS?7 if and only if

(4.99) detG^O.

Suppose (4.99) is satisfied. Then for any <p = (w0, uί9 eθ9 e^

(4.100) ^φ = ft,

(4.101) ft, = ftyo - S ί+2£Wl + S,β0 ~ Sί+2Φβ! (i = 0, 1).

PROOF. By (4.98) the equation &h = φ is equivalent to the system

(4.102) -

(4.103) L _ Λ ( t ) f c 1 = l l l + 7ft0

(4.104) /0[ft0] + /iCft i ] = e0,

(4.105) Λιfro) = «ι
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The general solution of (4.102) is given by

(4.106) AO = Φc + Eu0

with an arbitrary ceRn. The solution of the initial value problem (4.103),

(4.105) is

(4.107) A! = Φ<?! + Euί + EYh0

and substitution of (4.106) into (4.107) yields

(4.108) A! = Φex + Eul + Ey£ιι0 + £7Φc.

By (4.15), (4.106) and (4.108) it follows from (4.104) that

(4.109) /2[£w0] + lάEuJ + lάΦfa + Gc = β0.

The proof is completed by the same argument as in the proof of Lemma 6.

Let JΓ and JΓX be the operators from D2 into [̂J] defined by

(4. 110) Jfx = (/ - ^7

/^ )x for x e D2,

(4.111) Jfi* = &£& - &)x for

Suppose Φ and Φ7 are continuously differentiate on J and let the operator

K2 be defined by

(4.112) K2h = u for A

where

(4.113) tt| = 5̂  - X2)A0 - Sft+2£(X -

- 5 / + 2y1A1 - S/+2Φ(^(ί0) - /)Λι(ίo) (« = 0,

Now we show the following

LEMMA 12. j^j is invertible if

(4.114) detS^O,

(4.115) v = max(||yι||c + \\y,Y\\cσ, \\I - Φ(ί0)||) < 1,

where σ is a constant such that

(4.116) ||#oL + \\S2E\\e + llSoL + \\S2$\\e ^ σ.

PROOF. Let Lx be the operator defined by
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(4. 1 17) LJi = *- - ΛΛ, - - Λ A - ΓA0) /[A],

for A e

where /4t is the matrix given by (3.37). Then it can be shown that Lj is invertible
by the same argument as in the proof of Lemma 11.

For any <jff=(u0, u t, e0, ejefi let h = &Iφ. Then by (4.100)

(4.118) h0 = Eu0 + $G~l(e0 - I2[£u

(4.119) hί = £(«! + y/ι0) + $β!

and by (3.37)

(4.120) MjL=Alh0

(4.121) ^J_ = y4 l Λ l

Since <3=72[Φ], by (4.13) and (4.14) we have

(4.122) im = Z2[fco] + /,[£«!] + /,[ί]βl

= Z2[£u0] + ?2[^e-He0 - Z2[£"0] -

+ /iC^uJ + i,[^]eι = e0.

From (4.119) it follows that

(4.123) A,(i0) = ^(ίo) .̂

By (4.120H4.123)

(4.124) (/ - L^j)φ = (yιu0> γ^ + 7/t0), 0, (/ -

By (4.100) and (4.116) we have

II Vile ^ (ll#oL + \\S2E\\C + ||Sol|e + \\S2$\\C) \\φ\\b ^ σ\\φ\\b,

so that by (4.124) and (4.115)

||(/ - L,j£,)φ||4 = max(||ylMo||c, \\7l(Ul + Yh0)\\c, \\(I - ί(ί0))e,||)

^max(||?1 | |c+ Hy^Lσ, ||/ - $(t0)\\)\\<PL ^ v\\φ\\b.

Hence ^7 is invertible by (4.115) and Lemma 1.

We have the following
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THEOREM 8. Let x (0)eD2 be an approximate solution of (4.96) and sup-

pose there exist an operator 3?^ a positive number δ and nonnegative constants

η, K, KJ (y' = 0, 1, 2, 3) such that

( i ) .£?, is invertible;

(ii) D2

δ = {xe ̂ [J] I ||jc - x<°>||w ^ δ} c D2;

(iii) K = maxO^Oco + κ2)» q~i(Ki + κ3)) < 1,

(4.125) pHH^μ, + flS^ + ^Si+2E\Uqμι + J?μ4) ̂  ̂  (i = 0, 1),

(4.126) \\A - ^2||c(p||^||c + q\\Si+2E\\c) + ^MpllSi+tL

+ ^l|5ί+2^L||^(ί0) - I\\ ^ κi+2 (i = 0, 1),

where μl9 μ2 and μ4 are constants such that

(4.127) l|Ti(*o)llc^i for all xεDj,

(4.128) ||/'(x) - / I I ^ //2 /or all xeD2

δ,

(4.129) ||Γ2(x)||c^μ4 /or all

(iv) ll

(v) λ =

Then the conclusion of Theorem 5 is valid with K and D\ replaced by tf and D2

δ

respectively.

PROOF. For any x e D2 by (4.97) and (4.98) we have

(J2T - *)x = (Tx0, T^XO^I - Yxo, /M -/M> /)

and by (4. Ill) and (4. 100)

(4.130) jf1x = w,

where

(4.131) M| = H,TxQ - 5f+2£J{Γ1(x0)x1 - 7x0}

~S ί+2Φ (i = 0, 1).

For any h€Wl{J~\ let υ — ̂ ^h. Since Φ / = — ̂ /^42, by integration by

parts we have
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and by (4.100)

(4.132) vt = Si+4{E(A2 - A)h0 + yh0 - ££,(ί0)Vfo)} - Si + 2{E(A2 -

- EYh0 + yh, - ^/(fo^Λίo)} + Sjm - S^AOo)

(i = 0, 1)

Since 3( + 43> = 0 (j = 0, 1) and

St+2EYh0 - 3,+27/ίι + S,/[A] = - Sί+4h0 + S ί+2y1/J1 + ht

(i = 0, 1),

by (4.132) we have

(4.133) (/ - &I3')h = w,

where

(4.134) w{ = fi^A - A2)h0 - Sί+2E(A - AJhi - Si+

- 5ί+2^Xί0) - Wίo) (i = 0, 1).

Hence by (4.110), (4.111), (4.112) and (4.133)

For any x,yeD} let u = ̂  ly- j f jX. Then by (4.130)

w, - RtTy0 - Tx0) + St!\y - x] -/[y] +/[x])

- Sj+a^ίTjOΌ^i - Γ1(x0)x1 - Yy0 + Yx0} (i = 0, 1),

so that by (4.37H4.39) and (4.125)

(4.135) \\ut\\c g {p\\Ri\\^ + \\S,\\^2 + \\St+2E\\c(qμί + pμ4)} \\y - x||

^κt\\y-x\\w (i = 0, 1).

Let t;=jf 2y- jf2x. Then by (4.133) and (4.126) we have

(4.136) Me ^ Hff llcM - A2\\c\\y0 - x0||c + ||Si+2£|UM
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Let z = jf y - jfx. Then by (4.135) and (4.136)

= o, i),

so that by (iii)

r'CfCo + *2)> Q'^KI + κ3)) \\y - x||w ^ iclb - x||w

The proof is completed by the same argument as in the proof of Theorem 5.

4.4. A numerical example

We consider the boundary value problem

(4.137) dx
dt

X(x, i) EE
- *ι - (*ι - O3 + * + 0.1

0[x] = 0 for y = (x, Z)eD1,(4.138) /|>] 3 fo'.

where α* denotes the transpose of a matrix α, Z(ί) is the solution of the matrix
equation

(4.139) dZ
dt = X,[x]Z ss

0 1

-O2 0

withZ(ί0) = /, and

(4.140)

(4.141)

X l(-l) + 0.9\

α(x2(0)2 - )S)

^ι(l) - 1.1

t0 = - 1, α = 0.1, )! = 1.1.

The condition (4.138) arises from the boundary value problem of the least squares
type (4.137) and (0M)*0M = min. [2].

We denote by y(0)=(x(0), Z(0)) an approximate solution of this problem with

(4.142) *ί»(0 = f + 0.1, xi0)(ί)

where Φ(ί) is the solution of the problem
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dΦ = AftyΦ, Φ(- i) = /,
u*

(4.143)

dt

0 1 \ =

-μ 2 O J ' μ-*1Λ2

With the notations

(4.144) s(ί) = sinμ(ί + 1), c(t) = cosμ(ί + 1), v = 1/μ,

Φ(ί) and Φj(ί) can be written as follows:

C(ί) V5(ί) \ / C(i) - V5(ί)

(4.145) Φ(ί) =
- μs(t) c(t) \ μs(t) c(ί)

Let the operators Nt: Λ2^/?1 (i=0, 1) and the matrices C} (j = l, 2, 3) be
denned by

(4.146) N,h = ht (i = 1, 2) for Λ = (hlt /ι2)*eR2,

0 0 \ / 1 0 \ / ° ° \
(4.147) C 1 = , C 2 = , C3 =

0 1 / V O O / V 1 O /

Then for y=(x, Z)eϋ1 and v=(A, l/)e ίf[J] we have

(4.148) *2(x) [A, Z] = - 6(xt - t)(C3ZC2, C3ZC3)A,

(4.149) /0(y)Λ = Z(- 1)*C2Λ(- 1) + Z(1)*C2Λ(1)

+ 2α2(3x2(0)2 -

(4.150) Λ(y)t7 = folXMCC/i- 1)]

We choose the operators 7, /0 and / x as follows:

(4.151) 7/1 = X2(x(0)) [Λ, Z(0)], /o =/0(y(°)), / j =/1(>'(0))

For simplicity put

(4.152) m = 10-3, m x = - O.lmv3, a = 2α2(3 - j8), ΛI = 2α2(l - 0),

α2 = μα, a3 = - 0.2vaί9 B^ = Φ(0)*C!, B2 = Φ(1)*C2,

C4 = μC2 4- vC l f C5 = vC2 + μC1? C6 = μC3 - vC?,

* = (!,!)*, W l (0=l4-2c(0, u 2(ί)=l-c(0,
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«3(ί) = 1 - c(ί)3, U4(ί) = μ(ί + 1), w5(f) = 2 + c(f)2,

«6(t) = 2 + s(ί)2, V(t) = μΦ(t)*C2Φ(t),

-vs(ί)3

= VI
/ιs(ί)«5(0 «3(0

- s(ί)3 v{c(/)«6(0 - 2}

μu3(t) 5(ί)3

F4(ί) = 3v{C5F(ί) + M4(ί)C6 - C2} .

Then by (4.145) and (4.151)

(4. 153) G = C2 + vV(ί) + α2(C4 - K(0)) + α3 F3(0) ,

(4.154) S0(ί) - ΦίOG-1, Sjίί) = - O.lvΦίOί^O), ̂

(4.155) S2£t7 = βlS0(0 (° Λf2[*(0)ΦXτ)l/(τ)]*έίτ for C7eM[J],
J-i

(4. 1 56) S3EU= - Φ(t)( ' Φt(τ) {0.6C3Φ(τ) !̂ [S2£17] (τ) + U(τ)}dτ
J-l

for ί/eM[J],

(4.157) H0h = (l H0(l,τ)h(τ)dτ for /ιeC[J],
J-i

where

Φ(ί)(/ - M^τKΦXt), τ < t,
(4.158) tf0(ί, τ) =

[ -

ί Φ(ί)(/ - M2)Φχτ), τ < ί,
(4.159) H0(t, τ) =

[ - Φ(ί)M2Φχτ), τ ^ ί

M,(τ) = G-HflB^(O) + α3(F3(0) - F3(τ))} + M2,

M2 = G-^Φίl).

By (4.142) and (4.151) we have

(4.160) βx<°> = m(0, ί + 1)*, β,y<«) = 0,
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(4.161) /[>«»] = *!(- μs(0), c(0))*, £1Qχ(°)= mv2(M2(ί), MO)*,

(4.162) /2[£iQx(0)] = mvίαsίO)]?! + vw2(l)B2}e

s(0)(l -4c(0))+ 3μc(ϋ)

3s(0) - 2vWl(0)w2(0)

Let b=(bl9 ί?2)*, t3 and b4 be defined by

(4.163) b = G~l(f[yW] - I

(4.164) ί?3 =2(μ2bί/m - 1),

Then we have

(4.165) LjF/0) =(/ι, C7),

where

(4.166) Λ(ί) = Φ(i)b + [£ιβx(0)] (0,

(4.167)

Now let us use the infinity norm || || „ and apply Theorem 5 to our problem.

Then by (4.153)-(4 159) we nave the estimates

(4.168) IISolU ^ 2.50387, ISjL, ̂  2.32728, ||S2£|LC g 0.45284m,

|S,E|.cg 2.85033, ||H0|LC g 3.18136,

Iff, || βe ̂  ||£y|Lc || fίolLc ^ 5.35949.

For any p>0 and <j>0 by (4.143)-(4.151) we may choose

(4.169) μι = 3pδ(pδ + 0.2), μ2 = pμ20 + qμ2ί, μ4 = 6δ(pqδ + O.lq + σ),

where

(4.170) μ20 - 2g<5{l + 3«2p(pδ + 2)(δ + σ,) + α2|3 - Jί|} ,

(4.171) μ2l = 2pί{l + x2(pδ + 2)(δ + 1) + α2|l - /ί|} ,

(4.172) σ = pmax(|c(OI
r«y

By(4.165H4.167)

(4.173) |

where
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(4.174) U/ilU ^ 1.65924m = ηθ9 \\U\\ Λe ^ 0.63151m = η,.

The choice p=l, q = l and <5 = 1.79003m yields

K = 0.073058, λ = η/(l - K) .= 1.79002m = λ(l, 1),

and we have estimates

(4.175) ||* - x^lU ^ A(l, 1), ||2 - Z^IL. ̂  λ(l, 1).

With the choice p= 1, q = qί =2.2603 and (5 = 1.73539m we have

K = 0.043875, λ = 1.73538m = A(l, qι) .

The choice P = PI= 2.6274, # = 1 and δ = 0.76346m yields

K = 0.172819, A = 0.76345m = λ(pί9 1) .

Hence we have error estimates

(4.176) ||* - x^L, ̂  A(l, (h), ||2 - Z^IL. ̂  ACp^ 1).

From (4.175) and (4.176) it is seen that the parameters p and q have been intro-

duced with effect. The same conclusion is valid also when the norms || ||2 and

|| || j are used. The results are listed in Table 2, where ή — ηjm, § = δ/m, κ = 10κ

(p, q)=λ(p, q)/m.

Table 2.

norm

I IU

ii u

Mi

p

1.0000
1.0000
2.6274

1.0000
1.0000
3.0018

1.0000
1.0000
2.5486

q
1.0000
2.2603
.0000

.0000

.8981

.0000

.0000

.6347

.0000

?
1.65924
1.65924
0.63151

1.66331
1.66331
0.55411

1.77546
1.77546
0.69664

ό

1.79003
1.73539
0.76346

1.73074
1.70952
0.61113

1.94034
1.89334
0.86199

K

0.73058
0.43875
1.72819

0.38957
0.27024
0.93303

0.84970
0.62256
1.91816

λ(P><l)

1.79002
1.73538
0.76345

1.73073
1.70951
0.61112

1.94033
1.89333
0.86198
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