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Introduction

The author [5], [6] and Nomura [11] have investigated the class £ of
Lie algebras in which the join of any collection of subideals is always a
subideal. On the other hand, concerning the class £, of Lie algebras in which
the intersection of any collection of subideals is always a subideal, very little is
known except the fact that IM < L ([S, Lemma 3.2]), where 9 is the class of
Lie algebras having an upper bound for the steps of all subideals. The purpose
of this paper is to present further results concerning the class £, and investigate
related classes.

In Section 2 we shall first prove that in any Lie algebra the intersection of
any collection of descendant (resp. weakly descendant, serial, weakly serial)
subalgebras is always descendant (resp. weakly descendant, serial, weakly
serial) (Theorem 2.2). We shall secondly characterize the class £, as the class
of Lie algebras in which every descendant subalgebra is a subideal (Theorem
2.3).

The group-theoretic analogue of the class 9 is usually denoted by B.
Robinson [12] has proved that if a group G has a normal subgroup N such
that N has a composition series of finite length and G/N is in the class B,
then G is in the class B. In Section 3 we shall prove that if a Lie algebra L
has an ideal I such that I has a composition series of finite length and L/I
is in the class £, (resp. £,(asc), M, D(asc, si)), then L is in the class L
(resp. £ (asc), M, D(asc, si)) (Theorem 3.4), where L (asc) is the class of Lie
algebras in which the intersection of any collection of ascendant subalgebras is
always ascendant, and D(asc, si) is the class of Lie algebras in which every
ascendant subalgebra is a subideal.

In Section 4 we shall first prove that if a Lie algebra having an abelian
ideal of codimension 1 is in the class 2., then it must be in the class I
(Proposition 4.2). Secondly we shall present a sufficient condition for Lie
algebras in the class £, to be nilpotent.

1.

Throughout this paper we always consider not necessarily finite-
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dimensional Lie algebras over a field f of arbitrary characteristic unless
otherwise specified. Notation and terminology are mainly based on [2]. For
the sake of convenience we explain some terms which we use here. Any nota-
tion not explained here may be found in [2].

Let L be a Lie algebra over f and n be an integer =0. H<L
(resp. H<a L, H<a1"L, HsiL) we mean that H is a subalgebra (resp. an ideal, an
n-step subideal, a subideal) of L. If HsiL, then there is the smallest integer m
with respect to H<a™L, which we denote by si(L: H) as in [5]. H is a weak
subideal of L, denoted by HwsiL, if there exist an integer n = 0 and a chain
{H;: 0 £i < n} of subspaces of L such that

(a) Hy=H and H,=1,

(b) [Hi+y, HISH, (0=i<n).

H is an ascendant subalgebra (resp. a weakly ascendant subalgebra) of L,
denoted by HascL (resp. HwascL), if there exist an ordinal ¢ and an ascending
chain {H,: a £ 6} of subalgebras (resp. subspaces) of L such that

(@) Hy=H and H,=1L,

(b) H,<H,,, (resp. [H,+, H] = H,) for all ordinals a < o,

(¢) H,=Ju<iH, for all limit ordinals A < 0.

Then the ascending chain {H,: « < ¢} is said to be an ascending series (resp. a
weakly ascending series) from H to L. H is a descendant subalgebra (resp. a
weakly descendant subalgebra) of L, denoted by HdscL(resp. HwdscL), if there
exist an ordinal ¢ and a descending chain {H, o« <o} of subalgebras
(resp. subspaces) of L such that

(a Hy=L and H,=H,

(b) H,,,<H, (resp. [H,, H] < H, ) for all ordinals a < g,

(¢) H,=()a<iH, for all limit ordinals 1 < o.

Then the descending chain {H,: a < o} is said to be a descending series (resp. a
weakly descending series) from H to L. H is a serial subalgebra (resp. a weakly
serial subalgebra) of L, denoted by HserL(resp. HwserL), if there exist a totally
ordered set 2’ and a family {4,, V,: 02} of subalgebras (resp. subspaces) of L
such that

(@) HeV,c 4, for all 62,

(b) A, cV,if t<a,

(C) L\H = Uo‘e[(Aa'\ Va)a

(d) V,< A, (resp. [4,, Hl = V,) for all ce2.

Then the family {4,, V,: ce X} is said to be a series (resp. a weak series) from H
to L.

Let H < L. The ideal closure series (resp. the weak closure series) of H in
L, which we denote by {H™*: o = 0} (resp. {H, ,: « = 0}) as in [5], is defined
inductively as follows:

(a) H™° =L (resp. H o = L);

(b) HL*'=Y . o[H,, H**](resp. H 44+, = [H_, H]+ H) for each
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ordinal «;

(c) HY* =g HY* (resp. Hy ; = (\a<iHL,) for each limit ordinal A.
Then it is easy to see that HdscL(resp. HwdscL) if and only if HX° = H (resp.
H,, = H) for some ordinal o.

A class X is a collection of Lie algebras together with their isomorphic
copies and O-dimensional Lie algebras. Lie algebras in a class X are called X-
algebras. A (resp. &, &, ©, N, N, RN, S, J) is the class of Lie algebras which
are abelian (resp. finite-dimensional, finite-dimensional of dimension < n,
finitely generated, nilpotent, nilpotent of class < n, residually nilpotent, simple,
hypercentral). B (resp. ®r) is the class of Lie algebras L such that {x)siL
(resp. {x>ascL) for all xeL. B-algebras (resp. ®r-algebras) are called Baer
(resp. Gruenberg) algebras. Similarly we use Gr, as in [8], to denote the class
of Lie algebras L such that {(x)>dscL for all xeL. Furthermore, we use
£(< )9, as in [8], to denote the class of Lie algebras Lsuch that L* = {0} for
some ordinal «. Evidently Rt < &(<a ). Let X,, X,, ¥, and X be classes of
Lie algebras and n be an integer > 0. Then the classes X; X,, X, X, X,,
X", EX, E(<a )X and k(<2 )X are defined as follows:

Le X, X, iff L has an ideal I such that IeX, and L/IeX,;

LeX, X, X, iff Le(%X, X,)X;;

Le X" iff there exists an ascending series {L;: i < n} from {0} to Lsuch that
Liy,/LieX (0=i<n)

LeEeX iff Le X" for some integer n > 0;

Le e (<1 )X (resp. E(<a )X) iff there exist an integer n = O (resp. an ordinal o)
and an ascending series {L;: i < n}(resp. {L,: @ < 0}), consisting of ideals of L,
from {0} to L such that each factor L;,/L;eX (resp. L,,/L,€X).

In particular, EU is the class of soluble Lie algebras. The following five classes
of Lie algebras, introduced in [5] and [7], will be mainly studied in this paper.

Le¥, iff either Le A or Le A? with dim(L/L?) = 1.

Le 8 (resp. 8 (asc)) iff H,siL (resp. HyascL)(x€ A) implies ("),  H,siL
(resp. ()aea HyascL).

Le IR, iff si(L: H) < n for all subideals H of L

LeIM iff Le M, for some integer n = 0.

Let 4, be any of the relations <, si, asc, dsc (i = 1, 2). Then we introduce
the new class D(4,, 4,) of Lie algebras as follows:

Le®(4,, 4,) iff HA, L always implies H 4, L.

In particular, D(<,si) is usually denoted by D. We also abbreviate
D( <, asc) to D(asc). In [7] Do(asc, si) is denoted by Mi(asc). The classes
D( <, dsc), D(asc, dsc) and D(dsc, asc) will not concern us in this paper.

2.

In group theory, Hartley [3] has proved that in any group the intersection
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of any collection of serial subgroups is always serial. In this section we shall
first prove the similar results in Lie theory and present a generalization of
[4, Proposition 2.6]. We shall secondly characterize £-algebras as Lie
algebras in which every descendant subalgebra is a subideal.

We begin with

LEMMA 2.1. Let Lbe a Lie algebra and A be any of the relations si, wsi, asc,
wasc, dsc, wdsc, ser, wser. Let H, A L(x€ A) and set K = (\,e4 H,. Then there
exist an ordinal o and a descending chain {K;z: p < o} of subalgebras of L
satisfying the following conditions:

(a) Ko=Land K,=K;

(b) Kgz.14K; for all ordinals f < o;

() K, =()g<1Kp for all limit ordinals i < o.

In particular, if |A| < o0 then 6 < w and so K AL.

PrROOF. Let the elements of A be well-ordered as 4 = {a: a < o} for some
ordinal o. Then we can construct a descending chain {K;: f <o} as
follows: Ko =L, Kz = (),<;H, 0 <B=<0). It is easy to see that for any
ordinal B <o, Kz =KgnHy;AKy Therefore {Kz: f <o} is a required
chain.

We have the first main result of this section, generalizing [4, Proposition
2.6], in the following

THEOREM 2.2. Let L be a Lie algebra and A be any of the relations dsc,
wdsc, ser, wser. If H, AL (x€A), then (), aH,4L.

Proor. If 4 means dsc or wdsc, then the result is immediately deduced
from Lemma 2.1. Assume that 4 means ser (resp. wser). Set K
= ()eea H- Then by Lemma 2.1 we can easily see that there are a reversely
well-ordered set 2 and a family {4,, V,: €2} of subalgebras of L containing
K such that

(a) V,ser A, (resp. V, wser A4,) for all e,

b) 4.<V,if 1 <o,

(©) L\K = Uses(4,\V;).

For each g€ 2, there are a totally ordered set 2, and a series (resp. a weak series)
{4y V, i 1€2,} from V, to A, Set 2*={(0,1):0€2X,1€X,}. Then we
can define a total ordering on X2* as follows: (6, 1) < (¢, ') if 6 < 6’ orif o = 0’
and T <1 For each (g, 1)eX*, set A4, ,=4,, and V,,=V,. Then it is
not hard to show that {4 ., V,,: (0, )€ Z*} is a series (resp. a weak series)
from K to L. Thus we have KserL (resp. K wser L).

REMARK. Theorem 2.2 is not true for any of the relations si, wsi, asc,
wasc. In fact, the Lie algebra L constructed in [6, p.354, Example] has a
descending chain {H,: n < w} of subideals such that (),., H, is self-idealizing
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in L. Then (),<,H, is not weakly ascendant in L.
We can now prove the second main result of this section.
THEOREM 2.3. 2, = D(dsc, si).

Proor. By Lemma 2.1 we clearly have D(dsc, si) < 8,. Let Leg_ and
HdscL. Then there is a descending series {H,: a < ¢} from H to L. By
transfinite induction on « we can show that H,siL for each ordinal o
< 0. Hence LeD(dsc, si) and therefore £, < D(dsc, si).

REMARK. The proof of Theorem 2.3 carries over in group theory without
difficulties. Thus the group-theoretic analogue of Theorem 2.3 is also true.

Using [8, Theorem 2.9(2)] we have R < E(< 9 < Gr. By making use
of this result and Theorem 2.3, we obtain the following corollary.

COROLLARY 2.4. 2 _ni(<)A <2, n6r=2g_nB.

3.

In group theory, a group G is said to be a B-group if there exists an upper
bound for the defects of all subnormal subgroups of G. Robinson
[12, Lemma 1] has proved that every extension of a group having a
composition series of finite length by a B-group is also a B-group. In this
section we shall establish the similar results concerning the classes £
= D(dsc, si), L (asc), M and D(asc, si) of Lie algebras.

A composition series of finite length for a Lie algebra Lis a finite ascending
series {L;: i < n} from {0} to Lwith each L;,,/L;eS. The class ES is the class
of Lie algebras having composition series of finite length. By [2, Proposition
1.7.5] we have ES = Min-sin Max-si. By making use of [1, Theorem 4.7] and
[2, Theorem 8.2.3], we can easily see that Min-si < E(< )(FUS). It follows
that

Min-sin Max-si < E(< J(FUS)Nn Max-si < E(< (FUS) <EFUS).

By induction on n we can show that §, <ES (n =1, 2,---). This implies that
B(FUS) =©eS. Therefore we have

LemMa 3.1. Min-sinMax-si = B(< (FUS) = KFUS) = EC.
Now we need the following two.lemmas.

LEMMA 3.2. Let L be a Lie algebra and n be a positive integer. Then
Le &" if and only if whenever {L;: i < m} is a strictly ascending series from {0} to
L with m < w, then m < n.

Proor. Let X, denote the class of Lie algebras Lsuch that whenever {L;: i
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< m} is a strictly ascending series from {0} to Lwith m < w, then m <n. By
induction on n we first show that S" < X, (n=1,2,---). It is trivial for n
=1. Letn=1and LeS"*!, and let {L;: i £ m} be a strictly ascending series
from {0} to Lwith m < w. By inductive hypothesis Lhas an ideal I such that
IeX, and L/I€&. Let y denote the natural map L— L/I. Then {y(L): i
< m}(resp. {L;nI: i < m}) is an ascending series from {0} to L/I (resp. I). Let
r be the smallest integer with respect to y(L,) = y(L). In order to show that m
<n+ 1, we may assume that r >0. Letr <i<m. Since L; + I = L, by the
modular law L;.; =L;+ (L;+,nI). It follows that L;,nI < L;,,nI, since
L;#L;,,. By the minimality of r, L,_, < 1. Hence we have

{0} =LonlI<--<L,_nI<L,nl<--<L,nl=1I

Since IeX, we have m <n+ 1. Therefore we obtain &"*! < ¥,,,. This
completes the induction. Conversely we show that ¥, < &". Let LeX,\{0}
and let & denote the collection of strictly ascending series from {0} to Lof finite
length. Since Le X,, & has an element {L;: i £ m} of maximal length. By the
maximality of m we have L,,;/L,e S (0 £i<m). Hence Le @™ < &", since m
< n. Thus we obtain %X, < S".

LeEMMA 3.3. Let Lbe a Lie algebra and I be an ideal of Lsuch that I Min-
sinMax-si. Then there exists a positive integer n such that for any ascendant
subalgebra H of L, HsiH + I with si(H + I: H) < n.

Proor. By Lemma 3.1 there exists a positive integer n such that
Ie@". Since HascL, HascH + 1. Let {H,: o < ¢} be a strictly ascending
series from H to H + 1. For any a <o, since H+ (H,n)=H,#H,,, = H
+(H,+,nI), we have H,nl # H,,,nl. Hence {H,nl:a < g} is a strictly
ascending series from HNI to I. Owing to [14, Theorem], we have
IeD(asc, si)nMax-si < Max-asc. Thus ¢ must be a finite ordinal. Since
{0} <HynI<H;nI<--<H,nlI=1I by Lemma 3.2 we have ¢ < n. There-
fore HsiH + I and si(H + I: H) = n.

We now set about proving the main result of this section.

THEOREM 3.4. Let X be any of the classes 2., 2.(asc), M and
D(asc, si). Then (Min-sinMax-si)X = X.

ProoF. Let Le(Min-sinMax-si)X. Then L has an ideal I such that
IeMin-sinMax-si and L/IeX. By Lemma 3.3 there exists a positive integer n
such that for any HascL, Hsi H + I with si(H + I: H) £ n. Then for each of
the following three cases, we show that LeX.

Case 1. X = I; then L/I1eIN,, for some integer m > 0. Let HsiL. Then
H<"H + 1. Since (H + I)/IsiL/I, we have H + I<™L. It follows that
H<™*"L. Therefore we have Le M, ., <M.
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Case 2. X = Do(asc, si); for any ascendant subalgebra H of L, we have
H<"H + IsiL, since (H + I)/I asc L/I e D(asc, si). Thus Le D(asc, si).

Case 3. X = 2 (resp. £(asc)); then we set 4 = si (resp. asc). Let H, AL
and K,=H, + I (xe A). For each a€ A4, since H,si K, with si(K,: H,) < n, we
have

—_ K, ,n K,n—1 K,,0 __
H,= H,»"<a H,» < ---<as H}~° = K,.

Therefore we have

ﬂaeA Ha = ﬂaeAHfd’"< musA Holz(l’"_1< e naeA wao = naeA Ka-

Since for each aed K,/IAL/Ie®, (resp. £,(asc)), ()eesa K.4L. Hence
(Neea Hysi(Vaea Ko 4L and therefore (,4H,4L. Thus we have Leg,
(resp. £(asc)).

By [2, Lemma 1.3.7] we have 3t <9R. On the other hand, for a Lie alge-
bra L it is well known that if L= {,(L) for some ordinal o, then for any
subalgebra H of L, {H + {(L): « < ¢} is an ascending series from H to L. It
follows that 3 < D(asc) < L (asc). By making use of these results,
[5, Lemma 3.2] and Theorems 2.3 and 3.4, we obtain

CoRrOLLARY 3.5. (1) FN < (Min-sinMax-si)N
< (Min-sin Max-si) I = M
< (Min-sinMax-si)2, = £, = D(dsc, si).
2) &3 < (Min-sinMax-si)D(asc)
< (Min-sin Max-si) £ (asc) = £_(asc).

REMARK. As stated in Corollary 3.5 we have N <M< L, and
§3 < L.(asc). However, we should note that NF £L, and FF £L,(asc). In
fact, by [6, p.354, Example] and the proof of [7, Theorem 5.1(3)] we have
AF, £8, and A, £L (asc), respectively. Furthermore, the latter fact is in
contrast to the fact that A, <M ([S, Theorem 2.10]).

In Corollary 3.5, if the ground field f is of characteristic p > 0, then by
[5, Remark to Lemma 3.2] we have I < 2 . Moreover, the following
example shows that even if the ground field f is of arbitrary characteristic, then
(Min-si n Max-si)t < M and (Min-si n Max-si) D(asc) < £_(asc).

ExamMpPLE 3.6. Let A be an abelian Lie algebra over f with basis
{a;: ieZ}. For a derivation x of 4, xe Tif its image Ax is of finite-dimensional
and if the restriction of x to Ax has trace zero in the uaual sense. Then by
[13, Lemma 4.1] T is an infinite-dimensional simple Lie algebra. We constuct
the split extension L= A + T of A by T, which is one of the Lie algebras
constructed in [6, p.355, Example]. Then evidently

{HHH<AorH=L}<{H:H<?L} < {H: HascL}.
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Let HascL. Levic [10] has proved that every simple Lie algebra has no non-
trivial ascendant subalgebras. By using this result, we can see that H < 4 or
H+ A=L. Assume that H+ A = L. For each ieZ, we define a derivation
x; of A by ajx; = 0;;a; — 6;41;8;+, (jeZ). Clearly x;€T. Since L= H + A, x;
= h + a for some he H and some ae A. By using [7, Lemma 2.1], we can find
an integer n > 0 such that [a,, hlJeH. Since A is an abelian ideal of L,
[a;, h] = [a;,, x;] = a;. 1t follows that a;e H for all ieZ. Hence L=H + A
= H and therefore

{H:HascL} ={H: H< A or H=L}={H: H<?L}.

Thus we have LeIn D(asc, si) < L (asc). Next we prove that Lis not in the
class (Min-sinMax-si)D(asc). Assume, to the contrary, that L has an ideal I
such that IeMin-sinMax-si and L/IeD(asc). Obviously Lis not in the class
Min-siUMax-si. Hence I < A. Since A/I< L/I e D(asc) = QD(asc), we have
T=(L/I)/(A/I)eD(asc). But T has no non-trivial ascendant subalgebras.
Thus Te§,, a contradiction.

Finally we show that there is no inclusion between the class £ (asc) and
the class D(asc, si), and neither between the class  , = D(dsc, si) and the class
D(asc, si), in the following

ProrosiTION 3.7. (1) L (asc) £ D(asc, si) and L, £ D(asc, si).
(2) Assume that the ground field ¥ is of characteristic zero. Then
D(asc, si) £ L, (asc) and D(asc, si) £ L.

Proor. (1) Let X be an abelian Lie algebra over f with basis {x;:
i=0,1,---} and o be a derivation of X such that x,0 =0 and x;0 =Xx;_,
(i=1). Form the split extension L= X + <o) of X by (o). Then it is well
known (cf. [2, p.119]) that Le 3\ B. Thus we have Le D(asc)\ D(asc, si).
Since L?=[X,0]=X,L? is of codimension 1 and so Le¥;. By [5,
Lemma 2.9] we have Le£,.

(2) Let W be a Lie algebra over I with basis {w;:i=1,2,--} and
multiplication [w;, w;] = (i —j)w;+; Then by [2, Theorem 8.7.1] and [9,
Theorem] we have WerR%RnMax. By using induction on n, we can easily see
that [w,,, w,] = (n)w,,, (n =0,1,---). Hence {w,) is not a subideal of Wand
therefore Wis not in the class B. It follows from Corollary 2.4 that W is not
in the class £,. It is clear that Max < ®D(asc, si). Therefore we obtain
We D(asc, si) \ £(asc).

4.

As stated in Section 3 the inclusions it < 9 < € hold. In this section
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we shall present sufficient conditions for a Lie algebra in the class £, to be in
the class 9@ and, furthermore, to be nilpotent.
We need the following lemma.

LEMMA 4.1. Let n be a positive integer and let Le L, NUNR,. Then:

(1) To each subalgebra H of L, there corresponds an integer m = 0 such
that [L"*Y,, H]+ H=[L"*',,., H + H.

(2) If L has an abelian ideal A and a nilpotent subalgebra N of class < n
such that L= A+ N and ANN = {0}, then L™*"*! = L™*"*2 for some integer
m=0.

Proor. (1) Let H<Land M =H + L"*!. Since L"*! is an abelian
ideal of L, as in the proof of [4, Lemma 4.1] we can easily see that H¥* = H,,,
for all ordinals «. It is clear that M =H + L"*"'<s H+ "< ---<H + L
= L. Hence we have Meg, . Therefore by [5, Proposition 3.1(3)] there
exists an integer m = m(H) = 0 such that HM™ = gMm™*1 [t follows that
Hpm=Hpm+1- Moreover, for any integer k=0, H,,=[L""",, H]
+ H. Thus we have the result.

(2) By (1) there exists an integer m =0 such that [L**!,, N]+ N
=[L"*',,+1 N]+ N. Since L"*! < Ae¥, for any integer k =0, [L"*!,, N]
=[L"*!,, A+ N]=L*"*', Hence L"*"*'+ N=L"*"*2 + N and there-
fore Lm+n+1 — Lm+n+2 + (Lm+n+1 nN) — Lm+n+2.

As stated in [6, p.354, Example], Lie algebras in the class A%, need not be
in the class 2,. However, the following proposition shows that if a Lie
algebra in the class U, is also in the class £, then it must be in the class IN.

PrOPOSITION 4.2. 2 NAF, = MnAF,.

Proor. Let Le2 nAF,. Then Lhas an abelian ideal 4 and an element
x such that L= A4 + (x)>. We may suppose that An{x)> = {0}. By Lemma
4.1(2) L™*? = L™*3 for some integer m = 0. It follows that L® = L™"*2. By
induction on k we can easily verify that L**! = [4,, x](k =1,2,---). Let Hsi
L with s =si(L:H). We show that s<m + 2. It is clear that H < A4 or H
+A=L If H<Athen s<2<m+ 2 Assume that H+ A= L. Then x
=h+a for some heH and some acA. Since H<°L, Ls*! =[4,, x]
=[A4,,h]<H. Hence L["*?=L"<[*'<H. It follows that H=H
+I"2<H+L""'<s...<H+ L=L. Therefore we have s<m+1<m
+ 2, so that LeIM,,,,. Thus we obtain L NAF, < MnAF,.

Finally we consider a sufficient condition for a Lie algebra in the class £
to be nilpotent.

As stated in Remark to Corollary 3.5, Lie algebras in the class ® need
not be in the class €,. Moreover, Lie algebras in the class £, N9NG need not
be nilpotent (see Remark (2) to Lemma 4.3). However, we have
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LEMMA 4.3. 2 NNGNGr = N.

ProoF. Since by Corollary 24 €, n®r < B, it is enough to show that
BNNRG <N. Let LeBNNG. Then Lhas a nilpotent ideal N such that L/N
is finitely generated. There is a finitely generated subalgebra X of Lsuch that
L= X + N. By [2, Theorem 7.1.5(b), (c)] X is a nilpotent subideal of L. It
follows from [2, Theorem 2.2.13] that L= X + Ne®. Thus we have
BANG < N

ReMARK. (1) If we remove the class £, from the equation stated in
Lemma 4.3, then it becomes a failure. In fact, the Lie algebra constructed in
[6, p.354, Example] is not a Gruenberg algebra, but in the class AF, NRR. 1t
follows from [8, Theorem 2.9(2)] that NG N Gr > N.

(2) If we replace the class Gr with the class Gr in the equation stated in
Lemma 4.3, then it becomes a failure. In fact, the Lie algebra constructed in
the proof of Proposition 3.7(1) is not a Baer algebra, but in the class
L. NAF,nJ. This implies that L NNRNG N Gr > N

LEmMMA 4.4. MNGr = Mni(<)A =MnB =N

Proor. Using [8, Theorem 2.9(2)] we have | < RN < (< )A < Gr. It
is clear that 9 <®B < ®r. Therefore it is enough to prove that
MNGr <N. Let LeMnGr. Then LeM, for some integer n > 0. Since
LeM < L, by Corollary 2.4 we have LeB. Let x;eL(1 £i < n) and set H
={(x;:1<i<n). By [2, Theorem 7.1.5(c)] we have HsiL, so that
H<"L. Hence LeD,,. Owing to [2, Theorem 7.2.5], we have LeN.

PROPOSITION 4.5. 2, NGRGNGr = N.

ProOOF. By making use of Corollary 3.5(1), Lemma 4.4 and [2, Theorem
7.1.5(b)], we can easily see that

BNGN =BN(BNG)N = BNFR = BnM = N.

Therefore by Corollary 2.4 we have 2 NGRGNGr = 8 NNGNB. Thus the
result is immediately deduced from Lemma 4.3.
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