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1. Introduction

Consider the boundary value problem

(1.1) = = X(x, 1), a

IIA
IIA
s

(1.2) fIx]1 =0,

where x and X(x, t) are real n-vectors, f is an operator from D< C[J] into R"
which is continuously Fréchet differentiable in D, and C[J] is the space of n-
vector functions continuous on J=[a, b].

In our previous paper [2], replacing (1.1) with an equivalent system of integral
equations, we obtained a posteriori error estimates of continuous approximate
solutions of (1.1), (1.2). In those estimates the fundamental matrix of a linear
homogeneous system of differential equations plays an important role and its
inverse matrix is also required. In many practical applications, however, exact
fundamental matrices and their exact inverses are not available, so that the esti-
mates are not always applicable.

The object of this paper is to give error estimates of approximate solutions
in terms of approximate fundamental matrices and their approxirhatc inverses.
In Section 3 error estimates are obtained in the case where approximate funda-
mental matrices are continuous and also in the case where they are continuously
differentiable. The results are illustrated with a numerical example.

In Section 4 we treat the case where the boundary condition depends on the
fundamental matrices of the first variation equation of (1.1).

2. Notations and preliminaries

Let R" denote a real n-space with any norm || -'|| and let C[J] be the Banach
space of all real n-vector functions x(f) continuous on the interval J=[a, b] with
the norm || x| ,=sup |x(*)|]. For any fixed t,eJ let

teJ

ColV]1 = {xeC[J] | x(t,) =0}.
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Then By,=Cy[J] x R" is a Banach space with the norm
Iyll, = max(flull, llel)  for y = (u, e)€B,.

Let M[J] denote the Banach space of all real n x n matrix functions A(f) con-
tinuous on J with the norm |A4|,=sup | A®)|.

The identity operator and the tli;lit matrix are denoted by the same symbol
I. The sum F+G and the product FG of two operators F and G are defined in
the usual manner.

For two Banach spaces X and Y, we denote by L(X, Y) the set of all bounded
linear operators from X into Y. When the operator F: DcX—Y is Fréchet
differentiable at x € D, we denote by F’'(x) the Fréchet derivative of F at x. A
linear operator K: Y— X is said to be invertible if the equation Ky = x has a unique
solution ye Y for each xe X. By the argument similar to the one used in [1,
p. 50] we can show the following

LemMMmA 1. Let L: X—Y be a linear operator and K: Y- X be an invertible
linear operator. Then L is invertible if

@1 I - LK| <1
or
(2.2) II — KL|| < 1.

Let A=(a,, a,,..., a,)e M[J] and for any Te L(C[J], C[J]) define TA
e M[J] by

TA = (Ta,, Ta,,..., Ta,).
Then we have
(2.3) ITAll, = Tl NAll.»

so that T can be considered to be an element of L(M[J], M[J]).

Let Q' be a domain of the tx-space intercepted by two hyperplanes t=a and
t=>b such that the cross sections R, and R, at t=a and t=>b make an open set in
each hyperplane. Put Q=R,U Q' U R, and let

D={xeC[J] | (t x()eQ forall teJ}.
Let us consider the system of differential equations

dx _
(2~4) —F = X(x, t), ted

with the boundary condition
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(2.5) fIx]1=0,

where x and X(x, t) are n-vectors, X(x, t) is continuous in Q and continuously

differentiable with respect to x in Q, and the operator f: D—R" is continuously

Fréchet differentiable in D. We assume that (2.4) has at least one solution in D.
Let Q: D—»Cy[J] and F: D— B, be the operators defined by

(2.6) Ox = x(t) — x(t,) — g: X(x(s), s)ds for xeD,

2.7 Fx = (Qx, f[x]) for xeD.

Then the boundary value problem (2.4), (2.5) is equivalent to the problem of
finding a solution x € D of the equation

(2.8) Fx =0.

Let X,(x, t) be the Jacobian matrix of X(x, ) with respect to x. Then
F'(x)h (x € D) is given by

(2.9) F'(x)h = (Q'(x)h, f'(x)h) for heC[J],
where
(2.10) Q'(x)h = h(t) — h(t,) — St X ,(x(s), s)h(s)ds.

Let Le L(C[J], B,) be the operator independent of x which approximates F’(x)
and is defined by

(2.11) Lh = (Ph, I[h]) for heCl[J],
where
(2.12) Ph = h(t) — h(ty) — g' A(s)h(s)ds,

AeM[J] and e L(C[J], R").
Let &(¢) be the fundamental matrix of the system

with @(t,)=1 and put
(2.13) G = I[9].

We denote by @,() the inverse matrix of &(¢) and put’
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(2.14) S = oG!

if G is nonsingular.
Let E, E,, S; and H be the elements of L(C[J], C[J]) defined by

(2.15) Eh = S' B(O)B(Hh(s)ds  for heCLJ],

(2.16) E,=1+EA, S;=1-Sl, H=S\E

and let T: D—C[J] and T,: D—L(C[J], C[J]) be the operators such that
(2.17) Tx = X(x(t), 1) — A(D)x(t) for xeD,

(2.18) T,(x)h = {X([x](t) — A(D)}h(®) for xeD, heC[J],
where

(2.19) X, [x] = X.(x(0), 1) for xeD.

In our previous paper [2] we have shown the following results: L has an
inverse operator L, if and only if det G#0. "If G is nonsingular, then

(2.20) L;y = S,Eju + Se for y = (u, e)€B,,
2.21) Kx=K;x = for xeD,

where K and K, are the operators from D into C[J] defined by
(2.22) K =1- L,F,

(2.23) K, =HT+ S(1-f).

THEOREM 1. Let x© € D be an approximate solution of (2.8) and suppose
there exist an operator L, a positive number 6 and nonnegative constants n,
(k<1) such that

(i) detG #0,

(ii) Dy={xeC[J] | [x— x| =é}<D,

(iii) |Kx — Kyl S xlx =yl forall x, yeD,
() L Fx@|, = n,

(v) A=n/1-x) =

Then the sequence {x®} defined by
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(2.24) xktD) = Kx®) (k=0,1,.)
converges to £€ Dy as k— 0. % is the unique solution of (2.8) in D,, and
(2.25) [£ = x®|, =x*2 (k=0, L,...).
REMARK. Let k be a constant satisfying
(2.26) IHlsy + 1Sllepz S 6 <1,
where p, and p, are constants such that
(2.27) 1Ty, £ 1y for all xe Dy,
(2.28) ILf/(x) =1 £ u, for all x e D;.
Then the condition (iii) is satisfied.

In this theorem the matrices @(f) and @,(t) play important roles. But in
practical applications we are often obliged to use the approximate fundamental
matrices. In the next section we study how to modify this theorem in such a
case.

3. Approximate fundamental matrices

Let & and &, be the matrices that approximate ® and &, respectively. For
any operator R=R(®, ®;) depending on & and &, we denote by R the operator
R(®, &,). Put f :

3.1) 1) = B()d(1),
(3.2) 1@ =1-7@1,
(3.3) p=max(b — ty, to — a).

We consider the following two cases for practical applications.
Case 1. &(f) and &(¥) are continuous on J.
Case 2. &(t) and &,(t) are continuously differentiable on J.

3.1. Casel
Put

(3.4) o) = &ty — I — S A(s)®(s)ds,

(3.5) () = &) — I + ﬂ B()A(s)ds,
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(3.6) ra(1) = y1(1) + S(Or,(2).
Let R, R, € L(C[J], C[J]) and R,: D—C[J] be defined by

(37  Rh= rz(t)g' h(s)ds — &(2) S' r(h(s)ds  for heC[J],
to to

(3.8) R,h = ryh(ty) + RAh for heC[J],

3.9) R,x = ryx(ty) + RX[x] for xeD,

where X[x]=X(x(f), t). Then we have the following

LEMMA 2. L, exists and is invertible if

(3.10) detG # 0,
(3.11) IG=H 1 irl.exp(pllAll) < 1,
(3.12) ISRyl < 1.

Proor. By (3.10) L; can be defined.
Let a(t)=®(f)— &(t). Since

&t — I — S: A(s)®(s)ds = 0,
by (3.4) we have
) = r() + {|_A(s)ats)as,
which yields
el < 17l + | TANdalds| .
By Gronwall’s inequality we have
(3.13) 18 — @l < lIrll.exppllAll)
and by (3.11)
IG-11IG = GI < I~ I felle < 1.

Hence det G#0, and L is invertible.
We show next that

(3.14) I - L,L), < 1.
Let
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(3.19) B0 = B0 = 20, a0 = [ )AGs.
Then by (3.5)

(3.16) BO + a0 = (),

because

&1 — I + Si ,(s)A(s)ds = 0.

For any pe C[J] let u(t)=gt p(s)ds. Since &;= — @A, the integration by parts
t
shows that °

(3.17) S: D (HA(s)u(s)ds = — P (Hu(t) + S:c @,(s)p(s)ds,

(3.18) S:oﬁ(S)A(s)u(s)ds = g(tu(t) - g 4(5)p(s)ds.

By (3.15)—(3.18) we have

(3.19) Eau = 5(t){g:o &,(s)A(s)u(s)ds + S:o ﬁ(s)A(s)u(s)ds}
= —u + Ep + Rp.
From this and (3.8) it follows that
(3.20) E,Ph = h — ®h(t,) — R,h for heC[J].
Since by (2.13) and (2.14)
(3.21) S5, =U- &G D& =0,
by (2.20), (3.20) and (3.21) we have
(I — L,L)h = h — §,E,Ph — SI[h] = §,R,h.
Hence (3.14) is valid by (3.12), and L, is invertible by Lemma 1.
LeMMA 3. If det G#0, then
3.22) Rx=R,x + K,x for xeD,
where

(3.23) R,x = §;R,x  for xeD.
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Proor. For any x € D by (2.22), (2.20) and (2.7)
(3.24) Rx=(I-L,F)x =x— §,E,0x — §f[x].
By (3.19) we have
(3.25) EQx = x — ETx — &x(t,) — R,x
and by (3.21)

S.E,Qx = x — Si[x] — ATx — §,R,x.

Substitution of this into (3.24) yields (3.22) by (3.23).

We have the following

THEOREM 2. Let x(© € D be an approximate solution of (2.8) and suppose
there exist an operator E,, a positive number & and nonnegative constants 1,
K, Ky, K5 Such that

(i) L, is invertible;
(i) D;={xeClJ] | lx—x©@| =6} <D;
(ii) k=K, +K, <1,
(3.26) 1oty + 18]kt £ K4,
(3.27) I8:Rllepts + 18172l < x5,

where u,, 1, and u; are constants such that

(3.28) 1Tyl < py for all xeD,,
(3.29) If' () =l Sp,  forall xeD,,
(3.30) 1 X, [Ixll. = us for all xeDy;

(V) L FxO|, < n;
(V) A=n/l-x) =4
Then the conclusion of Theorem 1 is valid with K replaced by K.

Proor. For any x, y € D; by the mean value theorem we have

(3.31) Rx-R,y=H S: T\(y + 6h)hd + ’s‘g: (I = f'(y + 6h)}hde,

1
(3.32) R,x— R,y =R Xoxl[y + OK1hd0 + ryh(to),
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where h=x—y. Since y+6he D;, by (3.31), (3.28), (3.29) and (3.26)
IRyx = Ryylle < (1Bl ety + 1Sp) Mhll < 5yllx = Ylles
and by (3.23), (3.32), (3.30) and (3.27)
1B 2x = Raylle  (ISiRlcks + 181721l ) Bl £ xallx =yl
Hence by (3.22) and (iii)
IRx = Ryl < xlx = yl..

Since k<1, by the contraction mapping theorem [1, pp. 65-66] K has a unique
fixed point £ in D, and the estimate (2.25) holds. From £=K2 it follows that
L,F£=0, which is equivalent to F£=0 by (i). Since any solution of Fx=0 is
a fixed point of K, £ is the unique solution of (2.8) in D,;. This completes the
proof.

Let oy and a, be constants such that
(3.33) pUlirzlclAlle + 18lllirAll) < ao,
(3.34) pUiralle + I18lclrylle) < oy
Then by (3.7) for any he C[J]
IRAh|. £ aollhlls Rl < aqlhl..

Hence (3.12) and (3.27) can be replaced respectively by

(3.35) I8yl + 18720, < 1,
(3.36) I8 llcosps + 1873l S K.
3.2. Case?2
Put
(3.37) A,(t) = OF1),
(3.38) Ay(1) = — S (OB(D).
Let P,, R;, R, e L(C[J], C[J]) and Rs: D—C[J] be defined by
(3.39) Pk = h(t) — h(to) — S A(s)h(s)ds  for heC[J],
(3.40) Rih = E(A — A))h + y,h  for heC[J],

(3.41) R4h = Ry(h — Pyh) — E(A — A))h for hecC[J],
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(3.42) Rsx = R3(x — Qx) for xeD.
Then we have the following

LemMMA 4. Let
(3.43) detG # 0.

Then L, is invertible if

(3.44) pld; —yAl. <1
or
(3.45) ISiR,l. < 1.

Proor. Let L, be the operator defined by
L,h = (P,h, I[h]) for heC[J].

Then it is invertible by (3.43).
For any y=(u, €) € B, by (2.20)

(3.46) Ly = Eu— S{[E,u] — ¢}.

Since P,8=0 and G =I[&], we have

(3.47) P,§ = (P,$)G ! =0,

(3.48) IS]1=1[8]1G =1
Suppose first (3.44) holds. By (3.46) and (3.48)

(3.49) Lyl =e.

By (3.46) and (3.47) the integration by parts yields

P,L,y = PyEu = u(t) — S:,, {4,(5) — Y(s)A(s)}u(s)ds,
because ' =A,® and ue Co[J]. By this and (3.49) we have
(3.50) - Ly = ([ (40 - x946uas, ).

Hence
I — L L)yl < pllA; — vAll Y5

and I, is invertible by (3.44) and Lemma 1.
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We treat next the case where (3.45) is valid. For any ge C[J] let u(t)=
S‘ q(s)ds. Since &;= —&,4,, by integration by parts we have
to

(3.51) Edu = E(A — Au — yu + Eq = — u + Ryu + Eqg,
so that
(3.52) E\P,h = h — 88,(t)h(t,) — R4h for heC[J].

Substitution of u=P,h and e=I[h] into (3.46) yields by (3.52) and (3.21)
(I — L,L)h = §,R4h.
Hence L, is invertible by (3.45) and Lemma 1.
LeMMA 5. IfdetG#0, then

(3.53) Rx=K,x + K,x  for xeD,
where
(3.54) R,x =8,Rsx  for xeD.

Proor. For any x e D by (3.51) we have
(3.55) E,Q0x = x — ETx — &&,(t))x(t,) — Rsx.
By (2.20) and (3.21)
L,Fx = §,E,Qx + Sf[x]
=x — ATx — 8(I[x] — f[x]) — S,Rsx,
from which (3.53) follows.
We have the following

THEOREM 3. Suppose the assumptions of Theorem 2 are satisfied with
(3.27) replaced by

(3.56) ISRl (1 + pus) < k.
Then the conclusion of Theorem 2 is valid.

Proor. For any x, ye Dy let h=x—y. Then by the mean value theorem
(3.57) Rsx — Rsy = R, S: {I — Q'(y + Oh)}hd.

Since y+60h € D,, we have by (3.30)
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I = Q0 + om3hl, = [tto) = * XuLy + OM (Dhis)ds|
<+ pu)lhle  forall 0e[0, 1],
and by (3.54), (3.57) and (3.56)
IR2x — Roylle < I51Rs) (1 + pus) bl < Kzllx = yll..
The proof is completed by the same argument as in the proof of Theorem 2.

Suppose |ly;ll.<1 and let 6=1/(1—]y,ll.). Then since |y~ !|,<o we have
the following inequalities:

(3.58) 14, — v4ll, < ol|&'3; — 4yl
(3.59) I4— Ayl £ olldy — &,
(3.60) 14 — 4, < olyA + 81|,
(3.61) 44l < ol 3'E,]..

For any constant a, such that

(3.62) 1HlNA = Azl + I8 elclpille < o
we have

ISiR3hl < azllhll.  for heC[J],

so that
(3.63) I81R]l. < (1 + pllA4ll) + 1HINA = A4l
(3.64) ISiR3I(L + pus) < ay(1 + pps).

Hence by (3.58)-(3.61), we can estimate the left sides of (3.44), (3.45) and (3.56)
without computing #~* and &7!.

3.3. Treatment in the original form

In this subsection we treat the boundary value problem (2.4), (2.5) directly
without replacing (2.4) by a system of integral equations.

Let C![J] denote the space of all real n-vector functions continuously differ-
entiable on J with the norm | - ||, and let

D'={xeCl[J] | (¢ x(1)eQ for all teJ}.
Let B=C[J] x R" be a Banach space with the norm

Iyly = max(flull., lel)  for y = (u, e)eB.



On a posteriori Error Estimation in the Numerical Solution 213
Let us consider the equation

(3.65) Fx = <c¢il_)tc - X(x, 1), f[x]>= 0 for xeD!?

and introduce the linear operator .# defined by
(3.66) 2h= (2%~ A, l[h]> for heCl[J].
The following results have been obtained in [4]: If det G#0, then & has
an inverse operator ¥, which is defined by
(3.67) #,;y = Hu + Se for y = (u, e)eB.

Let o¢" and >¢", be the operators from D! into C![J] defined by

(3.68) Hx=(—- &L F)x for xeD!,
(3.69) H i x=LUL — F)x for xeD!.
Then

(3.70) Xx=H,x=Kx for xeD!.

Suppose & and &, are continuously differentiable on J and let K, be the
operator defined by ‘

(3.71) K,x = {H(4A — A)) + S;y,}x  for xeD
Then we have the following

THEOREM 4. Let x©@ eD! be an approximate solution of (3.65) and
suppose there exist an operator .S,;,, a positivé number & and nonnegative con-
stants n, k such that

(i) detG #0, |y, ). <1;
(ii) Dj={xeC'[J] | IIx—x9|, =} <D
(i) A llpy + 1Sleuz + 1R, S 6 < 1,
where 1, and u, are constants such that
1T = 1y for all xeDj,
If'G) = Ul Spup  forall xeDj;
(i) L FxO| < n;
(v) A=n/l —Kx)=9.
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Then the conclusion of Theorem 1 is valid with K and Dy replaced by 5 and D}
respectively.

ProoF. Let &, be the operator from C![J] into B defined by
- (ah 1
Lh = v A,(Oh, I[h] for heC[J].
Then by (i) .2, is invertible.
For any y=(u, €) € B we have by (3.67)
(3.72) z=%,y =0 - SDEu + Se = Eu — 8G-'(I[Eu] — )
and by (3.37)

(3.73) %f— = Al(t)ds(t)g:o B (s)u(s)ds + B)B(Hu(t)

— A, (0BG (I[Eu] — ¢)

= A,z + yu.
Since G=I[#], from (3.72) it follows that
(3.74) I[z] = I[Eu] — I[$)G(I[Eu] — ¢) = e.
By (3.73) and (3.74) we have
I - 2,2y =(,0),

so that

I — 2,2yl < 171l yll,.

Hence #, is invertible by (i) and Lemma 1.
For any x € D! by (3.69) and (3.67) we have

(3.75) A x=L(L — F)x=HTx + 3U[x] - f[x]) = R,x
and by (3.38)

E {% - A(t)h} = yh — E(A — A)h — B,(to)h(1y).
Hence by (3.21)
(3.76) (I - 2,2)x = {HA - 4,) + (I — Shy}x = K,x

and by (3.68), (3.75) and (3.76)
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Hx=PL(L - F)x+ (- 2,L)x=Rx + Rpx.
For any x, y € D} by (3.31) and (iii) we have
1o x = L ylle £ (UH ey + 1Slapz + 1R} 1% = ylle
2 «xlx =yl

The proof is completed by the same argument as in the proof of Theorem 2.

3.4. A numerical example

We consider the two-point boundary value problem [3]

d X2
(3.77) —x=X(x,t)E( > (-15t2),
dt —x, —(x; — 13+t +0.1
x,(—1) + 09
(3.78) fIx] = ( ) =
x,(1) = 1.1
Let
(3.79) X0 =t+0.1, xP0 =1

be an approximate solution of this problem, to=—1,

01
(3.80) A(f) = ( )
-1 0

and [ be the operator defined by

10 00
(3.81) l[h]=<0 0)}:(-1)+<1 )h(l) for heC[J].

0
Then
/ 0 0
(3.82) X (x,t) — A(t) = ( >,
-3x;—1* 0
(3.83) f'x)=1

For simplicity we put
() =cos(l + 1), s(t)=sin(l+1), u()=cos(l—1),

o) =sin(1 =9, p(H) =2s(c®), q(H) =1-2s(1)?
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m=10"3, o=( —0¢)fs, s=sin2, c¢=cos2.
For any constant ¢ (Jg]<1) let u=1+¢, v=1—¢,
N ( pe()  ps(t) > ( oty — vs(t) >
(3.84) (1) = R B(1) = .
— us(t)  ve(r) s  pe(®)
Then by (3.81) and (3.84) we have

10 _ po(®)  ps(®)
(3.85) G = p( ) S(t) = (us)“( >
c S

—CH) ve(d)
(3.86) Ah= Silﬁ(t, Oh(dt  for heC[J],
where
N ( uu(t)e(t) — wv(t)s(t) )
H(t, 7) =51 (-11<tg)),
— C(t)c(7) vC(t)s(7)

A, o B ( us(t)u(z) uS(t)D(r)>
,I)=—3§

(-1stst=1),
ve(tu(r)  ve()D(7)
C(t) =u(t) —ecos(3+ 1), D(t) =uv(r) + esin(3 + 1).

Hence
_ ( uil — e(t) - os(0)} >
(3.87) L Fx® =m
v{s(t) — oe(O} + &{(1 + Dg(®) + 2s(t) — p(n)}
< as(t) + Be(t) + eup(t) + u(l — eq()) (¢ + 0.099) >

vae(t)/u — Bs(t) + uv

(3.88) R,x© =

N ( p{l — ve(t) — 045(2) — eq(2)} >
(3.89) L FXxO =m ,
v{us() — o,¢(}

where
o = mo + &{&(0.901¢ + 1.099)/s — 2u(1.099s + )},
B=m— 09012, o6, =0 + co(l + 2c).
We have
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-1 —up(t)
(3.90) 7.1(0) =¢ ,
() €
< 1 2s(1) > ( o) —1 s(f) )
(3.91) Ht) =¢ , rn=¢ ,
0 1 —2c() —s(t) o
( pgt) —c()—1 0 )
(3.92) r(f) =¢ ,
us(t) q(0)
o ( —up(®)  uq(d) )
(3.93) vA + B =¢ ,
e—q(t) — p(1)
pu(l + pp(t) pie + q(t) + eup(t)*}
(3.94) &P, —yAy=-¢ .
1 — eu — q(t) — ep(t)? p(1 + p)p(t)

Let us put e=1073 and use the infinity norm | -|,. Then

1A o < 2max |H(t, )], < 3.11104,
t,seJ

|LFx©| .. < n=155712m.
By (3.82) and (3.83) we may choose
Py =30+0132% u,=0, uz=1+ pu,.
In the remainder of this subsection we omit the subscript co for simplicity.

(i) The case where Theorem 2 is applied.

We have

G-l <1.55586, |r|. < 3.0m, |r.<2.32544m, |r,|. < 2.12613m
18,72l < 2.81522m, |I§,|, < 3.1995, |&||, < 1.41563,

G212 7l exp (211 A]l) < 0.0689,

2180 lralle + 1Blclrille) + 1872l < 0.0375,

so that L, is invertible by Lemma 2.
The choice 6=1.8008m yields

Kk =0.13528, 1 =n/(l — k) = 1.80074m = 1,

and an error estimate. | —x(®| <A, is obtained..
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(i) The case where Theorem 3 is applied.
We have
(3.95) lyill. < 2.001m, ||&'®, — pAy|, < 3.23516m.

Hence by (3.58) and Lemma 4 L, is invertible. The constant «, is determined
with the aid of (3.60) and (3.64). With the choice § =1.79m we have

Kk =0.12982, 1 =1.78942m = A,.

Now we consider two cases where Theorem 1 is applied incorrectly with &
and &, regarded as ® and &, respectively.

(ili) The case where Theorem 1 is applied with K regarded as K.
The choice 6 =1.724m yields

k = 0.096576, A = 1.7235Tm = A,.
In this case K, is neglected, so that 1, is not necessarily a bound of ||£—x©@]..

(iv) The case where Theorem 1 is applied with K, regarded as K.
We have

K x©@ — x| < n, = 1.07349m,
and the choice n=n, and d=1.187m leads to
k = 0.09556, A= 1.18691m = 1,.

It is to be noted that A, is a bound of | § —x(©||, and is not always that of |£—
x©@|_, where § is the limit of the sequence y® defined by y*+D=FK,y®
(k=0, 1,...) with y(© =x©_ Hence the use of the iteration

x*+D) = K x®) (k=0,1,...)
is not recommended, though (2.21) is valid.

(v) The case where Theorem 1 is applied with ¢=0.
In this case & and &, are identical with & and ®, respectively. We have

|H| . < 3.11056, |L,Fx©@|,<n, = 1.55741m
and the choice n=n, and d=1.7239m yields
k = 0.096561, A = 1.72387m = As.

(vi) The case where Theorem 4 is applied.
Since det G=us#0, by (3.95) the condition (i) of Theorem 4 is satisfied and
&, is invertible. From (3.62) and (3.71) it follows that IK,ll.<e,. We have
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|21 FxO|, < ny = 1.55687m, o, = 10.81511m
and the choice n=1, and §=1.745m leads to
k = 0107432, A= 1.744m = Aq.

It seems that A,, 4, and A4 are not so greater than A5. Itis to be noted that
A, differs slightly from A5 but 1, does much. It is seen that A, >1,>A¢>As.
The same conclusions are valid also when the norms |- |, and |-||,; are used.
The results are listed in Table 1, where f=n/m, § =6/m, & =10k and 1=A/m.

Table 1.
norm N i i i iv v vi
7 155712 | 1.55712 | 1.55712 | 1.07349 | 1.55741 | 1.55687
il § 1.80080 | 1.79000 | 1.72400 | 1.18700 | 1.72400 | 1.74500
C 1.35286 | 1.29820 | 0.96577 | 0.95560 | 0.96562 | 1.07432
i 1.80073 | 1.78942 | 1.72358 | 1.18691 | 1.72387 | 1.74426
7 155712 | 155712 | 155712 | 1.25924 | 1.55741 | 1.55687
Il 5 1.72700 | 1.71300 | 1.67200 | 1.35100 | 1.67200 | 1.68500
C 0.97929 | 0.90973 | 0.68295 | 0.67864 | 0.68209 | 0.75700
i 172616 | 1.71295 | 1.67126 | 1.35092 | 1.67142 | 1.68437
7 L61719 | 1.61719 | 161719 | 1.77919 | 1.61745 | 1.61704
Il F 1.91010 | 1.87200 | 1.79100 | 1.97100 | 1.79100 | 1.81600
7 1.53316 | 1.35658 | 0.96806 | 0.97149 | 0.96689 | 1.09490
Z 191002 | 1.87101 | 179052 | 1.97063 | 1.79058 | 1.81586

4. A special boundary value problem
4.1. Problems and notations
Let W[J]=C[J]x M[J] be a Banach space with the norm
”v”w = maX(P_l"Uo”c, q_lnvlllc) fOI‘ v = (003 Ul)e W[J] ]

where p and g are arbitrary positive constants. Let B,=C,[J]x M[J]x R"
be a Banach space with the norm

lolls = max(luoll., llulle, llel) — for @ = (uo, uy, €) € Bo.

We assume that X(x, t) is continuous in Q and twice continuously differ-
entiable with respect to x in Q, and denote by X,,(x, t) the second Fréchet deriva-
tive of X(x, f) with respect to x. For any xe D let ®,(t) be the fundamental
matrix of the system »
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dz _
(4’1) 717 = Xx(x(t), t)Z
with @,,(to)=1, and put D!=D x U, where U={®,,e M[J] | xeD}.
Let us consider the boundary value problem (2.4) and

(4~2) f[y] =0 for y= (xa Q(x))s

where the operator f: D!—R" is continuously Fréchet differentiable in D!. For
example, this problem arises from boundary value problems of the least squares
type [2].

In the sequel the C[J]- and M[J]-components of any element of W[J] are
represented with subscripts 0 and 1 respectively, so that x=(xg, x).

Let F: D'— B, be defined by

4.3) Fx = (Qxq, 0%, f[x]) for xeD!,
where
(4.4) 0x=x,0 - 1 = X,[x1Ox)ds,

Qx, and X,[x,] are given by (2.6) and (2.19) respectively. Then the problem
(2.4), (4.2) is equivalent to that of finding a solution x € D! of the equation

4.5) Fx = 0.

Let £ € D! be the exact solution of (4.5), and x(® e D! be an approximate

solution. Then our object is to estimate the error of x{’ and that of x{°.

We denote by A(p, q) an error bound of x(© such that |[£—x©@|,ZA(p, 9).
Since

£ = x©@, = max(p~![ % — x{ll g% — xI71.),
we have estimates
%0 — xl. £ A4, q), 1%, — x| = Mp, 1).

The parameters p and g are introduced so as to make the bounds A(l, q) and
A(p, 1) small.
Let

V= (vy, 03,..., v,) € M[J], heC[J].
For a bilinear operator N from C[J] into C[J] we define N[h, V] by

N[h’ V] = (N[h3 Ui]9 N[h’ Uz],..., N[ha l),.]).
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For Y,e L(C[J], C[J]) (i=1, 2,...,n) let YeL(C[J], M[J]) be the operator
defined by

Yh = (Y,h, Y;h,..., Y,h)
and let
YV =V, Y, V,.., Y, V).
For x € D! the Fréchet derivative F'(x) is defined by
(4.6) F'(x)h = (Q'(xg)ho, Q1(x)h, f'(x)h) for heWw[J],
where Q'(x,)h, is given by (2.10),

@D g@h=h={ X,lx] @nis)ds = | Xalxo) lho, .1 s,

(4.8)  f'(Dh = fo(x)ho + f1(x)h,
(4.9)  X5(x0) [hos x1] = Xx(x0(8), 1) [ho(8), x,(D)],

fo and f, are partial Fréchet derivatives of f with respect to x, and x; respec-
tively.
Let T,: D'-L(C[J], M[J]) be the operator such that

(4.10) T,(x)h = X ,(xo)[h, x,1 — Yh for xeD', heC[J].

Let Le L(W[J], B,) be the operator independent of x which approximates F'(x)
and is defined by

(4.11) Lh = (Phy, Py, I[k])  for heW[J],

where Ph, is given by (2.12),
(4.12) Pk = hy(t) - S' A(s)h,(s)ds — S' [Yhol(s)ds,
to to

(4.13) ILh] = loLho] + 14[h4],

Ye L(C[J], M[J]), I, € L(C[J], R") and I, e L(M[J], R").
Let I, € L(C[J], R*) be defined by ‘

(4.14) l=1+LEY
and put

(4.15) G = 1,[#].
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When det G#0, we define the operators S; (j=0, 1,..., 5), Hy, and H, by the fol-
lowing formulas:

(4.16) Sy =®G"!, S, =EYSy, S,=Sol, Ss=8, —I,
S4 =] - Solz, S5 = EYS4, Ho = S4E, Hl = SsE.

In 4.2 an analogue of Theorem 1 is given for x(® and in 4.3 the error of
x( js estimated in terms of the approximate matrices of @ and ;.

4.2. Exact fundamental matrices

We have the following
LBMMA 6. L has an inverse operator L, if and only if
4.17) detG # 0.

Suppose (4.17) is satisfied. Then for any ¢ =(uy, u,, €) € B,

(4.18) Ll(p = h’
where
(4.19) h; = S,+4E1u0 - S1+2E1u1 + S‘e (1 = 0, 1).

ProoFr. By (4.11) the equation Lh=¢ is equivalent to the system

(4.20) Pho = u,,
(4.21) Ph=u,
(4.22) lo[ho] + ll[hl] =e.

The general solution of (4.20) is given by
(4.23) ho = &c + E u,
with an arbitrary ce R*. The solution of (4.21) is
hy = E;u; + EYh,,
and substitution of (4.23) into this yields
(4.24) h, = Eyu, + EYE u, + EY®c.
By (4.15), (4.23) and (4.24) from (4.22) it follows that

12[E1u0] + ll[Elul] + GC = ée.
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Hence L; exists and is unique if and only if ¢ is determined uniquely for ¢ € B,
that is, det G#0.
If (4.17) holds, then

¢ = G e — L,[Eyuo] — L[Eu,l}.
Substituting this into (4.23) and (4.24) we have (4.18) and the proof is complete.

Let K and K, be the operators from D! into W[J] defined by

(4.25) K=1-L,F,
(4.26) Kix=y for xeD!,
where

(4.27) Vi = HTxq — S;4,E{Ti(x0)x1 — Yxo} + Si(I[x] — f[x]) — S;,®
(l = 0’ 1)’

T and Ty(x,) are given by (2.17) and (2.18) respectively. The integration by
parts yields

E,Qxo = xo — ETxq — Pxo(to),
E,Q,x =x; — ET\(x¢)x; — @ for xeD!.
Since S;,,9=0 (i=0, 1), by (4.3) and (4.19) we have
(4.28) Kx = K x for xeD?.
We have the following analogue of Theorem 1.

THEOREM 5. Let x© € D! be an approximate solution of (4.5) and suppose
there exist an operator L, a positive number  and nonnegative constants 1, k
such that

(i) detG # 0;

(i) D} ={xeWlJ] | Ix—x@|, =6} =D

(iii) x = max(p~lky, g7 'Kky) < 1,
where ko and x, are constants satisfying
(4.29)  plHllpy + ISilleitz + 1Si42El(quy + pra) S %, (=0, 1),
and p,, U, and p, are constants such that

(4.30) ITi(xo)lle = g for all xeDj,
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(4.31) If'G) = Ul Sp,  forall xeDj,
(4.32) 1Tl = pa for all x e Dj;
(V) L Fx@f,, = n;
(v) A=n/(l —x) 4.
Then the sequence {x®} defined by
(4.33) XD = Kx(k) (k=0,1,..)

remains in D} and converges to £€ D} as k—»oo. X is the unique solution of
(4.5) in D}, and

(4.34) [£ — x®|, < kA (k=0,1,..).

ProofF. For any x, ye D} let h=y—x. Then by the mean value theorem

4.35) Ty, — Txo = S; Ty(xo + Oho)hod,
1
(4.36) Ti(yo)y1 — Ti(x0)xy = Ty(yo)hy + So X (xo + Oho) [ho, x,1d6

1
= T,y + | T(x(O)hod8 + Y,

where x(0)=(xo+6hy, x;). Since x()e D} (0<6<1), we have by (4.30) and
(4.32)

(4.37) ITyo — Txoll. < #1llyo — Xolle = puslly — xlw»
(4.38) 1Ty (yo)y: — Ti(x0)xy — Yhol. = uillyy — x4l + pallyo — Xoll.

= (quy + pud lly — %l
and also by (4.31)

@39 D= X1 SO+ S0 = [ 0- 7+ omyhao |
= p2lly = Xl
Let u=Ky—Kx. Then by (4.28) and (4.26)
wy = H{Tyo = Txg) + S(Ly = x1 = fI¥] + fIxD)
— Si+2E{Ti(yo)y; — Ti(x0)%y — Yyo + Yxo} (i=0,1),
so that by (4.37)—(4.39) and (4.29)
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luille = {PIHillcts + [Sillcitz + 1Si+2Ell(qps + pua)} ly — Xl
swlly—xl, (@(=0,1).
Hence by (iii) we have
IKy — Kx[l,, = max(p~*|luolle, g~ llusll,)
< max(p~'ko, 7 'ky) |y — xllw S x|y — x[l,.
The proof is completed by the same argument as in the proof of Theorem 2.

4.3. Approximate fundamental matrices

In this subsection error bounds of x(® are given in terms of the approximate
matrices & and &,.

43.1. Casel
Let Rge L(W[J], M[J]) and R,: D'—M[J] be defined by

(4.40) Rgh = RAh, + RYh, for hew[J],
(4.41) R,x =r, + RX[x0]x; for xeD!,

where r, and R are given by (3.6) and (3.7) respectively. Then we have the
following

LeMMA 7. L, exists and is invertible if

(4.42) detG # 0,
(4.43) 1G=HH{BLILN + pB2lL I Y 1By + 181} < 1,
(4.44) max (p~ vy, g7 1vy) < 1,

where B,, B2, vo and v, are constants such that
(4.45) B=exp(plAl), By =Irlp, B2=(B1+ IBl.lriloB,
(4.46) PISivaRylle + ISi2Rel. S v (i=0,1),
and R, is given by (3.8).

Proor. We show first that
(4.47) I1G-1]IG - G| < 1.

Let (1, s)=&(t)&,(s)— D(H)P(s). Then by (3.13)
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T, 91 S 180) ~ 201 + 180n© + || 0 D4@ds]|

< B+ 181+ 141Llot, Dld],
because
20)(0,9) 1+ || oA =0,
0 (845~ 1+ || BiDA@} = B0,

Gronwall’s inequality yields

lott, I < By + I181clrillIB = B2

Since
(E — E)h = S: o(t, h(s)ds  for heC[J],

we have

(4.48) IE — Ell. < pB,.

By (4.15)

G—G=1,[8 -]+ LIEY® — EYD]
= 1,[& - @] + LI(E - E)Y®],
and so by (3.13) and (4.48)

IG — GIl < L1181 + 11 lpBN Y I(By + B0

Hence by (4.43) we have (4.47), which implies det G#0, and L is invertible by
Lemma 6.
We show next that

(4.49) \I - L,L|, <1.
By (3.19) and (4.40) we have
(4.50) E\P.h=h, — EYhy — R¢h  for heW[J].
Since §,,,8=0 (i=0, 1) and
Siiaho — Siio(hy — EYhg) = b, — Sj[k] (i=0,1),
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by (4.18), (3.20) and (4.50)
(I - L,L)h = u,

where

u; =8, 4Ryho — S, ,Rsh  (i=0,1).
By (4.46) we have

ludle < {PISi+aR1lle + 18i42R6lc} Ikl S ikl (G =0,1),

and it follows that

I = L;L)h],, = max (p~!uolle g~ l1uyllc)

< max(p~1vg, 7 1vy) | Al

Hence (4.49) is valid by (4.44), and L, is invertible by Lemma 1. This com-
pletes the proof.

Let a5 and «, be constants such that
(4.51) (r2lle + oo S @3, qog + poy | Y|, < g,

where a, and «, are given by (3.33) and (3.34) respectively. Then by (3.8) and
(4.40)

IRille £ a3, [IRglle < a4
Hence (4.46) can be replaced by
(4.52) PISivallcas + 1Si2llas v (1=0,1).

Lemma 8. If det G#0, then

(4.53) Rx =RK,x + K,x  for xeDi,
where

(4.54) R,x =u,

(4.55) u; = 811 4RoXo — 84 5Rox i=0,1)

and R, is the operator given by (3.9).
PrOOF. By (4.25), (4.18) and (4.3) we have Kx = y, where

(4.56)  yi=x,— 8.1 4E0x0 + 8;42E,Q,x — S, f[x] i=0,1).
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By (3.19) and (4.41)
(4.57) E Q,x = x; — ET,(x9)x; — ® — R,x.
Substitution of (3.25) and (4.57) into (4.56) yields
(4.58) yi = B;Txy — 8;1 2 E{Ty(x0)x; — Yxo} + S}(I[x] — f[x])
~ 8,28+ 8, 4R,xg—8i.,Rx (i=0,1),

because S;, ,#=0 (i=0, 1) and
(4.59) X;— 8;pa%0 + Siiox, =Sil[x]1+ 8, ,EYx, (i=0,1).
Hence (4.53) follows from (4.58) by (4.26) and (4.54).

Now we prove the following

THEOREM 6. Let x© € D! be an approximate solution of (4.5) and suppose
there exist an operator L,, a positive number 8 and nonnegative constants 1, k,
k; (j=0, 1, 2, 3) such that

(i) L, is invertible;
(ii) Dj={xeW[J] | [x—=x[, s} <D
(i) x = max(p~i(xo + K3), g1y + K3)) < 1,
(4.60)  plHillcny + I1Silcpz + 18,42E) gy + pra) <%, (i=0,1),

(4.61)  plSi+ 4Rl ps + ||§i+2R||c(11#3 + pus) + plSiaralle S Kiva

i=0,1),
where p; (j=1, 2, 3, 4, 5) are constants such that
(4.62) ITy(xo)lle = 1y for all xeDj,
(4.63) If'(x) = Ul Sp,  forall xeDj,
(4.64) IXi[xollc = ps  forall xeDj,
(4.65) Tl = pa for all xeDj,
(4.66) 1X2(x0)[+» x41lle S us  for all xeDj;

() ILFx@|, <n;

(v) A=n/0l-x)=s0.
Then the conclusion of Theorem 5 is valid with K replaced by K.
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Proor. For any x, y e D} let
h=y-x, u=RK,y—-RK,;x, v=RK,y— K,x.

Then by (4.26), (4.37), (4.38), (4.39) and (4.60)
(4.67) luwlle = willy — xl,  (E=0,1).

By (4.64), (4.66) and the mean value theorem we have
(4.68) I X1[yolys — Xy[xolx4ll,

= 1X,TyoThy + . Xa(o + Oho) Lho, x,1d01,
< wallhylle + psllholle = (qus + pus) Iy — xlly,
which yields by (4.41)
(469  |ISiR;y — SiRx|l. < ISR (qus + pus)ly = xlw (=2, 3).
Similarly by (3.32) and (4.64)
(4.70)  [I8;R20 — S;Roxolle < {IS;Rlletts + 1520} 1yo = Xolls (G =4, 5).
By (4.54), (4.69), (4.70) and (4.61) we have
@71 ol < {PISi+aRllpts + 151+ 2RI (aps + pus) + pUSisaralc} Iy — xll
S K2y —xl, (E=0,1).
Let z=Ky—Kx. Then by (4.53), (4.67) and (4.71)
lzille = lui + ville = (i + Kiv2) ly — %[, (E=0,1),
so that by (iii)
IRy — Rxll,, = max(p~* | zolles 411241l
S max(p~'(xo + K3), ¢ (ks + K Iy — x|y, S ]y — X

The proof is completed by the same argument as in the proof of Theorem 2.

4.3.2. Case2

Let P,, Rge L(W[J], M[J]) and Ry: D'—C[J] be defined by

(4.72)  P3h = hy(f) — g A()hy(s)ds — S' [Yhol(s)ds for heW[J],

(4.73) Rgh = Ry(hy — P3h) — E(A — A)Dh, for heW[J],
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(4.74)  Rox = Ry(x; — Q;x) + &(,(to)) — )  for xeD!,

where the matrix A4, is given by (3.37) and the operator R; is given by (3.40).
Then we have the following

LEMMA 9. Let
(4.75) detG # 0.
Then L, is invertible if one of the following two conditions is satisfied:
(4.76) v=p{ll4; — 74l + Iy Y0} <1,
4.77) max (p~lvg, g7 vy) < 1,
where @, v, and v, are constants such that
(4.78) ISLE N, + 15:E0. + 180l S o,
4.79) PISisaRallc + IS4 2Rellc S v (=0, 1),
and R, is the operator given by (3.41).

Proor. Let L, be the operator defined by
(4.80) L.h = (P3hg, P3h, I[h]) for heW[J],

where P, is given by (3.39). Then it can be shown that L, is invertible by the

same argument as in the proof of Lemma 6.
Suppose (4.76) holds. For any ¢ =(uq, uy, )€ B, let h=L,0. Then by
(4.18).

(4.81) hi =81 4Equo — 8ii2Equy + See i=01),

and in the same manner as for (3.50) we have

(4.82) d = LiL)e = (v, v;, 0),
where
(489 0o = | {4105) = HDASuo(s)ds,

@89 0,0 ={' (40— 1A )ds + [ 1O [Thol (01

By (4.81), (4.78)
(4.85) Iholle £ (ISLE . + 18:E 1l + 16l l@lls £ oll@ls
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and by (4.83), (4.84), (4.85) and (4.76) we have
lvolle = pll Ay — vAllclluolle = viiels
lvglle = pllAy — vAllcluglle + plviYlclholle = viiels
so that by (4.82)

IT = LiLpell, = max(lvell., 1011l < viells.

Hence L, is invertible by (4.76) and Lemma 1.
We treat next the case where (4.77) is valid. By (3.51) we have

(4.86) E\Pyv, = vy — 551(‘0)”0(’0)‘— R4,
(4.87) E.P;v=v, — EYvo, — Rgp  for ve W[J].

Substituting ug=P,v,, u; =P;v and e=I[v] into (4.81) and making use of (4.86)
and (4.87), we obtain

(I — LLy)v = (wo, wy),
where
w; = 8,4 4R4vo — 8,4 ,Rgv (i=0,1).
Since by (4.79)
X = LyLy)oll,, = max (p~iwoll, g~ Iw4ll) < max(p~tvo, 47v) ol
L, is invertible by (4.77) and Lemma 1.

LemMmA 10. If detG#£0, then the conclusion of Lemma 8 is valid with
(4.55) replaced by

(4.88) u; = ;1 4RsXo — Si12Rox =01,
where R is the operator given by (3.42).
Proor. By (3.51) we have
(4.89) E,Q,x =x, — ETy(xo)x, — & — Rox  for xeD.

Substitution of (3.55) and (4.89) into (4.56) completes the proof by the same
argument as in the proof of Lemma 8.

THEOREM 7. Suppose the assumptions of Theorem 6 are satisfied with
(4.61) replaced by

(4.90)  plIS;s 4Rl (1 + pps) + I1Sis 2R3l p(qus + pps) S ki s @i=0,1).
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Then the conclusion of Theorem 6 is valid.
Proor. For any x, y e D} we have by (3.57)

4.91)  |SiRsyo — SiRsxoll. < ISiRs (1 + pus) 1yo — Xoll. (i=4,5)
and by (4.74) and (4.68)
4.92)  I5;Roy — S;Roxllc < IS;Rsllp(aps + pus)ly = xlw (=2, 3).
Let v=K,y—K,x. Then by (4.91), (4.92) and (4.90) it follows that
(4.93)  |oille £ {PI8isaRsl(1 + pus) + 1854 2R )p(qus + pus)} 1y — xlw

S Kialy —xlw  (G=0,1).
The proof is completed by the same argument as in the proof of Theorem 6.

Let g4, 0, and o, be constants such that
1ville £ 00, A=Ayl S0y, 4— Al S 03

and let a; (j=0, 1, 2, 3) be constants satisfying

“§i+4R3“c = "ﬁi“caz + “§z+4“c°'o So (i=0,1),

"ijsuc = ||§jE"c°'2 + ||§j"cao S a (i=273).
Then (4.79) and (4.90) can be replaced respectively by
(4.94)  poy + oy 4l Asllc + Py 2pl Yl + o4 (PIH; + qllSi42Ell) S i

i=0,1),
(4.95)  po; + Xiyaks + PU42PUs S Kyt (i=0,1),
where
%+ = P(PY + G4 2) (i=0,1).

Hence by (3.58)—(3.61) we can estimate the left sides of (4.76) and (4.90) without
computing ! and &7!.

4.3.3. Treatment in the original form

In this subsection we treat the boundary value problem (2.4), (4.2) directly
without replacing (2.4) and (4.1) by systems of integral equations.

Let C[J] be the space of all real n-vector functions continuously differ-
entiable on J with the norm || - ||, and denote by M'[J] the space of all real nxn
matrix functions continuously differentiable on J. Let Wi[J]=C![J]x M![J]
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be the space with the norm | -|,, and put D?=D'n W![J]. Let B=C[J] X
M[J] x R* x M™ be a Banach space with the norm

lolly = max(luolles lluslles lleoll, lles)  for @ = (uo, uy, o, 1) €B,

where M"=L(R", R"™).
We consider the equation

(4.96) Fx=0 for xeD?,

where the operator & : D?— B is defined by

(4.97) Fx = (a;:o — X(xo, 1), f{:Tl — Xi[xolxs fIx1, x,(0) —I>

for xeD?2
Let #: W1[J]— B be the linear operator defined by

dh,
dt

dh,

(4.98) Lh = a

— Ao, T — Ak — Yo, ITA], By (20))

for heW!I[J].
Then we have the following analogue of Lemma 6.

LeMMA 11. % has an inverse operator %, if and only if
(4.99) detG # 0.

Suppose (4.99) is satisfied. Then for any @ =(uq, U, €y, ;) €B

(4.100) £ =h,
where
(4.101) h; = Hug — Sii2Eu; + Sieg — S;,Pe;, (i =0, 1).

Proor. By (4.98) the equation £h=¢ is equivalent to the system

(4.102) %@ — A(hy = uo,
(4.103) “Z‘tl — A(D)hy = u, + Yho,
(4.104) lo[ho] + 1[hy] = e,

(4.105) hi(to) = ey.
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The general solution of (4.102) is given by
(4.106) ho = &c + Eu,

with an arbitrary ce R". The solution of the initial value problem (4.103),
(4.105) is

(4.107) h, = ®e, + Eu; + EYh,

and substitution of (4.106) into (4.107) yields

(4.108) h, = ®e, + Eu; + EYEu, + EY®c.

By (4.15), (4.106) and (4.108) it follows from (4.104) that

(4.109) I,[Euo] + I,[Eu,] + 1,[®P]e, + Gc = eq.

The proof is completed by the same argument as in the proof of Lemma 6.
Let o and ", be the operators from D? into W1[J] defined by

(4.110) HAx=(1A—- L F)x for xeD?,

(4.111) Hyx=ZL(L — F)x for xeD?2.

Suppose & and &, are continuously differentiable on J and let the operator
K, be defined by

(4.112) R,h=u  for heWi[J],
where
(4.113) ;= H(A — A)ho — 814 ,E(A — ADhy + Sivay1ho
— Sisavih — 82 ®(B(t) — Dhy(t))  (i=0,1).
Now we show the following
LEMMA 12. ., is invertible if
(4.114) detG # 0,
(4.115) v =max(lylc + I, ¥llo, I = S(to)) < 1,
where o is a constant such that
(4.116) 1Hollc + 15:Elc + 1Sollc + 15,8 < 0.

Proor. Let L, be the operator defined by
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dh,
at

dh, _

- Alho, '—dt—

4.117)  Lih= ( Ayhy — Yho, I[A], hl(to))
for heW1i[J],

where A, is the matrix given by (3.37). Then it can be shown that L, is invertible
by the same argument as in the proof of Lemma 11.

For any ¢ =(uq, 44, €y, €;)€ B let h=.§!7,qo. Then by (4.100)
(4.118) ho = Euy + 8G1(eq — 1,[Eug] — 1,[Eu,] — 1,[Ble,),
(4.119) hy = E(u, + Yhy) + Pe,
and by (3.37)

dt

dh
dt

(4.120)

= Alho + 'yuo,

(4.121)

L = Ah; + y(uy + Yhy).

Since G =1,[&], by (4.13) and (4.14) we have
(4.122)  I[h] = I,[ho] + L,[Eu,] + 1,[B]e,
= L,[Euy] + L[B1G e, — L,[Euol — 1,[Eu,] — 1,[Ble;}
+ L[Eu,] + 1,[Ble; = e,.

From (4.119) it follows that
(4.123) hy(to) = B(to)e,.
By (4.120)(4.123)
(4.124) (I = LyZ D)o = (y1uo, 71(uy + Yho), 0, (I — B(to))ey).

By (4.100) and (4.116) we have

Iholle < (IHoll. + I82El. + [Solle + 15281 llells < all@lls,

so that by (4.124) and (4.115)

I = Ly ZDel, = max(llysuolle 171(uy + Yhollo I — B(to)eyll)

< max (|l + 171 Yleo, 1 = St} l@lls < Vi@l

Hence &, is invertible by (4.115) and Lemma 1.

We have the following
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THEOREM 8. Let x(® € D? be an approximate solution of (4.96) and sup-
pose there exist an operator ;, a positive number & and nonnegative constants
1, x, ; (j=0, 1, 2, 3) such that

(i) &, is invertible;
(ii)) D}={xeW'[J] | |x—xO, =<} <D
(iii) = max(p~i(o + K3) ¢ '(k; + K3)) < 1,
(4.125)  plHllcpy + 1Sillckz + 184 2Bl (qpy + pra) ;. (i=0,1),
(4.126)  [|A — Al (Pl + q18is2El) + 1941 PISis el + ql1Sis2ll.)
+ qI8i 2Bl Bi(to) — Il S k142 (=0, 1),

where u,, 1, and u, are constants such that

(4.127) ITy(xo)llc = 1y for all xeDj,
(4.128) 1) =1 < pa for all xeDj,
(4.129) 1T, £ pa for all xeDji;

(v) |£:#xO), < n;
(v) A=n/d-x) 6.

Then the conclusion of Theorem 5 is valid with K and D} replaced by # and D3}
respectively.

Proor. For any x € D? by (4.97) and (4.98) we have
(& — F)x = (Txq, Ty(x0)x; — Yxo, I[x] — f[x], I)
and by (4.111) and (4.100)
(4.130) A x = u,
where
(4.131) u; = H,Txy — 8;, , E{Ty(x0)x; — Yxo} + S/1[x] — f[x])
-8, 8 (@(=0,1).

For any he Wi[J] let v=%,%h. Since &;=—&,4,, by integration by
parts we have

E{ a"Zo - A(t)ho} = E(A4; — Dho + yho — 3B(to)ho(to).,
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E { ‘fz};‘ — A(h, — Yho} = E(4; — Ahy — EYho + yhy — B (to)hy(to)

and by (4.100)
(4.132) v, = 8, J{E(A; — Aho + yhy — BB (10)ho(to)} — Sis2{E(A4, — A)h,
— EYhg + yhy — &8 ,(to)hy(to)} + Sid[h] — 5,42 Bhy(to)

(i=01).
Since S, ,8=0 (i=0, 1) and

Si+2EYho — 8,4 2vhy + Sil[h] = — 8i14ho + Sivavihy + by
(i=0,1),
by (4.132) we have

(4.133) I — 2,2)h =w,
where
(4.134)  w; = H(A — A)hy — 811 2E(4 — Ahy — 814 4v1ho — Sivv1hy
— 8§;1,8(8,(t,) — Dhy(te) (i=0,1).
Hence by (4.110), (4.111), (4.112) and (4.133)
Ax=L(L —F)x+U—- L,L)x = x + RKpx.
For any x, ye D3 let u=2 y— 2 ;x. Then by (4.130)
uy = H(Tyo — Txo) + Sy — x1 = fIy] + f[x])
~ 8142 E{Ti(vo)ys — Ta(xe)%1 — Yyo + Yxo} (=0, 1),
so that by (4.37)—(4.39) and (4.125)
(4.135)  wll, < {plHill oy + 1Sillcuz + 1814 2Bl Lgps + prad} Iy — xlly,
Swlly—xl, (@(=01).
Let v= ,y— 2 ,x. Then by (4.133) and (4.126) we have
(4.136) vl < |HilllA = Azllclyo = xolle + 18i+2Elcl 4 — Aallllys = %41l
+ ISisallelyallelyo = Xolle + ISiw2lllvslellys — x4l
+ 1814281118 1(t0) = TN Iy1 = x4l
S K2y —xl (=0, 1).
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Let z="y— 2 x. Then by (4.135) and (4.136)
lzille = llu; + ville = (i + Ki22) Iy — %[, (E=0,1),
so that by (iii)
1y = A xl,, = max(p~!|zoll, g71124]lc)

S max(p~ (ko + K3), g7y + k) |y — x|l £ klly — x|,

The proof is completed by the same argument as in the proof of Theorem 5.

4.4. A numerical example

We consider the boundary value problem

X2

(4.137) £I£=X(x,:)s< > (—1<1<1),

dt —x; = (¢, =P+t + 01

(4.138) 1= @' ®EZD*x]=0 for y=(x,Z)eD!,

where a* denotes the transpose of a matrix a, Z(t) is the solution of the matrix
equation

0 1
(4.139) idtz._ = X,[x]Z = < )z
—1=3(x;— 12 0

with Z(t,)=1, and

[ 91[x]1) xy(—= 1) + 09
(4.140) glx] =| g.[x] | =] a(x,(0)* — B) |,
gs[x] x,(1) — 1.1
(4.141) to=-—1, a=0.1, g=1.1.

The condition (4.138) arises from the boundary value problem of the least squares
type (4.137) and (g[x])*g[x]=min. [2].
We denote by y(©@ =(x©, Z(®) an approximate solution of this problem with

(4.142) xXO) =t +0.1, xO0) =1, ZO®F) = &),

where @(?) is the solution of the problem
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dd _ o
L= 408, ¥(-1) =1,
0 1
(4.143) A@) = X, [x9]@1) = ( , ), u=,/1.03.
—pu? 0
With the notations
(4.144) s(t) =sinp(t + 1), () =cosu(t + 1), v=1/u,

@(1) and P(7) can be written as follows:
c(®) vs(b) ct) —vs(t)
4.145) ot = ( ), P,(1) = ( )
—us(t) (1) us(®) ()

Let the operators N;: R?—R*! (i=0, 1) and the matrices C; (j=1, 2, 3) be
defined by

(4.146) Nh=h, (i=1,2) for h=(hy, h,)*eR?

00 10 00
(4. 147) Cl = N Cz = > C3 = o
01 00 10

Then for y=(x, Z) e D! and v=(h, U) e W[J] we have
(4.148) X (x)[h, Z] = — 6(x; — t)(C3ZC,, C3ZC3)h,
(4.149) Jfoh = Z(— 1)*C,h(— 1) + Z(1)*C,h(1)
+ 2a2(3x,(0)*> — B)Z(0)*C,h(0),
(4.150) JiU = (9:[xIN,[U(— 1)] + g5[xIN,[U(1)]
+ 2ax,(0)g,[xIN,[U0)])*.
We choose the operators Y, I, and /; as follows:
(4.151) Yh = X,(xO)[h, ZOY, Iy = foy®), I, = £;(y®).
For simplicity put
(4.152) m=10"3, m; = —0.1mv3, a=2023 - p), a, =20*1—p),
a, = pa, az= —02va,, B, = d0)*C,, B, = d(1)*C,,
C,=uC, +vC,, Cs=vC, + uC,, Cg= uC; — vC%,
e=(1,1)* u(®)=1+2c), u,(t)=1-c(),
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us() =1—c(®?, u ) =plt+1), us(t) =2+ c(t)?
ug(t) =2 + s()?, V(@) = u®(@)*C,o(1),
—ux(t) - vs(®)®

ps(us(t)  us() )

—s()®  v{e(ue(t) — 2}

s (e ) ’
Va(t) = (Vi()*, Va3(9*)N,[2(0)]*,
Va(t) = 3v{CsV(t) + us(t)Ce — C,}.

Vi(t) = v(

V,(t) = v2<

Then by (4.145) and (4.151)

(4.153)

(4.154)

(4.155)

(4.156)

(4.157)

where

(4.158)

(4.159)

G = C, +vV(1) + a,(C, — V(0)) + a;3V5(0),
So(®) = @(NG™1, Sy(1) = — 0.2ve(8) (V1(1), V()G
S,EU = a,Sy(t) S: N,L[2(0)D(r)U(z)]*dx for UeM[J],

t

S,EU = — <P(t)$ () {06C;0@N,[S;EV] (@) + U®)}dr

for UeM[J],

Hoh = S‘ Ho(t, Oh(tyde  for heCLJ],
-1

[ (I — My(0)P((7), <t
Hyt, 1) =
— ®(OM (1)P(2), 2t (-1=51t<0),
D(t)(I — M,)P((7), T<t,
Hy(t, 1) = [
— O(OM, P (), T2t 0=,

M (1) = G"{aB;9(0) + a3(V3(0) — V3(v))} + M,,
M, = G-1B,&(1).

By (4.142) and (4.151) we have

(4.160)

0x©@ =m(0, 1t + 1)*, 0,y =0,



On a posteriori Error Estimation in the Numerical Solution 241

(4.161)  f[y @] = a,(— us(0), c(0))*, E,Qx®@= mv3(uy(s), us(1))*,
(4.162) L[E,Qx©®] = mv{as(0)B, + vu,(1)B,}e
s(0)(1 — 4¢(0)) + 3uc(0) >
+ m,a .
< 3s(0) — 2vu,(0)u,(0)
Let b=(b,, b,)*, b; and b, be defined by

(4.163) b = GTI(f[y®] — LIE,Qx®]),
(4.164) by = 2(u2by/m — 1), b, = 2u2b,/m.

Then we have

(4.165) L,Fy©® = (h, U),

where

(4.166) h(t) = ®(#)b + [E,0x©@] (1),

(4.167) U() = m, D(t) {Va(t) + b3 V(1) + b Vo(1)}.

Now let us use the infinity norm || - ||, and apply Theorem 5 to our problem.
Then by (4.153)-(4.159) we have the estimates

(4.168) ISollwe = 2.50387, |Si]lee < 2.32728, |[1S:E| o < 0.45284m,

IS5El o0 < 2.85033, [Hollw, < 3.18136,

IHlloe £ NEY [loc 1Holl e = 5.35949.

For any p>0 and >0 by (4.143)-(4.151) we may choose

(4.169) p; =3pd(pd + 0.2), p, = ppao + quiz1, Ha = 65(pgé + 0.1 + o),

where
(4.170) Uzo = 2q0{1 + 3a?p(pd + 2)(6 + o4) + 2|3 — BI},
(4.171) oy = 2p6{1 + a?(pd + 2)(6 + 1) + o2|1 — B},
(4.172) ¢ = pmax(je()] + Hs@®D, o, =g 'us0).

By (4.165)~(4.167)
(4.173) ILiFy @ o, < max(p~'no, g7'n4) =1,

where
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4.174) 1Bl oe < 1.65924m =119, U] oo < 0.63151m = 1,.
The choice p=1, g=1 and §=1.79003m yields
Kk = 0.073058, 1 =n/(1 —x) = 1.79002m = A(1, 1),

and we have estimates
(4.175) 12 = Ol UL 1), 12 = ZO 0 < A1, 1).
With the choice p=1, g=q,=2.2603 and §=1.73539m we have

k = 0.043875, A= 1.73538m = A(1, q,).
The choice p=p,=2.6274, g=1 and §=0.76346m yields

Kk = 0.172819, A = 0.76345m = A(py, 1).
Hence we have error estimates
(4.176) 12 = xO)lpe S UL, q1), 12 = ZO e < Apy, D).

From (4.175) and (4.176) it is seen that the parameters p and g have been intro-
duced with effect. The same conclusion is valid also when the norms | - ||, and
Il ||, are used. The results are listed in Table 2, where #=n/m, § =/m, & =10k

and (p, 9)=A(p, q)/m.

Table 2.

norm | p q 7 P} E i, 9)

1.0000 1.0000 1.65924 1.79003 0.73058 1.79002
Il 1.0000 2.2603 1.65924 1.73539 0.43875 1.73538
2.6274 1.0000 0.63151 0.76346 1.72819 0.76345
1.0000 1.0000 1.66331 1.73074 0.38957 1.73073
I-ls 1.0000 1.8981 1.66331 1.70952 0.27024 1.70951
3.0018 1.0000 0.55411 0.61113 0.93303 0.61112
1.0000 1.0000 1.77546 1.94034 0.84970 1.94033
Bl 1.0000 1.6347 1.77546 1.89334 0.62256 1.89333
2.5486 1.0000 0.69664 0.86199 1.91816 0.86198
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