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Introduction

Theory of foliated Riemannian manifolds has been studied by many authors in
the name of fibred spaces ([3]) or foliated manifolds ([8], [14]) by use of
Riemannian submersions ([7]). K. Ogiue ([5], [6]) studied relations between an
almost contact structure and an almost complex structure induced in the base space
of fibering. On the other hand, A. Morimoto ([4]) defined an almost complex
structure in the product of two almost contact spaces. Y. Tashiro and the present
author ([12]) have recently induced an almost complex structure in the total space
of a fibred Riemannian space, the base space and each fibre of which are almost
contact, and investigated relations among their structures.

The purpose of this paper is to study fibred spaces with almost contact metric
structure induced from the base space with almost complex structure and each fibre
with almost contact metric structure of general dimensions. A typical example of
these is the Hopf fibering n: 4 *3(1)— QP(n) with totally geodesic fibre S* (cf. [2],
[11]).

In §1, we shall summarize fundamental properties and known results of the
fibred Riemannian space. We shall induce, in §§2 and 3, an almost contact metric
structure on the total space by use of the almost complex structure on the base space
and almost contact metric structure on each fibre and discuss relations of them. §4 is
devoted to the study of space form and we shall prove that the base space is locally
Euclidean if the total space is Sasakian space form with conformal fibres. An
example having this property will be given. In the last section, we shall investigate
relations between the integrability of the almost complex structure and the
normality of the induced almost contact metric structure on the total space by use of
Nijenhuis tensors.

The author expresses his hearty thanks to his teacher Y. Tashiro who suggested
this problem and gave him many valuable advices.

§1. Fibred Riemannian spaces

Let {M, M, §, n} be a fibred Riemannian space, that is, {M, §} is an m-
dimensional total space with Riemannian metric §, M an n-dimensional base space,
n: M—M the projection with maximum rank n. The fibre passing through a point
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PeM is denoted by M(P) or generally M and the metric tensor § is projectable.
Manifolds, geometric objects and mappings we deal with are supposed to be of
class C® and to be connected. Throughout this paper the range of indices are as

follows:
hoij k1=1,2,.,m,
a,b,c,de=12, .., n,
o B,y 0,e=n+1,.,m,
A, B C,D, E=1,2,..,m,
P,Q,R,S=1,2,..,mm+1,
f=m+1.

The summation convention on repeated indices will be used with respect to their

own ranges.

We take a coordinate neighborhoods (U, z") in M and (U, x°) in M such that
n(0)=U, where z" and x* are coordinates in U and U respectively. Then the
projection m: M— M can be expressed by equations

(1.1 x® = x(z")

which are differentiable functions of coordinates z" in U with Jacobian (0x°/dz") of
maximum rank n. Take a fibre M such that MNU # ¢. Then there are in MU local
coordinates y? and (x° y* form a coordinate system in U.

If we put

1.2) Ef=0x"/0z" and C",=0z"/0y",

then E; are components of a local covector field E* defined in U for each fixed index
a, and C", are those of a vector field C, for each fixed index «. The vector fields C,
form a natural frame tangent to M(P) and

(1.3) EfCly=0.

We put §=(§;) in (U, z") and (§")=(§,)"!. The components of the induced
metric tensor § of the fibre M are then given by

(1.4) Gys = §;:C7,C'y.
If we put
(1.5) 9o = gjichEib and (¢*) = (7

then g=(g.;) is the projection of § and the metric tensor of the base space M. We
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obtain

E = §"g,E",
and we put

C= gl‘hg_apchﬂ-

The frame (E* C*)is dual to (E,, C;). We write (Ep) for (E,, Cz) and (E*)for (E°,
C*?), if necessary.
Denoting by £, the Lie derivation with respect to the vector field C;, we have

(1.6) PLRE =0, L,C,=0, L4E, = — Pp*C,, £,C*= P E,

where P, are local functions in U

Denote by V the Riemannian connection of the total space {M, §}. It is known
that ¥ is projectable and the projection V is the Riemannian connection of the base
space {M, g}, components of which are given by

b = (1/2)§°(0cGpe + OpGce — 0cGie)-
We have the following equations (see [3], [12]):
V.E!, = I8, EfE", — L,"EfC*, + L,°,C;’E*, — h,%,C ;' C",,
V.Chy = L4EfE", — (hy*.— P,)EfC", + h,,"C'E*, + ['%C'C*,,
VEf = —T4EfE? — L°JE;CF + CPES) —h,,"C'CP,
VC* =L,"EfE® + (hy*.— P)EfCP +h*,C/EP — T%CCY,

1.7)

(1.8)

where L,* h,,* and I'% are local functions in U and
Lcaﬂ = chagbagap’ hyub = hyﬂag—ﬂagba'
Putting V,=EV; and Vy; C'.V,, we obtain
(1.9) V,E,=LE,—h~C, V,Cp=h,E,+TI%C,

by use of (1.7). Hence h,,* are components of the second fundamental tensor with
respect to the normal vector E, of each fibre M, I'j; are coefficients of the
Riemannian connection V of the induced metric g in M and L_,* are coefficients of
the normal connection of M. Therefore we see that

(1.10) hogt = hy.t,
(1.11) T35 = (1/2)5(0,3 5. + 053, — 0.9,p)

and
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(1.12) L, + L, *=0.
Denoting by Z, the Lie derivation with respect to E,, we have

PL.E, =2L,°C,, ¥.Cyz=P,C,
(1.13) b pore
ZLE =0, P.C*=2L,*E® — P,*C".

§2. Almost contact structure in a fibred Riemannian space

We consider a fibred Riemannian space # such that the base space M is an
almost complex space and that each fibre /7 is an almost contact space. Denoting
the almost complex structure of M and its lift in the total space M by J which is
independent of the fibre and the almost contact structure of each fibre M by (&, &, 1)
which is in general dependent on points of the base space M. The structure (¢, &, 1)
satisfies the equations

F=-1+1®f HH=0, n®¢=0, =1
If we define
¢ =JnE' ®E" + §,CPRC,
i=0,17) &=%0,8),
‘A being the transposed matrix of 4, then we can easily see that
F=-1+i® ¢@)=0, ®F=0, 7i(d)=1,

where I is the identity map of degree m. Therefore (@, &, 7j) is an almost contact
structure on the fibred Riemannian space M, which will be called the induced one.
We state the following:

@.1)

PROPOSITION 2.1. Let M be an almost complex space and each fibre M is an
almost contact space. Then the fibred Riemannian space M admits an almost contact

Structure.

Moreover, if M is an almost Hermitian manifold with the almost Hermitian
metric g and(M, §) is an almost contact metric manifold, then the Riemannian
metric § on the fibred Riemannian space is defined by

22 §=95E"®E" + §5,C’RC*,

and (@, &, #, §) becomes an almost contact metric structure.
By means of (1.7), (1.8) and (2.1), we can derive the equations
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2.3) (Ve)E, = (VI )Ee + (Lo @5* — Lea™J)Co
24) (Ved)C. = (L@~ LI E, + (*V.$,)C
(2.5) (V,0)E, = (**V,J,")E, + (b3 — hitady")C,
(2.6) (V,Co = (hys" B — 1, T E, + (V,8.5)C,,
2.7) VZ = (L2EIE, + (*V.EIC,,

2.8) V.8 =(h, E)E, + (V,8C,,

29 Vi = (L i) E” + (*V.7,)C",

(2.10) V. = (i) E® + (V,7,)C*,

where we have put

@2.11) VJye =0, + I%J, — 5.0,
212) Ve = 0.8+ QB — 0.0y,
(2.13) WV E =05+ 0,8,

(214) *V,ilp = 0.l — Qeglas

(2.15) Y 0= 0,0, + L Jyt — L,,"v.l,,“,
(2.16) V,0.=0,8 + 17,8 —T%. 8,7,
(2.17) V,8 =0,8 + I,

(2.18) V.itp = 0,715 — Tygilas

(2.19) Q" =P, — hﬁ .

An almost contact metric structure is said to be contact if
X, ¥)=§(3X, Y)
for any vector fields X and ¥ in 47 ([10]).

Ifweput (X, ¥ )=g(dX, ¥ ), 0(X, Y )=g(¢X, Y ) and Q(X, Y)=g(JX, Y )
for vector fields X, Y in M and X, Y in M, then we get

(2.20) (dyE =

(2.21) dO)E.®E,QC, = 2Ly’ Pgo-

2.22) (dB)E,® C,QE, = 2%*V,J

(2.23) NE.RCsQC, = *V.Pgo + hy,e P’ + hy'Pyp,

(2.24) (d9)C,QE,®E, = 2L, &3,
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(2.25) @y =

(2.26) (dAE.QE, = 2L,

(2.27) (dMNERC, =*V i, —h,,,
(2.28) (dij)¥ = dif

by use of (2.1) and (2.3)~(2.10), where A¥ and A" are horizontal part and vertical
part of a form A respectively. If the induced structure (@, &, , §) is contact, then we
obtain df =0, (d7)E,® E,=2J , (df)E.® C,=0 and (d7)C,®C,= @,,. Therefore we
can state

PROPOSITION 2.2. A necessary and sufficient condition for the induced almost
contact metric structure on M to be contact is that the base space M is almost
kaehlerian, each fibre M is contact, and the equations *Vil, = h, i1, and L "1, =J o
hold.

If the induced almost contact metric structure on M is K-contact, that is,6(X, )
=(V37)Y, then we obtain

(2.29) PE = (ch 1)E® + (*V.7,)C?,
(2.30) #C, = (b, E" + (V,7,)C*,
and state the following with the aid of (2.1).

PROPOSITION 2.3.  The fibred almost contact space M is a K-contact manifold if
and only if the following conditions are satisfied:

(1) M is almost Kaehlerian,

(2) each fibre M is a K-contact manifold,
B) *Va,=0,

4 h%i,=0, and

5 L, My=Jy-

§3. Fibred Sasakian manifold

By means of (2.3)~(2.10), components of the covariant derivation V@ and V&
are given by

(3.1) (VOE.®E,®E,=V.J,,,
(32) (vg)Ec®Eb®Ca = chﬁ {5/3& - Lcaa Jba9
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33) (VOE.®C,®E, = Ly, ¢’ — LI ap»
(3.4 VOE.®C,®C,=*V.4,,,

(3.5 (VOC,®E,®E, = LygyJ " — Ly J 40,
(3.6) VOC,QE,QC, = h,},&;, — hyu.J,",
(3.7) (VOC,®C.®E, = hypy b’ — hyu'J o,
(3.8) (VOC,®C.RCy =V,

39 VOEQ®E =L %,

(3.10) (VOE.®C =*V.Z,

(3.11) VOC,®F = h,,'&,

(3.12) VoC,oct =V,

In this section, we assume that the induced almost contact structure (¢, £, 1, §)
on M is Sasakian and call such an M a fibred Sasakian space.

Tt is well known ([1, p. 73]) that an almost contact metic structure ($,,1.9) is
Sasakian if and only if the equation

(3.13) Vzd¥=-3(X, Y)E+n(V)X

holds forarbitrary vector fields X and ¥ on M. Then it follows from (3.1)~(3.12) and
(3.13) that we have the equations

(3.14) VJp =0,

(315) ch’j $ﬁa - Lcanba = - ﬁagclv
(3.16) *V.9,' =0,

(3.17) Ldayjbd - Lbddea = 0,

(3.18) h.ylbaiu - hyﬂana = 0,
(319) Vyaaﬂ = 77« 55 - Epgya’
(320) chaEa = J(.‘b’

(3.21) * B =0,

(3.22) h & =0,

(323) V5=

Contracting (3.18) with respect to y and u, we get h,;°g* =0, that is,each fibre
M is a minimal submanifold of M.
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On the other hand, if we take the skew-symmetric part of (3.15), then we obtain

(3.24) L@y =0
by use of (3.17) and the skew-symmetry of L. Hence we can easily get
(3.25) Ly =Ju8

by use of (3.20) and (3.24), and see that the structure tensor L does not vanish
everywhere. Moreover, the relations (3.15) and (3.17) are fulfilled by the equation
(3.25). Therefore we can state the following

THEOREM 3.1. Let (J, g) be an almost Hermitian manifold on M and M be an
almost contact metric manifold. Then the induced almost contact metric structure on
M is Sasakian if and only if the structure (J, g) is Kaehlerian, M is Sasakian and the
equations (3.16), (3.18) and (3.25) hold. In this case, each fibre M is a minimal
submanifold of M.

A necessary and sufficient condition for M to have isometric fibres (resp.
conformal fibres) is h,* =0 (resp. h,5" = g,,A°, where A= A°E, is the mean curvature
vector along each fibre in M).

COROLLARY 3.2. Ifafibred Sasakian space M has conformal fibres, then M has
isometric and totally geodesic fibres.

PrOOF. It is easily seen that the conditions h,,* =g,;A* and §"h,,*=0 imply
h.yﬂa = 0.

Moreover, considering the equations (3.21) and (3.25), we directly have the
following:

COROLLARY 3.3. Inafibred Sasakian spoce M, the structure tensor L is parallel
on M in the sense of *V,L,*=0.

§4. Fibred Riemannian manifold with space form

In this section, first of all, we recall curvature properties of the fibred
Riemannian space. The curvature tensor K of M is defined by

4.1) RX, VWZ=V3:V;Z-V;V;Z - V[mZ
for any vector fields X, Yand Z in M. If we put
R(Ep, EQ)Ep = Kpcs"Ea+ Rpcs®Cos

then K ,c5* are components of the curvature tensor K with respect to the frame {E,,
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C.}. Denoting by K, ;" components of K in (U, z"), we have the relations
4.2) KDCBA = Kk jihEkDEjCEiBEhA'

Taking account of (1.7), (4.1) and (4.2), we get the following structure equations
of the fibred Riemannian space M ([12]);

4.3) K" = Kyop® — L Lyt + L L + 2L FLy°%,,

(4.4) Ri = —*VyLo* + *V Ly* — 2L, °h %,

(4.5) K,,,,, =*V hy"y— *Vhg' + 2¥*V,L,* + L, °L°
— L. L5 — hlshg + hhgts,

(4.6) Rup® =¥Vl — L Sy + Lyhy — Ly,

4.7) Ryt = —*Vh + **V. Ly* + L Ly + b, h %,

(4.8) R = Lgy" + htohy® — h5yhst,

(4.9) K% = **Vsh,," — **V h,,°,

(4.10) Rip5% = Kiyp® + hsp®h. — hoyhst,,

where we have put

(4.11) K = 0,8 — 0,178 + :er:,, rers,

(4.12) *Viley' = 0aLley” — I'geLoy” — o+ Qu’Ley',

(4.13) *VL = 0,L% + 'L — r.,c s — Qup’L .

(4.14) *Vahog® = 04hyg" + Tihyg® — Qayhes® — Qughi’

(4.15) *Vhg®y = 04hg®, — Tiphy®e + Quhy'y — Quphe™s,

(4.16) **Y Lot = 0,L% + TLLyt — LosLy" — L5105

(4.17) *AVoLy's= 0sLy"s — T5pLy" + L"5Ly°5 — Ly*sLe",

(4.18) ¥V ahyg" = 05hy5" — Tiyhop® — Toghye® +L%shys°

(4.19) ¥V hyy = Oghy®y + T2 gty — Tiphty— Ly shg,

(4.20) Ly® = 05L,°, — 0,L,% + L% Ly%, — L% L,*5,

4.21) K, =05, — 0,5+ I35y — I T3

Now we assume that the induced Sasakian structure on M is of constant §-
sectional curvature k. Then the curvature tensor K has the form [5];

(422) RX, NZ = {k+3)/4H{o(¥ DX -4, 2)7}
+{(R— 1) HXZ) Y~ ADF2)X + 4%, ZADE
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— (Y, 2nX)E+AY, 29X - 0(X, 2)¢Y
- 20X, V)¢Z).
Therefore the equations (4.3)~(4.10) give rise to
(4.23) Ko = {(k+3)/8} (9407 — an0%) + {(k— 1)/} (e " — J ] *
=2, + LA Ly — LA L' — 2L, °L,°,

(4.24) *V Loy — *VaLo* = 2L, h %,
(4.25) ¥V hyty — *Vhg + 24V L+ L *L — L Ly
— hhgte + byt = {—(E—1)/2}J By,

(4.26) *V,Ly, = L hyty — Lath,® + Lh s,
(4.27) 4V Ly — *V b + L Loy + hfah %

= — {(k+3)/4}943; + {(k— 1)/4}9u,&" — T v,
(4.28) Lyp® = hhs, — hstyh® — {(R—1)/2} B30,
(4.29) FHV 50— **V gt = 0,
(4.30) Ky = {(k+3)/4} (505 — Gap03) — {(K—1)/4} (11,1505 — 157103

+ Gypl1sC — Gspy & — Prp®s” + Pop®)”
+ 205, 05%) + hyy°hs®. — hsptht.
Denoting by k and k the scalar curvature of M and M respectively, we have
(4.31) k=n(n+2) (k+3)/4,
(4.32) k=(s—1) {s(k+3)+k—1}/4— | h,"I?,
by means of (3.25), where s=dim M. Combining the equations (3.25) and (4.23),
we can see that
(4.33) K" = (k+3) (9508 — gap0? + J 4 oy — J 2 gy — 2J 1T, 5)/4.
Hence we have

THEOREM 4.1.  If the induced Sasakian structure on M is of constant $-sectinal
curvature k, then the manifold M with Kaehler structure (J, 9) is of constant
holomorphic sectional curvature k+ 3.

Next, consider the case where M is a fibred space with conformal fibres. Then,
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by Corollary 3.2, each fibre M is totally geodesic and the second fundamental form h
of M vanishes identically. Hence the equation (4.25) reduces to

(4.34) 4 4cby = — (k—1)J 1By

and we have k= — 3. Thus the equations (4.22), (4.28), (4.30), (4.32) and (4.33) are
reduced to

(4.35) RENZ = —nXmZ)Y+ (V)X - 9 X, Zn(V)E

+3(¥, ZmX)E - 8Y, 24X + 86X, 2)Y
+0(X, V)§Z,

(4.36) Ldyba = 25&;»] b

4.37) K 5,5 = 11,7150 — 57105 + Gypllsl® — G, " — B 0s5”
+ G5B, + 265, 84°,

(4.38) k=—(s—1),

(4.39) Ky =0

respectively. However, by use of Theorem 3.1, the equation (4.36) is valid if the space
M is Sasakian. Thus we have the following

THEOREM 4.2. Let M be a fibred Sasakian space with conformal fibres. If M is a
space of constant @-sectional curvature k, then

(1) the total space is a Sasakian space form with k= —3,

(2) the base space M is a locally Euclidean space, and

(3) the fibre M is a Sasakian space form with constant ¢-sectional curvature
-3.

Conversely, if the base space M is a locally Euclidean space and each fibre M is a
Sasakian space form with constant §-sectional curvature —3, then M is a Sasakian
space form with constant $-sectional curvature —3.

ExAMPLE. Euclidean plane E? with coordinates (x,, x,) and flat metric has an
almost complex structure :

J=(_°l ;)

Now, we consider the Euclidean space E* with Cartesian coordinates (y,, y,, z) and
define @, &, 7, g by
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£='0,0,2),
ﬁ=(_y2’ Oa 1)/2’

1+y,2 0 —y,
1

-_1 1 ’
9=3 0 0
-, 0 1
1 0 V2

g l=4[ 0 1 0
y2 0 14y,°

Then E? with (&, &, 17, §) becomes a Sasakian space form with constant @-sectional
curvature —3 (cf. Sasaki [9]), and we denote it by E3(—3).
Next we consider a symmetric tensor field in the 5-dimensional Euclidean

space E> with Cartesian coordinates (x,, x5, ¥1, y,, z) define § by

1+x,2 0 xy, 0 —x,

0 1 0 0 0

p—

X3Y2 0 1+y,> 0 -y,

«Q
Il
L

0 0 0 1 0
_XZ 0 _‘y2 0 1

Then 4 is a positive definite Riemannian metric. The inverse matrix of § is given by

1 0 0 0 X,
0 1 0 0 0
g'=4| 0 0 1 0 v,
0 0 0 1 0

X, 0y, 0 14x7+y?
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Then E5 becomes a Sasakian space form E5(—3) with constant @-sectional
curvature —3 by taking the following tensors as its structure tensor;

0 1 0 0 o0

-1 0 0 0 0
1
=z |0 0o o 1 0 [
0 0 -1 0 0
0 0 0 0 0
£=10,0,0,0,2),

ﬁ=(_x2, 0, —Ya2 03 1)/2
The vector fields

C;=(0,0,1,0,0),

C,=(0,0,0,1,0),

C;=(0,0,0,0, 1),

E ='(20,0,0, 2x,) and

E,=7%0,2,0,0,0)
form a frame field in E3(— 3) and the Euclidean space { E*(—3), §} becomes a fibred
Riemannian space having E? as the base space and E3(—3) as the fibre. It is well
known that the Sasakian space form E3(— 3)is a totally geodesic submanifold of E®
(—3). A similar argument can be applied to the case of general dimensions and we

see that a Sasakian space form E™(— 3) has a fibred structure with Euclidean base
space E" and Sasakian space form E™™"(—3) as fibre.

§5. Integrability and normality

In this section, we study relations between the normality of the almost contact
metric structures on M and M and the integrability of the almost complex structure
on M. Now consider the product manifold M x E!, E' being a 1-dimensional
Euclidean space. If we define on M x E! a tensor field F of type (1, 1) with local
components Fp2 by

J° 0 0
(5.1 (FPQ) =| 0 5,;“ - Ea
0 7 0
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in each {U x E*, x7}, then we can see that F2= —1 on M x E', that is, {M x E*, F}
becomes an almost complex manifold. Hence we can calculate the components of
Nijenhuis tensors N po” of F as follows:

(5.2) Ny = J20dp" = 0yJ &) — I, (0] — 0 ),

(5.3) N, =0,

(54 Ny*=0,

(5.5) N, =0,

(5.6) Neg* = J0.85) + $57(0.8,9,

5.7 Nog* = J50e5) + G5 (0,

(5.8) N,=0,

(5.9 Noyp* = %0185 — 0, :%) — $5(0:0,7 — 0,8,
+11,(05E%) —715(0,%),

(5.10) N,p* = 8,40:71— 0412) — 50,77, — 0,712),

(5.11) N.b=o0,

(5.12) Nl = J.4048%) + E(0.0,5),

(5.13) Nt = E50a0),

(5.14) Ny® =0,

(5.15) Nap* = — 80,85 — 05,7 + $,°0,&%),

(5.16) Ny’ = —&0,7,.

It follows from these equations that the components N, coincide with those of
the Nijenhuis tensor

(5.17) N(X, Y)=[JX, JY]—J[JX, Y]—J[X, JY]+J[X, Y]

of J on M, where X and Yare vector fields on M, and the components N 8 N yﬂ“,
Nys* and Nis* coincide with the N 5 Ny * N, s~ and Ny* respectively which are
components of Nijenhuis tensor of M x E! with an almost complex structure

_ (‘W —fa>
(5.18) F= .
Mg 0
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Moreover, by virtue of a formula (see [13], p. 191)
NPQRFSQ + NPSQFQR = 0,

it is well known that if the components N ,¢" vanish identically on M x E*, then the
other components N 3%, N, 4* and § 45’ vanish. An almost contact structure on M is
said to be normal if the almost complex structure F on M x E! is integrable ([9],
[10]), equivalently if Ncgz* vanish identically. Consequently, we have

THEOREM 5.1.  If the induced almost contact structure (&, &, i) on M is normal,
then the almost complex structure J on M is integrable and the almost contact
structure (P, &, 7) on M is normal.

Moreover, if the almost contact structure (¢, &, 77) on M is independent of the
base space, then all the components of Np,® vanish identically under the
assumptions that the almost complex structure J on M is integrable and that the
almost contact structure on M is normal. Finally we get

THEOREM 5.2.  If the almost contact structure (@, &, ) on M is independent of the
base space, then a necessary and sufficient condition in order that the induced almost
contact structure on M is normal is that J on M is integrable and ($, E, 7)) on M is
normal.

REMARK. If the almost contact structure ($, &, ) on M in the condition of
Theorem 5.2 is replaced by contact structure on M, then we can see that the same result
is valid but the fibred Riemannian space M is never locally trivial because the
integrability tensor L=(L,") does not vanish by means of the equation (3.25).
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