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1. Introduction

Kac's model is a one dimensional model of the Boltzmann equation and is
written as follows :

(1.1) (ί, x, tOe[0, oo) x R x R,
F(0, x, I?) = FO(*, t?),

where F = F(t, x, ι?) is a distribution function of particles with velocity v at time
t and at position x and dtF = (d/dt)F etc. Q is a collision operator given by

Q(F, G) = (l/2)(π ί {F(t;ί)(^0 + F(!θ<faD^
J-π JΛ

where υ\ = t? sin θ + vl cos θ, v' = v cos 0 — i^ sin θ and F(v\) = F(ί, x, υ\) etc.
Throughout this paper we assume that I(θ) is a non-negative integrable func-

tion on [ — π, π] and satisfies /(#) = /( — θ).

Note that the absolute Maxwellian state #(ι;) = exp ( — ϋ2/2)/λ/2π is a stationary
solution for (1.1). Putting F — g + gl/2f and substituting it into (1.1), we have
the equation for /:

0,/= - υdxf+ Lf+ Γ(f,f) Ξ Bf+ Γ ( f , f ) ,
(1-2)

where Lf=2g-V2Q(g, g"2f) and Γ(f, f ) = g-U*Q(gV*f9 gWf). According to
[2], the eigenvalues {/LΠ}^=0 and the corresponding eigenvectors {en}^=0 of the
linearized collision operator L are given by

λ0 = 0, λn = (sin" θ+cos" θ-l)I(θ)dθ n ^ 1,
J-π

en = «„(») = exp (-v2/4)Hn(v-)l\\ exp (-«2/4)Hn(t;)||t2(Λu) n ̂  0,

where HH(v) are the Hermite polynomials. In particular it should be noted that

λ0 = λ2 = 0, λ, < 0 (n*0, 2), Iim,^β An = - v,
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5 v = \ I(θ)dθ. Here we shall suppose that the solution of (1.2) is g iv__
J— it

t, x, v)= Σm=o um(t> x)enM- Substituting it into (1.2) and using the relation

vem(v) = ̂ /mem-.1(v) + yjm + lem+ί(v)9 we get formally the following system of

equations for the unknown functions Ujj = Q, 1,...:

(1.3)

0 1

i o 72 o
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00

k wm(0, x) = (Mx, υ), <

where λtttm=(π cos" θ sinm ΘI(θ)dθ «, m^l. If wn = 0 for
J-π

reduced to

where

ιι(*>(0, x) = f(ιι0(0, x),-, wm(0, x)),

(*>(*, x) = ί(M0(ί, X),..., Mm(ί, ^)),

f O ' ί

i o 72" o

V2 0

o •-. o

°J

, (1.3) is
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and Wm is a nonlinear operator. See section 4. Throughout this paper we
consider (1.4. w) only for m^3.

The purpose of this paper is to show that the solutions of (1.4.w)m=3>4)...
converge to the solution of the original problem (1.2) for all time ί^O as w-»oo
if the initial value is small enough.

We summarize some results for (1.2) in the appendix without proofs, which
will be referred to in the posterior sections. See [6] for details. From Theorem
A.8 we see that (1.2) has a unique solution

/(r)eC°([0, oo); //,) n C'tfO, oo); (;,_>),

where Ht = //,(/?*; L2(RV}) =

= {f(x,v}eL2(Rx, Λ.)| I l l / I l l ? = ( ( (l + \ξ\)2l\m v)\2dvdξ < 00} / ̂  0,

P/-ι = {/(*» »)l{l/(l + M)}/e#ι-ι} '^1 and/(ξ, ϋ) is the Fourier transform of
/e L2(/?x, /?„) with respect to x,

/({, v) =

In section 2, we discuss the existence and the decay of the solutions for the
linearized equations of (1.4.m)m=3j4>....

In section 3, we deduce that the solutions for the linearized equations of
(1.4.m)m=3>4>... converge to the solution for the linearized equation of (1.2) as
m->oo in the norm

for any αe[0, oo), /^O.
In section 4, we show the existence and the decay of the solutions for

(1.4.m)m=3)4f... by estimating the operators Wm and then using an iteration scheme.
Finally in section 5, combining the above results, we deduce that the solutions

for (1.4.m)m=3>4>... converge to the solution for (1.2) as w-»oo in the norm

for any α 6 [0, 1/2), /^l.

Acknowledgement. The author is grateful to Professor K. Asano for his
valuable suggestions on this work and to Professor M. Mimura for his en-
couragement. Also she would like to express her gratitude to Professor
Y. Shizuta, Professor S. Ukai, Professor R. Sakamoto and Professor S.
Kawashima.
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2. Existence and decay of solutions for the linearized equation of (1.4. m)

In this section we discuss the linearized equation :

. .
( u<m>(0, x) = ιι{>m)(x) .

By the Fourier transform with respect to x we have

Let ξe/? be a parameter. We consider (2.1. m) in Cw+1 with the norm ||x|| =

l |x | lm = (ΣP=o l*il2)1/2» where x = f(x0, x lv.., xj. The following lemmas are
easily shown.

LEMMA 2.1 (i) σ(Tm(£))c {z|Re zgO},
(ii) σ(Tm(ξ)) n {z|Re z = 0} = 0, ι/ ξ* 0,

σ(Tm(ξ)) ϊ's the spectrum of Tm (ξ).

LEMMA 2.2 Tm(ξ) is a generator of a contraction semi-group {etTm^: ί^
in Cm+1.

The following proposition gives us an information about the resolvent set of

τm(ξ).

PROPOSITION 2.3
(i) For any β1e(0)κ/2] (κ= — maxy^0s2^7->0), there exist constants

(5>0 and c>0 which are independent of m such that

(a) infμ|^liR.^.3κ/4.ι«ι^ll(λ-Tlll(ί))yUc|^||, for y

(b) σ(Tw(0) Π {λ\\λ\<βί} = {λmj(ξ)}j=0ί2 for |5| g δ,

where λmj(ξ) are the perturbed eigenvalues of λj with respect to ξ.
(ii) For any <5'>0, there exist constants β2>® and c'>0 which are in-

dependent of m such that

infRe^-^lδl^a'IKA-Γ^^ll^c' l lyl l , for yeC^.

REMARK. It is very important that δ, c, β2 and c' are independent of m.
By this fact we can deduce the uniform decay of the solutions for (2.1.m)m=3j4> .
See Theorem 2.6.

PROOF OF (i) Put
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(2.2) α-Γm(ξ))7=x,

where y = t(y0, yl9..., yj, x = t(x0, x^..., xm) and λ=-β + iγ. Taking the
inner product of (2.2) with y and taking the real part of it, we have for

-3κ/4

(2.3) (l/β)||x||2 + B\\y\\*Z \\x\\\\y\\

^ (-3ιc/4) Σ;=o,2 \yj\2 +

The constant ε>0 is determined later. Considering the first and the third
components of (2.2) for \λ\^.β^ and |ξ|^5, we get

(2.4)
^ \y2\

2-

The constant <5>0 is determined later. Substitution of (2.4) into the right hand
side of (2. 3) yields

(2.5) (iMllx

where cl = 9κj4β\ , c2 = 21κ/4βl and c3 = κ/4. Calculating 2ε(2.4) + (2.5), we have

^ β|b||2 4- (-52c2

where c4 = 18/jSf. Consequently, the estimate (a) holds if we choose ε and <5
small enough so that

-<52c2 - εδ2c4 - 2ε + c3 ^ 0.

By the estimate (a), we can set

i) ί (A-Tm(ί))-idλ for |£| ^ 5,
Js*

where S* = {A||A|=j?1} and it is positively oriented. Since (λ-Tm(ξ)Y1-*
(A-T^O))-1 as \ξ\-+0 uniformly on S* and since dimP;(0) = 2, dimP;(ξ) = 2
for \ξ\ ̂ <5. This completes the proof of (i).

PROOF OF (ii) Taking the inner product of (2.2) with y and taking the real
part of it, we have for Re λ^. — /?,

where the constants β and ε are determined later. In the case where |A| ̂  \ξ\ *zδ'9
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considering the first and the third components of (2.2), we get

If \λ\ ̂  \ξ\, it follows from the second and the fourth components of (2.2) that

Putting cΞmaxj=5ι6>7)8 c,-((5'), we have

By the calculations similar to those in the proof of (a), we have

(l/ε + 4εc + 2/?c)||x||2 ^ β\\y\\2 + ^j^2(^β-λj^2s-2β

And the proof of (ii) is complete if β and ε are chosen small enough so that

- β - λj - 2ε - 2βc - 4εc ^0, j * 0, 2.

PROPOSITION 2.4. Let Λ,m,/£)/=o,2 be the eigenvalues given in Proposition 2.3
and emj(ξ)j=0t2 be the corresponding eigenvectors. Then there exists a constant
δί>0, which is independent of m, such that the following properties are satisfied

in

(i.a) λm>j(ξ) = ξ2

where zmj(ξ) belong to €">([- δίt δj) and zm>

(i.b) For any integer n^O, there exists a constant c>0 such that

supm§3 sup,{|Sil \8n

ξzm>J(ξ)\ ^ c.

(i.c) There is a constant μι>0 such that

supmg3 supmS(Sl Re zmj(ξ) < - μ1 < 0.

(ii.a) ί^/OeC-α-ί,, δj; C">^\ (ej®, em,/-ξ))=^,
where δtj is Kronecker's delta.

(ii.b) For any integer n^O, there exists a constant c'>0 such that

^ \\d"ξemj(ξ)\\ ^ c'.

PROOF. In this proof, the indices i and ' j are 0 or 2. Let λ = λm(ξ) be an
eigenvalue of Tm(ξ) and let q = ̂ fm(ί) be the corresponding eigenvector:
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(2.6) Tm(ξ)q = λq.

Put c* = min{l, -λn\ n = l, 3, 4,...}>0. If ReA>-c*/2, then we have

(2.7) q = (P-D + iξS + λ)-lPq,

where D = Dm9 S = Sm and P is the orthogonal projection onto the null space of D:

Π

0 0

1

0

0 'θ

O j

From the definition of P we can write Pq = c0v0 + c2v29 where c0 = cm>0(ξ) and

C2 = cm,2(£) are scalars and 00 = '(1, 0,..., 0) and t?2 =
 ί(0, 0, 1, 0,..., 0) form a

basis of the null space of D. Taking the inner product of (2.7) with v0 and v2, we
get

CQ == CQ^^Vj^ζ, Λyl?Q5 VQ) ~τ~ C2y-/vj(kCj ^)^29 VQ) 5

ι(Λι(ξ, λ)ϋ2»»ί)»

= 0.

c2 = c0(Λι(ξ, A)t?o, ϋ2) +

where K^ί, A) = Λm>1(f, A) = (P-D + ίξS + A)-1. Since (c0,c2)^(0, 0), we have

(Rι(ξ9λ)υ0-vθ9υ0) (Rι(ξ,

(Rt(ξ9 λ)v0 - VQ, v2) (R^ξ, λ)v2 - v2, v2)

Set λ = zξ2. Noting that (P — D)~1vi = vi and (Sυi9 Vj) = Q, we have from the
resolvent equation

where R2(ξ, z)=R,(ξ, zξ2) and

(2.8) MtJ(ξ, z) = MmM(ξ, z) = - z(R2(ξ, z)Vί, V

+ (R2(ξ, z-)(iS+z^)(P-D-)

This implies

M0)0(ξ, z) M0,2(ξ, z)
(2.9) M(ξ, z) = Mm(ξ, z) =

M2,0(ξ, z) M2,2(ξ. z)
= 0.
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In (2.9) we put z = σ-Hτ σ, τeR,fm(ξ, σ, τ) = ReM(ξ, σ + iτ) and gm(ξ, σ, τ) =
Im M(ξ, σ-f iτ). Then (2.9) is equivalent to

f /({, σ, τ) = 0,
(2.10)

[ g(ξ, σ, τ) = 0,

where /=/„, and g = gm. Since Λf ({, z) 6 C*({(f , z)|Re z£2 > - c*/2}), it follows
that

(2.11) f,geC»({(ξ, σ, τ)||ί|<5, -c*/2δ2<σ9 τ

where (5 is any positive real constant. The roots of M(0, z) = 0 are

(2.12)
I z2 = {

where α = λ t +A3, 6 = A 1A 3. It should be noted that z2<z0<0. By the Cauchy-
Riemann differential equation, there holds

(2.13)
Sτg

at

By virtue of (2.11), (2.12) and (2.13), we can apply the real implicit function
theorem to (2.10) in a δ x -neighbourhood of £ = 0. Moreover δl is independent
of m, because the constants Mm(0, z,) and 5zMm(0, z^) are independent of m and
{dl

ΣMm(ξ, z)}^=3 (/ = 0, 1) are equicontinuous families at (ξ, z) = (0, zy). This
completes the proof of (i.a).

Let k and / be non-negative fixed integers. We show that the constants
δJδiMOT(0, zy)m=3>4}... are uniformly bounded and {d\dl

zMm(ξ, z)}*=3 is an
equicontinuous family at (ξ, z) = (0, zj)9 which assure (i.b) from the following
well-known fact :

* dm)
? τ)

, gm) ld(fm, gm)
3(σ,τ)

We shall show only the case of fc = 0, / = 0. In view of (2.8) and (2.9) it is enough

to show that the constants Mmjίj/0, zk)m=3,4,-v are uniformly bounded and
{MwΛ/£, z)}^=3 is an equicontinuous family at '(ξ, z) = (0, zfc), where fe = 0, 2.
Note that

(2-i) ^2(0,2^ = ,̂
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and KWI,2(0, zfc) = (P-D)~1 and S are symmetric operators, from which, it follows

that the constants (#w>2(0, zk)vh Vj) and (#mt2(0, zk)S(P-~D)-lSvi9 Vj) are in-

dependent of m, where /c = 0, 2. Therefore the constants Mm>ίJ(0, zk) are

independent of m. Next, let |£| ̂  1 and |z| gc*/2. From (2.8) we have

\z(Rmt2(ξ9 z}υh Vj)-zk(Rmί2

^ \z-zk\ \(Rm,2(ξ, z)υh vj)\ + |zj |({«m.2({, 2)-ΛM.2(0,

^Iz-zJBΛ^ί, z)|| 11

where fc = 0, 2. Since ||ΛWf2({,. z)|| ̂ 2/c*, (2.i) and (2.ii) yield

|2(ΛMi2({, 2)t?ίf ϋy)- 2^(^2(0, 2^1, ^)l ^ c(|z-Zk

where the constant c is independent of m. Similarly we have

|(Λm.2«, zXiS + zOίP-/))-1!^, ^)-(Λm,2(0, z

where the constant c is independent of m. Therefore

z,gcV2 |Mm>ίJ(ξ, z)-Mmtίi/0,

where the constant c is independent of m.

To see (ii.a) we substitute <?m,/£) = Σn=o<Wι into (2.6), where cn = cmjtn(ξ).
Taking the coefficients of t;0 and vί9 we have

from which it follows that /cmj(£)c0 = c2,

where kmj(ξ) = { - 1 + A^^/0 + ξ2zmj(ξ)}/j2. Recalling (2.7), we get

(2.14) qmj(ξ) = Λjt f , λ

Since βlllf/ί) belong to C"(ί-δl9 5J; Cw+1) and 11^/0)11^0, (ii.a) follows.
(ii.b) holds owing to (i.b), (ii.a) and (2.14).

PROPOSITION 2.5. There are constants (5>0, βι>Q and /?2>0, w/iic/i are

independent of m and ξ, such that the semi-group {etτ^^: ί^O} is expressed

as follows:

(i) For any ξ with \ξ\<δ,

r-βi+ίy
(2.15) e<τ"W x = (l/2πi) lim^^ \ eλ'(λ- Tm(ξ)

J-βi-iγ
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(ii) For any ξ with \ξ\^.δ,

(2.16) *<rm«) x

7n f/ie above, the first terms on the right hand side of (2.15) and (2.16) have the
following estimates:

C-βi+iy
(2.17) IKl/ΣπOlim^ ^'(λ-ΓΛί))-1*^!! £ αr*'||x|| 7 = 1, 2,

J-/?.,-ίy

where the constant c is independent of m and ξ.

PROOF. We give an outline of the proof. Let /?>0. Then the semi-group
is represented by the inverse Laplace transform

etτ,n(ξ) x = (i/2τrΐ) lim^ eλt (λ-Tm(ξ)Y^xdλ for any ξ.
Jβ-iγ

By virtue of Proposition 2.3 (i) and Cauchy's integral theorem, we can change
the path {z\z = β + iγ ysR} to {z\z=-βί + iγ yeR} U {z\\z\=β1}. Hence we
obtain (2.15). The expression (2.16) follows from Proposition 2.3 (ii).

To obtain (2.17) we rewrite (A— Tm(ξ))~l by using the resolvent equation as
follows :

/2

^

where α λ > max {βj j=l, 2, |A7| 7 = 0, 1, 2,...}. Hence we get easily

Γ-βj + ίγ
||(l/2πi>-lim \ βλί /^λll = e-^Λ

J-^-iy

Since

and

where Sj = {{||ί|<5} and S2 = {ί||{|̂ *}, -we have

$ -βj+iy
e*<I2dλ\\ί

-βj-iγ



Convergence of approximate solutions for Kac's model of the Boltzmann equation 1 1

and

-βj-iy

The proof is complete by Proposition 2.3.

To state the main theorem in this section we need some definitions.

DEFINITION. Let /^O.

Ht(Rx) = {u(x)eL2(Rx)\\\u\\i=( (l + |{|)2l|fi(ξ)|2dί<oo},
}R

Hlim = {u(x) = t(u0,uί9...,um)\ujEHl(Rx) 7 = 0,..., m}, INII?.*=Σ7-o IM?>

Hι.n = {u(x) = '(uθ9ul9...9um9...)\u^

& : operator from Ht to #/>00 :

, υ) =
if tι(x) = f(ιι0(x), w^x),.-, «

(Here we formally define 0>~l.)

U = {K(x) = '(f*o(*)> M^X),...,!!^))! | | |^"1W|||L=III^ - 1W|||L2(H1 ;;L1(JI J C))<00}S

Em = HI§m n Li, i l l • |||£,m = i l l • |||l>m + ni^-i. |||L,

eίΓmM -. ^/l/2π \ eί<s* eίΓm(ξ) ύ(ξ)dξ u e Hlm.

THEOREM 2.6. Let /^O. Then {etTm: ί^O} is a contraction semi-group
on Hlm. Moreover, there exists a constant cl >0 which is independent of m such
that etTιn has the following decay estimates'.

(i) Let u e Em. Then

\\\etτ-u\\\l)m ^ C j ί l l l i i l l l ^ + sup^^all^-ifilL^J/α + ί)174 ^ C i H l i i H I

where δ is the constant given in Proposition 2.5.
(ii) Let ueEm and w/x) = 0/or a.e. x and 7 = 0, 2. Γ/ien

PROOF. Nishida and Imai proved the existence and the decay of the solutions
for the Boltzmann equation. (See [5].) Referring to [5] we can similarly con-
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struct the solutions of (2.1.m). Evidently the constant c1 is independent of m by
virtue of Proposition 2.3, 2.4 and 2.5.

3. Convergence of solutions for linearized equations of (1.4.m)

in the preceding section we obtained the solution etTnιu for the linearized
equation of (1.4.m). In this section we shall show that {etTmu}%=3 converges
to the solution for the linearized equation of (1.2). First, we define infinite di-
mensional vector spaces and infinite dimensional matrix operators.

DEFINITION 3.1.

n V ; X , • E = -

{u = t(u0(x)9 w^x),..., wm(x),...)|w/x)e^for any j and

j(x) = Q ify^M, where M is some finite set cι{0, 1, 2,...}},

Tm = - Smdx

Γ
oo
m """"

r τm o-
ό ό---

0 1

T-fOO __

1 0 v 0

o •• o

o ••

0

0

The following lemma is easily shown from Lemma 2.2.

LEMMA 3.1. T™ is a generator of a contraction semi-group {etτ™: t^.

in

REMARK. etT™u = t(etTmPmu, ww + 1,...) holds for ueHlcX), where Pm is the
orthogonal projection from H l ( X ) to JFf/§m.

LEMMA 3.2. Γ°° is a generator of a contraction semi-group {etτ°°\ ί^

in Htt(X). Moreover

(λ-BΓίffor any feHh ReA>0.

REMARK. ^~1eίΓeβ 0>f=etβf holds for
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PROOF. Let ueHltao. Since (λ-B)-^0>-lueHh we can set (λ-B)-l0>-lu =

Σ£=OV^(*K = '^~IH;, where w = r(w0, w1?..., wm,...)e/f/ > 0 0. So we define the
operator A from H/>00 to Hlao by An = w. Then A is a bounded operator. Noting
this and A(λ-Tcc)u = u for i/e^, we see ^(A-T°°)w=M for we^/l-T00),
which shows that λ belongs to the resolvent set of T°°. Since T°° is dissipative,
the proof is complete.

In order to obtain Proposition 3.4 we shall prepare the following lemma.

LEMMA 3.3. LefReλ>0. Then

lim^μ-Γ^-^-T00)-1 strongly inH^.

PROOF. Let xeH^ and ε>0. Since (λ - Γ00)^^) is dense in tfίjQO there
exists x' = t(x'0,x'ί,...,x'm,...)e(λ-T")(yj such that |||x-x'||| ί f00<eReλ/2.

In view of x' 6(4-7°%^) there exists ^ = t(^0> J>ι»-»> J'mvOe^oo such
that x' = (A-T°°)j;. Since yesr^, there is an integer JV>0 such that for
any j^N, yj = 0. If m^N + 1, we have T^T00j; = T00T^, which implies
(λ-Tc°Γ1T%(λ-Tcc)y = T%y. Since x^ίλ-T00)); we get (λ-T^TSx^
T%(λ - T00)- J x. Hence we have

(since (Γϊ-T°°)x' = 0)

— g

which completes the proof.

PROPOSITION 3.4. Let Γ>0 and u e Hί>0

See [4] for a complete proof.

PROPOSITION 3.5

(i) λj(ξ)jssQt2 and Awj(ί)y=0 2 are given in Proposition A.3 and 2.3 re-
spectively. Then we have

(d*ξλj) (0) = (d^j) (0) /or n g 2m - 3.

(ii) ej(ξ)j=0t2 and ^m,/ί)/=0,2
 αr^ given in Proposition A.4 and 2.4 re-

spectively. Then we have
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0

0

for n^m —

where P is defined by P/='((/, e0), (/, β,),..., (/, ej,...).

PROOF. First, we define some notations :
P* : the orthogonal projection onto the null space of L,

M(ξ, z) =

+ (R2(ξ, z)(iv+zξ)(P*

M0t0(ξ, z) M0>2(ί, z)

,0(£,z) M2,2(ί,z)

z = σ + ί'τ σ, τ e R ,

f ( ξ , σ, τ) = ReM(ξ, σ+iτ),

firfeσ, τ) = ImM(ί, σ+iτ).

Applying the real implicit function theorem to

0 = 0,

in a neighbourhood of (ξ, σ, τ) = (0, z}, 0), we obtain the solutions
iτj(ξ) 7=0, 2 of M(ξ, z) = 0 in the same way as in section 2. See [6]. Moreover
we have

(3.1)

Hence in view of the expressions for Mm>l>y and M/?J- it is enough to investigate

iΛ«.a(ξ, zK)(0, Zj.) A = 0,1,2,3 ./ = 0, 2,

, zK)(0, zy.) Λ = 0, 1,2, 3 ; = 0,2,

m,2(ξ, zK)(0, z,.) h = 0,2, j = 0,2,

and
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(υdk

ξd[R2(ξ9 z)eΛ)(0, zy) h = 0, j = 0, 2.

Put 3jaiΛWf2(ί,z)ι;Λ=ΣUβB(ί^,ΛMf2«,z),S>^ where ρn(ς, z, X, Y) is
a non-commutative polynomial in ξ, z, X and 7, which is independent of m

and whose degree with respetc to Y is just n. Replacing Dm and Sm by L and t;

respectively, we have

d*ξd>2R2(ξ, z)eh =

Note the following facts :

( Rm,2(0, z>, = »„ R2(0, z

Km.2(0,

(3.2)

, z),

J = 0, 2, i = l, 3,4,...,m, fe = 1, 3, 4,...,

ι + JJ+ΪOj+i 0 ̂  j g m - 1, Smum = V^m-i,

+ V./ + lej + 1 0 ̂  ;' < °o-

It follows from the above that :

(i) iίn + h^m,

(v.l) Qn(0, z,., Λm>2(0, zy), Sm)rΛ = Σ?ίo* αn,Λ,Λ,

(e.l) βn(0, Zj, Λ2(0, zy), »)e» = Σ?ίoΛ αn,*,^;

(ii) i f n + /j = m + l,

(v.2) Qn(0, zj, Rm,2(0, zj), Sm)vh = ΣS-o «'»,/,,Λ,

(e.2) ρπ(0, zy, R2(0, Zy), »)«4 = Σ?=o αi.»^, + α'B,A,m+ ιem+ „

and (iii) if 2m — l^n + h>m + ί,

(V.3) βΛ(0, Zj, Km,2(0, Zy), S>A = Σ^O+1-("+A) <,H,rVr +

+ Σί^lm + a-Oi + Λ) cn,h,rvr>

(e.3) Q5(0, zy, Λ2(0, z,), ΦΛ = Σ?^O+I-(W+Λ) flj.*^ + Σ?ίL+2-(n+Λ) ̂ .̂ ,

where the coefficients of vr and er in the right side hands are the constants and

7 = 0, 2. Taking the inner product of (v.fc)k=1>2,3 and (e./c)fc=1>2,3 with vs and es

respectively, we get for 0 ̂  n + /ι ̂  2m — 1, in view of (3.2),

, zj9 R2(0,

where j = 0,2 and s = 0,2. This implies

(3.3)
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where fc^2m-4, /ι = 0, 1, 2, 3,;=0, 2, s=0, 2. We have similarly

(3.4) ((Smd*ξd*xRmt2(ξ, zKXO, zy), tv> = ((vd\d[R2(ξ, z)*Λ)(0, Zj)9 es) ,

where fc^2m-5, /j = 0, 2, ; = 0, 2, s = l,3. (3.3) and (3.4) complete the proof of
the statement (i).

Replacing λmj, v0 and v2 in (2.14) by λj9 e0 and e2 respectively, we obtain the
representation of ej(ξ). (This is proved in [6].) Using the representations of
em j(ξ) and ej(ξ) together with the statements (i), (v.l) and (e.l), we get the statement

(ϋ).

PROPOSITION 3.6. Let M^3 be an integer. Then there exists a constant
c(M)>0 such that for any m^M and any feE

PROOF. We estimate \0>~l etτ™ Pm^f-e'Bf\\\ί as follows:

ί ί (1 + lξl)2'!^-1 e'T-^ Pm&f(ξ, v) -
JR JR

72

By the estimates in Proposition 2.5 and A.5

(3.5) /, gee-*" HI/ HI? y = 1, 2,

where the constant c>0 is independent of m and β=mmj=lt2βj.
To estimate 73 we shall first give some estimates :

, v)dλ\2dvdξ +

( (l-flίD^I^-Hl^πOlim^, (~β'+iy e^ (λ-Tm(ξ))^Pm^(^ v)dλ -
j\ξ\<δ J-βi-iγ

$ -βι + iy ~
e^'(λ-B(ξ)r1Hξ, v)dλ\2dvdξ +

-βt-iy

\ \ (1 + lξl^'l^-1 Σy=o,2
JR J \ξ\ <δ

(f(ξ, »), βX-

HeXί)-^-1β..Xί)||La(J,y) ^

|erλχί)_e,Λm,,(ί)| ^ c(M)e-'^2'2t\ξ\M+ί j = 0, 2,

where the constant c(M) is independent of m, but it is dependent on M, which are
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deduced from Proposition 2.4 and 3.5. Using the decomposition:

we have from Proposition 2.4

(3.6) ί Γ
JR J-Λ

g c(M)

and

(3.7) ( (' |Kfc|
2^^c(M)|||/||ϋ/(l + 0(2M-1)/2 fe = 5, 6.

JΛ J-ό

The summation of (3.5) (3.6) and (3.7) completes the proof.

THEOREM 3.7. Suppose α^O andfe E. Then

I^-^^-P^/-^/!!!/ = 0.

PROOF. Let ε>0. Choose an integer N^3 with α<(2JV— 1)/4. Owing to
Proposition 3.6 there is a constant T>0 such that for any ί^Tand ra^JV

(3.8) ll^e^P^f-e'BfH <ε/(l + ί)α.

In view of the remarks in Lemma 3.1 and 3.2 and Proposition 3.4, there exists an
integer M(^JV) such that for any m^M

(3.9) Hl^-1 etτ*» Pm&f-etBf^ < ε/(l + TY2M~1^ on [0, Γ].

Therefore (3.8) and (3.9) complete the proof.
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4. Existence and decay of solutions for (1.4.m)

We define Wm as follows:

'0

PFm(W, ι>) = (1/2)

where M = r(M0, w 1 ? . . . ,M m ) and v = *(vθ9 vί9...,vm). Then Wm can be regarded as

a bilinear operator from Hltm x Hltm to #j>m.

LEMMA 4.1. Let /^ 1. Suppose u,ve Hlttn. Then

(i)

(ii)

where c** = 2vd and the constant d depends only on I. Therefore the constant c**

is independent of m.

PROOF. We first evaluate the fc-th component of Wm(u, v). Owing to

Schwarz's inequality, we get

(1/4)1 ΣS=o Jk\ln\(k-n)\ cos" θ sin*--

^ Σkn=o {k\ln\(k-n)\}\ cos" θ sin*-
J-π

!/n!(k-n)!}l Γ
J-

cos"

Noting that ΣίUo {fc!/n!(k- «)!}((" cos" θ sin*-" ΘI(θ)dθΫ ^ v2 (see [2]), we

have

By Sobolev's inequality:

IIΛII i ^ d | | / l l ι l l f f l l ι f.
we have

III Wm(u, v)|||2,m = ( (1 + III)2' Σ?=o I the fc-th component of Wm(u, v)\2dξ
JR
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This shows (i).

Next, summing up /*£,&= o,-,m» we have

(4.1) \\Wm(u,υ)\\ £2v| |u | | | | ι> | | .

From the definition of L-J,,

^-^u, υ)\dx

Applying (4.1) and Schwarz's inequality, we obtain the estimate (ii), and so the

proof is complete.

REMARK 4.2. It is easily seen that

WJίu, u) - Wm(υ, v) = WJμ + v, u-υ).

Making use of Theorem 2.6, Lemma 4.1 and Remark 4.2, we obtain the

following theorem.

THEOREM 4.3. Let /^l. There exist constants c£>0 and c2>0, w/iίc/i are

independent of m, such that for any initial value uQεEm wiί/i ll |wolll£;,m< c£5
(1.4.m) has a unique solution u(i)eC°([Q, oo); Hlfm) n C^O, oo); H^^^).

Moreover

IN(Olllι.m^c2(|| |ιiolllι,m + sup|€|^||^-iώo||L2^^

where δ is the constant given in Proposition 2.5.

We can prove this theorem by the usual technique. So we omit the proof.
See [5] for a complete proof.

5. Convergence of solutions for (1.4./w)

In this section we show that the solutions constructed in section 4 converge

to the solution for (1.2).

We consider the following equations :
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(5.1) /(ί) = e"f0 Jo

(5.2.m) w<m>(ί) = etτ>»

PROPOSITION 5.1. There exists a constant cE>0 such that for any m^3

andf0eE with \\\fo\\\ε<cE9 tne equations(5.1) and(5.2.m) have unique solutions
/(ί) and w(m)(f), respectively. Moreover there is a constant c>0 swc/i that for
any m^3,

(5.3) supog^ooα + O^III/W-^-^^WIIIi ^ c|||/0|||E.

PROOF. It is clear from Theorem 4.3 and A.8 that the solutions for (5.1) and

(5.2.m) exist. In order to prove (5.3) we directly evaluate X(0, ί)?

where Jf(α, 0 =

0 ̂  Il

o ' m ' I Hi

= / + //!+ 7/2.

By Proposition 3.6 we see

(5.4)

and

(5.5) II,

^ cc(Γ){supθ!Slί,(H-s)1/*|||/(s)|||,}2

o

where c(Γ) = 2v( 1 + d). Next, noting that

we get

7/2 ̂
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where d* = 8λ/2c1c(Γ), c1 is the constant given in Theorem 2.6 and Xm(a, t) =

(1 + ί)α II|P«^/(0 - M(m)(0 III/ ,™- Neχt> we use the following estimates :

llι.«^2|||/ol||£,

where the constant c2 is independent of m. These show that

(5.6) //2^2c2d*|| |/0 | | |E!

Summing up (5.4), (5.5) and (5.6) yields

The proof is complete.

LEMMA 5.2. Let Γ^O. Suppose g(f) e C°([0, T]; Hi). Then

I

= 0.

B

PROOF. Letβ>0andρut c = max0gί^Γ |||^(ί)lllz- Here we may assume
Since g(t) is uniformly continuous on [0, Γ], there exists a partition 0 = s0<
sί <-"<sk=T such that for any i Ogϊ^/c,

Sj - s,-! < ε/6c, Hlflfίs)-^-!)!!!! < ε/6Γ, for any sets^, sj.

By Proposition 3.4 there is an integer M^3 such that for any m^M

)|||, < e/3T,

where G(ί, ^f(s), m) = etBg(s)-0>-ί etτ™ Pm0>g(s). Let m^M and

we have

G(t-s, g(s), m)ds

Σt

G(t-s9g(Sί),m)ds G(t-s,g(s), m)ds\

^ ΣW Γ' ZφTds + Σ?=ί (St φTds + (' 2cds
Jsi-l Jsi-l JSh-1

= ε.

The proof is complete.
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THEOREM 5. 3. Let 0^α<l/2 andf0eE with |||/0|IU<cjB, where the constant
cE is given in Proposition 5.1. Suppose that f ( t ) and w(m)(ί) are solutions of
(5.1) and (5.2.m) with the initial value fQ and Pm^ί^ respectively. Then we have

lim^supog^Cl + O'lll/W-^-'w^OIII, = O.

PROOF. In order to evaluate directly we use the same decomposition in
the proof of Proposition 5.1. According to the proof of Proposition 5.1 we have

(5.7) //2^02supo^< 0 0Xm(α, s)/(l + ί)α for any m ̂  3,

where the constant α 2 <l is independent of m. Let ε>0. By Theorem 3.7
there is an integer Mx ̂ 3 such that for any m^Mί

(5.8) /<(l-α2)ε/2(l + ί)α.

In view of (5.5) for the estimate of//!, there exists a constant Γ>0 such that for
any m^M

(5.9) IIί^(l

Hence, summing up (5.7), (5.8) and (5.9), we get

(5.10) suprgί*(α, t, m) < (l-α2)ε + α2 suρ0gf<00 *m(α, ί) for m ;>

To obtain the estimate on [0, Γ] we note that /(s) is uniformly continuous on
[0, T]. It follows from Lemma 5.2 that there is an integer M2(^Mi) such that

for any m ̂  M2

//! < (1 - α2)ε/2(l -f Γ)α for 0 ̂  t ̂  T.

Consequently, we have

(5.11) supo^Γ-Xία, ί, m) < (I~α2)ε + α2 sup0^ί<00 XOT(α, t) for m ̂  M2.

The estimates (5.10) and 5.11) imply the result.

Appendix

We first consider the linearized equation of (1.2):

δ,f=Bf,
(A.I)

/(O, x, v) = /0(x, v).

(A.I) is rewritten, by the Fourier transform with respect to x, into

(A.2)
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Regarding ξ e R as a parameter, we consider (A.2) in L2(RV). In this appendix

we use the short notation || • || = || • \\L2(Rv).

LEMMA A.I. (i) σ(β(ξ))c{z|Re z^O},

(ii) σ(£(ί))n{z|Rez = 0} =0, ι/£*0,
(iii) σ(B(ξ)} = σe(B(ξ)} U σd(B(ξ)\ σe(B(ξ» = {z\z = - iy - v, γ e R},

where σ(B(ξ)), σe(B(ξ)) and σd(B(ξ)) are the spectrum, the essential spectrum

and the set of the isolated eigenvalues with finite multiplicity of B(ξ) respectively.

(See [7].)

LEMMA A. 2. B(ξ) is a generator of a contraction semi-group {etB^: ί^

in L\Rυ).

PROPOSITION A.3.

(i) For any β^ e(0, /c/2], there exist constants δ>0 and c>0 such that

(a) infμ,^1)Re^-3κ/4,uι^liα-^))/ll^c||/||, for feL\Rυ\

(b) σ(B(ξ»n{λ\\λ\<βί}={λj(ξ)}j=0,2 for \ξ\^δ,

where λj(ξ) are the perturbed eigenvalues of λj with respect to ξ.

(ii) For any <5'>0, there exist constants j82>0 and c'>0 such that

infReλ^β2ilξl^\\(λ-B(ξ))f\\ ^c'\\fl for feL2(Rv).

PROPOSITION A.4. Let λ j ( ξ ) j = Q f 2

 oe the eigenvalues given in Proposition A.3

and e/(£)/ = o,2 be the corresponding eigenvectors. Then there exists a constant
δί>0 such that for \ζ\^δ1 we have the following results:

(i.a) λj(ξ) = ξ2Zj(ξ)9 supm^ Re Zj(ξ)^ -μ, <0,

where Zj(ξ) belong to C°°([ — δί9 δ^) and μx is a positive constant.

(ii.a) ej(ξ) E C™(l-δl9 δj ; L*(R0))9 (et(ξ\ e{ξ» = δij9

where otj is Kronecker's delta.

PROPOSITION A.5. There are constants <5>0, j8x>0 and β2>® such that

the semi-group {etB(ξ^: t^Q} is expressed as follows:

(i) For any ξ with \ξ\<δ,

(A.3)

(ii) For any ξ with \ξ\^δ,
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Γ-β2+iy
(A.4) etB^f = (l/2πϊ) lim,^ \ eλt (λ-

J-β2-iy

In the above, the first terms on the right hand side of (A.3) and (A.4) have the
following estimates:

IKφπOlim^ ̂ ^ eλt (λ-B(ξ))-1fdλ\\ ^ ce~^ ||/||, j = 1, 2,

where the constant c is independent of ζ.
From the above results we obtain the existence and the decay of the solutions

for (A.I) in Ht.

THEOREM A.6. Let /g:0. Then B is a generator of a contraction semi-
group {etB: ί^O} in Ht. Moreover there exists a constant cί>Q such that etB

has the following decay estimates:
(i) LetfeE. Then

(ii) Let feEand ( .e/t?)/(x, v)dv = Q9 a.e.x,j = Q, 2. Then
J R

LEMMA A.7. Let I ̂  1 . Suppose /, g e Ht. Then

( i ) I I I Γ ( f , g ) HI ̂

(ii)

Theorem A.6 and Lemma A.7 together imply the following theorem, which
is our main result in this section.

THEOREM A.8. Let l^l. There exist constants cE>0 and c2>0 such that

for any initial value f0eE with |||/O|||E<C£, (1-2) has a unique solution /(Oe

C°([0, oo); Ht) n CHCO, oo); K,.,), satisfying the estimate

References

[ 1 ] Ellis, R. and Pίnsky, M., The first and second fluid approximations to the linearized
Boltzmann equation, J. Math. Pures Appl., 54 (1975), 125-156.

[2] Grunbaum, F., Linearization for the Boltzmann equation, Trans. Amer. Math. Soc.,
165 (1972), 425-449.

[ 3 ] Kac, M., Foundations of kinetic theory, Proc. Third Berkeley Sympos. on Math.



Convergence of approximate solutions for Kac's model of the Boltzmann equation 25

Statist, and Prob., 1954/55, vol. 3, Univ. of California Press, Berkeley and Los Angeles,
(1956), 171-197.

[ 4 ] Kato, T., Perturbation Theory for Linear Operators, Springer-Verlag, New York, 1966.
[ 5 ] Nishida, T. and Imai, K., Global solutions to the initial value problem for the nonlinear

Boltzmann equation, Publ. Res. Inst. Math. Sci., Kyoto Univ., 12, (1976/77), 229-239.
[ 6 ] Shizuta, Y. and Nishiyama, H., Initial value problem for Kac's model of the Boltzmann

equation, (in preparation).
[7] Ukai, S., Transport Equations, (in Japanese), Sangyotosho, Tokyo, 1976.

Division of Human Life and Environmental Sciences,
Nara Women's University






