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Introduction

A Lie algebra is called supersoluble if it has an ascending series of ideals
whose factors are of dimension <1. Many authors, especially Barnes [5] and
Barnes and Newell [6], have presented some properties of finite-dimensional
supersoluble Lie algebras. A group is said to be supersoluble (or hypercyclic)
if it has an ascending normal series whose factors are cyclic. Some properties of
finite supersoluble groups have been presented in [12]. In [2] and [4] Baer has
investigated supersoluble groups and has established the close connection with
hypercentral groups. The purpose of this paper is first to show the connection
between supersoluble Lie algebras and hypercentral Lie algebras, secondly to
generalize some properties of hypercentral Lie algebras to those of supersoluble
Lie algebras, and thirdly to characterize supersoluble Lie algebras by the weak
idealizer condition. We shall also investigate locally supersoluble Lie algebras.

In Section 1 we shall give basic properties of supersoluble Lie algebras.
Baer [2, Proposition 2] has shown that the derived group of a supersoluble
group is hypercentral. In Section 2 we shall show the Lie analogue of this and
characterize the Hirsch-Plotkin radical of a supersoluble Lie algebra as the unique
maximal hypercentral ideal. In Section 3 we shall give criteria for a supersoluble
Lie algebra to be hypercentral and for a locally supersoluble Lie algebra to be
locally nilpotent, by using the nonexistence of non-abelian 2-dimensional sub-
algebras. We shall also give a criterion for a locally finite Lie algebra over an
algebraically closed field to be locally nilpotent. It is known [12, p. 7] that the
product of two finite supersoluble normal subgroups of a group need not be
supersoluble. We shall show in Section 4 that over a field of characteristic zero
the sum of two supersoluble (resp. locally supersoluble) ideals of a Lie algebra is
always supersoluble (resp. locally supersoluble). We shall also investigate
coalescence. It has been shown that every infinite-dimensional hypercentral
(resp. locally nilpotent) Lie algebra has an infinite-dimensional abelian ideal
(resp. subalgebra) [1, Theorems 10.1.1 and 10.1.3]. We shall show in Section 5
that we may replace ‘hypercentral’ or ‘nilpotent’ by ‘supersoluble’ in the preceding
assertion. Bear [4] characterized supersoluble groups and locally supersoluble
groups by the weak normalizer condition. We shall consider its Lie analogue in
Sections 6 and 7. Proofs are slightly different. ‘
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1.

Throughout this paper we shall be concerned with Lie algebras over an
arbitrary field ¢ which are not necessarily finite-dimensional unless otherwise
specified. We shall always denote by L a Lie algebra.

The notation will follow that of [1]. In particular H< L(resp. H<S L, HL,
H si L, H<"L) indicates that H is a subset (resp. a subalgebra, an ideal, a subideal,
an n-step subideal) of L. For A4, B S L, A% is the smallest subspace containing A4
which is B-invariant. {,(L) is the ath term of the upper central series of L.
& (resp. &, A, N, A, 3, LR, LF) is the class of Lie algebras which are of dimension
<1 (resp. finite-dimensional, abelian, nilpotent, soluble, hypercentral, locally
nilpotent, locally finite). If X and 9 are two classes of Lie algebras, then X9 is
the class of Lie algebras L having an ideal I € X such that L/[€9). If Le X9,
then L is called an X-by-%)-algebra. E(<1)X (resp.E(<])X) is the class of Lie al-
gebras which have an ascending (resp. a finite) series of ideals whose factors belong
to X. More precisely L € B(<1)¥ (resp. E(<])¥) if and only if there exist an ordinal
(resp. a finite ordinal) « and a family (L,),., of ideals of L such that

(1) Ly=0,L,=1L,

(2) L;=\Up<s Ly if Ais a limit ordinal,

(B) Ly<dLgy,; if f<a,

4) Lpyqi/LgeX if B <o
In particular E(<)J, is the class of supersoluble Lie algebras (or hyper-§&, Lie
algebras) and E(<]), is the class of finite-dimensional supersoluble Lie algebras.

The next lemma characterizes £(<])X.

LemMa 1.1. Let X be a Q-closed class of Lie algebras. Then Le¥(<])X
if and only if every non-zero homomorphic image of L has a non-zero X-ideal.

ProoOF. Let Lek(<])X. Take an ascending X-series (Lg)y<, of ideals of L
and let I be a proper ideal of L. Then there exists an ordinal f minimal with re-
spect to L,,i I. Clearly B is neither zero nor a limit ordinal. By the minimality
of f we have Ly_{<I. Hence (Ly+1I)/I=Lg/(Lgn1I)is a homomorphic image of
an X-algebra Lg/Ls_;. Thus (Lg+1)/I is a non-zero X-ideal of L/I.

Conversely suppose that every non-zero homomorphic image of L has a
non-zero X-ideal.  Put L,=0. Now suppose that for a non-zero ordinal a we
have constructed a well-ordered ascending sequence (L;);<, of ideals of L such
that Ly, /LseX for f+1<a. If a is a limit ordinal, then put L,=\Uzc, Lg.
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Suppose that « is not a limit ordinal. If L,_, =L, then L/L,_; has a non-zero
X-ideal L,/L,_,. Thus we can construct an ascending X-series of ideals of L.
This completes the proof.

COROLLARY 1.2. If X is a Q-closed class of Lie algebras, then (<)X is
Q-closed.

PrOOF. Let Le¥(<])X and let M be a homomorphic image of L. Then a
homomorphic image of M is also that of L. The statement follows from Lemma
1.1. '

It is easy to show the following
LemMA 1.3. If X is an s-closed class of Lie algebras, then &(<Q)X is s-closed.

LEMMA 1.4. Let X be an 1-closed class of Lie algebras and let I be a non-
zero ideal of an £(<)X-algebra L. Then I contains a non-zero X-ideal of L.

PRrOOF. Let (Lg);<, be an ascending X-series of ideals of L.  Then there exists
an ordinal f minimal with respect to Ly nI#0. Clearly B is neither zero nor a
limit ordinal. By the minimality of f we have L;,_, n I=0. Hence we obtain

LynI=LgnD(Lg_ynI)=((LygnI)+ Ly_)/Ly_y < Lg/Lg_;.
Since 1X=X, we have LynleX. Hence Lyn[ is a non-zero X-ideal which is
contained in I.
A class X of Lie algebras is called D-closed if L, € X (A€ A) implies @,.4 L; € X.
LEMMA 1.5. For any class X of Lie algebras £(<1)X is D-closed.

Proor. Let (Lg)s<, be a well-ordered family of #(<])X-algebras and let
L=®p<, L. For f<alet (My,),<s4) be an ascending X-series of ideals of L,.
For f<a and y< 6(p) put

Nﬁ,‘)’ = (®ﬂ<ﬂ L‘L) @ Mﬁ,}’ al‘ld Na’O = L~
It is easy to see that (N, ,) is an ascending X-series of ideals of L.
By the preceding results we have

PROPOSITION 1.6. (1) Let L be a Lie algebra. Then L is supersoluble if
and only if every non-zero homomorphic image has a 1-dimensional ideal.

(2) E(<F, is {Q, S}-closed.

(3) Let L be a supersoluble Lie algebra and let I be a non-zero ideal of L.
Then I contains a 1-dimensional ideal of L.

@) E(<)F, is D-closed.
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REMARK: A class X of Lie algebras is called c-closed if L, € X (1 € A) implies
Cr,.4 L, e X, where Cr,., L, is the Cartesian sum of L,. By [1, p.21]a {qQ, s, C}-
closed class is L-closed. We shall show later (Proposition 3.1) that (<), is
not L-closed. Therefore £( <), is not c-closed.

2.

In this section we shall show that the derived algebra of a supersoluble Lie
algebra is hypercentral and investigate the Hirsch-Plotkin radical of a supersoluble
Lie algebra.

A chief factor of L is a pair (H, K) of ideals of L such that K< H and such
that H/K is a minimal ideal of L/K. We denote a chief factor (H, K) by H/K.

LEMMA 2.1. If H/K is a chief factor of a supersoluble Lie algebra L, then
dim H/K=1.

PrROOF. By Proposition 1.6 (2) we have L/KeE(<)F,. By Proposition
1.6 (3) H/K contains a 1-dimensional ideal I/K of L/K. Since H/K is a minimal
ideal of L/K, we have H/K=1I/K. Therefore dim H/K=1.

As in [1, p. 244] let
P(L) = nC(H/K)

where the intersection is taken over all chief factors H/K of L and C,(H/K) is the
centralizer of H/K in L, thatis, C,(H/K)={xe L:[H, x]€K}. Clearly Y(L)<L.

LEMMA 2.2. If L is supersoluble, then L?<¥(L).

Proor. Let H/K be a chief factor of L. By Lemma 2.1 dim H/K=1.
Hence the derivation algebra of H/K is abelian. Therefore L? acts trivially on
H/K. Thus L2<¥Y(L).

LEMMA 2.3. If L is supersoluble, then ¥Y(L) is hypercentral.

PrOOF. Let (Lg)s<, be a strictly ascending &,-series of ideals of L. Put
I=¥(L) and Iz=1n L;. We shall prove by transfinite induction that 15<{s(1).
Let f>0 and assume that I,<{(I) for y<p. If B is a limit ordinal, then I,<
{g(I). If B is not a limit ordinal, then [Lg I1<L,_,, since Ly/L,_, is a chief
factor of L. Hence I,<{4,(I). Thus ¥(L)e 3.

THEOREM 2.4. JSH(<)F, =3U.

Proor. By Lemmas 2.2 and 2.3 we have B(<)F, <J3U. Since the central
series of a hypercentral Lie algebra can be refined to a series of ideals with 1-
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dimensional factors, we have 3<E(<1)&;. The 2-dimensional non-abelian Lie
algebra belongs to E(<)§;, but it is not nilpotent. Therefore 3SE(<Q)EF;.
Finally let Vbe an abelian Lie algebra with basis {e,, e,,...}. Let o be a derivation,
called the upward shift on V, such that e,c =e,,, (n1>1). Form the split extension
L=V 4<{6)>. Then LeU2<3A. Tt is easy to see that L has no 1-dimensional
ideals. Thus Le 3W\&(<)F;.

ReMARK: From [6, Lemma 2.4] it follows that E(<)F, =& n NA over an
algebraically closed field. If @ is not algebraically closed, then it follows from
Proposition 3.7 and its remark that B(<Q)§; =& n RU.

It follows from [1, Lemma 8.1.1] that the derived algebra of a non-zero
3U-algebra is a proper subalgebra. Hence we have the following

COROLLARY 2.5. If L is a non-zero supersoluble Lie algebra, then L2 L.

LeEMMA 2.6 ([8, Theorem 8]). CEnE<F=Cn&(<DF,=LNn E<DF:=3,
where € is the class of Engel algebras.

The Hirsch-Plotkin radical p(L) of L is the unique maximal LR-ideal of L
(cf. [1, p. 113]).

THEOREM 2.7. If L is a supersoluble Lie algebra, then L?<¥(L)=p(L)
and p(L) is the unique maximal hypercentral ideal of L.

Proor. By Proposition 1.6 (2) and Lemma 2.6 we have p(L)e 3. Since
3<LN, we have that p(L) is the unique maximal hypercentral ideal of L. By
Lemmas 2.2 and 2.3 it is sufficient to prove that p(L)<¥(L). Let H/K be a chief
factor of L. We show that [H, p(L)]< K. By Lemma 2.1 it is sufficient to see
that if I is a 1-dimensional ideal of a Lie algebra M and J is a locally nilpotent
ideal of M, then [1, J]=0. LetI={x). Then forany yeJ there existsa=a(y) e
@ such that [x, y]=ax. Since J is a locally nilpotent ideal of M, there exists a
positive integer n such that [x, ,y]=0. Hence a=0. Thus [I, J]=0.

3.

The simplest example which is supersoluble but non-nilpotent is the 2-
dimensional non-abelian Lie algebra. By using this we shall give criteria for a
supersoluble Lie algebra to be hypercentral and for a locally supersoluble Lie
algebra to be locally nilpotent. First we investigate the class of locally super-
soluble Lie algebras.

PROPOSITION 3.1. E(<)&; SLE(<)F; =LE(DF; <L(F n EA).



580 Yoshimi KASHIWAGI

Proor. By [10, Corollary 3.3] we easily obtain

E<Q)F; < LE(QF; = LA(QDF; < L(F N EA).

Assume that E(<)F; =LE(<])F;- Let M be a McLain algebra .#4(Q), where
Q is the field of rational numbers. Then

MeLR®0 and M = M?

[11, p.96]. By LN<LE(<)F, -and the assumption we have M e E(<])F;. By
Corollary 2.5 M25xM. This is a contradiction. Thus we have E(<)F =

LE(<)&;-

In the rest of this paper we mostly use the notation LE(<])§, for the class
LB(<Q)F =LE(<)F;- _

" Let H be a subalgebra of L and let X~ be a totally ordered set. Then H is
called serial in L and denoted by H ser L if there exists a family {4,, V,: 0€ X}
of subalgebras of L such that

(1) H< A, and H <V, for all o,
(2) L\H = Uses (4,\V,),

3 4.<V, fr<o,

@ V,<14,.

LemMA 3.2. Let L be locally finite.. Then the following are equivalent:
(1) L is locally nilpotent.

(2) Every subalgebra of L is serial.

(3) Every 1-dimensional subalgebra of L is serial.

Proor. Let LeL%t and let H be a subalgebra of L. If F is a finite-dimen-
sional subalgebra of L, then we have H n F si F, since Le L. By [1, Proposition
13.2.4] we have Hser L. Thus (1) implies (2). It.is trivial that (2) implies (3).
Finally assume (3). Let H be a finitely generated subalgebra of L. Since LeL,
we have He §. By the assumption every 1-dimensional subalgebra of H is a
subideal. Let xe H and let (x)<|"H. Then it is easy to see that [H, ,,;x]=0.
Hence adg x is nilpotent for any xe H. By Engel’s theorem we have H e .
Hence Le L. Thus conditions (1), (2) and (3) are equivalent.

-Now we can give criteria for a supersoluble Lie algebra to be hypercentral.

THEOREM 3.3. Let L be a supersoluble Lie algebra. Then the following
are equivalent:

(1) L is hypercentral.

(2) Every subalgebra of L is ascendant.

(3) Every subalgebra of L is serial.
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(4) Every 1-dimensional subalgebra of L is ascendant.
(5) Every l-dimensional subalgebra of L is serial.
(6) Every 2-dimensional subalgebra of L is abelian.

Proor. It is well known that (2)_ is a consequence of (1). Evidently we
have the following implications:

(2 =0)=0), Q=@ =0).

Since every 2-dimensional non-abelian Lie algebra has a 1-dimensional subalgebra
which is not a subideal, (5) implies (6). Finally assume (6). Suppose that L& 3
and so {W(L)SL. Put L=L/{4(L). In the rest of the proof we denote a+{,(L)
in L by a. By Proposition 1.6 (1) L has a 1-dimensional ideal (X} (x € L\{+(L)).
Since {,(L)=0, there exists ye L\{4(L) such that [X, y]#0. Since (X)L,
we can find a non-zero scalar « such that [X, y]=aX. Replacing (1/x)y by j,
we obtain

(*) [x, y]=X.
Hence [x, y]—x € {4(L). By [8, Proposition 5] there exists a positive integer n
such that [[x, y]—x, ,y1=0. Put z=[x,,y]. Then [z, y]=z. By (%) z=

[X, ,y1=%%#0. Thus {y, z) is a 2-dimensional non-abelian subalgebra of L.
This is a contradiction. . Therefore Le 3. This completes the proof.

REMARK: By Proposition 3.1 and [7, Theorem 2.7] we can add the follow-
ing conditions to those in Theorem 3.3:

(7) Every subalgebra of L is weakly serial.

(8) Every 1-dimensional subalgebra of L is weakly serial.

COROLLARY 3.4. Let L be locally supersoluble. Then the following are
equivalent:

(1) L is locally nilpotent.

(2) Every subalgebra of L is serial.

(3) Every 1-dimensional subalgebra of L is serial.

(4) Every 2-dimensional subalgebra of L is abelian.

Proor. By Propbsition 3.1 and Lemma 3.2 we have the equivalence of (1),
(2) and (3). Evidently (1) implies (4). Assume (4). Let H be a finitely generated

subalgebra of L. Since L e LE(<])&;, we have H e E(<)F;. Hence by Theorem
33 HeN. Thus LeLN.

ReEMARK: By [7, Theorem 2.7] we can add the following conditions to those
in Corollary 3.4:

(5) Every subalgebra of L is weakly serial.
(6) Every 1-dimensional subalgebra of L is weakly serial.
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Over an algebraically closed field we can generalize Corollary 3.4.

LeEMMA 3.5. Let L be finite-dimensional over an algebraically closed field.
Then L is nilpotent if and only if every 2-dimensional subalgebra of L is abelian.

Proor. The implication in one direction is evident. Assume that every
2-dimensional subalgebra of L is abelian. Let x € L and let « be an eigenvalue of
ad; x. Let ye L\O such that [y, x]=ay. It follows that «=0. Hence ad, x
is a nilpotent endomorphism of L. By Engel’s theorem we obtain L e N.

By Lemmas 3.2 and 3.5 we have

THEOREM 3.6. Let L be a locally finite Lie algebra over an algebraically
closed field. Then the following are equivalent:

(1) L.is locally nilpotent.

(2) Every subalgebra of L is serial.

(3) Every l-dimensional subalgebra of L is serial.

(4) Every 2-dimensional subalgebra of L is abelian.

The following example shows that we cannot remove the restriction on the
base field in Theorem 3.6.

PROPOSITION 3.7. If the base field @ is not algebraically closed, then there
exists Le (& n W2)\R in which every 2-dimensional subalgebra is abelian.

Proor. Since @ is not algebraically closed, there exists a monic irreducible
polynomial f(¢) of degree n>1. Put

f@O=t"+agt" ' +--+a, (a;e ).

Let V be an abelian Lie algebra with basis {e,,..., ¢,} and let x be a derivation
such that

ex =¢e4,(i=1,.,n—1) and ex= — Y7, aqe;.

Then it is not so difficult to see that the characteristic polynomial of x is f(2).
Let L=V 4 (x) be the split extension of ¥V by {(x)». Clearly Le & n 2. Since
f(®) is irreducible, we have f(0)#0. Hence 0 is not an eigenvalue of ad, x.
Thus L&R. Now suppose that there exists a 2-dimensional non-abelian sub-
algebra. Then there exist u, ve L\O such that [u, vJ=u. Clearly L2<V. Hence
ueV. Putv=w+ax withweVand ae®. Then

[u, ax] = [u, w+ax] = [u, v] = u.

Since u#0, we have a#0. Now put u=>1%, Bie; with g,e® (i=1,...,n).
Then
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u=[u, ax] = a( 1] Bieiry — Bu Zi=1 aie).
Hence we have
(%) fi=—waaf, and B;=oaf;_; —aaf, (i=2,.,n).
If we add §; multiplied by a"~J (j=1,..., n), we obtain
B (l1+aa,+a%a,_ ,+--+a"a,) =0

Dividing by «", we obtain f,f(1/a)=0. Sincé f(t) is irreducible, we have
f(1/e)#0. Hence f,=0. By (*) we have

By=B,==p8,=0.

This is a contradiction. Thus every 2-dimensional subalgebra of L is abelian.
This completes the proof.

REMARKS: (1) By Theorem 3.3 the Lie algebra in Proposition 3.7 is not
supersoluble.

(2) Let LeL® over an algebraically closed field or L € LE()§,; over any
field. If d1m L>2,'then L has a 2-dimensional subalgebra.

4.

A class X of Lie algebras is called Ny-closed if whenever I and J are X-ideals
of L then I+Je€X. In this section we shall show the Ny-closedness of E(<1)§F,
and LE(<])§, over a field of characteristic zero. First we give an example [1,
Lemma 3.1.1] which suggests that we must restrict ourselves to fields of char-
acteristic zero.

LEMMA 4.1. Over a field of characteristic p>0 there exists a non-supersol-
uble Lie algebra which is a sum of two finite-dimensional supersoluble ideals.

PrROOF. Let V be an abelian Lie algebra with basis {eo, e;,...,¢,_;}. Let
x and y be derivations of ¥ such that

ex =¢e,, and ey =ie_, (i=0,..,p-1

where e_; =e,=0. Put z=[x, y]. Then z is the identity map of V. Let L=
V +<{x, y) be the split extension of V by (x, y>. Put L,=V+{x, z) and L,=
V+<y, z>. Then L, L,<{L. L, has the following series of ideals of L :

(epy) <Kepid +<ep2d << VS V+{(2) <L,

Hence L, €eE(<1)&,. Similarly we have L, e B(<)§,, since it has the following
series:
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Ceo) < ey +<ey) << V< V+<(z) <L,

Clearly L=L+L,. ' ‘Now L>=V+{z)&N. Hence by Theorem 2.4 we have
L&)

The following lemma, which is a Lie analogue of [4, Lemma J. 2], gives a
criterion for a sum of two supersoluble ideals of a Lie algebra to be supersoluble.

LEMMA 4.2. Let L be a sum of two supersoluble ideals. Then L is super-
soluble if and only if L? is hypercentral.

Proor. By Theorem 2.4 we have one implication. Let I and J be super-
soluble ideals of L such that L=1+J and assume that L2e€ 3. We may suppose
that L#0. Every homomorphic image of L is a sum of two supersoluble ideals
and its derived algebra is hypercentral. Hence by Proposition 1.6 (1) it is sufficient
to prove that L has a 1-dimensional ideal. Now we consider two cases.

Case 1: L2nInJ=0. Clearly L/L?, L/I and L/J are supersoluble.
Hence by Proposition 1.6 (4) L/L2@®L/I@®L/J is supersoluble. Since L is iso-
morphic to a subalgebra of L/L2@® L/I®L/J, we have L e E(<)F;.

Case 2: L2nInJ#0. Since L2nInJ<L? and L?€ 3, we have {{(L?)n
InJ#0 (e.g., see [9, Lemma 3.1]). - Put K={,(L2)nInJ. By Proposition 1.6
(3) K contains a 1-dimensional ideal of I. Hence there exists x € K\0 such that
[x, yJe{x> for any yel. Put V={xL). Then 0#V<K. Let yel. Then
[x, y]J=ax for some ae®. Let n be a non-negative integer and let x;eL
(i=1,...,n). Then [[x, x(..., X, ], Y1 =[[%, ¥1s X15ee0r Xud + 2 0eq [X5 Xq5ee0y
Xi—1> [Xis Y], Xig15---» Xa]. Since x € K< {;(L?)<]L, we obtain

[[x, xq5-.05 X, y1 = alx, xq,..., X,,] -
Hence we have [v, y]=av for any ve V. Therefore
(*) [v, I] = <v) for any ve V.

Since 0# V<L and V< K<J, Vis a non-zero ideal of J. Hence by Proposition
1.6 (3) V contains a 1-dimensional ideal U of J. By (x) U is I-invariant. Since
L=1I+J, U is a 1-dimensional ideal of L. This completes the proof.

THEOREM 4.3. Let L be a Lie algebra and let 1,,..., 1, be finitely many
supersoluble ideals of L such that L=Y7_,1,., Then the following are
equivalent:

(1) L is supersoluble.

(2) L2 is hypercentral..

(3) L? is locally nilpotent.

(4) For1<i<j<n [l I] is locally nilpotent.

(5) Forl<i<j<n [l I;] is hypercentral.
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- ProOF. By Theorem 2.4 ‘we see that (1) implies (2). Since J<LR, (2)
implies (3). It is clear that (3) implies (4). Since /;is a sﬁpﬁzrso]uble ideal of L,
we have [I; I;]€&(<])F,. Hence by Lemma 2.6 we see that (4) implies (5).
We use induction on n to show that (5) implies (1). Let n>1 and assume that
>nztI,e6(<1)F;. Then L is the sum of two supersoluble ideals > %z} 1I; and
I,. By the Ny-closedness of 3 and L?=37_, I+ X ;<; [I;, I;], we obtain L? e 3.
By Lemma 4.2 we have L € &(<)F;.

ReEMARK: By Lemma 2.6 we may replace ‘locally nilpotent’ by ‘an Engel
algebra’ in (3) and (4).

Modifying the proof of [8, Proposition 3] slightly, we have

PROPOSITION 4.4. If I is a hypercentral ideal of a Lie algebra L and H is
an ascendant supersoluble subalgebra of L, then I+ H is an ascendant super-
soluble subalgebra of L.

PrOOF. Put J=I+H. We may assume that J#0. As in the proof of
Lemma 4.2 it is sufficient to show that J has a 1-dimensional ideal. If I=0,
then J=H e &(<)&;- So we suppose that I#0. Since I€ 3, we have {;(I)#0.
Let (Hy)p<, be an ascending series from H to L. Then there exists an ordinal f
minimal with respect to Hy 0 {;(I)#0. ~ Clearly f is not a limit ordinal. If #=0,
then 0#£H n{;(I)<AH and hence by Proposition 1.6 (3) H n'¢{,(I) contains a 1-
dimensional ideal K of H. Since K<{,(I) and J=H+1I, we have K<J. If
B#0, then Hy_; n {;(I)=0. 1t follows that [H,n {,(I), I+H]=H,;_, n {{(D)=0.
Hence 0# Hy 0 {;(I)<{;(J). Thus J has a 1-dimensional ideal.

The next corollary is a Lie analogue of [4, Lemma J.1].

COROLLARY 4.5. A sum of a supersoluble ideal and a hypercentral ideal
of L is supersoluble.

In the rest of this section we assume that the base field @ is of characteristic
zero. It is known that the derived algebra of an (§ n EY)-algebra is nilpotent.
Hence it is easy to see that the derived algebra of an L($ n E2A)-algebra is locally
nilpotent.

THEOREM 4.6. Over a field of characteristic zero &(<)§, is No-closed.

PROOF. Let L be a Lie algebra and let I and J be £(<)&,-ideals of L such that
L=I+J. By Proposition 3.1 I, JeL(FnEeA). By [1, Corollary 6.1.2] Le
L(F nEA). By the remark above L?2eLM. Hence by Theorem 4.3 we have
that L e 5(<)F;-

" COROLLARY 4.7. Over a field of characteristic zero E(<)&, is No-closed.
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A class X of Lie algebras is called coalescent (resp. ascendantly coalescent)
if in any Lie algebras the join of two X-subideals (resp. ascendant X-subalgebras)
is always an X-subideal (reap. ascendant X-subalgebra). It is known that over a
field of characteristic zero every {Ng, 1}-closed subclass of ‘§ is coalescent and
ascendantly coalescent [1, Corollary 13.3.5]. By Proposition 1.6 (2) and Co-
rollary 4.7 (<), is {Ng, 1}-closed. Hence we obtain

COROLLARY 4.8. Over a field of characteristic zero B(<1)§; is coalescent
and ascendantly coalescent.

By Corollary 4.7 and [1, Theorem 6.1.1] we have
THEOREM 4.9. Over a field of characteristic zero LE(<])§, is Ng-closed.

A class X of Lie algebras is called locally coalescent if whenever H and K
are X-subideals of L, to every finitely generated subalgebra C of (H, K there
corresponds an X-subideal X of L such that C< X <(H, K)>. By [1, Theorem
4.2.4] any complete (for the definition see [1, p. 85]) and {N,, 1}-closed subclass
of LE is locally coalescent. As in [1, p. 85] it is seen that E(<1)&F, and LE(<Q)F,
are complete. Therefore we obtain

THEOREM 4.10. Over a field of characteristic zero €(<1)§,; and LE(<)F,
are locally coalescent.

5.

In this section we shall show the existence of an infinite-dimensional abelian
ideal (resp. subalgebra) in any infinite-dimensional supersoluble (resp. locally
supersoluble) Lie algebra.

Let S be a subset of L. The centralizer C,(S) of S in L is the set {xeL:
[S, x]=0}. If S<L, then C,(S)L.

LEMMA 5.1. If A is a maximal abelian ideal of a supersoluble Lie algebra,
then C;(A)=A.

PrOOF. Put C=C;(A4). Assume that ASC. Let (Lp)p<, be an ascending
&, -series of ideals of L. There exists an ordinal f minimal with respect to C n
Lgf£A. Clearly B is neither 0 nor a limit ordinal. Hence CnL;_;<A. We
have '

0#(CNnLYCNLs_)=((CnLg)+ Ly_y)/Lg_i < Lg/Lg_;.

Hence dim (CnLp/(CnLs-y)=1. Let xe(CnLy\A. It follows that x&Cn
Ls_y. Therefore CnLy=<{x>+(CnLs_,). Put B={x)+A. Since xeC=
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C.(A), we obtain Be A. Wehave B=<{x)+A={x)+(CnLs_)+A=(CnLp+
A<L. Thus we obtained an abelian ideal B such that 4<B. This is a con-
tradiction. - '

By using the class Max-<J of Lie algebras which satisfy the maximal
condition for abelian ideals, we have

THEOREM 5.2. E(<)&F; N Max-JUA=g(<)§F,.

Proor. Evidently EB(<)F, <E(<)F, N Max-<JAU. Conversely let Le
E(<)F; N Max-<|U and let 4 be a maximal abelian ideal of L. Since we may
regard L/C;(A) as a subalgebra of Der A and C;(4)=A by Lemma 5.1, it is
sufficient to prove that Ae . Now let (Ly)y<, be an ascending §,-series of
ideals of L. Clearly dim(A4n Lg,;)/(AnLg<1. Since L e Max-<]U, we can
find finitely many ordinals y(i) such that '

{ANL;: 0< B <o} ={ANLyoys AN Ly}
and
0=ANLyoyEANLyyy S-S ANLy, = A

For i=0, 1,..., n let B(i) be an ordinal minimal with respect to 4 N Ly, =A N L,
Clearly y(i—1)xp(@i). Let y(i—1)<d6x£p(i). By the minimality of (i) we have
that AnL,;-,<ANLs;=ANLgy=ANL,;. Therefore AnL;=ANL,;_,) It
follows that (i) is not a limit ordinal and that A n Lg;-y=ANL,;-,, Hence
dim (A4 N L,;))/(A N Lyi-1y)=dim (40 Lg;))/(AN Lyy-1)=1. Thus A=An L,e
&. This completes the proof.

COROLLARY 5.3. Every infinite-dimensional supersoluble Lie algebra has
an infinite-dimensional abelian ideal.

Proor. Let LeE(<)&\& By Theorem 5.2 there exists a strictly increasing
chain (A4,)%, of abelian ideals of L. Then \U%, A4, is an infinite-dimensional
abelian ideal of L.

THEOREM 5.4. Every infinite-dimensional ELE(<])&,-algebra has an infinite-
dimensional abelian subalgebra, where ELE(<1)$, is the class of Lie algebras
which have an ascending LE(<])&,-series.

ProoF. Let L € ELE(<)§F,;\F and let (Lg)s<, be an ascending LE(<))F,-series
of L. There exists an ordinal # minimal with respect to L,& §. Clearly f#0.
Put M=L,; Suppose that B is not a limit ordinal. Then Ls;_ ;€@ and so
Ly_;eFneA. By Theorem 2.4 it is easy to see that LE(<)F; <(LIYA. Put
M=M|L;_,. Then MeLe(<)F\§ Hence M2eLN. If M2e§, then
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MeeW\F. By [l, Theorem 10.1.1(b)] M has an infinite-dimensional abelian
subalgebra. If M2& &, then by [1, Theorem 10.1.3] M? has an infinite-dimen-
sional abelian subalgebra H/L;_,. Since L;_, €, H is an infinite-dimensional
soluble subalgebra. By [1, Theorem 10.1.1(b)] H has an infinite-dimensional
abelian subalgebra. Now suppose that f is a limit ordinal. Then by the mini-
mality of § L,e & for any y<p and so L,,,/L,eB(<)F,. Hence we can refine
(L,),<s to an ascending A-series of M and so M e eMW\F. [1, Theorem 10.1.1(e)]
completes the proof.

6.

A group G satisfies the weak normalizer condition if for any H=G there
exists xe G\H such that {(x#><H. (x>, where H¢, ,, is the core of H in
{H, x). Baer [4] investigated the role of the weak normalizer condition in
supersoluble groups and locally supersoluble groups. We shall consider its Lie
analogue in this and the next sections. We say that a Lie algebra L satisfies the
weak idealizer condition if for any HL there exists x € L\H such that {x#) <
H¢y ,»+<x)>. Here Xy for a subalgebra X of a Lie algebra Y signifies the core
of X in Y, that is, the largest ideal of Y which is contained in X. Equivalently
L satisfies the weak idealizer condition if for any H= L there exists x € L\H such
that [5:, H]lec H<H,,>+<x>. It is easy to see that the idealizer condition implies
the weak idealizer condition. We denote by WIC the class of Lie algebras which
satisfy the weak idealizer condition. Tt is not so difficult to see the following

LEMMA 6.1. WIC is Q-closed.
Lemma 6.2. E(<)F, < WIC.

ProOF. Let Lef(<)F, and let HxL. Then H L. By Proposition
1.6 (1) L/H, contains a 1-dimensional ideal, say, ({(x>+H)/H,. If xe H, then
{x>+H_ <H;. Therefore x¢¢ H. Furthermore we have

M < (xE) <) + H < <x) + Heyy o
This completes the proof.
The following is a Lie analogue of [4, p. 112, Excursus on finite supersoluble
groups].

~-PROPOSITION 6.3. ~'Let L be a -finite-dimensional Lie algebra. Then the
following are equivalent:
(1) 'L is supersoluble.
(2) L satisfies the weak idealizer condition.
(3) If M is a maximal subalgebra of L, then there exists x € L\M such
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that {xL) <M +<{x).

Proor. By Lemma 6.2 (1) implies (2). It is evident that (2) implies (3).
Finally assume (3). Note that the property (3) is inherited by homomorphic
images. We use induction on n=dim L. If n=1, then there is nothing to prove.
Assume that n>1 and that the result is true for dim L<n. If there exists a maxi-
mal subalgebra M with M, =0, then by (3) we can find a 1-dimensional ideal I
of L. By induction hypothesis we have L/I e B(<])&,, whence Le E(<)&;. We
may assume that M,; #0 for any maximal subalgebra M of L. If n M, =0,
where the intersection is taken over all the maximal subalgebras of L, then there
exist finitely many maximal subalgebras M; of L such that (M,),n - n(M,) =
0. By induction hypothesis L/(M;), € E(<1)F,;. By Proposition 1.6 (4) @, L/
(M), eB(<)F,. Since we may regard L as a subalgebra of @®?_; L/(M;),, we
obtain LeE(<)F,. Finally let I=nM_ #0. By induction hypothesis L/l e
B(<)&;- [S, Theorem 6] completes the proof.

LEMMA 6.4. If the weak idealizer condition and the maximal condition on
soluble subalgebras are satisfied by L, then L is finite-dimensional supersoluble.

PrROOF. Let M be a maximal soluble subalgebra of L. Suppose that M L.
Then by the weak idealizer condition there exists x e L\M such that {(xM)<
My >+<x>. Since M eeW, we have My ,,+<{x>eEW. Hence {(xM)erA
and so (M, x) =M + {(xM) € e, which contradicts the maximality of M. Hence
L=M egW. Therefore Le Max neA=F n A, where Max is the class of Lie
algebras which satisfy the maximal condition on subalgebras. By Proposition
6.3 we have Leg(<)F;.

We denote by Max-EU the class of Lie algebras which satisfy the maximal
condition on soluble subalgebras. Then we have the following

COROLLARY 6.5. Max-E2 N WIC=Max n WIC=F n WIC=g(<)§,-
Proor. By Lemma 6.2 (<))&, <& n WIC. It is easy to see that
& N WIC < Max n WIC < Max-e2 n WIC.
By Lemma 6.4 Max-e2 n WIC <E(<)F;.
LEMMA 6.6. UAF, N WIC <E)F;.

Proor. Let LeUAF, n WIC and let E be a non-zero homomorphic image of
L.. By Proposition 1.6 (1) it is sufficient to see that E has a 1-dimensional ideal.
Evidently E€ AJ, n WIC. Hence there exist an abelian ideal A of E and xe E
such that E=A+<{x). We may suppose that A, (x)E. Since Ee WIC,
there exists ye E\(x) such that [x, y]Je{xD¢,,»+<y>. Hence {(x, y> is 2-
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dimensional. By the modular law we obtain {x, y>=({x, y> n 4)+<{x)>. Hence
{x, > n Ais l-dimensional. Put<{x, y> n 4=<a) withae A\0. We have [a, A]
=0 and [a, x]eAn<{x, y>=<a)d. Thus {a) is a 1-dimensional ideal of E. ,

Now we consider the following condition:

(C) Every finitely generated subalgebra of L satisfies the weak idealizer
condition.

Modifying the proof of [4, p. 115, (5)], we have the next lemma, which is a
generalization of its Lie analogue.

LEmMMA 6.7. Let Le NE(<)F,. If L satisfies the condition (C), then L is
supersoluble.

Proor. Let E be a non-zero homomorphic image of L. By Proposition
1.6 (1) it is sufficient to show that E has a 1-dimensional ideal. Clearly
E e AB(<))F, and so there exists an abelian ideal A of E such that E/4 e E(<1)§;.
We may suppose that A#0. Since E/A € E(<1)§,, there exist ideals 4; of E such
that

A=Ay, Ai+1/Ai€$; and A_n =E.

We prove by induction on i that A contains a non-zero J-ideal of A,. This is
certainly true for i=0, since Ao=A#0 is abelian. Now assume that i<n and
that I is a non-zero §-ideal of A; with I<A. Since A4;,,/A;€ &,, there exists
x€A;,, such that A;, =A4;+<{(x)>. Put J=I*®=3 -,[I, .x]. Then J<A.
By induction on m and

[[I’ mx]a A,] s [[I, m-lx]’ Ai9 X] + [£19 m—lx:l’ [X’ Ai]]a

we obtain J<JA4;,,. Since JXAeUA, we have JeN. Hence <1, x> =<I*, x)
=J+{(x) e AF,. By hypothesis it is easy to see that E satisfies the condition
(C). Since Iey, we have (U, x>e®. Hence <I, x> e AF, N WIC <&(<)F;
by Lemma 6.6. By Proposition 3.1 I, x>e®nE<F,<F Hence Je§.
Thus A contains a non-zero &-ideal of E. In particular every non-zero homomor-
phic image of L has a non-zero -ideal. Hence by Lemma 1.1 we have Ee
E(<1)F. By [10, Corollary 3.3] EeLg. Now let K be a non-zero J-ideal of E
with K< A. Since E/A € E(<1)E,, there exist finitely many elements x,..., x; of
E such that E={A, x{,..., X;». Since EeL{, we have <K, x,,..., x> €F. Put
H=(K, x,,..., x;». Since E satisfies the condition (C), we have H e Fn WIC.
Hence by Corollary 6.5 H ea(q)&. Since 0K <1H, we see by Proposition
1.6(3) that K contains a 1-dimensional ideal N of H. AHeAnc':e [N, x,JEN for
1<i<k. Since N<K<AeU, we have [N, 4]=0. Thus N is a 1-dimensional
ideal of E={A, xi,..., X;». This completes the proof.
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THEOREM 6.8. A Lie algebra L is locally supersoluble if and only if
(1) L belongs to LE(<)A and
(2) L satisfies the condition (C).

Proor. The implication in one direction is clear. Assume (1) and (2).
Let H be a finitely generated subalgebra of L. Clearly H € £(<q)2l and H satisfies
the condition (C). Let (Hg)s<, be an ascending A-series of ideals of H. We
can find an ordinal f minimal with respect to H/H;e §. By Lemma 6.1 and
Corollary 6.5 H/Hze N WIC=E(<)F;. Assume B#0. If f is not a limit
ordinal, we have H/H;_, € & N AE(<1)F,;. By Lemma 6.7 H/Hy;_, € & N E(<Q)F,
and so H/H;_; e E(<1)§; by Proposition 3.1. This contradicts the minimality of
B. We may assume that § is a limit ordinal. By [10, Lemma 3.1] there exist
finitely many elements. x,,..., x, of H, such that Hy=3 7, <(x#). Since f is
a limit ordinal, there exists an ordinal y < such that x;e H, for i=1,..., n and so
Hyz=H,. Thisis another contradiction. Hence f=0and so H e (<1)§;. Thus
LeLle(<),-

COROLLARY 6.9. L is finite-dimensional supersoluble if and only if
(1) L belongs to ® n&(<Q)U and
(2) L satisfies the condition (C).

PROPOSITION 6.10. Let L be a finitely generated Lie algebra which satisfies
the condition (C). Then the following are equivalent:

(1) L is finite-dimensional supersoluble.

(2) L is supersoluble-by-supersoluble.

(3) L is supersoluble-by-soluble.

(4) L is hypercentral-by-soluble.

(5) L belongs to JE(<1)A.

PrOOF. Clearly (1) implies (2) and (4) implies (5). Since ® N E(<PF, <
E(<Q)F; <EU, we have that (2) implies (3). By Theorem 2.4 it is easy to see that
(3) implies (4). Finally assume (5). Since every term of the upper central series
of a Lie algebra is a characteristic ideal, we have JE(<)U<E(<))A. Hence by
Corollary 6.9 Le (<), -

THEOREM 6.11. A Lie algebra L is supersoluble if and only if
(1) L satisfies the weak idealizer condition,

(2) L satisfies the condition (C) and

(3) every locally supersoluble subalgebra of L is supersoluble.

Proor. The implication in one direction is clear. Assume (1), (2) and (3).
By Zorn’s lemma there exists a maximal locally supersoluble subalgebra M of L.
By (3) M e (<)&;. Assume by way of contradiction that M L. By (1) we can
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find x e L\M such that [x, M]S My »+<{x)>. Put H={M, x) = M +<x) and
I=My > Since [x, M]=I4{x), we have ({x)+I)/I<{H[I. It follows that

HIKx>+1) = (M+e)/(Kx) +1) = M[(M 0 ({x) +1)) e (D

Hence H/I € §,E(<)F; =E(<)F;. Let K be a finitely generated subalgebra of H.
Then K/(KnI=(K+1)/Ieb(<Q)F,. Since I<Mek()F,, Knl is a super-
soluble ideal of K. Hence Keb&(<)FE(<)F,. By (2) and Proposition 6.10
Kep(<)F,. Hence HeLe(<)F,. This contradicts the maximality of M,
since MH. Thus L=M e &(<)F;.

7.

In Theorem 6.8 we have given a characterization of locally supersoluble Lie
algebras. In this section we shall give further characterizations of locally super-
soluble Lie algebras.

For a subalgebra H of L the idealizer I;(H) of H in L is the set {xeL:
[H, x]<H}.

LeEMMA 7.1. Let X be a non-trivial {s, E}-closed class of Lie algebras and
let L be a Lie algebra such that (x> e ® for any x, yeL. If H is an LX-
subalgebra of L and z € I;,(H), then H+<{z) e LX.

Proor. Let A be a finitely generated subalgebra of H+<z). Then there
exist finitely many elements x; of H such that A< {(x,,..., x,, z>. Put B={x,,...,
Xy 2y and I={{x;»®: i=1,...,n). Since zel(H), we have I<H. Evi-
dently I<{B. Hence B=1+(z). By hypothesis I€ ®. Since HeLX, we have
IeX. Hence BeX¥;<eX=Xand so AesX=X. Thus H+{z)eLX.

LEMMA 7.2. Let L be a Lie algebra which has ideals A, B and a subalgebra
H with the following properties:

(1) A, H and L/B are locally finite and

(2) BKAnNHand L=A+H.
Then L is locally finite.

ProoF. Let K be a finitely generated subalgebra of L. Since L=A+H,
there exist finitely generated subalgebras A; of 4 and H, of H such that K<
(A, H;>. Since HelL{, we have H; € §. Put M={A,, H;>. Since L/BeL§,
we have (M +B)/Be §. We have

(M+B)/B n A/B = ((Mn A)+B)/B = (M n A)/(Mn B),

whence (M N A)/((M N B)e§. Hence there exists an F-subalgebra A, of M n A4
such that M n A=A,+(M n B), and so by the modular law we obtain B+ A4,=
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B+(MnA)=(B+M)nA. Hence B+ A,<|B+ M. Since A4, isa finitely generated
subalgebra of B+ 4,, there exists a finitely generated subalgebra B, of B such that
A{<{By, A;>. Hence we have

(*) Kg <B19A29 H1>

Since A4,, H, € §, we have that [A4,, H,] is finite-dimensional. Since H, <M <
B+M and B+A,<|B+M, we have [A,, H{]J=B+A4,. Hence there exists a
finitely generated subalgebra B, of B such that [4,, H,]=<{B,, 4,). Put B;=
Bn<{B;, B,, H,>. Note that B;<|{B,, B, H;> € ®. Since B,, B,<B<H, we
have (B;, B,, H{)<H. Hence B;e§ and so (B3, A,>€®. Since B;<B<A,
A, <A and AeLy, we have {B;, A,>e§. Since B;<I{(B;, B,, H;), we have
[B;, Hi{]={Bj, A,). Also we have [A,, H,]<={B,, A,><{B;, A,>. Hence
(B3, A;><\{Bs, A, Hy) and so {Bj, A, H{)=(By, A,)+H €& By (x) and
B, < B; we obtain K<<{Bj, A,, H;> and so Ke . Thus LelL.

ReMARK: The proof of Lemma 7.2 is a modification of that of [3, p. 351,
Satz 1], in which it has been shown that if G is a group which has normal sub-
groups N, D and a subgroup U with the properties

(1) N, U and G/D belong to LMax and

(2) D<KNnUand G=NU,
then G belongs to LMax. In Lie algebras everything goes well if Max is replaced
by &.

THEOREM 7.3. Let L be a Lie algebra. Then L is locally supersoluble if
and only if L satisfies the condition (C) and one of the following conditions:

(1) (x9°) is finitely generated for any x, y € L. ,

(2) If H is an LMax-subalgebra of L and x e I;,(H), then H+ {(x) belongs
to LMax.

(3) If H is a locally finite subalgebra of L and x e I;(H), then H+{x) is
locally finite.

(4) If H is a locally supersoluble subalgebra of L and xe I (H), then
H+<{x) is locally supersoluble.

Proor. If LeLE(<])E;,then by Lemma 6.2 and Proposition 3.1 we have that
L satisfies the conditions (C) and (1). By Lemma 7.1 we have that (1) implies (2).
In the rest of the proof we suppose that L satisfies the condition (C). Assume (2).
Let H be a locally finite subalgebra of L and let xe I,(H). Since LF<LMax,
we have H+({x)eLMax. Hence H+{x)eL(Maxn WIC)=LE(<)§F; <LF by
Corollary 6.5 and Proposition 3.1. Thus (2) implies (3). Similarly we have the
equivalence of (3) and (4). Finally assume (3). Let K be a finitely generated
subalgebra of L and let M be a maximal locally finite subalgebra of K. Assume
by way of contradiction that M=K. Since K e WIC, there exists xe K\M
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such that [x, M]S My, +<{x)>. Put H=M¢y o, N={(M, x) and I=H+{x).
Clearly H and [ areideals of N, H<M nIand N=I+M. Since M eL, we have
HerL®. By (3) IeLy. Since I/H is a 1-dimensional ideal of N/H and N/I=
(M+D)/IeLE, we have N/He FLF<LE. Hence by Lemma 7.2 we obtain
N eLg. This contradicts the maximality of M. Therefore M=Ke® nNLF=F.
Thus L e L(§ n WIC)=Lg(<)§F, by Corollary 6.5. This completes the proof.

Now we consider the following condition for a Lie algebra L, which is a Lie
analogue of [4, p. 121], to characterize locally supersoluble Lie algebras:

(D) If H is a proper subalgebra of L and if I is an ideal of L such that
L=I+H, then there exists x € I\H such that {x"Y < H¢y »+<{x).

With the choice I =L, we see that the condition (D) implies the weak idealizer
condition.

LEMMA 7.4. Every supersoluble Lie algebra satisfies the condition (D).

Proor. Let Le&(<)F;, HEL and I<L such that L=I+H. Put J=
(InH),. Since HXL, we have JSL. Clearly I£H and so J£I. Hence I/J
is a non-zero ideal of L/J. By Proposition 1.6 (3) I/J contains a 1-dimensional
ideal K/J of L/J. Let xe K such that K=J+{x). If xe H, then K<In H and
so K=J, which is a contradiction. Hence xeI\H. Clearly J<H, . There-
fore we obtain

(xMy < (xby < K = J + (x> < Hg o + <X

THEOREM 7.5. Let L be a Lie algebra. Then L is locally supersoluble if
and only if every finitely generated subalgebra of L satisfies the condition (D).

ProOF. By Lemma 7.4 we have one implication. Suppose that every finitely
generated subalgebra of L satisfies the condition (D). By Theorem 7.3 and the
argument before Lemma 7.4 it is sufficient to see that if H is a locally finite sub-
algebra of L and xe I,(H), then H+{x)eL{. Put K=H+{x) and let G be a
finitely generated subalgebra of K. We may suppose xeG. Hence by the
modular law G=(Gn H)+{x)>. Assume by way of contradiction that G&L.
Let M be a maximal locally finite subalgebra of G which contains x. Clearly
M=G,G=(GnH)+M and Gn H<G. Hence by (D) we can find y e (G n H)\M
such that {(yM> < M¢y s+ <y>. Put J={M, y>, A=Mcy,,+<y> and B=
My ,s- Then A, B]J, BKANM and J=M+{y)=A+M. Since MeLG,
we have BelL{. Since {yM>< A, we have A=B+<{yM>. Since ye HIK, we
have {yM><HeLE. Hence by the Njy-closedness of L [1, Corollary 6.1.2]
AeLy. Clearly A/Bed; and J/AeLE. Hence J/Be §LFLLE. Therefore
by Lemma 7.2 we have JeL®. This contradicts the maximality of M. Hence
Ge®GNLF=F. Thus KeLF. This completes the proof.
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