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1. Introduction

In this paper we consider radially symmetric solutions to the semilinear

elliptic equation

(1.1) A u + f ( \ x \ 9 u ) = 0, xeΩ,

where Ω = {xeR"\ \x\ < 1}, n > 2, and the function /(ί, u) is assumed to be
continuous in [0, 1] x R. In order to discuss radially symmetric solutions u
= u(t\ ί = |x|, it is natural to convert equation (1.1) to the second order
ordinary differential equation

(1.2) u" + —-u' +/(ί, 11) = 0, 0 < ί < 1,

(1.3) ιι'(0) = 0.

In the present paper we establish the existence of infinitely many solutions of
equation (1.2) under the boundary conditions

(1.4) u'(0) = 0, αu(l) + bu'(l) = 0,

for any coefficients a and b. Moreover we investigate the Sobolev norms of
solutions of the problem (1.2)-(1.3) in conjunction with their zeros. We treat
the nonlinear function /(ί, s) under superlinear growth conditions and sublinear
growth conditions. In the present paper the function / is said to be superlinear
(in a neighborhood of s = ±00) if

(1.5) lims^ + 00 ί^= oo uniformly in fe[0, 1].
s

On the other hand, / is said to be sublinear (in a neighborhood of s = 0) if

(1.6) lims-+o—'—= QO uniformly in ίe[0, 1].
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Equation (1.2) can be written as

(1.2)' (ί"-1 uj + tn~lf(t, u) = 0, ίe(0, 1),

and so we can treat the problem (1.2)'-(1.4) as a singular boundary value

problem for a nonlinear Sturm-Liouville equation.
In the case where /(ί, s) is superlinear and odd in s and satisfies some

growth conditions, Ambrosetti and Rabinowitz showed in [1] that equation
(1.1) with Dirichlet boundary condition possesses infinitely many solutions in
any bounded domain Ω. More precisely, they obtained an unbounded
sequence of solutions in Sobolev space HQ(Ω). See [2, 6, 8, 9, 10] for the

related results.
In the case where Ω is the unit ball and / is superlinear, the existence of

infinitely many radially symmetric solutions has been investigated by Castro -
Kurepa [4] and Struwe [11]. In fact, they treated equation (1.2) under
Dirichlet boundary condition, namely,

(1.7) u'(0) = 0, ii(l) = 0.

Then Struwe [11] proved by means of a variational method that there is an
integer fe0 such that for any k > k0 the problem (1.2)-(1.7) admits a solution
with exactly k zeros in the interval [0, 1]. On the other hand, Castro-Kurepa
[4] obtained the same results under weaker assumptions on the nonlinear term
/(ί, s) by applying so-called shooting method. In the case of n = 1 Berestycki
[3] gave similar results with the aid of bifurcation theory. As mentioned
above, many authors have dealt with equation (1.2) under Dirichlet boundary
condition (1.7) in the superlinear case. However, it seems to the author that
very little is known about the existence of infinitely many solutions of (1.2)
under the other types of boundary conditions or in the sublinear case. In the
present paper we establish the existence of infinitely many solutions under
arbitrary boundary conditions in both superlinear and sublinear cases.

On the other hand, it is an interesting problem to study the relation
between H1(Ω) norms of radially symmetric solutions and the numbers of their
zeros. Recently, the author [7] has obtained the following result for this
problem. Consider the superlinear function /(ί, s) = g(s) satisfying

(1.8) 0(0) = 0, 0'(0) = lims_0— exists
s

and

(1.9) 0<a1<g(s)/\s\p-1s<a2

for sufficiently large \s\ and some constants α l 5 a2 and 1 < p < (n + 2)/(n — 2).
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Under appropriate additional conditions on 0, the author obtained the estimate

α iίϊl r L (P+1V(P~1) <- II u II <: r k(P+ 1)/(/»-l).1U; C1K S || U\\HtfΩ) ^ C2K

for any solution u of the problem (1.2)-(1.7) having exactly k zeros. In this
assertion condition (1.8) can not be removed so far as one employs the method
as in [7]. However, as mentioned before, the existence result of infinitely many
solutions has been obtained without assuming condition (1.8). See [4] and
[11]. Therefore in the present paper we prove the estimate (1.10) without
condition (1.8) by exploiting a new approach. It should be mentioned at this
point that the estimate (1.10) can be derived under condition (1.3) which is
weaker than (1.7). Actually, for the derivation of (1.10) we do not need any
boundary condition at the end point ί = 1.

Outline. In this paper we present four theorems. These are concerned with
the existence and the Sobolev estimates for solutions of (1.2). The first and
second theorems assert respectively that there exist infinitely many solutions of
(1.2) under boundary conditions of the form (1.4) in the sublinear and
superlinear cases. In fact, a positive integer /c0 can be found such that for any

coefficients a and b in (1.4) there exist two sequences {wfc

+}fe>fco and {w fc~}fe>k0 °f
solutions to (1.2)-(1.4) such that both u£ and wk~ have exactly k zeros in the
interval [0, 1] and wk

+(0) > 0, wfe~(0) < 0. Moreover we have

(1.11) lim^ ||u£ ||Loo(β) = 0, lim^ \\u£ \\Hl(Ω} = 0

in the sublinear case;

(1.12) lim^ \\u£ ||Loo(β) = oo, lim^ \\u£ ||flι(β) = oo

in the superlinear case, respectively.
Our third and fourth theorems may be illustrated as follows: In these

theorems the Hi(Ω) estmates for the solutions are given in terms of the
numbers of zeros of the solutions. The third theorem is concerned with the

sublinear case. More precisely, we suppose that

(1.13) 0<a1<f(t,s)/\sΓls<a2

for sufficiently small |s| and some constants α l 9 a2 and 0 < p < 1. Under some
additional conditions on /(ί, s), we obtain the estimate

(1.14) Clk-(1+pv(1~p)< \\u\\Hί(Ω}<c2k-(ί+p)/{1-rt

for any solution u of (1.2)-(1.3) with exactly k zeros. The fourth theorem is
formulated for the superlinear case. In this theorem we assume (1.13) for
sufficiently large \s\ and some constants al9 a2 and p with 1 < p < (n + 2)/
(n — 2). Then we obtain the estimate of the form
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for any solution u of (1.2)-(1.3) with exactly k zeros. This theorem improves
and extends our earlier results given in [7]. In fact, we needed to assume

condition (1.8) in [7] but do not necessitate to assume (1.8) in this paper. Also,
these two theorems provide the estimates for the Sobolev norms of solutions in

which boundary conditions at t = 1 do not affect. More precisely, all solutions

of (1.2)-(1.4) are estimated in the form (1.14) or (1.15) in terms of the Hl(Ω)

norm, although the constants cγ and c2 in (1.14) or (1.15) are independent of the
coefficients a and b in the bundary condition (1.4).

We now sketch the proofs of the above-mentioned theorems. Our main

tools for the proofs are combinations of shooting method, various a priori

estimates for the solutions and new types of Prύfer transformations. We here

employ the following Prϋfer transformation:

\u'\(1-pm+p)u' = p cos φ,

u = p sin φ,

in the sublinear case, where 0 < p < 1, and

u' = p cos φ,

| M | (P-1)/2 M = p sin φ^

<P(O) = |,

in the superlinear case, where 1 < p < (n + 2)/(n — 2). By means of this
transformation one can define new unknown functions p(t) and φ(t\ and it is
seen that these functions are well defined provided u(t) has only simple zeros in
the interval [0, 1]. We here say that a zero τ of u is a simple zero if u(τ) = 0

and u'(τ) Φ 0. We prepare several lemmas and a priori estimates for the
solutions. We can then prove that u(t) has only simple zeros, and so our

Prύfer transformations make sense. Moreover we show that for any solution
w,

(1.16) * = #{fe[0, l ] :κ(f) = 0}

if and only if

(1.17) kπ < φ(l) < (k + l)π.

That is, the value of φ(i) determines the number of zeros of u. On the other
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hand, using the Prϋfer transformation, we obtain the relation

(1-18) φ'(t] = F(t, u(t\ u'(t))>

where F is a function determined by equation (1.2) and can be written
explicitly. Integrating (1.18) over [0, 1], we have

(1.19) φ(l)-φ(0)= P F(t, u(t), u'(t)) dt.
Jo

The left-hand side represents the number of zeros of u(t) by (1.17). We apply
appropriate a priori inequalities, and so the right-hand side can be estimated in
terms of the Hl(Ω) norm of u(t). Thus we obtain the third and the fourth

theorems. The first and second theorems are obtained by applying a shooting

method together with the relation (1.19). To prove these four theorems, we

prepare four propositions, Propositions 3.1, 4.1, 5.1 and 6.1, which are crucial
for our discussions. In fact, Propositions 3.1 and 5.1 contain various a priori
estimates for the solutions of (1.2)-(1.3) in the sublinear and superlinear cases,
respectively. On the other hand, Propositions 4.1 and 6.1 give the relations

between the total number of zeros of the solution u of (1.2)-(1.3) and its value

w(0) at t = 0.
This paper is organized as follows: In Section 2, we state our main results

in Theorems 1, 2, 3 and 4 together with some examples. It turns out that the
existence of infinitely many solutions to the problem (1.2)-(1.4) is proved and

the precise estimates for the Hl(Ω) norm of the solutions are established. Our

theorems are applied to Emden-Fowler type equations. We can discuss the

existence of solutions and investigate the asymptotic distribution of the
solutions in the Sobolev space H1(Ω).

Section 3 deals with the sublinear case and several a priori inequalities are

given for the solutions. These estimates together play an important role in

proving our theorems.
Section 4 contains the proofs of Theorems 1 and 3. Here we introduce a

new Prύfer transformation to treat the sublinear case. This transformation and
the a priori estimates obtained in Section 3 are basic to our arguments in this

section.
Section 5 concerns the superlinear case and several a priori estimates for

the solutions are given.
Finally, in Section 6, we prove Theorems 2 and 4. To this end, we

introduce another Prϋfer transformation for the superlinear case. Using this
transformation and the a priori estimates obtained in Section 5, we prove

Theorems 2 and 4.
The author wishes to express his hearty thanks to Professor S. Oharu for
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valuable discussions and comments.

2. Main results and examples

We begin this section by introducing some notations and definitions which

are used in this paper. First Ω = {xeΛ": |x| < 1} is the open unit ball in

Rn. We denote by Lq(Ω\ 1 < q < oo, and by Hί(Ω) the usual Lebesgue and

Sobolev spaces, respectively. The function spaces Lq and H denote respectively

the subspaces of Lq(Ω) and H1(Ω) which consist of radially symmetric

functions. We define the norm || ||β of Lq and the norm || - ||fl of H by

\ι/β
^ dt\ , ! < 4 < o o ,

/

and

=ess. u(t)\9

l/2

respectively. Given r > 0 the symbols

and

<r}

: \\u\\H<r}

stand for the open balls centered at 0 in L°° and H, respectively. Moreover we

write S for the set of nontrivial solutions weC2(0, IJnC^O, 1] of the problem

(1.2)-(1.3). By a nontrivial solution we mean a solution u of (1.2)-(1.3) such

that u φ 0. For /ceTV, Sk denotes the set of all solutions of (1.2)-(1.3) which

have exactly k zeros in the unit interval [0, 1]. Lastly, given an integer n with

n > 2, the symbol π* means n* = oo if n = 2 and n* = (n + 2)/(n - 2) if

n > 3. In what follows, we impose one of the following two assumptions (A)
and (B) on the function /.

ASSUMPTION (A) (Sublinearity of/). The nonlinear term /is assumed to be
of the form /(ί, 5) = #(s) + /ι(ί, 5), and g(s) and /ι(ί, s) are continuous functions
satisfying the following conditions.

(Al) There exist constants 0 < p < 1, a^ > 0 and r0 > 0 such that for any
M < r ,

a1\s\p+1<sg(s)<a2\s\p+1.
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(A2) The function h satisfies the growth condition

and the convergence is uniform for ίe[0, 1].
(A3) If n > 3, g(s) also satisfies

- — ̂ -,
G(s) n-2

The above assumption is put in the sublinear case, and the next assumption is
imposed in the superlinear case.

lim sups^0 - < — -, where G(s) = g(τ) dτ.
J0

ASSUMPTION (B) (Superlinearity of/). The nonlinear term /is assumed to
be of the form /(f, s) = g(s) + /ι(ί, s), and g and h are continuous functions
satisfying the following conditions.
(Bl) There exist constants 1 < p < n*, a^ > 0 and R0 > 0 scuh that for any

(B2) The function h satisfies the growth condition

and the convergence is uniform for ίe[0, 1].
(B3) If n > 3, g(s) also satisfies

lim sups^ + „ - < — -, where G(s) = g(τ) dτ.
Jo

- — ̂ -,
G(s) n-2 o

The assumptions (A) and (B) restrict the growth order of the nonlinear
term / in a neighborhood of s = 0 and s = ± oo, respectively. These
assumptions imply that the function g is the main part of /and h is regarded as
a small perturbation of g. Under the assumption (A) or (B), we wish to employ
the so-called shooting method in order to prove the existence of infinitely many
solutions to the boundary value problem (1.2)-(1.4). Our approach may be
outlined as follows : We consider the solution u(t, γ) of the initial value

problem

(2.1) H" + ̂ — -ιι' +/(ί, H) = 0, 0 < t < 1,

(2.2)y u'(0) = 0, ιι(0) = y.

We then vary the parameter ye/? continuously and make an attempt to find
infinitely many γ for which solutions u(t, y) of the boundary value problem
(1.2)-(1.4) exist. To proceed this argument, we impose the next assumption.
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ASSUMPTION (C)r Suppose that there exists a unique and global solution

u(t) on [0, 1] of the problem (2.1)-(2.2)r

We now state our first main result which guarantees the existence of

infinitely many solutions for (1.2)-(1.4) in the sublinear case.

THEOREM 1. Suppose that assumptions (A) and (C)y are valid for sufficiently

small \y\. Then there exists a positive integer /c0 such that for any a and b with
a2 + b2^Q, there exist two sequences {uk}k>ko and {uk}k>ko of solutions to

(1.2)-(1.4) such that uk and uk have exactly k zeros in the interval [0, 1], uk(0)

>0, wfc-(0)<0,

lim^Jlt^ll^ =0 and lim^ \\u£ \\H = 0.

In the next theorem we establish the existence of infinitely many solutions

of (1.2)-(1.4) in the superlinear case

THEOREM 2. Suppose that assumptions (B) and (C)γ are valid for sufficiently
large |y |. Then there exists a positive integer k0 such that for any a and b with

a2 4- b2 φ 0, there exist two sequences {uk}k>ko and {uk}k>ko of solutions to (1.2)—
(1.4) such that uk and uk have exactly k zeros in the interval [0, 1], u k ( Q ) > 0,
wk-(0)<0,

limfc^ „ || M± || ̂  = oo and limfc^ ̂  \\ u£ \\ H = oo .

The above two theorems assert the existence of infinitely many solutions of the

boundary value problem (1.2)-(1.4). In the following two theorems we give the

estimates with respect to the H norm of solutions of (1.2)-(1.3) in terms of the
numbers of their zeros. We first deal with the sublinear case.

THEOREM 3. Suppose that assumption (A) is valid. Then there exist

constants c l 5 c2 > 0 and r > 0 such that

(2.3) Clk-(1+p)/(1-p) < \\u\\H < c2

for any ueS kn£oo(r) and any k > 1.

In the next theorem we consider the superlinear case and give the estimates
with respect to the H norm of solutions.

THEOREM 4. Suppose that assumption (B) is valid. Then there exist
constants c l 9 c2 > 0 and R > 0 such that

(2.4) Clk
(p+ί)/(p-l) < \\u\\H <

for any ueSkΓ\B(R)c and any k > 1, where B(R)C means the complement in
H'. B(R)C = H\B(R) = {uGH: \\u\\H > R}.
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Theorem 4 extends our earlier result given in [7]. In fact, if we put
h(t, s) = 0 in assumption (B), then the main result (Theorem 3) of [7] follows
immediately from Theorem 4. Moreover, it should be mentioned that in
[7, Theorem 3] the function g(s) is assumed to satisfy 0(0) = 0 and supposed to
be differentiable at s = 0. In Theorem 4 these assumptions are removed.

REMARK 2.1. We here list some sufficient conditions for condition
(C)r In later sections, we will obtain certain a priori estimates, (3.10) or (5.9),
for the solutions of (1.2)-(1.3) under the assumptions (A) or (B),
respectively. These estimates imply that any solution of the problem (2.1)-
(2.2)y can be extended on all of the interval [0, 1]. Hence our requirements are
only local existence and uniqueness of solutions. One of them is a local
Lipschitz condition on /(ί, s) for the variable s. However this condition does
not hold in the sublinear case (1.6). Actually, from (1.6) it follows that
/(ί, 0) = 0, and so /(ί, s) is not locally Lipschitz continuous. For the sublinear
case several sufficient conditions have been investigated by Coffman and Wong
[5]. See Theorems A5, A6, A7 and Corollaries A4, A5 and A6 in the paper

[5].

REMARK 2.2. Theorems 3 and 4 do not necessarily guarantee the existence
of solutions on [0, 1] of the problem (1.2)-(1.3). These results give only the
estimates with respect to the H norm of solutions u if they exist. Sufficient
conditions for the existence of solutions are given in Theorems 1 and 2.

Next, we note that the restrictions in terms of B^r) and B(R)° can not
necessarilly be removed in Theorems 3 and 4, respectively. In fact, if we were
able to remove the restriction in terms of B^r) in Theorem 3, this theorem
would imply that any solution with many zeros in [0, 1] must have a small H
norm. But, as seen from Example 3 below, we will find a solution which has

many zeros but has a large H norm. Using the same Example 3, we can also
discuss the case of Theorem 4, too. Therefore we see that the restriction by
means of B^r) and B(R)C are essential in our discussions.

Finally, we illustrate the significance of our results by applying them to a
few typical Emden-Fowler equations. It turns out that the existence and the
asymptotic distribution of the solutions are discussed in the space H.

EXAMPLE 1 (Emden-Fowler equation). Consider the boundary value

problem

„ 1

(2.5) u" + u' + |u | p sgnu = 0, 0 < ί < 1,

(2.6) u'(0) = 0, n(l) = 0,
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where (2.5) is sublinear for 0 < p < 1 and is superlinear for 1 < p < n*. In

each case we can show that for each k > 1 the problem (2.5)-(2.6) possesses a

unique solution which has exactly k zeros in [0, 1] and satisfies u(0) > 0. If we

denote the solution by uk(t\ then

Sk = {uk,-uk} and S = {±uk:keN}.

In the superlinear case, this assertion has already been established in [7]. The

sublinear case can also be proved in the same way as in [7]. To show this, we

consider (2.5) on [0, oo) together with the initial condition,

(2.7) n'(0) = 0 and n(0) = l.

It is easy to check that equation (2.5) subject to (2.7) possesses a unique global

solution w(ί) on [0, oo). Furthermore the solution w(ί) is oscillatory, that is, it

has an unbounded sequence of zeros in the interval [0, oo). To prove this

assertion, we use the so-called Liouville transformations: For the case of n

= 2 we employ

s = logί, y(s) = u(t), f > l ,

and in the case of n > 3 we take

s = (n-2)ί"~2, y(s) = su(t), t > 0.

Then equation (2.5) is reduced to the equation of the form

y" + e2s\y\p sgn y = 0, s > 0, if n = 2

and

y" + csσ \y\p sgn y = 0, s > 0, if n > 3,

where c is a positive constant and σ = — p — 1 + 2/(n — 2). Applying

[12, p345, Theorem 4.7] in the case of n = 2 and [12, p343] in the case where

n > 3, we see that all solutions of the above equations are oscillatory hence so

is w(ί). By the same discussion as in [7] we obtain the uniqueness and
existence of uk(t). We now apply our theorems to find the asymptotic

distribution in H of the solutions of (2.5)-(2.6). If 0 < p < 1, we have

(2.8) lim^ || ιιk || „ = lim^ \\uk\\H = 0

and

(2.9) C l j t-(i+p)/d-p) < \\Uk\\H < c2k-(i+Pmι-P) for

If 1 < p < n* = (n + 2)/(n - 2), we have
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(2.10) lim^JIwJL = lim^ || uk\\H = oo

and

(2.11) C3/c(p+1)/(p-1} < \\uk\\H < C4^
+1)/(p-υ for keN.

EXAMPLE 2 (Perturbed Emden-Fowler equations). We consider the
Emden-Fowler equation with a perturbing term,

(2.12) u" + —uf + \u\p sgn u + h(t) = 0, 0 < t < 1,

(2.13) w'(0) = 0, αw(l) + few'(l) = 0,

where 1 < p < M* and /i is continuous on [0, 1]. Using our theorems, we find
an integer /c0 and two sequences {wk

+}k>ko and {w fc~} fc> fco of solutions to (2.12)-
(2.13) such that wfc

+ and uk have exactly k zeros in [0, 1], wfc

+(0) > 0, wfc~(0) < 0
and they satisfy (2.10) and (2.11).

EXAMPLE 3 (Emden-Fowler equations involving both superlinearity and
sublinearity). Finally, we treat the boundary value problem which involves
both of the superlinearity and sublinearity:

(2.14) u" + - - u' + \u\p sgn u + \u\q sgn u = 0, 0 < t < 1,

(2.15) u'(0) = 0, au(l) + bu'(\) = 0,

where 0<q<l<p<n*. Using the Liouville transformations introduced in
Example 1 and applying Theorems A5, A6 and A7 in [5], one can easily check
that the assumption (C)y is valid for every ye/?. We now apply our theorems
to this equation. Notice that the nonlinear terms in equation (2.14) are odd
functions. Therefore there exist an integer fc0 and four sequences {uk}k>ko,
{ - Uk}k>k0 [Vk}k>k0

 and { - t;k}k>ko of solutions to (2.14)-(2.15) such that uk and
υk have exactly k zeros in [0, 1], wk(0), t;k(0) > 0 and

= oo,

and

i) for fc >
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3. A priori estimates in the sublinear case

In this section we are concerned with the sublinear case and give some
basic a priori estimates of the solutions with respect to the H norm. These
results are basic to the proofs of our results. The most important one is the
following proposition.

PROPOSITION 3.1. Suppose (Al), (A2) and (A3).Then for any m > n - 1 there
exist constants Ct > 0, 1 < i < 5, and r > 0 such that

\u(t)\p+lf < C, max0i«! G(u(t))tn

< C2max0< ί < 1 ιι'(ί)2ί" <CΛ \u'\2tmdt
Jo

<C3 i \u'\2tn-ldt<cΛ G(u)tmdt
Jo Jo

< C4 Γ G(u)tn-^dt <
Jo

C5 max0<ί<1

for any

In what follows, we always make assumptions (Al), (A2) and (A3) without
further mention. By (Al) there exist constants bt > 0, 1 < i < 4, such that

(3.1) |sr 1 < b^s) < b2sg(s) < b3G(s) < b4\s\p+1

for any |s| < r0. From (A2) it follows that given ε > 0 there exists a constant
r(ε)e(0, 1) such that for \s\ < r(έ) and ίe[0, 1],

(3.2) |Λ(ί, s)|<ε|

Since (p + 3)/2 > p + 1, we infer from (3.2) that

(3.3) \sh(t, s) |<ε|s |p + 1 for \s\ < r(ε).

Further, (A3) implies that if n > 3 then there exist positive constants θ and r1

such that

(3.4) (2n-θ)G(s)>(n-2)sg(s) for M^.

We may suppose without loss of generality that r(ε) < r1 < r0 < 1 for all ε > 0.
In what follows, we denote various constants by C l 5 C2, •••, C, C" and C",

which depend on neither a solution u nor the total number of zeros of u. To
prove Proposition 3.1, we prepare several lemmas.
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LEMMA 3.1. (i) For any ueS, we have

(3.5)

(ii) There exist constants C l 5 C2 > 0 and τ*2e(0, r x) such that

(3.6)

and

(3.7) I IwrV-^f <C2 I ιι'(ί)2ί--1Λ + C2|ιι'(l)ιι(l)|

/or ύf«7 MeSnBαo^).

i u'(t)2t"-1dt= i u f ( t 9 u ) f - l

Jo Jo

i u'(t)2tn-^dt<cΛ \u
Jo Jo

i M^V^ί/ί <C2 I u'(
Jo Jo

PROOF. Multiplying (1.2) by u(t)tn~l and applying integration by parts, we

obtain the desired relation (3.5). Next, by (3.1) and (3.3) there exists a constant

CΊ > 0 such that

(3.8) Is/ίM^CJsr1 for |s| < r(l).

This inequality and (3.5) together imply the inequality (3.6). Lastly,

substituting ε = aJ2 into (3.3) and applying (Al) and (3.3) we obtain

(3.9) sf(t, s) > sg(s) - \sh(t, s)\ > ̂ \s\p+1

for \s\ < r(«!/2). The inequality (3.7) follows from (3.5) and (3.9). The proof is

now complete.

LEMMA 3.2. There exist constants C1? C2 > 0 and r3e(0, r2) such that

(3.10)

and

(3.11)

for ίe[0, 1] and

PROOF. Multiplying (1.2) by u'(t) and integrating the resultant identity

over [0, ί], we have

(3.12) -u'(t}2 + G(u(t)) + (n - 1) - uf(s)2 ds
Γf 1

n - 1) - uf(
Jo s

= G(u(0))- u'h(s,u)ds.
o



124 Ryuji KAJIKIYA

We now set

Then it follows from (3.1) that

|ιι(ί)l < (feι£)1/(p+1) and |ιι'(ί)| < (2E)1/2

for ίe[0, 1]. Using the above inequalities and (3.2), we have

Γr Γ
(3.13) \u'(s)h(s9u)\ds^e\ \u'\ \u\(p+1)/2ds < εCE

Jo Jo

for any ueSnB^rfy), where C is a positive constant independent of ε. It
follows from (3.12) and (3.13) that

for ίe[0, 1]. This implies

E < εCE + G(w(0)) for u e S n B^ (r(ε)).

We then choose ε = 1/2C to obtain E < C'G(u(ϋ)\ which implies the inequality

(3.10). Next, by (3.10), we have

G(ιι(ί)) < C, G(ιι(0)) for t e [0, 1] .

The inequality (3.11) follows from the above inequality and (3.1), and the proof

is complete.

LEMMA 3.3. There is a constant r4e(0, r3) such that to each m with m> n

— 1 there correspond constants Cl9 C2 > 0 for which the inequalities

(3.14) I G(u(i))tmdt<cΛ ii'ί
Jo Jo

and

(3.15) I u'(t)2tmdt<C2\ G(u(t))t
Jo Jo

hold for any

PROOF. Let m > 1. Multiplying (1.2) by u(t)tm and integrating the
resultant identity over [0, 1], we have

(3.16) Γ | ι ιΊ 2 ί M A= Γ uf(t,u)tmdt + (m~n + ̂ m ~ ̂  Γ u2tm-2 dt
Jo Jo 2 Jo
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On the other hand, by (3.1) and (3.9), we obtain

(3.17) I uf(t, u)tmdt>^ \ \u\p+1tmdt>Cl\ G(u)tmdt
Jo 2 Jo Jo

provided that \\u\\ ̂  < r(aJ2). Assume now that m > n — 1. Then the second
term on the right-hand side of (3.16) is positive, and so the inequality (3.14)
follows from (3.16) and (3.17). Next, by (3.8) and (3.1), there exist constants C,

C' and C" such that

<C \u\p+1tmdt + C u2tm~2dt
Jo Jo

<C'\ \u\p+1tm-2dt<C" \ G(u)tm-2dt,
Jo Jo

provided that \\u\\ ̂  < r(l). This estimate, together with (3.16) implies
(3.15). This completes the proof.

Using Lemmas 3.1 and 3.3, we obtain the next lemma which is useful for
proving Proposition 3.1 below.

LEMMA 3.4. For any m with m > n — 1, there exist constants C\ > 0 and
r > 0 such that

u'((fr + G(u(t))tn < C, G(u)tn~l dt
J Jo

C2 |ι/|2r dt < C3max0<ί<1 u'(i)2tn

for any

PROOF. Let m > 0. Multiplying equation (1.2) by u'(t)tm and integrating the

resultant identity over [0, Γ], we have

1 ΓΓ

(3.18) ϊ-u'(T)2Tm + G(u(T))Tm = m G(u(t))tm- l dt
2 Jo

( \ (*T (*T

?-«+!) \u'\2tm-ldt-\ u'h(t,u)tmdt.
2 / J o Jo
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First we substitute m = n into (3.18) to obtain

(3.19) \u'(T}2Tn + G(u(T))T* <n\ G(u)f~ldt + \ \u'h(t, u)\tndt.
2 Jo Jo

We here set

and

Then it follows from (3.1) that

(3.20) \u(t)\(p+l)l2tnl2 <(bvl

and

(3.21) \uf(t)\tn/2<(2K)112

for all ίe[0, 1]. Using (3.20), (3.21) and (3.2), we have

(3.22) I |n'Λ(ί, u)\tndt<ε \ \u'\tn/2\u\(p+1)l2tn/2 dt < εCK
Jo Jo

for all MeSn#oo(r(ε)), where C does not depend on u, K, and ε. It follows from

(3.19) and (3.22) that

Γ1

K(T) < n
Jo

for any Γe[0, 1], so that

K<n
Jo

Put ε = 1/2C, then we have

f 1

(3.23) K < 2n
o

This is the first inequality displayed in the statement of Lemma 3.4. We now

prove the second inequality. Substituting m = n and Γ= 1 into (3.18), we
obtain

1 Γ1

(3.24) ^w'(l)2 + G(M(!)) = n G(u)tn'ldt
2 Jo
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n — 2 Γ1 Γ1

-- ^— \u'\2f~ldt-\ u'h(t,u)tndt.
2 Jo Jo

First we consider the case in which n > 3. From (3.4) and (3.5) it follows that

(3.25) n G(u)tn-ldt-"-- \u'\2tn~l at

= (2nG(u) -(n- 2)u9(u)}tn^ dt
* Jo

- ̂  f 1 uh(t, u)t»-idt - ̂ u'(l)u(l)
z Jo z

> θ- Γ G(u)tn^dt - ~ Γ uh(t, u)tn^dt - ̂  M'(l)ιι(
z jo z Jo ^

for weSn^K). Therefore by (3.24) and (3.25) we obtain

(3.26) - w'(l)2 + G(w(l)) > - G(u)tn~1 at
2 2 Jo

n-2 Γ _ , n-2 f 1

— Mft(ί, w)ί" x A —tt'(l)tι(l) - ιι'A(ί, w)ίπdί
2 Jo 2 Jo

for any ueSnB^r^). Next, let n = 2. In this case we directly obtain from

(3.24) the inequality (3.26) with 0/2 replaced by 2. On the other hand, the
substitution of T= 1 into (3.18) yields

i Γ1

-w'(l)2 + G(ιι(l)) = m G(u}tm-1 at
2 Jo

m \ Γ1 Γ1

n + 1 ) \u'\2tm~ldt- \ u'h(t,u)tmdt.
2 / Jo Jo

From this and (3.14) we see that for any m > n there is a constant C > 0 such

that

1 Γ1 Γ1

(3.27) -w'(l)2 + G(ιι(l)) < C \u'\2tm~l at - u'h(t, u)tmdt
2 Jo Jo

+ C|w'(l)w(l)| + Cw(l)2

for M6SnBoo(r4). The estimates (3.26) and (3.27) together imply that for any m

> n one finds a constant C > 0 and
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θ f 1 Γ1

(3.28) - G(u)tn-ldt<C\ \u'\2tm~^dt
2 Jo Jo

+ r}-^ \ \uh(t, u)\tn~^dt + 2 Γ |ι<Ά(ί, u)\tndt
2 Jo Jo

+ C|ι*'(l)ιι(l)| + Cw(l)2

for w e S n #00(7*4). We then estimate each term on the right-hand side. Using
the inequalities (3.1), (3.3), (3.22) and (3.23), we have

(3.29) f \uh(t,ύ)\tn-ldt<£\ \u\p+ltn~ldt<zbA G(u)tn~1dt
Jo Jo Jo

and

Γ1 Γ1

(3.30) \u'h(t,u)\tndt<εC\ G(u)tn~l dt
Jo Jo

for tieSntfooίKε)). Combining (3.28), (3.29) and (3.30), we see that for any
m > n there is a constant C > 0 such that

G(u)tn-ldt<C\ lu'fr-tdt + εCl G(ύ)tn~l dt
Jo Jo Jo

+ C|ιι'(l)ιι(l)| + Cu(l)2

for weSnβooίφ)), where the constant C may depend on m but does not depend
upon M, K and ε. Set ε = 1/2C and r5 = r(l/2C), then we have

(3.31) I G(ιι)t--1Λ^C| \u'\
Jo Jo

for uESr\Bx(r5)9 where C and r5 may depend only on m. To estimate the
second and third terms on the right-hand side, we substitute t = 1 into (3.20)
and (3.21). Then it follows from (3.20), (3.21), (3.23) and (3.1) that

(3.32) |u'(l)w(l)| + w(l)2 < CX(p+3)/2(p+1) + CK2/(P+1)

l

G(u)tn-^dt\ +C G(u)f-ldt
D / \Jθ

<C\\u\\£-p)/2 Γ1G(ιι)ί"-1Λ + C||ιι||i)-
i' [ G(u)tn~l dt.

Jo Jo

Consequently, it follows from (3.31) and (3.32) that
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\ G(u)tn~ldt<C \ \u'\
Jo Jo

)
J

G(u)tn~1dt

for uεS n #αo (7*5). The second inequality in Lemma 3.4 follows from the above
inequality provided that || u \\ ̂  is sufficiently small. Lastly, for m > n — 1 we
have

I \u'\2tmdt<(m2KQ^lu'(i)2tn)\ tm~ndt,
Jo Jo

which implies the last inequality in Lemma 3.4. Thus we obtain the desired
estimates by choosing an appropriate radius r > 0, and the proof is now
complete.

We are now in a position to give the proof of Proposition 3.1.

PROOF OF PROPOSITION 3.1. It is easy to check the first, the fourth and the
sixth inequalities stated in Proposition 3.1. The second and the third
inequalities have already been proved in Lemma 3.4. Therefore it is sufficient
to verify the fifth and the last inequalities. By Lemma 3.1 (ii) and (3.1) there is
a constant C1 > 0 such that

(3.33) I \u'\2tn~ldt<cλ G(u)tn-ldt + u'
Jo Jo

for any ueSr\B00(r2), where r2 is a radius as mentioned in Lemma 3.1. To
estimate the right-hand side of (3.33), we use Lemma 3.4 and (3.15), and so for
any m > n — 1 there exist positive constants C2 and r such that

(3.34) I G(u)tn~1dt<C2 1 G(u}tm-2dt + C2\u'(\)u(\)\
Jo Jo

for ueSnB^r). From (3.33) and (3.34) we see that for any m > n — 3 there is
a constant C > 0 such that

Γ1 , 1 Γ1

(3.35) \u'\2tn-ldt<C\ G(u)tmdt + C\u'(\}u(\)\.
Jo Jo

On the other hand, letting m = n in Lemma 3.4, we have

/I \ Γ1 Γ1

K = max0^! (-u'(t)2tn + G(u(t))tn) < Cf \ \u'\2tndt <C \ \u'\2tn-ldt.
\2 / J o J o

Using this inequality, we obtain
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(3.36) |κ'(l)κ(l)l < \u'(l)\ Ml)lα+p)/2 \\u\\

ί
where CΊ and C2 are positive constants independent of u and
K. Consequently, it follows from (3.35) and (3.36) that

IJo

for any ueSftB^r), where C3 and r depend only upon m. If \\u\\^ is

sufficiently small, the above inequality implies the fifth inequality stated in
Proposition 3.1.

We next prove the last inequality. Using (3.32) and (3.34), for any m > n

— 1 we have

P n-l Γ m-2 <l-p)/2 P

Jo Jo Jo

and so

/*! f l

G(u)tm~2dtI1
Jo o

provided that || u \\ ̂  is sufficiently small. In this inequality we put m = n + 2 to

obtain

Γ1 Γ1

G(ύ)tn~l dt<C\ G(u)tndt < C'maxo^i \u(t)\p+ίtn.
Jo Jo

This is nothing but the last inequality of Proposition 3.1. The proof is

complete.

We next prepare two technical lemmas which will play an important role in

the proof of Theorems 1 and 3.

LEMMA 3.5. For any ω > 0 there are constants C and r > 0 such that

(3.37)
r1 n , 2 •)

Jo [2U l + Ut }

for /e(0, 1] and

PROOF. Let ω > 0 and define
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Let Te(0, 1). Multiplying equation (1.2) by u'(t)t~ω and integrating over

[Γ, 1], we have

(3.38) E(T)T-ω = ω E(t)Γω~l dt + (n - 1) I \u'\2Γω-ldt
JT JT

+ I u'h(t,u)Γωdt

We then show the following two inequalities:

(3.39) I \u'h(t, u)\Γωdt<scA

and

(3.40) £(1) > (θ- - εC2 - C3 IMI(rp)/2) Γ G(u)tn^ dt
\2 / Jo

for any ε > 0 and ueSftB^rfy). In these inequalities, Ch 1 < i < 3, are

positive constants independent of ε, u and T, θ is a positive constant as defined
in (3.4) in the case of n > 3 and θ/2 should be replaced by 2 in the case of n
= 2. First it follows from (3.2) that

i |ιι'Λ(f, u)\Γωdt<ε i \uf\\u\(p+l)/2Γω-1dt

< ε f (|u'| \u\p+1)Γω-ίdt<εC\ E(t)Γω~1dt
T

if u satisfies \\u\\ ̂  < r(ε). This is the desired inequality (3.39). We next obtain
(3.40) by using the inequalities (3.26), (3.29), (3.30) and (3.32) together. By

(3.38), (3.39) and (3.40) we have

E(T)T-» > - εC2 - C3lMirp)/2 G(u)tn~1dt
o

: - l ) f V l
Jr

for fieSnBooίrίε)). We put

ε - ε0 = min(ω/2C l9 Θ/4C2).

Then the second and third terms on the right-hand side are positive, and so we



132 Ryuji KAJIKIYA

obtain

E(T)T-ω >Θ--C, \\u\\^-^2 G(u)tn~ldtn~l

o

for ueS Γ\B^(r(εQ}}. Consequently, we obtain (3.37) from the above inequality
as far as \\u\\ ̂  is sufficiently small. This completes the proof.

We say that a zero τ of u is a simple zero if u(τ) = 0 and u'(τ) + 0. Lemma
3.5, together with (3.11), implies that any nontrivial solution with small L°°

norm has only simple zeros. This fact is important for defining our Prϋfer
transformations. In the following lemma, we give some technical estimates
near t = 0 for the solutions belonging to S.

LEMMA 3.6. There are constants δ > 0 and C1? C2 > 0 such that

(3.41) W o o ^ C X O I

and

(3.42) \ u ' ( t ) \ < C 2 t \ u ( t ) \ *

for all t and u satisfying ίe[0, <5 1| M If^+Y*'2] and ueSftB^ro), where r0 is the
number appearing in condition (Al).

PROOF. Let uεSnB^ro). Multiplying equation (1.2) by f" 1 and
integrating the resultant identity over [0, ί], we have

(3.43) ιι'(ί) = - r(n~1) I f ( s , u)sn~lds
Jo

and

f' / Γs \
(3.44) κ(ί) - ιι(0) = - I s"("~υ /(τ, u(Wl dτ ds.

J o \ Jo /

We then estimate the right-hand side. For ίe[0, δ\\u\\(*+f)/2], it holds that

Λί / Λ,

(s-ί"-1) l / ί^ i iWJIτ"- 1 !
Jo \ Jo

< α

where C is independent of δ and w. From this and (3.44) we have

and so
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1
-Cδ

by (3.11). Therefore, choosing δ so small, we obtain (3.41) from the above
inequality.

Next, (3.43) implies that

\u'(t)\<Ct\\u\\^.

This, together with (3.41), implies (3.42). This completes the proof.

As seen from the proof of Lemma 3.6, we may assume that δ < 1. In view
of this, we may assume without loss of generality that

holds for

Proposition 3.1 and Lemma 3.6 lead us to the following definition.

DEFINITION 3.1. For uεSnB^l) we define the numbers

and

We conclude this section by proving the next lemma, which means that it is
sufficient to compute the value of M(ύ) instead of the H norm of u e S in our

subsequent discussions.

LEMMA 3.7. There exist constants Cl9 C2 > 0 and r > 0 such that for any

nB^r) we have

C,M(u)<\\u\\2

H<C2M(u).

PROOF. It follows from Proposition 3.1 that

1

\\u\\2

H> \u'\2tn-^dt>CM(u}.
Jo

This is nothing but the first inequality. Again, by Proposition 3.1, we have

u2tn~1dt< \\u\\^-p\ \u\p + ltn-ldt<C\ G(u)tn-^dt<CfM(u)
Jo Jo Jo

and
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u'\2tn-ldt < C"M(u) for any
0

Therefore these two inequalities together imply

|| κ||| = Γ (u2 + lu'lV 1 Λ < (C + C")Λφ).
Jo

This completes the proof of Lemma 3.7.

4. Proof of Theorems 1 and 3

In this section we prove Theorems 1 and 3. We suppose assumptions

(Al), (A2) and (A3) throughout this section. We begin by introducing

notations which will be used in the subsequent discussions.

DEFINITION 4.1. For a continuous function u(t) on [0, 1], ΛΓ[w] denotes
the number of zeros of u(t\ that is,

ΛΓ[ιι] = #{ίe[0, l]:ιι(ί) = 0} (< + oo).

Moreover, under assumption (C)y, we denote by w(ί, y) the solution of the initial

value problem (2.1)-(2.2)r

The next proposition is crucial for proving our theorems.

PROPOSITION 4.1. Under the assumptions of Theorem 1, it follows that

N[M( , y)] < + oo for sufficiently small \y\ > 0, and that

limy_0N[M( ,y)] = + oo.

In what follows, we choose a constant r > 0 so small that Lemmas 3.1, 3.2,

3.3, 3.6 and 3.7 are all valid for any uεSnB^r). We here observe that, in

Lemmas 3.4, 3.5 and Proposition 3.1, the number r depends on an exponent

m. When we use these lemmas and Proposition 3.1 in our discussion, we

exchange a constant r for a smaller one in accordance with the choice of m if

necessary. Therefore, in the following lemmas and definitions, the number r is

supposed to be chosen in an appropriate way.
To prove Proposition 4.1, we introduce a new type of Prϋfer

transformation.

DEFINITION 4.2. For uεSnB^r) we define the functions p(t) and φ(f) by

(4.1) |wT~V = p c o s φ ,

(4.2) u = p sin φ,
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(4-3)

where μ = 2/(l + p). Notice that μ > 1.

The relations (4.1), (4.2) and (4.3) determine the functions p(t) and φ(t) of

class C^O, 1] uniquely. In fact, by (3.37) and (3.11), any nontrivial solution u
has only simple zeros, and so

p(ί) = (|w'|2μ + |w | 2 ) 1 / 2 >0 for ίe[0, 1].

Therefore p(t) and φ(t) are well-defined. Since the left-hand sides of (4.1) and

(4.2) are continuously differentiable, p(ί) and φ(t) are of class C^O, 1] as well.

LEMMA 4.1. For uεSftB^r) we have

(4.4) φf(t) = p-2{\uTl+μ\u'Γiug(u)

+ μ(n-l)-\u'\fί-1u'u + μ\u'\fi-1uh(t,u}}.

PROOF. Differentiating (4.1) with respect to ί, we have

μ|M' | μ ~ 1 H" = p' cos φ — pφ' sin φ.

Substituting this relation into (1.2) yields

(4.5) p' cos φ - pφ' sin φ = μ | M ' | μ ~ 1 ( -- u' — /)•

Next, we differentiate (4.2) to obtain

(4.6) u' = p' sin φ + pφ' cos φ.

Moreover, by (4.1), we get

(4.7) u' = \p cos φ|1/μ sgn (cos φ).

Combining this with (4.6) gives

(4.8) p' sin φ + pφ' cos φ = \p cos φ\1/μ sgn (cos φ).

Multiplying (4.5) by — sin φ and (4.8) by cos φ, and then summing up these

identities, we obtain

( n — 1 \
- M ; + / j sin φ + p1/μ cos φ|1 + 1/μ.

Dividing both sides by p and using the resultant identity together with (4.1) and

(4.2), we obtain the desired relation (4.4). This completes the proof.
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From Lemma 4.1 we obtain the next key lemma which gives the relation
between N[u] and φ(\).

LEMMA 4.2. (i) Let uESk[\B^(r) and (ί^=1 = (0 < tl < t2 < ••• < tk < 1)

the associated sequence of its zeros. Then we have

<p(tj)=jπ for 1 <j < fc,

(j - l)π < φ(t)<jπ for tj.l < t < tp 1 <j < k + 1,

and

kπ

where we set ί0 = 0 and tk+1 = 1.

(ii) Let ueSflBαoίr). Then k = N[u] if and only if kπ < φ(l) <(k+ l)π.

PROOF. First notice that u(t) = 0 if and only if φ(t) = 0 (mod π). Let τ be
a zero of u(t). Then it is a simple zero, and so (4.4) implies

Consequently, φ(t) is strictly increasing in the neighborhoods of zeros of

u. Now, let 0 < s < τ < 1, u(t) / 0 for ίe(s, τ) and u(τ) = 0. If (7 - l)π <
φ(s)<7'π, then it follows that (j — l)π < φ(t) < jπ for ίe(s, τ) and φ(τ)
= jπ. This proves the first assertion (i). The second assertion (ii) follows

readily from (i), and the proof is complete.

We need the next lemma for the proof of Proposition 4.1.

LEMMA 4.3. For each α > 0 there is a constant CΆ > 0 such thai

f V l
Jo

(4.9) \u'\^\u\p-2Γldt<CΛM(uΓΛ for
Jo

where M(u) is the number defined in Definition 3.1.

PROOF. First, it follows from the definition of p(t) that

(4.10) P(t)>\u(t)\ and p(t) > \u'(t)\»

for any ίe[0, 1]. By Lemma 3.6 and (4.10) we have

for ίe(0, T(w)], where T(u) is defined in Definition 3.1. Hence we obtain
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rτ(u)
(4.11) \u'\fi\u\p-2t-1dt<CT(u)\\u\

Jo

\u\\~(1~PV2 —I I u II oo —

where C is independent of u in
Next, (4.10) asserts that for any α > 0,

(4.12) \u'\μ\u\p-2Γ1dt< Γldt
J T(u) J Γ(u)

^ ^α \\u\\p+l
J T(u) <*

By Proposition 3.1

and so by (4.12) we have

(4.13) \ur\μ\u\p~2Γ1dt<CΛM(uΓ(1~p)Λl2(l+p}

JT(u)

for α > 0. Summing up (4.11) and (4.13), we obtain
*ι

\u'\μ\u\p-2Γldt < CΛM(uΓ(1~p)alw+p) + C
J o

for α > 0. Since r is taken to be sufficiently small, we may assume that
M(u) < 1. Consequently, it follows that

ίJo

for any α > 0. Replacing (1 - p)α/2(l + p) by α, we get the desired conclusion,
and the proof is complete.

We are now ready to prove Proposition 4.1. The main tools of our proof
are Proposition 3.1 and the new Prύfer transformation as introduced in
Definition 4.2.

PROOF OF PROPOSITION 4.1. Let u e S n B^(r). Integrating the identity (4.4)

displayed in Lemma 4.1 over [0, 1], we get

(4.14)

where /f(w), 1 < i < 4, are respectively defined by

(4.15) /!(ιι)s Γ |uT + 1 p 2 A,
Jo
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(4.16)

(4.17) I3(u) = μ(n-l) ! * l i iTMp" 2 *' 1 A,
Jo

(4.18) /4(ιι) =

We then estimate the terms It(u)9 1 < i < 4. First we give a lower bound of

II(H) + /2(tt) It follows from the definition of p(t) that

(4.19) p2 = \u'\2» + u2

9

and so that

(4.20) pp+1 <\u'\2 + \u\p+1.

This implies the estimate

(4.21) Λii) + /2(ιι) = Γ lu'Γ V'dttΊ 2 + μug(u))dt
Jo

> c | lii'Γ'V^lM'P + lwl^^Λ^C i |uΊμ~V"(1

Jo Jo

To estimate the right-hand side, we fix any exponent m such that m > max

{n - 1, (3 + p)n/2(l + p)}. Then it follows from (4.20) and Proposition 3.1 that

(4.22) p(t)(3+p)/2tm < (\u'\2tn + \u\p+ιt

n)(3+p)/2(1+p)

<CM(u)(3+p}/2(1+p} for ίe[0, 1].

By (4.10) and (4.22) we have

(4.23) \uf\μ-1p-(1-p)>\u'\2p-(3+p)/2>CM(uΓ(3+p)/2(1+p)\uf\2tm.

From (4.21), (4.23) and Proposition 3.1, it follows that

(4.24) I^u) + 72(u) > CM(uΓ(*+p)/2(i+p} \ \u'\2tmdt

>CM(uΓ(1~p)/2(1+p\

where C is a constant independent of u. This is the desired estimate. We

have already estimated the term I3(u) in Lemma 4.3. Hence we estimate

I4(u). It follows from (3.2) and (4.10) that

\u'\μ-l\uh(t9 u)\p ~2 < | t t / | μ ~ 1 "2
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and therefore

(4.25) /4(u) < μ.

We choose a constant α in Lemma 4.3 so that 0 < α < (1 — p)/2(l + p\ and use
(4.14), (4.24), (4.25) and Lemma 4.3. Then it follows that

(4.26) φ(l) > C!M(M)-(I ~p)/2(1 +p) - C

for any ueSftB^r), where CΊ and C2 are independent of u. On the other
hand, we note that the inequalities (3.10) and (3.11) stated in Lemma 3.2 hold
for any ueS with |w(0)| < r3. These facts can easily be proved in the same way
as in the proof of Lemma 3.2. It therefore follows from (3.11) that

(4.27) M(u)<\\u\\^+1<C\u(0)\p+1

for any ueS with |w(0)| < r3. The inequalities (4.26) and (4.27) together imply

(4.28)

for ueS with |w(0)| sufficiently small.
We now prove the first assertion that Λf[w( , y)] < oo for \γ\ sufficiently

small. By Lemma 3.5 and (3.11), any solution with small L°° norm has only
simple zeros, and so it possesses at most a finite number of zeros. In fact, if it
would have infinitely many zeros, then there would exist an accumulation point
of zeros. However the accumulation point is not a simple zero, and this is a
contradiction and therefore any solution with small L00 norm has at most a
finite number of zeros. This fact, together with (4.27), implies that if |w(0, y)|
= |y | > 0 is sufficiently small, then JV[w( , y)] < oo. Recall that w(f, γ) denotes
the solution of (2.1)-(2.2)r We here define φ(ί, y) by the function φ(t)
introduced in Definition 4.2 with u = w(ί, y). Then it follows from (4.28) that

(4.29) φ(l, y)>C 3 |yΓ ( 1 - p ) / 2 -C 4 for |y| sufficiently small.

This inequality and Lemma 4.2 together imply that

limy_0N|>( , y)] = + oo.

The proof is thereby complete.

We choose a constant y0 > 0 such that u(t, y) is well-defined and

N[u( 9 y)] < oo for any ye[- y0, y0]\{0} and moreover the inequalities (3.10),
(3.11), (4.27) and (4.28) hold for any u(t, y) with 0 < |y| < y0. We here present a
lemma which guarantees a continuous dependence of solutions on the initial

condition (2.2)r

LEMMA 4.4. The mapping y - > w ( , y) from [- y0, y0]\{0} into C2[0, 1] is
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continuous.

PROOF. Assume that γk, ye[- y0> y0]\M and lim^^y* = 7. We write
uk(t) = u(t, yk) and u(t) = u(t, y). We wish to prove that lim^^ uk = u in
C2[0, 1]. Suppose that it be false. Then there would exist an ε > 0 and a
subsequence (again denoted by (uk) for simplicity) of (uk) such that

(4.30) \\uk-u\\c2[OΛ]>s for all k.

On the other hand, (4.27) asserts that sup^i^H^ < oo. By (3.43) we obtain

(4.31) K(OI<CίKIIP* for all ίe[0, 1].

This, together with equation (1.2), implies that supk || MJ[ || «, < °° Now (4.31)
also implies that supk || uk \\ ̂  < oo and therefore (uk) is bounded in
C2[0, 1]. By Ascoli-Arzela's theorem, we find a subsequence (ukj) and a
function υ such that {ukj} converges to v in C^O, 1]. Applying this fact to
integral equation (3.43), we see that (uk) converges in C2[0, 1] and υ is a
solution of (2.1)-(2.2)y, from which it follows that u = v. This contradicts
(4.30). The proof is now complete.

We now give the proofs of Theorems 1 and 3.

PROOF OF THEOREM 1. Let α2 + b2 ^ 0. We first consider the case where
b 7^ 0. According to the choice of y0, we have

(4.32) φ( l ,y)<oo for 0 < |y | < y0

It suffices to find only a sequence (uk\ since another sequence ( u k ) can also be
found in the same way. To this end we choose a positive integer fc0 such that
<p(l, y0) < k0π. Since lim^^ φ(\9 y) = oo by (4.29) and φ(l, 7) is a continuous
function of y by Lemma 4.4, the intermediate value theorem implies that for

k>k0 there is a ye(0, y0)
 such that φ(\, y) = kπ. Therefore we can define a

sequence (qk)k>ko by

(4.33) qk = sup {7G(0, 7o): φ(l, 7) = (k + l)π}.

We also define a sequence (pk)k>ko by

(4.34) pk = inf {ye(qk, y0): φ(l, y) = kπ}.

These sequences possess the following properties:

(4-35) Pk>qk>Pk + ι >4*+ι > 0,

(4.36) lim^ pk = lim^^ qk = 0,

(4.37) φ(l,Pk) = kπ, φ(l, ̂  = (k + l)π and
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(4.38) fcπ < φ(l, y) < (k + l)π for ye(qk,pk) and fc > fc0.

The properties (4.35), (4.37) and (4.38) follow readily from the definitions of (pk)
and (qk). We show the assertion (4.36). By (4.35) the sequence (pk)
converges. Suppose that \imk^^pk = y* ^ 0. Then y*e(0, y0) and (4.37)
asserts that φ(l, y*) = lim^^ φ(l, pk) = oo, which contradicts (4.32). We
therefore obtain \imk^00pk = Q, and so (4.36) holds.

We here set y(γ) = αw(l, y) + bu'(\, y). The function y ( - ) is continuous on
(0> y0] by Lemma 4.4. From (4.37) and Definition 4.2 it follows that

Since b / 0,

y(pk)y(qk) =~b2 {p(l, Λ)p(l, qk)}^ < 0

for fc > fc0. By the intermediate value theorem there is a yk e (qk, pk) such that

y(yk) = ® We then define w^(ί) = w(ί, yk) for k>k0. These are the desired
solutions. In fact, they satisfy equation (1.2), boundary condition (1.4) and the
sign condition uk (0) > 0. By Lemma 3.7 and (4.27) we have

\\uΐ\\2

H<CM(u^<C\\uΐ\\^^<Crk

 + l-^ 0 as fc->oo.

Since fcπ < φ(l, yk) < (k 4- l)π by (4.38), u k ( t ) has exactly fc zeros in the interval
[0, 1].

Next, we treat the case in which b = 0. Since we assumed that α2

+ b2 Φ 0, we must have a ̂  0. Hence the boundary condition (1.4) can be
written as

ιι'(0) = 0 and ιι(l) = 0.

Since limy_0 φ(l, y) = oo, we find a sequence (yk)k>ko such that yk > 0, lim^^ yk

= 0 and φ(l, yk) = fcπ for fc > fc0. Therefore, in this case, we define u k ( t )
= w(ί, yk) for fc > fc0. These are the desired solutions of (1.2)-(1.4). The proof

of Theorem 1 is thereby complete.

PROOF OF THEOREM 3. We first show the lower estimates for the H norms

of the solutions. Let weSkn£oo(r). Since φ(l)e[fcπ, (fc + l)π) by Lemma 4.2,

(4.26) yields

(fc + l)π > C1M(w)-(1'p)/2(1+p) - C2,

Therefore, by Lemma 3.7, we have
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where C is a constant independent of u. This is the desired lower estimate with

respect to the H norm.

We next consider the upper estimates for the H norms of the

solutions. Let ueS^B^r). Integrating both sides of (4.4) over [0, 1] with

respect to f, we obtain

(4.39) φ(l) - < /Λii) + I2(u) + /3(ιι) + /»,

where the terms /M 1 < i < 4, are defined by (4.15), (4.16), (4.17) and (4.18),

respectively. We then estimate the terms I^u), 1 < ί < 4. In order to estimate

I±(u\ we apply (4.10) and obtain

(4.40) I±(u)< \ p(tΓ(1~p)/2dt.

Let ω > 0. From (4.10), Lemma 3.5 and Proposition 3.1 it follows that

i
pp + 1 > -(|w'(ί)|

2

i Γ1

)|2 + \u(t)\p+1) > Ctω G(u)tn~^dt > CtωM(u),
Jo

so that

(4.41) p(tΓ(1 ~p)/2 < Ct "(1 -PWW +rt M(uΓ(1

for ίe[0, 1] and uεSftB^r). Here the constants r and C depend only on

ω. Choose a constant ω so small that (1 — p)ω/2(l + p) < 1. Then

rd-p)ω/2(i + P) is integrabie over [0, 1], and hence it follows from (4.40) and

(4.41) that

(4.42) I^u) < CM(uΓ(1 ~

We next estimate /2(w). By (4.10) we have

/2(u) < C f '
Jo

and so (4.41) yields

(4.43) I2(u) < CM(u)-(1 -

We have already estimated I3(u) and I4(u) in Lemma 4.3 and (4.25),

respectively. Combining (4.42), (4.43), Lemma 4.3 with α = (1 - p)/2(l + p\

(4.25) and (4.39), we obtain

Since φ(l)e[/cπ, (k + l)π) by Lemma 4.2, it follows that
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kπ < C1M(w)-(1~p)/2(1+p) + C2.

At this point we may assume that M(u) < \\u\\ ̂  < 1 for ueSftB^r). This
implies that

kπ < (Cx +

Consequently, by Lemma 3.7, we obtain

\\u\\H <

This completes the proof of Theorem 3.

5. A priori estimates in the superlinear case

The purpose of this section is to present several a priori inequalities of
solutions in the superlinear case. Throughout this section we always suppose
conditions (Bl). (B2) and (B3). By (Bl) we may assume that

(5.1) aί\s\p+1 <sg(s)<a2\s\p+1 for all seR.

Indeed, we first define g(s) by g(s) = g(s) if |s| > #0, g(s) = g(R0)RQpsp if 0 < s
< R0 and g(s) = g(— RO)RQP\S\P if — R0 < s < 0. Then g(s) is continuous on
R and satisfies conditions (5.1) and (B3). We next define h(t, s) by h(t, s) = g(s)
— g(s) + h(t, s). Then /(ί, s) can be represented as /(ί, s) = g(s) + h(t, s). The
function h(t, s) is continuous on [0, 1] x R and satisfies (B2). Thus we may
suppose (5.1) for the function g(s) without loss of generality. From this
condition one finds constants bj > 0, 1 < ϊ < 4, such that

(5.2) \s\p+ί < b^s) < b2sg(s) < b3G(s) < b4\s\p+l

for all s e R. On the other hand, if n > 3 then (B3) states that there exist
constants 0, C > 0 such that

(5.3) (2n - θ)G(s) + C>(n- 2)sg(s) for all seR.

Lastly, (B2) assures that for any ε > 0 there exists Cε > 0 such that

(5.4) \h(t,s)\<ε\s\(p+1}/2 + Cε for seR.

Moreover, since (p + 3)/2 < p -I- 1, we have

(5.5) \sh(t,s)\<ε\s\p+1 + CE for sεR.

The next proposition is the main result of this section and plays an

important role in the proofs of Theorems 2 and 4.

PROPOSITION 5.1. Suppose that conditions (Bl), (B2) and (B3) hold. Then
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for any m > n — 1 there exist constants Ct > 0, 1 < i < 5, such that the estimates

\u(t)\p+1tn < C, maxo<t^ G(u(t))tn

< C2max0sί^ u'(t)2tn + C2 < C3 I \u'\2tmdt + C3

Jo

<C3 I t/pf- 1 A + C 3 <C 4 G(u)tmdt + C4

Jo Jo

< C4 I G(u)tn~ldt + C4 < C5max0<ί<1 |w(i)|p+1in 4- C5
Jo

are valid for any ueS.

To prove Proposition 5.1, we prepare several lemmas. Noting that p > 1

and using conditions (5.2), (5.3), (5.4) and (5.5) in the proofs of Lemmas 3.1, 3.2
and 3.3 instead of (3.1), (3.2), (3.3) and (3.4), we obtain the following three

lemmas.

I \u'\2tn~ldt= \ uf(t,ύ)tn-l

Jo Jo

LEMMA 5.1. (i) For ueS we have

(5.6)

(ii) There exist constants Cί9 C2 > 0 such that

(5.7) I \u'\2tn-ldt<cΛ \u\*+*f-*dt + u'
Jo Jo

and

Γ1 Γ1

(5.8) \u\p+ίtn-ldt<C2\ \u'\2tn-1dt + C2\
Jo Jo

are valid for ueS.

LEMMA 5.2. There exist constants C l 5 C2 > 0 such that

(5.9) ±u'(t)2 + G(ιι(ί)) < C^WO)) + C,

and

for ίe[0, 1] and

LEMMA 5.3. For any m > n - 1 //zm> ejcwf constants Cl9 C2 > 0 ^wc/z
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f 1 Γ1

(5.11) G(u)tmdt < CΛ lu ' lVΛ + C i l
Jo Jo

and

(5.12) f \u'\2tmdt<C2\ G(u)tm-2dt + u'\
Jo Jo

hold for any ueS.

From Lemmas 5.1 and 5.3 we obtain the next lemma which is basic to the
verification of Proposition 5.1.

LEMMA 5.4. For any m > n - 1 there are constants Cf > 0, 1 < i < 3, such
that

max0<ί<1 \\u'(t)2tn + G(u(t))tn < C, G(u)tn^dt + C,< C, f *
Jo

C2 \u'\2tmdt + C2 < C3max0<ί<1M
/(ί)2ίπ + C3

Jo

we5.

PROOF. Using Lemmas 5.1, 5.2 and 5.3, we follow the lines of the proof of
Lemma 3.4, where we need some modifications to complete the proof of Lemma
5.4. First we rewrite the inequality (3.22) as

(5.13) i \u'(t)h(t, u)\tndt<ε \ \u'\tn/2\u\(p+

Jo Jo

l)/2n/2tn/2 dt + Cε

<εCK + Cε for any ε > 0,

where Cε can be chosen as a constant depending only on ε. Therefore the
inequality (3.23) can be modified in the form

(5.14) K<2n f G(u)tn~l

Jo

where C is independent of u and K. In what follows, C denotes various
constants independent of w, K and ε, while Cε means a constant depending only
on ε. As in the inequalities (5.13) and (5.14), we must add appropriate
constants "+ Cε" or "± C" to the corresponding inequalities. Using (5.14), we

may rewrite (3.32) as

(5.15) |w'(l)w(l)| + w(l)2 < CK(p+3)/2(p+1) + CK2/(P+1)



146 Ryuji KAJIKIYA

\(P+3)/2(p+l) /Γl \ 2 / ( p + l )

G(u)tn-^dt) + C G(u)tn-ldt\ + C
/ \Jθ /

<ε I G(u)fl

Jo
at + Cε for any ε > 0.

Here (p + 3)/2(p +1), 2/(p + 1) < 1 and we used Young's inequality. From the
modified form of (3.31) and (5.15) it follows that

Γ1 Γ1 Γ1

G(u}tn-ldt<C\ \u'\2tm-ίdt + sC\ G(u)t"-ldt + C8
Jo Jo Jo

for any ε > 0. Choosing ε sufficiently small, we have

\ G(u)tn-ldt<C\ \u'\2tm-ldt + C,
Jo Jo

which is the second inequality of Lemma 5.4. It is easy to check the last
inequality of Lemma 5.4, and this completes the proof.

We are now ready to prove Proposition 5.1.

PROOF OF PROPOSITION 5.1. We follow the lines of the proof of
Proposition 3.1. As mentioned in the proof of Lemma 5.4, we need to add
constant terms " ± C" or " ± Cε" to the corresponding inequalities treated in the
proof of Proposition 3.1. Moreover it is necessary to modify all the
inequalities which include the terms " | l w l l o o " First appropriate constant terms
"+ C" must be added to the right-hand sides of (3.33), (3.34) and (3.35); it is
seen that for any ra > n — 3 there is a constant C > 0 such that

Γ1 Γ1

(5.16) \u'\2tn-ldt<C\ G(u)tn~ldt +
Jo Jo

(5.17) I G(u)tn~ldt <C\ G(u)tmdt + C\
Jo Jo

Γ1 Γ1

(5.18) \u'\2tn-ldt<C\ G(u)tmdt + C
Jo Jo

for u e S. Next, we choose m = n in Lemma 5.4 and get

u'(t)2 + G(ιι(ί))lί" <C\ \u'\2tndt + C < C f 1 \u'\2tn~l dt + C.
) Jo Jo

From this we obtain
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f l \ l / 2

|ιι'(l)| <( C lii'lV-^ί +
Jo

and

( P , , \11(1)1 u C I w ' l V - ' Λ + C
\ Jo )

Since 1/2 + l/(p + !)<!, we have

(5.19) \u'(\}u(V)\< C lu'lV-^ί + C < ε \u'\2f~l dt + C
o

for ε > 0 and some constant Cε depending upon ε. By (5.18) and (5.19), for any

m > n — 3 there is a constant C such that

f l f l f l

\u'\2f-ldt<C\ G(u)tmdt + εC\ \u'\2tn~l dt + Cε

Jo Jo Jo

for ε > 0 and some constant Cε. Here C is a constant independent of ε. Let
ε > 0 be sufficiently small. Then the above inequality implies the fifth

inequality of Proposition 5.1. To prove the last inequality of Proposition 5.1,

we use (5.15) and (5.17). Then we see that for any m > n — 3 and ε > 0,

f l f l f l

G(u)f-^dt<C\ G(u)tmdt + εC\ G^ί"'1 dt + Cε,
Jo Jo Jo

where C depends only on m, but Cε depends on both m and ε. Choosing ε

= 1/2C, we obtain

G(u)tmdt
o o

Letting m = n, we get

[
1 fl

G(u}tn~ldt < C G(u)tndt + C < C'maxo^! \u(t)\p+ltn + C.

This is nothing but the last inequality of Proposition 5.1, and the proof of

Proposition 5.1 is complete.

In the next lemma which corresponds to Lemma 3.6, we present some
technical estimates for solutions in a neighborhood of t = 0.

LEMMA 5.5. There are positive constants Cί9 C2, R! and δ such that if
RJ, then
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(5 2°) ML

and

(5.21) |ι/'(ί)l

for te[_Q,δ\\u\\-^-V'2l where

B^RY = L«\B^(R) = {ueL": \\u\\» > R}.

PROOF. We follow the lines of the proof of Lemma 3.6 with some slight
modifications. Let ueS. We wish to estimate the right-hand sides of the
identities (3.43) and (3.44). For fe[0, δ \\u\\~ (p~1)/2] it follows that

Γ(V("~1) Γ l/(τ, u(τ)}\τn^dλds < Ct2\\u\\^ + C < Cδ2 \\u\\ „ + C,
J o \ Jo /

where C is independent of δ and u. This inequality and (3.44) together imply

|ιι(0)| - C52||ιι || ̂ ^ l i i W I + C,

and therefore (5.10) yields

Choose δ so small. Then we find C' > 0 such that

Set R1 = 2C'. Then the above inequality yields

| |M| | 0 0 <2CΊw(ί) l for

This is the desired inequality (5.20). Next, it follows from the relation (3.43)
that

If || tι ! !«,>!, then we have |w'(ί)| < 2α||w||^. This, together with (5.20),
implies (5.21). The proof is now complete.

In view of Lemma 5.5, we introduce a notation corresponding to Definition
3.1.

DEFINITION 5.1. We define

L(u) = δ\\u\Γ^-^2 for

where δ is a constant determined in Lemma 5.5.
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In Definition 5.1 we may assume that δ, L(u) < 1 without loss of generality.
In the next lemma we see that any solution u with large L°° norm has only
simple zeros. This fact is essential for defining our new Prϋfer transformations
later.

LEMMA 5.6. (i) There exist constants R2 (> RJ and C > 0 such that if
UGSΓ\B00(R2Y9 then

(5.22) iw'(ί)2 + G(ιι(ί)) > C || ii ||^ for all te [0, 1],

where σ = p + 1 - n(p - l)/2 (> 0).
(ii) Any solution ueSftB^R^ has only simple zeros and possesses at most

a finite number of zeros in the interval [0, 1].

PROOF, (i): Substituting m = n into (3.18), we obtain

(5.23) (ΊX(02 + G(ιι(ί)) ) tn = n\ G(ύ)sn~l ds
V 2 / Jo

n Λ f' |2 „ !, Γ „, , n ,
- 4- 1 I \u \ s A ds — u h(s, u)s ds
2 / J o Jo

for 0 < t < 1. We first use (5.4) to estimate the last term on the right-hand side
as

(5.24) i \u'h(s, u)\snds< \u'\(ε\u\(p+i)l2+ Cε)snds
Jo Jo

r , ,, r< Γ p l \1J \ Cw ^ / i c - L p I \ιjs ε \ \u i s as -h ε |w
Jo Jo

Here and from now on, we denote by Cε various constants dependent only on
ε. We define

From (5.23) and (5.24) it follows that

C* i n \ f'
(5.25) £(ί) > E(t)tn > n\ G^s^1 ds + - - + 1 - ε \ur\2f~lds

Jo \ 2 / J o

On the other hand, multiplying equation (1.2) by u(t)tn 1 and integrating the
resultant identity over [0, ί], we have
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rt Γt ft
(5.26) \u'\2sn~l ds = ug(u)sn~lds + uh(s, ύ)sn~l ds + ur

Jo Jo Jo

Combining (5.25) and (5.26), we have

(5.27) E(t) > n

uh(s,

\t}u(t)tn-

(u}sn~lds

\u\p+lsn~lds

We now estimate the third and the fifth terms on the right-hand side. It
follows from (5.2) and (5.5) that for any 0 < ε < 1,

(5.28) 1 -ε uh(s, w)!*"'1

Jo

nε p p+ί n_1

~^Jo| W | P S" S H

ds

where C0 is independent of ε. From the definition of E(t) and (5.2), we have

|ιι'(ί)| < (2E(t))1/2 and |ιι(ί)|

and so

(5.29)

We here used Young's inequality together with the fact that (p + 3)/2(p + 1)
< 1. From the inequalities (5.2), (5.27), (5.28) and (5.29), it follows that

(5.30) 2E(t) >n\ G(u)sn~l ds -
o

ug(u)f~ x ds - Cε,

where C is independent of ε. On the other hand, we find constants α, C^ > 0
such that

(5.31) 2nG(s) -(n-2 + a)sg(s) + C^> a\s\p+1

for all sεR. Indeed, if n > 3 then this follows from (B3) and (5.2); if n = 2 then
this inequality is obtained from (5.2) only. We choose ε so small that
εC < a. It then follows from (5.30) and (5.31) that
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(5.32) E(t) > C2 \u\p+ίf-lds - C3.
o

If ueSnB^RiY, it follows from Lemma 5.5 that for any ίe[L(w), 1],

MuΓ1*"-1^^ I
Jo Jo

where σ = p + 1 — n(p — l)/2 is positive since 1 < p < n*. Combining this
inequality with (5.32), then we have

(5.33) E(t) > CJu\\l> - C3 for ίe[L(ιι), 1].

We choose R2 (> RJ so large that C4R
σ

2 > 2C3. Thus (5.33) implies that if
ueSΓiBao(R2)

c

9 then

(5.34) £(f)>K4NI» for ίe[L(ιι), 1].

Next, let us consider the case where ίe[0, L(w)]. In this case the
application of Lemma 5.5 implies

(5.35) E(t) > G(u(t)) > C\u(i)\*+l > C'lH^1

for ίe[0, L(w)] and ueSftB^Rrf. Therefore the first assertion (i) follows from
(5.34) and (5.35).

(ii): From (5.22) we see straightforwardly that u€Sr\Bao(R2)
c has only

simple zeros. If it has infinitely many zeros, then there exists an accumulation
point of zeros in [0, 1]. However the accumulation point is not a simple
zero. This is a contradiction, and so we obtain the second assertion (ii). The
proof is thereby complete.

In the next lemma corresponding to Lemma 3.7, we find a relation between
the quantities M(u) and ||w||H for any solution u in 5.

LEMMA 5.7. There are two positive constants C1 and C2 such that

(5.36) M(u) < C, || u \\2
H + C1 < C2M(u) + C2

for any ueS.

PROOF. Using Proposition 5.1, we find constants C l5 C2 > 0 such that

ί1

Jo

which is the first inequality of (5.36). Again, applying Proposition 5.1 and

noting that (p + l)/2 > 1, we have
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|«|||= ΓV + lu'lV 1

Jo
at

2/(p+l ) f l

+ lii'lV^A
JO

< (CM(ιι) + C)2/(p + 1) + CM(u) + C < C'M(ιι) + C',

which is the second inequality of (5.36). This completes the proof.

Using Lemma 5.6, we obtain the next lemma, which gives a relation
between the quantities M(ύ) and \\u\\ ̂  for a solution belonging to the class 5.

LEMMA 5.8. There exist constants C > 0 and R3 ( > R2) such that

(5.37) CM(u)>\\u\\^ for ueSnB^RJ,

where σ = p + 1 — n(p — l)/2.

PROOF. Multiplying (5.22) by ί""1 and integrating over [0, 1], we see with
the aid of Proposition 5.1 that

CiM(w) + C2 > H i i l l ^ for uεSnB^RJ.

Choose R3 ( > R2) so large that 2C2 < R^. Then the above inequality implies
(5.37) and the proof is complete.

REMARK 5.1. We can replace the conditions ueSftB^Rjf, 1 < ί < 3, by a
single condition ueSr\B(R)c for some R > 0 in Lemmas 5.5, 5.6 and 5.8,
respectively. In other words, for uεS{}B(R)c these lemmas remain
valid. Here R is chosen as a positive constant dependent on Rl9 R2 and
R3. In fact, it follows from Lemma 5.7 that

\\u\\2

H<CM(u) + C<C\\u\\p^+1 + C for any uεS.

We here choose R so large that the above inequality implies that
\\u\\ ̂  > R3> R2> R1 for all w e S with | |M| |H > R. Therefore we conclude that
the conditions uεSnB^RiY, 1 < i < 3, can be replaced by ueSnB(R)c in
Lemmas 5.5, 5.6 and 5.8, respectively.

6. Proof of Theorems 2 and 4

In this section we apply the results given in Section 5 and prove Theorems
2 and 4. We first present the following proposition which plays an important
role in the proof of Theorem 2.

PROPOSITION 6.1. Under the assumptions of Theorem 2, // follows that
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, y)] < 4- oo for \γ\ sufficiently large and

lim^±00N[M( ,y)] = + oo.

In what follows, we assume without further mention that conditions (Bl),

(B2) and (B3) are valid. To prove Proposition 6.1 mentioned above, Theorems

2 and 4, we introduce new Prϋfer transformations below.

DEFINITION 6.1. For ueSr\B(R)c we define the functions ρ(i) and φ(t) by

(6.1) u' = p cos φ,

(6.2) | w | v ~ 1 w = p sin φ,

(6.3) Φ(0) = |,

where v = (p + l)/2. Notice that v > 1.

The relations (6.1), (6.2) and (6.3) determine the functions p(i) and φ(i) of

class C^O, 1] uniquely. In fact, as mentioned in Lemma 5.6, any solution

ueSr\B(R)c has only simple zeros, and so it follows that

p(t) = (\u'\2 + |w|p + 1)1 / 2 > 0 for all ίe[0, 1].

and the continuous functions p(t) and φ(t) are uniquely defined. Since the left-

hand sides of (6.1) and (6.2) are continuously difTerentiable, the functions p(t)

and φ(t) are also of the class C1 [0, 1],

LEMMA 6.1. For uεS{}B(R)c we have

(6.4) φ'(t) = p-2{\uΓlug(u) + v | ι<ΓVl 2

PROOF. Differentiating (6.1) with respect to ί, we obtain

u" = p' cos φ — pφ' sin φ,

which, together with (1.2), implies

(6.5) p' cos φ — pφ' sin φ = -- u' —f.

Next, we differentiate (6.2) to obtain

(6.6) p' sin φ + pφ' cos φ = v\u\v~lu'.
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Multiplying (6.5) by — sin φ, (6.6) by cos φ and then summing up these
identities, we obtain

pφ' = sin φ < u' +/> + v\u\"~l u' cos φ.

Dividing both sides of this relation by p and using the relations (6.1) and (6.2),
we get (6.4). This completes the proof.

LEMMA 6.2. Let ueSr\B(R)c. Then for any zero τ of u there is an ε > 0
such that

φ'(t)>0 if 0< \t-τ\ < ε.

Therefore φ(t) is strictly increasing in some neighborhoods of zeros of u(t).

PROOF. Since ueSnB(R)c and u(τ) = 0, Lemma 5.6 asserts that τ is a
simple zero of u(t\ Therefore u'(τ) Φ 0 and τ Φ 0. We set a — u'(τ) and
choose εl > 0 so that

and

for all ίe[τ — ε1? τ + εj. Here we may assume that τ — εx > 0 since τ > 0.
Using the above inequalities, one finds positive constants d0, dί and d2 such

that

(6.7)

(6.8)

(6.9) 1^\u>(t)\\u(t)γ^d2\t-τ\\

for ίe[τ-ε1 ? τ + εj. Combining (6.4), (6.7), (6.8) and (6.9), we obtain the
estimate

p(t)2φ'(t) > v l w Γ - 1 \u'\2 - n-^- \u'\ \u\v - \u\v\h(t, u)|

>d0\t-τΓl-(dί+d2)\t-τΓ
i

for ίe[τ — ε l 5 τ + εx]. Therefore, if |ί — τ > 0 is sufficiently small then we
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obtain p(t)2φ'(t) > 0. This completes the proof.

By means of Lemma 6.2 we obtain the next key lemma which gives us the
relation between the number of zeros of a solution u in SnB(R)c and the value
of

LEMMA 6.3. (i) Let ueSkϊ\B(R)c and (ti)
k

i=1 =(0<tί<t2< — <tk<l)
the sequence of its zeros. Then we have the same assertion as in (i) of Lemma

4.2.

(ii) Let ueSr\B(R)c. Then the same assertion as in (ii) of Lemma 4.2 is
valid.

PROOF. In view of Lemma 6.2, we obtain the conclusion in the same way
as in the proof of Lemma 4.2.

For the proof of Proposition 6.1 we need the following lemma which
contains a technical estimate for the solutions in SnB(R)c.

LEMMA 6.4. For any α > 0 there is a Ca > 0 such that

(6.10) Γ |ιι'| \uYp-2Γldt < CΛM(uY + CαΓ |ιι'| \u
Jo

for ueSf}B(R)c.

PROOF. Let ueSnB(R)c. From the definition of p(t) it follows that

(6.11) p(ί)>l"(ί)l ( p + 1 ) / 2 and p(t)>\u'(t)\

for all ίe[0, 1]. By Lemma 5.5 and (6.11) we have

l i i ' l l M Γ p - ' r 1 < CMOΓ1 < C||n||(r1)/2

for all 0 < t < L(u). This implies that

(6.12)

where C" is independent of u in SnB(R)c.
On the other hand, using (6.11), we obtain

Γ \u'\\uγp-
2t-^dt< Γ r^ί^LίuΓ Γ r1+

jL(u) JL(u) JL(U)

< α~1L(w)~α for any α > 0.

Moreover Lemma 5.8 implies

-« = 1)α/2
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and hence

(6.13) I \uf\\u\vp-2Γ1dt<CaM(u)(p-1)Λ/2σ.
jL(u)

Consequently, combining (6.12) and (6.13) gives

ΓJo
u'\\u\vp-2Γ1dt < CαM(w)(p-1)α/2σ + C'

for any α > 0. Rewriting (p - l)α/2σ as α, we get (6.10). The proof is
complete

We now use the Prufer transformations introduced in Definition 6.1 and a
priori estimates given in Section 5 to complete the proof of Proposition 6.1.

PROOF OF PROPOSITION 6.1. We first observe the trivial inequality
II M || oo > |w(0)|. If |w(0, 7) I = \y\ is sufficiently large, the assertion (ii) of Lemma
5.6 states that w( , y) has at most a finite number of zeros in [0, 1]. That is,
N[u(-9 y)] < + oo. We then demonstrate that lim y^± 0 0ΛΓ[w( , y)] =
+ oo. Let ueSnB(R)c. Integrating both sides of (6.4) over [0, 1], we obtain

(6.14) φ(l) -> I,(ύ) + I2(u) - I3(u)

where /f(w) (1 < i < 4) are defined by

(6.15) I,(u)= I \uΓlug(u)p-2dt,

(6.16)

(6.17)

(6.18)

^(11)= Γ luΓ 1 .
Jo

,.,Γ
Jo

= [\u
Jo

We then estimate the terms It(u), 1 < i < 4. We first compute a lower
bound of I^u) + /2(w) From the definition of p(t) we infer that

(6.19) I,(ύ) + I2(u) = \ p-2\uY~l(v\u'\2 + ug(u))dt
Jo

> C \ p~2\u\<-\\u'\2 + \u\p+1)dt > C f 1 \u\(p~^2dt.
Jo Jo
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To estimate the right-hand side, we choose a constant m such that

m > max (n - 1, n(p + 3)/2(p + 1)).

Then we have

|M(ί) |(p+3)/2 tm < (|M |p+l ^(p+3)/2(p+l) < M(||)(P+ 3)/2(p+ 1)?

and so

(6.20) |w(ί)|(p~1)/2 > M(w)- (p+3)/2(p+1) |w(OΓ"hlίm

for all f e[0, 1]. By virtue of (6.19), (6.20) and Proposition 5.1 and the choice
of m, we have

/!(ii) + I2(u) > CM(uΓ(p+3)l2(p+ί) \u\p+1tmdt

Since ||u||| < CM(u) + C from Lemma 5.7, we may assume that M(u) > 1 for
uGSftB(R)c. Accordingly, we obtain

(6.21) /Λii) + I2(u) > C,M(u)(p-1}/2(p+1) - C2.

We have already estimated the value of /3(w) in Lemma 6.4. It remains
only to compute the upper bound of /4(w). We infer from (5.4) and (6.11) that

(6.22) I4(u)<C Γ|w| v( |W | ( p + 1 ) / 2 + l)p~2dt<C + C [ p~ldt.
Jo Jo

We wish to estimate the right-hand side. Since u e S n B(R)C

9 we get || u \\ „ > R3

as mentioned in Remark 5.1. Hence it follows from Lemma 5.6 that

(6.23) p(t)2 = \u'\2 + \u\p+1 > c ι ι ' ( ί ) 2 + G(ιι(ί))

>C' | |w | |^>C'^ for ίe[0, 1].

Combining (6.22) and (6.23), one finds a positive constant C independent of u
such that

(6.24) I4(u) <C for all u e S n Wc.

Using (6.14), (6.21), Lemma 6.4 and (6.24), we obtain

- CΛM(u)" - Cα.

We choose α so small that 0 < α < (p — l)/2(p +1). Then we get
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(6.25) φ(\) > CM(u)(p~1}/2(p + 1} - C .

This, together with Lemma 5.8, yields

(6.26) φ(l) > C1 | |w||<£-1 ) σ / 2 ( p + 1) - C' > C1 |w(0)|(/7~1)<T/2(p+1) - C'

for all uεS{}B(R)c.
On the other hand, Lemmas 5.7 and 5.8 together imply

(6.27) I M Γ W < C | | W | | 2 +C for ueSnB^RJ.

By (6.27) and the trivial inequality H M ^ > |w(0)|, there is a constant Rf > 0
such that if ueS and |u(0)| > R' then uεSnB(R)c. From this fact and (6.26)
we infer that

(6.28) φ(l) > C1\u(0)\(p-1}σ/2(p+1) - C

holds provided that ueS and |w(0)| > R'.
Recall that w(ί, γ) denotes the solution of (2.1)-(2.2)γ. We here define

φ(ί, y) by the function φ(t) of Definition 6.1 with u = u(t, γ). It follows from
(6.28) that

(6.29) φ(l, y) > d|y| ( l >"1 ) f f / 2 ( J I + 1 ) - C' for |y | > Rf .

This inequality and Lemma 6.3 together imply

l im y _> ± 0 0 JV[w( ,y)] - + oo,

and this completes the proof of Proposition 6.1.

We can choose a constant yQ(> R') such that w(ί, y) is well defined and

W[M( , y)] < oo for any y with |y | > y0 In tne same way as in the proof of
Lemma 4.4, we obtain the next lemma.

LEMMA 6.5. The mapping y -> w( , y) from (— oo, — 70]U[7o? + °°) in*°
C2[0, 1] is continuous.

We now prove Theorems 2 and 4.

PROOF OF THEOREM 2. We prove Theorem 2 in the same way as in the
proof of Theorem 1. Let a2 + b2 ^ 0. We first deal with the case where
b Φ 0. The choice of y0 implies that φ(l, 7) < oo for y with |y | > y0. Choose a
positive integer k0eN such that φ(l, y0) < /c0π. As in the proof of Theorem 1,
we apply the intermediate value theorem and define two sequences (qk)k>ko and

(Pk)k>k0 by

(6.30) qk = inf {76(y0, oo): φ(l, y) = (k + l)π}

and
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(6.31) pk = sup {76(y0, 9/c): φ(l, 7) = kπ},

respectively. These sequences possess the following properties:

(6.32) 7 o < P k < 4 f c ^ P k + ι <4k + ι> k>k0,

(6.33) lim^ pk = lim^ qk= +<x>,

(6.34) φ(l, ft) = /cπ, <p(l, )̂ = (/c + l)π and

(6.35) fcπ < φ(l, 7) < (k + l)π for yε(pk, qk).

We next define a continuous function ^(7) on |j0, oo) by

y(γ) = αιι(l, 7) + &κ'(l, ?)•

It follows from Definition 6.1 and (6.34) that

J>(P*) = (- l)*6p(l, PJ and yfe) = (- l)k

Since b / 0, we see that for any k>k0,

By the intermediate value theorem there is a yk e (pk, ^fc) such that y(yk)
= 0. We then define uk(t) = u(t, yk) for k>k0. These are the desired
solutions. In fact, it follows from (6.27) that

> \yk\
σ ->oo as fc-,oo,

namely,

lim^^ ||w f c

+ ||H = lim^ ||u fc

+ !!«,= + ex).

It is clear that wk

+(ί) is a solution of (1.2)-(1.4) with exactly k zeros in [0, 1] and
satisfies uk (0) > 0.

We next consider the case in which b = 0. In the same way as in the

proof of Theorem 1 we find a sequence (yk)k>ko such that lim^^ 7fc = + oo and
φ(l, 7fc) = kπ for k > k0. In this case we define u k ( t ) = u(t, yk) for
k > k0. These are the desired solutions. We can also find ( u k ) in the same
way as above, and this completes the proof of Theorem 2.

PROOF OF THEOREM 4. We first show the upper estimates for the H norms

of solutions. Let uεSk{}B(R)c. Since φ(l)e[/cπ, (k + l)π) by Lemma 6.3, it
follows from (6.25) that

(k + l)π > CM(u)(p-v/2(p+1) - C'.

This inequality, together with Lemma 5.7, implies
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We next treat the lower estimates for the H norms of solutions. Let

ueSkΓ\B(R)c. Integrating the identity (6.4) over [0, 1], we obtain

(6.36) φ(l) - < I,(u) + I2(u) + /3(u) + /»,

where the integrals It(u\ 1 < i < 4, are defined by (6.15), (6.16), (6.17) and (6.18),

respectively. We then estimate the terms It(u)9 1 < i < 4, one by one. We first
deal with I^u). To this end, we set ξ = n(p - l)/2(p + 1). Note that ξ < 1
because of the assumption 1 < p < n*. Using the inequality (6.11), we have

(6.37) / x (w)<

-cf,
Jo

(\u\p+1tn)(p-1)/2(p+1)Γξdt <

We next compute the term I2(u). By (6.11) and (6.37), we obtain

(6.38) I2(u) < v \ \u\(p-l)/2dt < CM(u)(p-v/2(p+l).
Jo

We have already obtained the upper estimates for I3(u) and I4(ύ) in Lemma 6.4
and (6.24), respectively.

Combining (6.36), (6.37), (6.38), Lemma 6.4 with α = (p - l)/2(p + 1) and

(6.24), we obtain the estimate

Since φ(l)e[/cπ, (k H- l)π) by Lemma 6.3, it follows from Lemma 5.7 that

Since ueB(R)c, we may assume without loss of generality that || u \\H > 1, and so
we get

This completes the proof of Theorem 4.
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