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Introduction

Wielandt [8] has given some criteria for a subgroup to be subnormal in a

finite group. Peng [6, 7] and Hartley and Peng [3] have given similar criteria
for not necessarily finite groups. Furthermore Chao and Stitzinger [2] have

given conditions for a subalgebra to be a subideal in a finite-dimensional solvable

Lie algebra.

In this paper we shall investigate some criteria for subideality and as-

cendancy in not necessarily finite-dimensional Lie algebras.

Let L be a Lie algebra over a field ί and let H be a subalgebra of L. When
L/CoreL (H) is solvable, H is a subideal of L if either (a) there exists some integer
n>0 such that [L, „#]£//, or (b) there exists some integer jχ>0 such that [L, nx]

c H for any x e H and the characteristic of! is 0 or p > n (Theorem 4 and Theorem

7). When L/CoreL(#) is hyperabelian, H is an ascendant subalgebra of L if

one of the following conditions is satisfied: (c) For any a e L there exists an

integer n = n(a) such that [α, nlί~\^H\ (d) ϊ is of characteristic 0, H is solvable,
and for any a e L there exists n = n(ά) such that [α, πx] e H for any x e H (Theorem

12 and Theorem 14). Finally when L/CoreL(f/) has an ascending abelian series,

H is an ascendant subalgebra of L if <αH> is finitely generated for any a e L and

one of the above conditions (c) and (d) is satisfied (Theorem 17 and Theorem 18).
The author would like to express his thanks to Professor S. Togo for his

valuable comments in preparing this paper.

1. Preliminaries

Throughout the paper Lie algebras are not necessarily finite-dimensional over

a field ϊ of arbitrary characteristic unless otherwise specified. We mostly follow

[1] for the use of notations and terminology.

Let L be a Lie algebra over I. L belongs to the class έ9I if L has an ascending

abelian series (Lα)α^A. If each Lα (α<A) is furthermore an ideal of L, then L

belongs to the class έ(<ι)Sl, that is, L is hyperabelian. For an integer n>0 and

an ordinal A, H<L, #<3 L, H si L, Ho"L, H asc L and H<3λL mean that H

is respectively a subalgebra, an ideal, a subideal, an rc-step subideal, an ascendant
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subalgebra and a Λ-step ascendant subalgebra of L. If H^n L then n is called

the subideal index of H. For any subsets A, B of L we denote by (ABy the
smallest B-invariant subalgebra of L containing A. The core CoreL(#) of a sub-

algebra H in L is the largest ideal of L contained in H. For any x, y e L and for

any subsets 4, 5 of L we define inductively [x, o.y] = ;c anc* IX ί+i^^CIX i.y]>

y] O'eN); [X, 0β]=X, \A9 1+1B] = [[̂ , ,JB], B] (ίeN).
Let (H, X) be an ordered pair of subalgebras of L. We say (H9 K) to be an

Nk-pair (k e N) if [K, kH~\^H, and to be an N^-pair if for each α e K there exists

/c = /c(α)eN such that [α, kH~\^H. The fact that (H, L) is an JVfc-pair means

that H is a fc-step weak ideal of L in the sense of Maruo [5]. We define

{αeL|[α,ΛH]c://} (fc6N),

It is then clear that (H, K) is an JV^-pair (resp. JV^-pair) if and only if K^Nk(H)
(resp. A'sJVJH)). We say (H, X) to be an Ek-pair (fceN) if [X, **]£#
for any x e H, and to be an E^-pair if for each α e K there exists k = k(ά)ε N such
that [α, fcx] e H for any x e H. We define

= {αeL|[α, kx]eH for any xeH} (/ceN),

It is then clear that (H9 K) is an £k-pair (resp. E^-pair) if and only if K^

(resp. K^EJJH)). Let nl9...9nr be integers >0. We say (H, K) to be an
Enι,...,nr-pair if

for any x1?..., xreH, and we define

^Wl,.,r,rW = {αeL|[α, nix l5..., nrxr] e/ί for any x^..., xr

We first show the following

LEMMA 1. Let L be a Lie algebra over afield I and H be a subalgebra of
L. Then

(a) N^H) is a subalgebra of L and (H, N ^(H)) is an N^-paίr.
(b) Hω is an ideal

PROOF, (a) If jc, yeN^H), then x, yeNn(H) for some n>0. Put ra =
2n-l. Then
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and either i > n or j ;> n. If i > n, then

[x, ,#] = [x, nH, ;_„#] <= H'--",

and therefore

CO, iH], |>,

If 7>w, then we similarly have

Therefore

whence [x, j] e Nm(H). Thus N^H) is a subalgebra of L.
(b) If x e N^H), then x e Nn(H) for some n > 0. Hence for any m > 0

[x, #ω] c [x,

It follows that

[x,

Therefore Hω is an ideal of #

By the same way as in Lemma 1 of [4] we have

LEMMA 2. Let L be a Lie algebra over a field I and H be a subalgebra of
L.

(a) If the characteristic of ϊ is either 0 or p> max n f, then En ^(H) is
l^i^r

an H-inυariant subspace of L.
(b) // the characteristic of I is 0, then E^H) is an H-inυariant subspace

ofL.

PROOF, (a) Put x* = adLx for any xe#. Let a e Enit_tnr(H). Then

ax^nι'"X*n-eH

for any x l5..., xreH. Replace each xf by Xf + ί̂  where ίeϊ and yί,...,yreH9
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and take the coefficient of t. Then by the argument similar to the linearization

in [4] we have

for any yl9..., yreH, where

= jtί»' x?^-ι(Σ3LV**π<~^^

Let z e H and substitute [xί9 z] for yt(i = l9...9 r). Then

and therefore

«Σϊ=ι/ι(^...^?;[^^*)

= α(xfπ ι x*π' z* - z*xfn ι x*llr)

By (*) we have

[α, z]xfΛ l x*nι

— /7γ*nι...v*"r'7* / r V r /YY* v* Γv— αx1

 l xr

 rz — αz^ί = ι JiV^iJ j ^r » LX/9

It follows that for any z

Thus £Λl> m..tΛr(H) is H-invariant.
(b) is immediately obtained from (a), since

2. Criteria for subideality

In this section we investigate some conditions for a subalgebra to be a

subideal. We need the following simple and useful

LEMMA 3. Let L be α Lie algebra over a field I. Let H be a subalgebra
of L and A be an abelian ideal of L.

(a) If(H9 A) is an Nn-pair for some neN, then H<\n A + H.

(b) If(H, A) is an N^pair, then
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PROOF. Put At = A n N£H) for any i eN. By the definition of - N£H) it is
clear that [Xί5 ίf]c^[._1 and so Ai is H-m variant. Therefore

Ai + #<α Λ / + 1 + H (ieN).

If (H, A) is an Nn-pair, then A^Nn(H). Hence 4,, = A. It follows that

H = A0 + H*3nA + H.

If (#, Λ) is an N^-pair, then A^N^H). Hence

A = A Π (W ί

It follows that

Thus we have

H = A0

THEOREM 4. Lei L be a Lie algebra over afield ! and H be a subalgebra of
L. If L/CoreL (H ) 6 2lm and (#, L^O is an Nn-paίr for some m, n>0, then
#<ι«(m-i)+i£. jn particular, if L is solvable and (H, L) is an Nn-pair for

some neN, then H is a subideal of L.

PROOF. For i>l, put I = L/L<«> and H=(H + LW)IL«\ Then I(*-D is
an abelian ideal of L and (H, Γ(ί-1)) is an JVπ-pair. By Lemma 3

whence

Therefore

H = L<m> + ff<3 »(«-υ LCD + H<ι L.

If m = 2 in Theorem 4, then the subideal index of H becomes n + 1. It will

be shown by Example 1 in Section 4 that this bound is best possible.
To consider £M-pair we modify Theorem 1 in [4] and obtain the following

LEMMA 5. Let L be a Lie algebra over a field I. Let H be a solvable

subalgebra of L of derived length <m and A be an ideal of L. Let n>0 be an

integer such that [A, Mx]=0/0r any xeH. If the characteristic of I is either 0

or p>n, then [A, fc/jΓ] = 0 with k = nm.
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PROOF. We use induction on m. The case w = 0 being trivial, let m>0
and assume that the result holds for m - 1. Then we have

= 0

with r=nm~1. Put A^{A9 i#(1)] for i = 0,..., r. Then A0=A and Ar=Q. It
suffices to show that

for i = 0,..., r— 1. In fact, we then have

that is,

[4, fc#] = 0 for k = nw,

as required.
To show (*) we claim that Ai is H-in variant for any i. It is obvious for

ί = 0. Assume inductively that At is H-invariant. Then

S [A,, Jϊ,

whence Ai+ί is H-invariant. Now we show (*). Put x* = adAx for any xe/f.
Then by the hypothesis of the lemma

x*Λ = 0.

By repeated use of the linearization we have

ΣπeSn **(!)* "**(«) = 0

for any xl9...,xneH. Now xf x J = xjxf + [x;, x/]*. Therefore

n!xί-Jc*+ /=0, (**)

where / is a linear combination of the element of form

'" '"

Since ̂  is //-invariant,
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— Ai\_Xn(i)9 *π(ί+i)J

f— A γΊ< . . . v*
— / i x xπ(n)

By (**) it follows that

which is to be shown.

REMARK. In the above lemma the assumption that A is an ideal of L can be
replaced by the assumption that A is an //-invariant subspace of L.

We can now state a relation between £M-pairs and JVk-pairs in the following

LEMMA 6. Let L be a Lie algebra over a field ί. Let H be a solvable
subalgebra of L of derived length <m and A be an abelian ideal of L. Let
(//, A) be an En-pair for some n>0. If the characteristic of k is either 0 or
p>n, then (H, A) is an Nk-pair with k = nm.

PROOF. Since A^\H^A + H, we take A+H = (A + H)/A n //. Then for
any x e H

By Lemma 5 we have

II, J7] = D

with k = nm. Therefore (//, A) is an Nk-pair.

By making use of Lemma 6 we can prove the following

THEOREM 7. Let L be a Lie algebra over afield ϊ. Let H be a subalgebra
of L such that L/CoreL(//)e$lm and (//, L(1)) is an En-pair for some m, n>0.
If the characteristic of I is either 0 or p>n, then H is an h-step subideal of L,

where ft = Σf^olnί In particular, if L is solvable and (H, L) is an En-pair for
some neN, then H is a subideal of L.

PROOF. We use induction on m. The assertion is clear for m = l. Let
m>l and assume that the assertion holds for m — 1. Put L=L/L(m~1). Then
£<m-i)c/f. Clearly (/7, L^>) is an £Λ-pair. By the inductive hypothesis

H^'L

with r = Σfsτ0

2nί, and so
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We may assume that L(m) = 0 by considering L/CoreL(//). Hence A =

is an abelian ideal of L. It is clear that AnH^A + H. Put

A [ } H . Then (H, A) is an £π-pair and jff(" -D = 0 since /f*1"-1)^ ΠH. By
Lemma 6 (//, ^4) is an Λ^-pair for k = nm~1. Therefore by Lemma 3

whence

Thus we obtain

where h = k + r=Σγ-<}nί.

If m = 2 in the above theorem, then the subideal index Σίft1^ of H becomes
n -f 1. It will be shown by Example 1 in Section 4 that this bound is best possible.

In the case that n — 2, the subideal index can be improved in the following

THEOREM 8. Let L be a Lie algebra over a field ! of characteristic ^2 and
H be a subalgebra of L. If (#, L^>) is an E2-pair and L/CoreL (#) e 2ϊm for

some m> 1, then H is a 3(m — Γ)-step subideal of L.

PROOF. We use induction on m. If m = 2 then Ho3L by Theorem 7.
Let m>2 and assume that the assertion holds for m — 1. Put L = L/L<m~1).

Then by the inductive hypothesis

and so

Now (//, L(m-1)) is an E2-psiir. By the argument similar to the proof of Theo-

rem 7.3.2 in [1] it is easily seen that (H, L(m-V) is an N3-pair. By using Lemma
3 we obtain

Therefore H is a 3(m-l)-step subideal of L.

We generalize Theorem 7 by using the following

LEMMA 9. Let L be a Lie algebra over a field I. Let H be a solvable
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subalgebra of L of derived length <m and A be an abelian ideal of L. Let
(//, A) be an Enit tnr-pair. If the characteristic of I is either 0 or p>max nh

then (//, A) is an Nk-pair with /t= Σί=ι ftf-

PROOF. We use induction on r. For r=\ the assertion holds by Lemma
6. Let r> 1 and assume the assertion holds for r — 1. By definition

for any xl9 x2 ,..., xreH. Put B = A n EΛ2t_tnr(H). Then B is //-invariant by
Lemma 2. Thus B is an ideal of A + H. Clearly (//, B) is an En2 >/lr-pair. By

the inductive hypothesis we obtain that (//, B) is an ΛΓΛ-pair for /? = Σi = 2nf
Hence

[J3, „//] CΞ H.

In 4 + // = G4 + #)/β we have

[£ nι^] = 0

for any x 6 //. By Lemma 5

D3, rtΓH] =0

and so

[^^//Jcβ.

It follows that

[A, „.+„//] £ [β, Λ//] s //.

Therefore (//, )̂ is an Λffc-pair, where

fc = ny + /i = Σi = ι^f

THEOREM 10. Lei L be a Lie algebra over afield ϊ and H be a subalgebra
of L. Let L/CoreL(//)e9Im and (//, L(1)) be an Enϊ tHr-pair for some m, n lv..,

nr>0. If the characteristic of ϊ is either 0 or p>max nt , ίnen // is an h-step
l^t^r

subidealof L where A = Σ7=oΣi=ιwi' In particular, if L is solvable and (//, L)
is an £M1 rtr-pair, ίnen // is a subideal of L.

This theorem will be proved in the same way as in Theorem 7, by using
Lemma 9 instead of Lemma 6. Hence we omit the proof.

We combine some of the above results in the following theorem, general-

izing a result [2, Theorem 1] for finite-dimensional case.
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THEOREM 11. Let L be a Lie algebra over afield I. Let H be a subalgebra
of L such that L/CoreL(/f) is solvable. Then the following conditions are
equivalent:

(a) H is a subideal of L.
(b) There exists n E N such that H <α n <#, x> for any x € L.
(c) (H, L) is an Nn-pair for some n eN.

If the field I is of characteristic 0, then the above conditions are equivalent to
each of the following :

(d) There exist r, n = n(r)>0 such that [L, nK]^H for any r-generaίed
subalgebra K of H.

(e) (H, L) is an En-paίr for some neN.
(f) (//, L) is cm Enit_tnr-pair for some n1?..., w r eN.

PROOF. It is clear that (a)=>(b)=>(c) and (a)=>(d)=>(e)=>(f). (c)=>(a) and
(f)=>(a) follow from Theorem 4 and Theorem 10 respectively.

3. Criteria for ascendancy

In this section we investigate some conditions for a subalgebra to be an
ascendant subalgebra for a Lie algebra in the classes έ(<ι)2l and έ9l of gener-
alized solvable Lie algebras.

THEOREM 12. Let L be a Lie algebra over afield ϊ. Let H be a subalgebra
of L such that L/CoreL (H) e E(<I )9ί . // (H, L) is an N^-pair, then H is an
ascendant subalgebra of L.

PROOF. We may assume that LeE(<ι)2l. Let (Lα)α^A be an ascending
abelian series of ideals of L. For any α<A put L = L/Lα. Then Lα+1 is an
abelian ideal of L and (H9 Lα+ j) is an N^-pair. By Lemma 3

so that

If μ< λ is a limit ordinal, then

Vβ<μ(Lβ + H) = Vβ<μLβ + H = Lμ + H.

Thus we have

H = LO + H asc Lλ + # = L.

REMARK. Let L be a Lie algebra over ϊ and /f be a subalgebra of L. If
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L/CoreL(H)eέ(<ι)$l, then H asc JVJTf). In fact, by Lemma 1 N^H) is a
subalgebra of L and (H, N^H)) is an N^-pair. Hence the assertion follows
from Theorem 12.

We here state a relation between E^-pairs and JV^-pairs in the following

LEMMA 13. Let L be a Lie algebra over a field I of characteristic 0. Let

H be a solvable subalgebra of L and A be an abelian ideal of L. If(H9 A) is
an E^-pair, then (H, A) is an N^-pair.

PROOF. For any n e N put

An = A Π £„(#).

By Lemma 2 An is an //-invariant subalgebra of L. Clearly (H, An) is an En-
pair. By Lemma 6 it follows that (H, An) is an JVfc-pair for some k, so that
An^Nk(H). Therefore

A = WneN An s VΛeN Nk(H) = N»(H) .

Thus (H, A) is an iV^-pair.

THEOREM 14. Let L be a Lie algebra over a field I of characteristic 0.

Let H be a solvable subalgebra of L such that L/CoreL(#)eE(<])2ί. //(//, L)
is an E^-pair, then H is an ascendant subalgebra of L.

PROOF. We may assume that Leέ(<ι)$ί. Let (Lα)α^A be an ascending
abelian series of ideals of L. For any α<A put L = L/Lα. Then Lα+1 is an
abelian ideal of L and (H, La+ί) is an E^-pair. By Lemma 13 (H, Lα+1) is an
N oo -pair, and by Lemma 3

Therefore

If μ < λ is a limit ordinal, then

\Jβ<μ(Lβ + H) = Lμ + H.

Thus we obtain

H = LO + H asc L.

Finally we give some criteria for ascendancy in the case that L/CoτeL(H)
e έ9ί. To this end we show the following
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LEMMA 15. Let L be a Lie algebra over a field f. Let //, K be sub-
algebras of L. Then there exists the, largest H-ίnvariant subalgebra of K.

PROOF. Let M be the sum of //-invariant subspaces of K. Then it is clear

that M is the largest //-invariant subspace of K. M2 is also //-invariant since

[M2, //] c [[M, //], M] c M2.

By the definition of M

M2 c M.

Hence M is a subalgebra of X and therefore the largest //-invariant subalgebra

ofX.

LEMMA 16. Let L be an EW-algebra over afield f. Let H be a subalgebra
of L such that <0H> is finitely generated for any aeL. Then there exists an

ascending abelian series of H -invariant subalgebras of L.

PROOF. Let (Lα)α^λ be an ascending abelian series of L. By Lemma 15

there exists the largest //-invariant subalgebra KΛ of Lα for any α<A. Clearly
/C0 = 0 and Kλ = L. For any

and K2

 + l is an //-invariant subalgebra of Lα. Hence by the definition of KΛ

Therefore we have

Let μ<λ be a limit ordinal. Then clearly Kμ>\Jβ<μKβ. For any aeKμ

<αH> is a finitely generated subalgebra of Lμ9 and hence there exists an ordinal
β<μ such that

<aHy < Lβ.

Since <0H> is //-invariant,

and hence

'Kμ — \J β<μKβ.

Therefore (̂ α^^ is an ascending abelian series of //-invariant subalgebras of L.
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THEOREM 17. Let L be a Lie algebra over afield I. Let H be a subalgebra
of L such that L/CoreL (H} e έ$l and that <αH> 15 finitely generated for any
αeL. If(H, L) is an N^-pair, then H is an ascendant subalgebra of L.

PROOF. We may assume that Leέs3l. Then by Lemma 16 there exists an
ascending abelian series (Lα)α^; of //-invariant subalgebras of L. We claim that
for any α < λ

Clearly Lα+ ί +H is a subalgebra of L, and Lα is an ideal of Lα+ ί + H . Further-

more Lα+1 is an abelian ideal of Lα + 1+/f =(Lα+1+//)/Lα and (H, Lα+1) is an
JV^-pair. Hence by Lemma 3

and we have (*)• It is now easy to see that

H = LO + H asc Lλ + H = L.

By the same argument as in the proof of Theorem 17 and by using Lemma

13 we can show the following

THEOREM 18. Let L be a Lie algebra over a field I of characteristic 0.
Let H be a solvable subalgebra of L such that L/CoreL (H) e έ$l and that <αH>
is finitely generated for any αeL. // (H, L) is an E^-pair, then H is an as-

cendant subalgebra of L.

REMARK. Let L be a Lie algebra over a field ϊ (resp. a field ϊ of character-
istic 0). Let H be a subalgebra of L such that (H, L) is an JV^-pair (resp. E^-
pair). If H e gω (resp. He g ω n BSI), then «αH> +Hω)/H<° is finitely generated

for any a e L.
We shall give the proof only for an JV^-pair and omit the proof of the other

case. By Lemma 1 #ω<ι N00(/]Γ) = L, so that we can consider the quotient

algebra L/Hω. Since H/Hωe'S9 we may assume that H is finite-dimensional
and nilpotent. Let X be a basis of H. Then for any α e L there exists n = n(α)

such that

Since # is nilpotent,

[α, B+mX] £ H"̂  = 0

for a sufficiently large m. Therefore
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is finitely generated.

4. Examples

In Theorems 4 and 7 we observe the case where m=2. In this case the as-

sertions become /ίoM+1L. The subideal index n-f-1 of H is best possible for

In Theorem 7 (resp. Theorem 8) we assumed that the characteristic of the
basic field I is either 0 or p>n (resp. is not 2). These restrictions cannot be re-
moved.

We shall show these facts in the following examples.

EXAMPLE 1. Let ϊ be any field and n be an integer >1. Define V to be
the vector space over ! with basis {^|/= I, 2,..., 3n}, and define endomorphisms
/and g of Fby

ί eί+ί if i Φ n, 2n, 3n,
*tf=\

[ 0 if i = n, 2n, 3n;

en+i if ί = l,2,...,2π,

0 if i = 2n + 1, 2n + 2,..., 3π.

Clearly / and g are commutative. Consider F as an abelian Lie algebra so that /
and g are derivations of V. Define

and put

H = («?!, *2,...,έ?B, <?2n) + (/)

It is clear that H is a subalgebra of L. It is easy to see that for 1 <; i< n — 1

[L, f/Γ] = (eί+1, eί + 2ί. ., en> en + i> en + i+l>-"> e2n> e2n + ί + l > e2n + i + 2> 9 e3n)

and

[L, ΛH] = (e2n) s /ί .

Let ίίj be an ί-th ideal closure of // in L for i = l, 2, 3, — Then we easily see
that

#ι = <#L> = K+(/),

/ί; = <fl".-l>
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= (el9 e2,..., en9 en+i, en+i+ί,...9 e2n, e2n+i, e2n+i+ί,..., e3n) + (/)

for 2 < i < n,

and

"> = (βl, e29;..9 en, e2n) -+ (/) = H.

Therefore (H, L) is both an Nn-pair and En-pair. But H<zn+ί L and H is not an

n-step subideal of L.

EXAMPLE 2. Let I be a field of characteristic p>0, and let Z[ί] be a poly-
nomial ring. Define V to be the vector space over t with basis {ea \ a e S}, where

S = {Zi^eZ[i]|0< αf <p for any ieN}.

For each n e N define an endomorphism /„ of V as follows: For any α =

65

ea+tn if αn ^ p - 1,

0 if an = p - 1.

Then for any n, m e N

J w "j JnJm JmJn*

and for any αr e I (r 6 N)

Put H = (/„ I n 6 N). Then H is an abelian Lie subalgebra of Endk(V). Consider
Fas an abelian Lie algebra so that each of the elements in H is a derivation of V.
Define

L = K + H .

Then L is a solvable Lie algebra of derived length 2, and H is a subalgebra of L.

By(*)

= o

for any x e #. Therefore (#, L) is an £π-pair for any n > p. However, since

H is neither a subideal nor an ascendant subalgebra of L.



716 Naoki KAWAMOTO

References

[ 1 ] R. K. Amayo and I. Stewart, Infinite-dimensional Lie Algebras, Noordhoff, Leyden,
1974.

[ 2 ] C.-Y. Chao and E. L. Stitzinger, Subinvariance in solvable Lie algebras, Canad. J.
Math. 28 (1976), 181-185.

[ 3 ] B. Hartley and T. A. Peng, Subnormality, ascendancy, and the minimal condition on
subgroups, J. Algebra 41 (1976), 58-78.

[ 4 ] P. J. Higgins, Lie rings satisfying the Engel condition, Proc. Cambridge Philos. Soc.
50 (1954), 8-15.

[ 5 ] O. Maruo, Pseudo-coalescent classes of Lie algebras, Hiroshima Math. J. 2 (1972), 205-
214.

[ 6 ] T. A. Peng, A criterion for subnormality, Arch. Math. 26 (1975), 225-230.
[ 7 ] T. A. Peng, A note on subnormality, Bull. Austral. Math. Soc. 15 (1976), 59-64.
[ 8 ] H. Wielandt, Kriterien fur Subnormalitat in endlichen Gruppen, Math. Z. 138 (1974),

199-203.

Department of Mathematics,
Faculty of Science,

Hiroshima University




