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Introduction

Wielandt [8] has given some criteria for a subgroup to be subnormal in a
finite group. Peng [6, 7] and Hartley and Peng [3] have given similar criteria
for not necessarily finite groups. Furthermore Chao and Stitzinger [2] have
given conditions for a subalgebra to be a subideal in a finite-dimensional solvable
Lie algebra.

In this paper we shall investigate some criteria for subideality and as-
cendancy in not necessarily finite-dimensional Lie algebras.

Let L be a Lie algebra over a field f and let H be a subalgebra of L. When
L/Core;, (H) is solvable, H is a subideal of L if either (a) there exists some integer
n>0 such that [L, ,H]< H, or (b) there exists some integer n> 0 such that [L, ,x]
S H for any x € H and the characteristic of f is 0 or p>n (Theorem 4 and Theorem
7). When L/Core,(H) is hyperabelian, H is an ascendant subalgebra of L if
one of the following conditions is satisfied: (c) For any a e L there exists an
integer n=n(a) such that [a, ,H]<H; (d) f is of characteristic 0, H is solvable,
and for any a € L there exists n=n(a) such that [a, ,x] € H for any x € H (Theorem
12 and Theorem 14). Finally when L/Core, (H) has an ascending abelian series,
H is an ascendant subalgebra of L if (a®) is finitely generated for any a € L and
one of the above conditions (c) and (d) is satisfied (Theorem 17 and Theorem 18).

The author would like to express his thanks to Professor S. Togé for his
valuable comments in preparing this paper.

1. Preliminaries

Throughout the paper Lie algebras are not necessarily finite-dimensional over
a field T of arbitrary characteristic unless otherwise specified. We mostly follow
[1] for the use of notations and terminology.

Let L be a Lie algebra over . L belongs to the class 2 if L has an ascending
abelian series (L)<, If each L, (x<1) is furthermore an ideal of L, then L
belongs to the class B(<1)?, that is, L is hyperabelian. For an integer n>0 and
an ordinal A, HKL, H< L,Hsi L, H<"L, H asc L and H<* L mean that H
is respectively a subalgebra, an ideal, a subideal, an n-step subideal, an ascendant
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subalgebra and a A-step ascendant subalgebra of L. If H<" L then n is called
the subideal index of H. For any subsets 4, B of L we denote by {AZ) the
smallest B-invariant subalgebra of L containing 4. The core Core; (H) of a sub-
algebra H in L is the largest ideal of L contained in H. For any x, y € L and for
any subsets 4, B of L we define inductively [x, oy]=x and [x, ;,,y]1=[[x, ;y],
y1(ieN); [4, ¢B]=4, [4, ;+,B]=[[4, B, B] (ieN).

Let (H, K) be an ordered pair of subalgebras of L. We say (H, K) to be an
N,-pair (ke N)if [K, (H]< H, and to be an N -pair if for each a € K there exists
k=k(a)eN such that [a, H]=H. The fact that (H, L) is an N,-pair means
that H is a k-step weak ideal of L in the sense of Maruo [5]. We define

N(H) = {aeL|[a, H] € H} (keN),
N (H) = Upen Ny(H) .

It is then clear that (H, K) is an N,-pair (resp. N -pair) if and only if K< N, (H)
(resp. K& N (H)). We say (H, K) to be an E,-pair (keN) if [K, x]<H
for any x € H, and to be an E -pair if for each a € K there exists k=k(a)e N such
that [a, ;x] € H for any xe H. We define

E(H)={aeL|[a,;x]eH forany xeH} (keN),
Eoo(H) = UkeN Ek(H)

It is then clear that (H, K) is an E,-pair (resp. E -pair) if and only if K< E,(H)
(resp. K€ E(H)). Let ny,...,n, be integers >0. We say (H, K) to be an

[K, p X150 n X ] S H
for any x4,..., x, € H, and we define
E,  .(H) ={aeL|[a, ,xs..., n, X, J€eH forany x,,..,x.eH}.
We first show the following

LemMMA 1. Let L be a Lie algebra over a field T and H be a subalgebra of
L. Then

(a) N_(H) is a subalgebra of L and (H, N ,(H)) is an N . -pair.

(b) H<® is an ideal of N (H).

Proor. (a) If x, ye N (H), then x, ye N,(H) for some n>0. Put m=
2n—1. Then

[[X, y]’ mH] = 2i+j=m [[x’ iH]5 [y, jH]]s
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and either i>n or j>n. If i>n, then
[x, H] = [x, ,H, ;- ,H] € H"",
and therefore
([x, :H], Ly, ;H]1] < [Ly, ;H], H""+1]

< [y, jH, —n+1H]

= [y, ,H] € H.
If j>n, then we similarly have

([x, :H], [y, ;H1] = H.
Therefore
([x, ¥, »H] = H,

whence [x, y]e N, (H). Thus N_(H) is a subalgebra of L.
(b) If xe N (H), then x e N,(H) for some n>0. Hence for any m>0

[x, H*] < [x, Hrtm=1]
c [x, H, .- 1H]
c[H,,-,H] = H™
It follows that
[x, H*] € Np>o H™ = HO.
Therefore H® is an ideal of N (H).
By the same way as in Lemma 1 of [4] we have

LeMMA 2. Let L be a Lie algebra over a field t and H be a subalgebra of

L.

(a) If the characteristic of T is either 0 or p> max n;, then E, _, (H) is
1<i<r

an H-invariant subspace of L.
(b) If the characteristic of t is O, then E_(H) is an H-invariant subspace
of L.

Proor. (a) Put x*=ad, x for any xe H. LetackE, _, (H). Then
ax¥m...x}re H

for any x,,..., x,€ H. Replace each x; by x;+ty, where tef and y,,..., y,€H,
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and take the coefficient of . Then by the argument similar to the linearization
in [4] we have

aX i fixt,.. xr; yH)eH ()
for any y,,..., y, € H, where
Jilxtseons xE5 90
= xfrexfmi- (T asglxdn Iy )k,
Let z e H and substitute [x;, z] for y;(i=1,..., 7). Then
JdxTseee xF5 [xi, 21%)

* *ni- =1 yekni=j—1( % % *) ¥ ) ¥ *
xlnx...xi_n{ 1(2;;0 x¥ni=J l(x,-z — z*xi)x,-l)xif{“--'x,"'

XErtexEni-a(friz® — g¥xFne) xEnies ke
and therefore
aXioy fx¥,..., x¥; [x;, z]%)
= a(x¥rie. kg — gEgkni L xknr)
By (*) we have
[a, z]x¥rs..-x}nr

= axFr...x¥rez* — a3t  fix%,..., xF; [x, z1¥) € H.

It follows that for any ze H
la, z]€E,,,. . (H).

Thus E,, . (H) is H-invariant.
(b) is immediately obtained from (a), since E (H)=\U  n E(H).

2. Criteria for subideality

In this section we investigate some conditions for a subalgebra to be a
subideal. We need the following simple and useful

LEMMA 3. Let L be a Lie algebra over a field ¥. Let H be a subalgebra
of L and A be an abelian ideal of L.

(@) If(H, A) is an N,-pair for some neN, then H<"A+H.

(b) If(H, A) is an N -pair, then H<®A+H.
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Proor. Put A;=An N(H) for any ieN. By the definition of N,(H) it is
clear that [A4;, H]< A4;-, and so 4; is H-invariant. Therefore

Ai+H< A4, +H (ieN).

If (H, A) is an N,-pair, then A= N,(H). Hence 4,=A. It follows that
H=A,+ H<"A+ H.

If (H, A) is an N -pair, then AN _(H). Hence

A=AN0 (UinN(H)) = Uen 4ic
It follows that

Vien(4i + H) = Uien4; + H=A + H.

Thus we have

H=A,+ H<®A + H.

THEOREM 4. Let L be a Lie algebra over a field ¥ and H be a subalgebra of
L. If L/Core,(H)e W™ and (H, LV) is an N,-pair for some m, n>0, then
H<nm=UO+1 [ In particular, if L is solvable and (H, L) is an N,-pair for
some neN, then H is a subideal of L.

Proor. For i>1, put L=L/L® and H=(H+L®)/L®. Then LG~ is
an abelian ideal of L and (H, L¢~1) is an N,-pair. By Lemma 3

H<"L0-Y + H,
whence
L + Har LG-D 4 H.
Therefore
H=LM™+ H<"m DM 4+ H<a L.

If m=2 in Theorem 4, then the subideal index of H becomes n+1. It will
be shown by Example 1 in Section 4 that this bound is best possible.
To consider E,-pair we modify Theorem 1 in [4] and obtain the following

LEMMA 5. Let L be a Lie algebra over a field . Let H be a solvable
subalgebra of L of derived length <m and A be an ideal of L. Let n>0 be an
integer such that [A, ,x]1=0 for any xe H. If the characteristic of t is either O
or p>n, then [A, H]=0 with k=n".
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Proor. We use induction on m. The case m=0 being trivial, let m>0
and assume that the result holds for m—1. Then we have

[4, HD] =0

with r=nm"1, Put 4,=[4, , HV] for i=0,...,r. Then Ay=A4 and 4,=0. It
suffices to show that

[4i, H] S Aisy (*)
for i=0,..., r—1. In fact, we then have
[Ao, n-H] < 4,
that is,
[4, (H]l =0 for k = nm,

as required.
To show (x) we claim that A; is H-invariant for any i. It is obvious for
i=0. Assume inductively that 4; is H-invariant. Then

[Ai+ 1 H] = [Aia H(l)s H]
e [4;, H, HV] + [A,, [H™, H]]
c [4, HV] = 4;,,,

whence A4;,, is H-invariant. Now we show (¥). Put x*=ad,x for any x € H.
Then by the hypothesis of the lemma

x*n = 0.

By repeated use of the linearization we have
Znes,. x:(l)"'x:(n) =0
for any x,,..., x,e H. Now xfx¥=x¥x¥+[x; x;]*. Therefore
nix¥--x¥ +f=0, (**)
where f is a linear combination of the element of form
X351y Xn(i- ) Xnqiys Xngi+ 1)) X042y Xnem -

Since A; is H-invariant,

Aix:(l)' X 1)[x1:(i), Xn(i+ 1)]*x:(i+ 2)"" “Xx(m)
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S AilXny Xag+ I X042y X5 m)
S A1 Xai+2) Xnm)
S Aisr
By (*#) it follows that
Aixtoxx € Aif € Ais s
which is to be shown.

REMARK. In the above lemma the assumption that A is an ideal of L can be
replaced by the assumption that 4 is an H-invariant subspace of L.

We can now state a relation between E,-pairs and N,-pairs in the following

LemMMA 6. Let L be a Lie algebra over a field . Let H be a solvable
subalgebra of L of derived length <m and A be an abelian ideal of L. Let
(H, A) be an E,-pair for some n>0. If the characteristic of k is either 0 or
p>n, then (H, A) is an N,~pair with k=n™.

ProOF. Since AN H<A+H, we take A+H=(A+H)/AnH. Then for
any xe H
[4,,xX]<sAn H=0.
By Lemma 5 we have
[Z, kH] =0
with k=n™. Therefore (H, A) is an N;-pair.

By making use of Lemma 6 we can prove the following

THEOREM 7. Let L be a Lie algebra over a field £. Let H be a subalgebra
of L such that L/Core, (H)e U™ and (H, LY) is an E,-pair for some m, n>0.
If the characteristic of ¥ is either 0 or p>n, then H is an h-step subideal of L,
where h=3Y"-tn'. In particular, if L is solvable and (H, L) is an E,pair for
some neN, then H is a subideal of L.

Proor. We use induction on m. The assertion is clear for m=1. Let
m>1 and assume that the assertion holds for m—1. Put L=L/L™ 1., Then
Lm-UOcH, Clearly (H, L) is an E,-pair. By the inductive hypothesis

H<'L

with r= Y m2n’, and so
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LD 4+ H<r L,

We may assume that L™ =0 by considering L/Core,(H). Hence A=L™"1
is an abelian ideal of L. It is clear that An H<A+H. Put A+H=(A+H)/
AnH. Then (H, A) is an E,-pair and H™ D=0 since H™UcAnH. By
Lemma 6 (H, A) is an N,-pair for k=n™"1, Therefore by Lemma 3

H<*4 + H,
whence
H<*A + H.
Thus we obtain
H<"L,

where h=k+r=3"1\nt.

If m=2 in the above theorem, then the subideal index > 7-'n‘ of H becomes
n+1. It will be shown by Example 1 in Section 4 that this bound is best possible.
In the case that n=2, the subideal index can be improved in the following

THEOREM 8. Let L be a Lie algebra over a field T of characteristic #2 and
H be a subalgebra of L. If (H, L) is an E,-pair and L[Core, (H)e U™ for
some m>1, then H is a 3(m—1)-step subideal of L.

Proor. We use induction on m. If m=2 then H<3L iby Theorem 7.
Let m>2 and assume that the assertion holds for m—1. Put L=L/Ltm D,
Then by the inductive hypothesis

H<3m2 L,
and so
L(m—l) + H<3(m—2) L

Now (H, Lm=1) is an E,-pair. By the argument similar to the proof of Theo-
rem 7.3.2 in [1] it is easily seen that (H, L("~V) is an N;-pair. By using Lemma
3 we obtain

H<3 LY 4+ H.
Therefore H is a 3(m— 1)-step subideal of L.
We generalize Theorem 7 by using the following

LEMMA 9. Let L be a Lie algebra over a field . Let H be a solvable
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subalgebra of L of derived length <m and A be an abelian ideal of L. Let
(H, A) be-an E,, _, -pair. If the characteristic of T is either 0 or p> max n,,

1<i<r
then (H, A) is an N -pair with k=3%_, n’.

PrOOF. We use induction on r. For r=1 the assertion holds by Lemma
6. Let r>1 and assume the assertion holds for r—1. By definition

[A, 0 X1 X200 X ] S H

for any xy, x,,...,x,€ H. Put B=ANE,, ,(H). Then B is H-invariant by
Lemma 2. Thus B is an ideal of A+ H. Clearly (H, B) is an E,, _, -pair. By
the inductive hypothesis we obtain that (H, B) is an N,-pair for h=>7%_,n"
Hence

[B, ,H] < H.
In A+ H=(A+ H)/B we have

[4, %] =0
for any xe H. By Lemma 5

[4, pH] =0

and so

[4, . H] < B.
It follows that

[As n',"+hH] = [Bs hH] S H.
Therefore (H, A) is an N, -pair, where
k=nP+h=X5_,nr

THEOREM 10. Let L be a Lie algebra over a field t and H be a subalgebra
of L. Let L/Core,(H)e U™ and (H, L) be an E,, _,-pair for some m, nq,...,

n,>0. If the characteristic of ¥ is either O or p> max n;, then H is an h-step
' 1<i<r

subideal of L where h=Y"=43%_,n{. In particular, if L is solvable and (H, L)
is an E, ., -pair, then H is a subideal of L.

This theorem will be proved in the same way as in Theorem 7, by using
Lemma 9 instead of Lemma 6. Hence we omit the proof.

We combine some of the above results in the following theorem, general-
izing a result [2, Theorem 1] for finite-dimensional case.
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THEOREM 11. Let L be a Lie algebra over a field . Let H be a subalgebra
of L such that L|/Core,(H) is solvable.. Then the following conditions are
equivalent:

(a) H is a subideal of L.

(b) There exists neN such that H<a" (H, x> for any x€ L.

(¢) (H, L) is an N,-pair for some neN.

If the field t is of characteristic 0, then the above conditions are equivalent to
each of the following :

(d) There exist r, n=n(r)>0 such that [L, ,K]<H for any r-generated
subalgebra K of H.

(¢) (H, L) is an E,-pair for some neN.

() (H,L)isankE,, ,-pair for some ny,..., n,eN.

Proor. It is clear that (a)=>(b)=>(c) and (a)=>(d)=(e)=(f). (c)=>(a) and
(f)=(a) follow from Theorem 4 and Theorem 10 respectively. :

3. Criteria for ascendancy

In this section we investigate some conditions for a subalgebra to be an
ascendant subalgebra for a Lie algebra in the classes B(<) and E of gener-
alized solvable Lie algebras.

THEOREM 12. Let L be a Lie algebra over a field¥. Let H be a subalgebra
of L such that L|Core, (H)eE(<)U. If (H, L) is an N -pair, then H is an
ascendant subalgebra of L.

ProorF. We may assume that Lef(<)W. Let (L,),<; be an ascending
abelian series of ideals of L. For any a<A put L=L/L,. Then L,,, is an
abelian ideal of L and (H, L,,,) is an N -pair. By Lemma 3

H<®L,,,+H
so that
L,+H<®L,,, +H.
If u<A is a limit ordinal, then
Upeu(Lg + H) = \Upe, Ly + H=L, + H.
Thus we have

H=L0+HaSCL;.+H=L.

RemaARk. Let L be a Lie algebra over f and H be a subalgebra of L. If
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L/Core; (H)ei(<), then H asc N (H). In fact, by Lemma 1 N_(H) is a
subalgebra of L and (H, N,(H)) is an N_-pair. Hence the assertion follows
from Theorem 12.

We here state a relation between E -pairs and N -pairs in the following

LeMMA 13. Let L be a Lie algebra over a field t of characteristic 0. Let
H be a solvable subalgebra of L and A be an abelian ideal of L. If (H, A) is
an E -pair, then (H, A) is an N ,-pair.

Proor. For any neN put
A,=An E(H).

By Lemma 2 A4, is an H-invariant subalgebra of L. Clearly (H, A4,) is an E, -
pair. By Lemma 6 it follows that (H, 4,) is an N,-pair for some k, so that
A, =N (H). Therefore

A= UneNAn = UksNNk(H) = Noo(H)
Thus (H, A) is an N -pair.

THEOREM 14. Let L be a Lie algebra over a field ¥ of characteristic 0.
Let H be a solvable subalgebra of L such that L|Core, (H)eE(<)U. If (H, L)
is an E-pair, then H is an ascendant subalgebra of L.

Proor. We may assume that LeE(<)W. Let (L,),<; be an ascending
abelian series of ideals of L. For any a<A put L=L/L,. Then L,,, is an
abelian ideal of L and (H, L,, ) is an E_-pair. By Lemma 13 (H, L,,,) is an
N -pair, and by Lemma 3

H<*L,,, + H.
Therefore
L,+H<®L,,, + H.
If u< A is a limit ordinal, then
Up<u(Lg + H)=L, + H.
Thus we obtain
H=1L,+ H asc L.

Finally we give some criteria for ascendancy in the case that L/Core, (H)
eEU. To this end we show the following
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LemMaA 15. Let L be a Lie algebra over a field . Let H, K be sub-
algebras of L. . Then there exists the largest H-invariant subalgebra of K.

Proor. Let M be the sum of H-invariant subspaces of K. Then it is clear
that M is the largest H-invariant subspace of K. M? is also H-invariant since

[M2, H] < [[M, H], M] = M2,
By the definition of M
M? c M.

Hence M is a subalgebra of K and therefore the largest H-invariant subalgebra
of K.

LemMMA 16. Let L be an EU-algebra over a field . Let H be a subalgebra
of L such that {a®) is finitely generated for any ae L. Then there exists an
ascending abelian series of H-invariant subalgebras of L.

Proor. Let (L,),c; be an ascending abelian series of L. By Lemma 15
there exists the largest H-invariant subalgebra K, of L, for any a<A. Clearly
Ky=0and K;=L. Forany a<i

Kivi<Liy <L,
and K2, is an H-invariant subalgebra of L,. Hence by the definition of K,
K2, <K,
Therefore we have

Kz<l Koz+1’ Kaz+1/Ka€§lI'

Let u<A be a limit ordinal. Then clearly K,>\U;z.,K; For any aekK,
{aM) is a finitely generated subalgebra of L,, and hence there exists an ordinal
B <u such that

afy < L.
Since {af) is H-invariant,
a"y < Ky,
and hence
K, = \Us<.K;.

Therefore (K,),<, is an ascending abelian series of H-invariant subalgebras of L.
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THEOREM 17. Let L be a Lie algebra over a field . Let H be a subalgebra
of L such that L|Core, (H)eEW and that {a¥) is finitely generated for any
aeL. If(H, L)is an N-pair, then H is an ascendant subalgebra of L.

PrROOF. We may assume that Le£%. Then by Lemma 16 there exists an
ascending abelian series (L,),, of H-invariant subalgebras of L. We claim that
for any a<4

L,+H<®Ly, +H. 0)

Clearly L,,,+ H is a subalgebra of L, and L, is an ideal of L,,;+H. Further-
more L, is an abelian ideal of L,,,+H=(L,,,+H)/L, and (H, L,,,) is an
N ,-pair. Hence by Lemma 3

H<*L,, , +H,
and we have (). It is now easy to see that
H=L,+ HascL, + H=L.

By the same argument as in the proof of Theorem 17 and by using Lemma
13 we can show the following

THEOREM 18. Let L be a Lie algebra over a field ¥ of characteristic 0.
Let H be a solvable subalgebra of L such that L/Core; (H)€ (U and that {a®)
is finitely generated for any ae L. If (H, L) is an E_-pair, then H is an as-
cendant subalgebra of L.

REMARK. Let L be a Lie algebra over a field T (resp. a field f of character-
istic 0). Let H be a subalgebra of L such that (H, L) is an N -pair (resp. E,-
pair). If He &, (resp. He &, N EA), then (Cafl) + H®)/H® is finitely generated
for any ae L.

We shall give the proof only for an N -pair and omit the proof of the other
case. By Lemma 1 H*< N_(H)=L, so that we can consider the quotient
algebra L/H®. Since H/H”e @, we may assume that H is finite-dimensional
and nilpotent. Let X be a basis of H. Then for any a € L there exists n=n(a)
such that

[a, ,X] = H.
Since H is nilpotent,
[a, yomX] & H*1 =0
for a sufficiently large m. Therefore

(a¥y =([a, X]|0<i<n+m)
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is finitely generated.

4. Examples

In Theorems 4 and 7 we observe the case where m=2. In this case the as-
sertions become H<"*'L. The subideal index n+1 of H is best possible for
n>1.

In Theorem 7 (resp. Theorem 8) we assumed that the characteristic of the
basic field f is either 0 or p>n (resp. is not 2). These restrictions cannot be re-
moved.

We shall show these facts in the following examples.

ExampLE 1. Let f be any field and n be an integer >1. Define V to be
the vector space over f with basis {¢;|i=1, 2,..., 3n}, and define endomorphisms
fand g of Vby

€41 if i# n,2n, 3n,
ef= l
if i=mn,2n, 3n;
€nti if i=1,2,...,2n,
eg = [
if i=2n+1,2n+2,..,3n.

Clearly f and g are commutative. Consider V as an abelian Lie algebra so that f
and g are derivations of V. Define

L=V4+(f 9,
and put
H = (ey, ey,..., &, €3,) + (f).
It is clear that H is a subalgebra of L. It is easy to see that for 1<i<n-—1
[L, H] = (€141 €it25--e5 €ns s Entit1sees €am €2ntit 1> Conti+2ses €3p)
and
(L, H] = (ez)) S H.

Let H; be an i-th ideal closure of H in L for i=1, 2, 3,.... Then we easily see
that

Hy =<HY =V+ (),
H; = CH¥i-1)
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= (€1, €25eevs €ny Cnis Cukit 15> Coms €2ntis Contit1seees €35) + ()

for 2<i<n,
and
Hn+1 = <HH"> = (81, €25.05 €y ein) + (f) =H.

Therefore (H, L) is both an N,-pair and E,-pair. But H<a"*1L and H is not an
n-step subideal of L.

ExampLE 2. Let T be a field of characteristic p>0, and let Z[f] be a poly-
nomial ring. Define V to be the vector space over f with basis {e,|a € S}, where

S={X;at'eZ[t]|0 < a; < p for any ieN}.

For each ne N define an endomorphism f, of V as follows: For any a=3Y;a,t
€S

€apm if a,#p-—1,
efn=
0 if a,=p-—1.
Then for any n, meN
fﬁ =0, fnfm =fmfm
and for any a, et (reN)
& e f)r=Z,00f7 =0. (%)

Put H=(f,|neN). Then H is an abelian Lie subalgebra of End, (V). Consider
V as an abelian Lie algebra so that each of the elements in H is a derivation of V.
Define

L=V4H.

Then L is a solvable Lie algebra of derived length 2, and H is a subalgebra of L.
By (¥)

[L, x]=[V, x]=Vx? =0
for any xe H. Therefore (H, L) is an E,-pair for any n>p. However, since
I, (H)=H,

H is neither a subideal nor an ascendant subalgebra of L.
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