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ABSTRACT. We shall construct a quantum analogue of the prehomogeneous vector

space associated to a parabolic subgroup with commutative unipotent radical.

0. Introduction

Let g be a simple Lie algebra over the complex number field <C, and let
p = 1 0 τn+ be a parabolic subalgebra of g, where I is a maximal reductive
subalgebra of p and m+ is the nilpotent part. We denote by τn~ the nilpotent
subalgebra of g such that 10 τn~ is a parabolic subalgebra of g opposite to p.
Take an algebraic group L with Lie algebra I.

In this paper we shall deal with the case where m± is nonzero and
commutative. Then τn+ consists of finitely many L-orbits.

Our aim is to give a quantum analogue of the prehomogeneous vector
space (L,m+). More precisely, we shall construct a quantum analogue Aq of
the ring A = <C[m+] of polynomial functions on m+ as a noncommutative <E(q)-
algebra endowed with the action of the quantized enveloping algebra Uq(ϊ) of I,
and show that for each L-orbit C on m+ there exists a two-sided ideal Jc,q of
Aq which can be regarded as a quantum analogue of the defining ideal JQ of
the closure C of C. Such an object was intensively studied in the cases g = slπ

(see Hashimoto-Hayashi [3], Noumi-Yamada-Mimachi [10]) and g = sθ2Π (see
Strickland [13]).

Our method is as follows. Since τn~ is identified with the dual space of
τn+ via the Killing form, A is isomorphic to the symmetric algebra iS(m~). By
the commutativity of τn~ the enveloping algebra U(m~) is naturally identified
with the symmetric algebra S^m"). Hence we have an identification A =
U(m~). Then using the Poincare-Birkhoff-Witt type basis of the quantized
enveloping algebra Uq(q) (Lusztig [9]) we obtain a natural quantization Aq

of A as a subalgebra of Uq(gi). The algebra Aq has a canonical generator
system satisfying quadratic fundamental relations. In particular, it is a graded
algebra. The adjoint action of Uq(q) on Uq(q) is defined using the Hopf
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algebra structure, and we can show that Aq is preserved under the adjoint

action of Uq(ί). As a Uq (I) -module Aq is a direct sum of finite dimensional

irreducible submodules.

Let C be a non-open L-orbit on m + . It is known that Jc is an I-stable

homogeneous ideal generated by the lowest degree part / £ . Since A is a

multiplicity free I-module, there exist unique C/^(I)-submodules Jc,q and J%q of

Aq satisfying Jc,q\q=\ = Jc and Jc,q\q=\ — Jc We can show that JQA is a two-

sided ideal of Aq and that /c,? is generated by /£ both as a left ideal and

a right ideal. The proof uses the quantum counterpart of the results on a

generalized Verma module of g whose maximal proper submodule is explicitly

described in terms of Jc (see Enright-Joseph [2], Tanisaki [14]).

Explicit descriptions of Aq and Jc,q in each individual case will be given in

our subsequent papers.

1. Quantized enveloping algebras

Let g be a simple Lie algebra over the complex number field C with

Cartan subalgebra ί). Let A c ί)* and W cz GL(ί)) be the root system and the

Weyl group respectively. For each one A we denote the corresponding root

space by gα. We fix an ordering on A, and denote the set of positive roots by

A* and the set of simple roots by {a*}ie/0, where 7o is an index set. We set

For i e 7o let A, el), wx• e f)* and j , e Ŵ  be the simple coroot, the fundamental

weight, the simple reflection corresponding to i respectively. Take e, e gα. and

ft e g_α. satisfying [e,-,/-] = A, . Let ( , ) : g x g — > C b e the invariant symmetric

bilinear form such that (α, α) = 2 for short roots α. Set

For a subset I of To we set

iel

For a Lie algebra α we denote by U(a) the enveloping algebra of α.

Let us recall the definition of the quantized enveloping algebra Uq(q)

(DrinfeΓd [1], Jimbo [7]). It is an associative algebra over the rational

function field <C(q) generated by the elements {Ej,Fi,Kj,Kj~ι}ieIo satisfying the
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following fundamental relations:

529

iKj~ = Kj~ Ki — 1,

Γ1 = q?Ej,

K —

Qi —

1 — a«

A:=0

1 —an

k=0

where qι = qd\ and

imU = t_t-ι >

1 — βy

A:

wL! =

For /e/o and neZ>o we set

1 M g / ! " ' " W , ! •

The algebra Uq(o) is endowed with a Hopf algebra structure via the following
formula:

h A{Fi) = F,

<E(q) are the algebrawhere J : Uq(q) and ε :
homomorphisms giving the comultiplication and the counit respectively, and
S' Uq(o) -• Uq(Q) is the algebra anti-automorphism giving the antipode.

We define the adjoint action of Uq(q) on Uq(§) as follows. For x,
yeUq (g) write Δ{x) = Σkx\ ® x | and set (adx)(y) = Y,kx\yS{x$. Then

is a homomorphism of algebras.
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Define subalgebras Uq(n± ), Uq(ί)) and Uq(li) for / cz 70 by

C/,(n+) = (Ei I i G 7o>, i/,(n-) = <fl 11 G 70), Uq$) = (A;±! | I G / O ),

For i G 7o define an algebra automorphism 7/ of ί/^(g) by

f -FtK,

v Z-J1C=0\ HI) i

2^k=0\ Hi) r i rjri

(i φj),

(see Lusztig [9]). For w e W choose a reduced expression w — s^ --Sik and set

Tw = Tιx "Tik. It is known that Tw does not depend on the choice of the

reduced expression.

For 7 c: 7o let wj be the longest element of Wj and define a subalgebra

Uq(nj) by

Let wo be the longest element of W. Take a reduced expression
sh " 'sim °f w/Wo and set

for /: = 1,..., m. Then it is known that {βk \ 1 < k < m} = ^ί+\^/5 and that

{ Γ^ l } y^ w ) I dx,..., dm G Z>o} is a basis of 1^(1x7). We note that this basis

depends on the choice of the reduced expression of WJWQ in general.

Let τ : Uq(g) —• Uq (g) be the algebra anti-automorphism given by

τ(Ki)=Kr\ τ{Ei)=Eh τ{Ft) = Ft ( / G 7 0 ) .

LEMMA 1.1. (i) τTWl(Uq(nj)) = Uq(nj).

(ii) Let ij e I be such that wj(oci) = —α,. Then we have

{aάFt){τTWl{x)) = tTWl{{aάEj){x)), {tΔE,){τTWl{x)) = τTWl((adFj)(x)),

( a ά K , ) ( τ T W ι ( x ) ) = r l U ^

for any x e U q ( o ) .
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PROOF, (i) We have τTk = T£ιτ for any k e Io, and hence τTw = T~\τ for

any w e W. Hence

τTWl(Uq(nJ)) = τTWl(Uq(n-) Π rf(Uq(rC))

= T^(Uq(n-)) ΓΊ Uq(n-) = Uq(nj).

(ii) We have

τTWi(Ej) = τTWlSjTSj(Ej) = τTWlSj(-FjKj) = - τ ( F A ) = -K^F^.

Here we have used the formula:

Ty(Fk)=F,, Ty{Kk) = K< iyeWXίeh%y{μk) = aLί)

(see Lusztig [9]). Hence

τTWl((adEj)(x)) = τTWl((EjX - xEj)K}) = K,(z(-KΓιF,) - (-K7ιF,)z)

= F,z - (KizKr^Fi = (adF,)(z)

with z = τTw,(x). Other formulas are proved similarly. •

PROPOSITION 1.2. (adt/?(I/))(C/g(n7)) <z Uq(nj).

PROOF. We see easily that (adUq(^))(Ug(nj)) = Uq(nj). Hence it is

sufficient to show that Ug(nj) is stable under ad is,, adFt for iel.

Let iel and define j e l by α, = — vv/(α, ). By Lemma 1.1 we have

Let us show (ad£Ί)(i7^(n~)) <= C/̂ (n~). For any ye Uq(n~) we can write

[Ei,y] = KMy) - r2(y)Krι {rx(y),r2{y) 6 ^ ( n " ) ) ,

and hence (ad£*)(y) = JC,-ri(y)Ai - Γ2(^). On the other hand by Jantzen [5] we

have

Hence we have to show ί/?(n") ίl Γ ' 1 C/^n") c l/?(n~) ίl Γ Γ 1 ^ ( r ) . It is

sufficient to show for any y eW and k e /o satisfying sky < y that Uq(n~) Π

T~ι

yUq(n-) c C^(n-) Π Γ"1 Uq(vr). This follows from Lusztig [9]. Therefore

we have (adEi)(Uq(ny)) c Uq(nj). Then we see from Lemma 1.1 that

(adF,)(U,(nj)) α Uq(nj). Q
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Let t/°(tt~) ^ the C[q± ^-subalgebra of Uq{xC) generated by {FJn) \ i e Io,
neΈ ^o). We have a natural C-algebra homomorphism φ: Uj}(n~) —> U(n~)
given by F^ —>f"/n\9 and it induces the isomorphism C®c^±i]C/^(n~) ^
U(n~) where Cf^*1] —• C is given by q\-+ 1. For / <z 70 the restriction of $? to

q ) = Uq(n~) Π £ (̂117) gives a surjective (C-algebra homomorphism
: ϋ?(«7) - ^(«7) inducing Cβ c b ±i]ϋJ(n7) * U(nj).

For iV G Z>0 set

and let C/^Cn1), ί/^(ί)), ^,^(1/), ^ ( « 7 ) be the Cfa^-subalgebras of
UqtN(g) generated by t/^n*), Uq(fy, Uq(h), Uq(nj) respectively.

2. Highest weight modules

For a U(t))-module Λf and μef)* we set

M^ = {m G MI Am = μ(h)m (h e I))}.

It is called a weight space of M with weight μ. A C/(ί))-module Λf satisfying
M = ®μMμ and dim Mμ < oo for any μ is called a weight module. We define
its character ch(M) as the formal infinite sum

ch(M) =
μ

A {/(g)-module M is called a highest weight module with highest weight λ e \)*
if there exists m e Mχ\{0} satisfying M = U(q)m, n+m = 0. Such m is
determined up to a nonzero constant multiple and is called the highest weight
vector of M. For each λ e I)* there exists a unique (up to an isomorphism)
irreducible highest weight module with highest weight λ, which we denote by
L(λ). Since highest weight modules are weight modules, their characters are
defined. For / <= 70 set

For λ G l)j we define a C/(g)-module Mi(λ) by

Mj{λ) = C/(g) / ( £ £%)(* " λ(h)) + C/(g)n+ + C/(g)(I7 Π n")

It is a highest weight module with highest weight λ and the highest weight
vector mix = ϊ, where ϊ denotes the element of Mj(λ) corresponding to
1 G C/(g). Moreover it is a rank one free U(nj)-module generated by the
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highest weight vector mIλ, and hence we have

It contains a unique maximal proper submodule Ki(λ), and we have

L(λ) = MI{λ)/KI(λ).
Now we define the corresponding notions for the quantized enveloping

algebras. Set

ί)ί = {λ e I)* I Λ(A, ) e Έ (i e /„)} = ®lekZw, c= l>*

For a Uq^(ί)) -module M the weight space Mμ with weight μ e i)χ/N is defined

by

Mμ = {meM\ Ktm = (fi{hi)m (i e 70)}.

We call a Uglify -module M a weight module if M = ®μMμ and dimili^ < oo

for any // e ί)£/iV. Let M be a L^^(9)-module. If there exists me Mχ

satisfying Uq^{Q)m = M, Etm = 0 (ie 7o), then M is called a highest weight

module with highest weight λ and m is called its highest weight vector. There

exists a unique irreducible highest weight module Lq^(λ) with highest weight

λ. Highest weight modules are weight modules. For 7 cz 70 set

For λeί)jΈ/N we define a highest weight module Mjiq^(λ) by

Λ + Σ ^(β)^ + Σ u

ielo ielo jel

Its highest weight vector is given by mj^q^ = ϊ. Since MIyq,N(λ) is a rank one

free module generated by mιχq^, we have

We have a unique maximal proper submodule Ki#jf(λ) of MI^N(A), and hence
LqflW — Mi,q,N(λ)/Ki^N(λ).

PROPOSITION 2.1. Let 7 c= 70 and λeί)jZ/N. Let Y be a subset of

U*(nj) such that YmIMtN <zKlA#(k) and U(φI(Y)mI,λ = Ki(λ). Then we

have Uq,N{$)YmIM,N = K^N(λ) and ch(Lq,N(λ)) = ch(L(λ)).

PROOF. Let M be any highest weight {/^(ίO-module with highest weight

λ. Take a highest weight vector me M and set

M° = Dj(n-)/π, M° = M°\q=ι = <C®€[q±l/N]M°.
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Then we can show as in Lusztig [8] that M° is stable under the actions of Eiy

Fiy (Ki - Krι)/(qi - qγx) (i e 70) and that M° becomes a highest weight

module with highest weight λ via the operators

In particular we have

dimMμ = dim(M ) > dimZ^Λ)^.

Now we set

M = MτnN(λ)/Ua.N(U) YrniχaN, m = mΠTN e M.

By the above argument M is a highest weight ί/(g)-module with highest

weight λ and the highest weight vector fh. Moreover, since Ym — 0, we have

φj(Y)m = 0. Hence we have M° ~ L(λ). It follows that

dimLqiN(λ)μ < dimMμ = dim(M ) μ = dimL(λ)μ < dϊmLq,N(λ)μ.

Therefore we have M ~ Lq}N(λ) and ch(Lq,N(λ)) =ch(L(λ)). Π

3. Parabolic subalgebras with commutative nilpotent radicals

In the rest of this paper we fix I c 70 satisfying n/ φ {0} and

[n/,n/] = {0} (see, for example, [14] for the list of (g,/)'s satisfying the

condition). We have I = Io\{k} for some zo e Io-

We set I = I/, m± =Πf for simplicity.

PROPOSITION 3.1. The element Yβ e Uq(m~) for β G Δ + \ Δ I does not depend

on the choice of a reduced expression of

PROOF. For /, j e 7o set

where my denotes the order of SiSj E W. Let s\x -Sir be a reduced expression

of w e W. Then Sjχ sJr is a reduced expression of w if and only if (j\,... Jr)

can be obtained from (ι'i,..., ir) by successively exchanging a subsequence of

the form r{ij) to r(j\i).

We first show that for any reduced expression s^ --Sir of wjwo the

sequence (ι 'i,..., ιr) does not contain a subsequence of the form r(ij) with

mzy > 3. Assume that there exists a subsequence r(ij) with m^ = 3 in

( i i , . . . , ir). We have (i>, zp+i, ^ + 2 ) = (ij, i) for some /?. Set y = sh - sip_x.
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Then we have

βP = y(*i), βP+\ = ysiiμj) = y{μt + α, ), βp+2 = ^ - ( α , - ) = y(<*j),

and hence βp + /Jp+2 = βp+\ This contradicts the commutativity of m". Thus
the sequence (i\,..., ir) does not contain a subsequence of the form r(ij) with
/w,y = 3. Similarly we can show that there does not exist a subsequence of the
form r(ij) with my = 4,6.

Therefore it is sufficient to show that for two reduced expressions

h S^SiSjSfr Sjq, Sh - - - S^SjSiSfr ' ' Sjq, (SiSj = SjSi)

of wjwo the resulting J^'s are the same. This follows from Γ, (/}) = / ,̂
= Fh and Γ,Γy = TjTt. D

We fix a reduced expression w/wo = ^ -sir and set βp = ^ 'Sip_x(aLip).
Set

ie/o iel
r

LEMMA 3.2. We have

= Θ Uq{m-)m.

) ^ is the weight space with respect to the adjoint action of Uq(l)) on
Uq(m-).

PROOF. Set

^...Y^\ V,m= 0 Uq(m-)_γ.

By βp € α i o + Qϊ we have Vo

m cz Uq(m-)m <= Vψ. Since U9(wr) = φ m Fo

m, we
obtain V£ = Uq{m-)m = V? and Uq{m~) = φ^0Uq(m-)m. D

By Lemma 3.2 we can write

(3.1) YβpYβP2=

for
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PROPOSITION 3.3. The <C(q)-algebra Uq(m~) is generated by the elements

{Yβp\l <p <r} satisfying the fundamental relations (3.1) for p\ > P2>

PROOF. It is sufficient to show that any element of the form Yβt Yβt

(1 <U<r) can be rewritten as a linear combination of the elements of the

form Yβs " Yβs {\ <s\ < < sn < r) by a successive use of the relations

(3.1) for/?i > P2> For 1 < k < r let Vjc be the subalgebra of Uq(m~) generated

by {Yβp 11 <p < k}. By Lusztig [9] we have

γk = 0 c(^) YJζ*ι) YJ£k).
mu...,mk

We shall show by the induction on k that any element of the form Yβt Yβt

(1 <U<k) can be rewritten as a linear combination of the elements of the

form Yβs - Yβsn (1 < s\ < < sn < k) by a successive use of the relations

(3.1) for k>p\ > P2 It is trivial for k— 1. Assume that k > 2 and the

assertion is proved up to k — 1. We shall show the statement by induction on

n. It is obvious for n = 0. Assume that n > 0 and the statement is already

proved up to n-\. Take j such that t\ = = tj• = k, tj+\ φ k. We use

induction on j . Assume that j = 0. Then we have t\ φ k. By using the

inductive hypothesis on n we may assume that t2< -•- <tn<k. If tn < k,

then we have f, < k - 1 for any i, and hence the statement holds by the

inductive hypothesis on k. If tn = k, then we can apply the inductive hy-

pothesis on n to Yβ "Ύβt χ, and hence the statement also holds. Assume

0 < j < n. Then we have

~v ~v — ~vJ v ~v

with tj+ι φk. Applying (3.1) for {p\,P2) — (k,tj+\) we obtain

Iβk Yβt.+ι = 2^ Sl,S2 βs\ βs2 '
sχ<s2<k

Since s\ < k by the condition βk + βt+i = βSι +βy2 ' w e c a n a P P ^ ̂ e inductive
hypothesis on/ to YJ

β~
ι Yβs^ Yβs^ Yβt 2->Yβtn, and the statement holds. If j = n,

then we have Γ^ Yβtn — Yfo, and the statement is obvious. •

Since m~ is commutative, U(m~) is isomorphic to the symmetric algebra

^(m"). By identifying m" with (m+)* via the Killing form of g, S(m~) is

naturally identified with the algebra C[m+] of polynomial functions on m+.

Hence we have an identification U(m~) = C[m+]. We denote by <C[m+]w

(m E Z>o) the subspace of C[m+] consisting of homogeneous polynomials with

degree m.
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Set

For le l)J(/,+) we denote the finite dimensional irreducible £/(l)-module
(resp. Uq(ΐ)-mod\ύe) with highest weight λ by V(λ) (resp. Vq(λ)). We can
decompose the finite dimensional I-module <C[m+]w into a direct sum of sub-
modules isomorphic to V(λ) for some λ e !)£(/, +). Moreover, it is known that

dimHomI(F(A),C[τn+]) > 1 (λ e « ( / , + ) ) ,

and hence we have

C[m+]m~ 0 V(λ)
λeΓm

for finite subsets Γm of !£(/,+) satisfying ΓmΠΓm' = 0 for m φ rri (see
Schmid [11], Takeuchi [12], Johnson [6] for the explicit description of Γm). On
the other hand, since Uq(m~)m is a finite dimensional Uq(I)-module whose
character is the same as that of C[m+]w, we have

Uq(m-)m * 0 Vq(λ).
λeΓm

Let L be the algebraic group corresponding to I. It is known that the set
of L-orbits on m+ is a finite totally ordered set with respect to the closure
relation. Hence we can label the orbits by

{L-orbits on τn+} = {Co, Ci,. . . , Q}, {0} = Co c C\ c c Cr = τn+.

Set

Since S(CP) is an I-submodule of <C[τn+], we have

% + ] ^ 0 v(λ)
λeΓ™

for a subset T^1 of 7"m. Moreover the following fact is known (see, for
example, [14]):

PROPOSITION 3.4. Let p = 0,..., t - 1.

(i) Sm(CPl=0form<p.
(ii) Jp+x(Cp) is an irreducible ϊ-module, i.e. Γp~λ consists of a single

element vp.
(iii) <f(Cp) is generated by Jp+λ{Cp) as an ideal of <C[m+].

PROPOSITION 3.5. For p = 0,..., t - 1 there exists a unique λp e ί)j such
that Kj(λp) = J(Cp)mι^p. Moreover, we have λp e I)/Z/2.
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Let vP be the highest weight vector of the I-module Sp+ι(Cp)( m V{vp)).

Then we have

Kι{λp)=J{Cp)mhXp = U(m

and hence K[(λp) is a highest weight module with highest weight λp + vp.

We set

S?(CP) = φ Vq(λ) <= Uq(m-)m, Sq(Cp) = ®S™{CP) c= Uq(m-),

Here we identify Uq(m-)m with ®λeΓmVq(λ).-

PROPOSITION 3.6. For p = 0,...,t—l we have

ch(Lq,2(λp)) = ch(L(λp)), K

PROOF. We shall only give a sketch of the proof. We can prove a

quantum analogue of the determinant formula for the contravariant forms on

generalized Verma modules given by Jantzen [4]. It implies that KjΆ^(X)μ = 0

if and only if Kj{λ)μ = 0. In particular, we have Ki^2{λp)λ + v Φ 0 and

^ / , * , 2 ( ^ ) ^ + V , - H * = ° f θ Γ a Π y i € Io' L e t υmIλp,qϊ (V e Uqϊ(m )vp)
 b e a

e l e m e n t o f Ki,q2(λp)^+V . T h e n f o r i e l w e h a v e

Kw(λp)λp+Vp+Oίi = {0}.

Hence (ad^/)(t;) = 0 for any i e I. It follows that v is a highest weight vector

of the C/^2(I)-m°dule Vq^(yp). We may assume ueC/?°(m") and <pj(v) Φ 0.

By Proposition 2.1 we conclude that ch(Lq^(λp)) = ch(L(λp)) and Ki^2{λp) =

Uq,2(Q)vmIjλpiq,2. Then we have

,,2(I) Π Uq^xC

= C/,,2(m-)((ad(ί/,,2(I)Π C/,,

D
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THEOREM 3.7. We have

Jq(Cp) = Uq{m-)JP+\CP)

PROOF. By Proposition 3.6 we have

and hence Jq{Cp) = Uq(m-)J^ι{Cp). Let us show Uq(mr)J^l(Cp) =
yq

+ι{Cp)Uq(m~). Since τTWl is an anti-automorphism of the algebra Uq(m~)

(see Lemma 1.1), it is sufficient to show that τTWl preserves J^+l{Cp).

Since Uq(m~) is a multiplicity free Uq(I)-module, we have only to show that

τTWl(Vq(λ)) is a C/^(I)-submodule isomorphic to F (̂A) for any λ e \JmΓm. By

Lemma 1.1 we see easily that τTWl(Vq(λ)) is an irreducible Uq(I)-module with

lowest weight wj(λ). Hence we have τTWl(Vq(λ)) ~ ^ ( λ ) . Π
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