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ABSTRACT. We shall construct a quantum analogue of the prehomogeneous vector
space associated to a parabolic subgroup with commutative unipotent radical.

0. Introduction

Let g be a simple Lie algebra over the complex number field C, and let
p=I1@® m' be a parabolic subalgebra of g, where | is a maximal reductive
subalgebra of p and m™* is the nilpotent part. We denote by m~ the nilpotent
subalgebra of g such that [@® m™ is a parabolic subalgebra of g opposite to p.
Take an algebraic group L with Lie algebra .

In this paper we shall deal with the case where mt* is nonzero and
commutative. Then m* consists of finitely many L-orbits.

Our aim is to give a quantum analogue of the prehomogeneous vector
space (L,m"). More precisely, we shall construct a quantum analogue 4, of
the ring 4 = C€[m™] of polynomial functions on m* as a noncommutative €(g)-
algebra endowed with the action of the quantized enveloping algebra U,(I) of |,
and show that for each L-orbit C on m* there exists a two-sided ideal J¢, , of
A, which can be regarded as a quantum analogue of the defining ideal J¢ of
the closure C of C. Such an object was intensively studied in the cases g = sl,
(see Hashimoto-Hayashi [3], Noumi-Yamada-Mimachi [10]) and g = s0,, (see
Strickland [13]).

Our method is as follows. Since m~ is identified with the dual space of
m?* via the Killing form, 4 is isomorphic to the symmetric algebra S(m~). By
the commutativity of m~ the enveloping algebra U(m™) is naturally identified
with the symmetric algebra S(m~). Hence we have an identification 4 =
U(m~). Then using the Poincaré-Birkhoff-Witt type basis of the quantized
enveloping algebra U,(g) (Lusztig [9]) we obtain a natural quantization A4,
of A as a subalgebra of U,(g). The algebra 4, has a canonical generator
system satisfying quadratic fundamental relations. In particular, it is a graded
algebra. The adjoint action of U,(g) on U,(g) is defined using the Hopf
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algebra structure, and we can show that A4, is preserved under the adjoint
action of U,(I). As a U,(I)-module 4, is a direct sum of finite dimensional
irreducible submodules.

Let C be a non-open L-orbit on m*. It is known that J¢ is an I-stable
homogeneous ideal generated by the lowest degree part JO. Since A4 is a
multiplicity free [-module, there exist unique U,(I)-submodules Jc, and J¢ , of
A, satisfying Jegl,_; = Jc and J2 |, = J¢. We can show that Jc4 is a two-
sided ideal of 4, and that J¢, is generated by Jco.’q both as a left ideal and
a right ideal. The proof uses the quantum counterpart of the results on a
generalized Verma module of g whose maximal proper submodule is explicitly
described in terms of J¢ (see Enright-Joseph [2], Tanisaki [14]).

Explicit descriptions of 4, and J¢ 4 in each individual case will be given in
our subsequent papers.

1. Quantized enveloping algebras

Let g be a simple Lie algebra over the complex number field € with
Cartan subalgebra h. Let 4 =« h* and W < GL(h) be the root system and the
Weyl group respectively. For each aeA4 we denote the corresponding root
space by g,. We fix an ordering on 4, and denote the set of positive roots by
4" and the set of simple roots by {a;};.;, where Iy is an index set. We set

nt = @aed* Gr no= GBmeA+ 9o

Foriely let h;elh, w;eh* and s5; € W be the simple coroot, the fundamental
weight, the simple reflection corresponding to i respectively. Take e; € g,, and
fi € 8_, satisfying [e;, fi] = h;. Let (,):gx g — C be the invariant symmetric
bilinear form such that («,a) =2 for short roots a. Set

2(“1" aj)
(o, 1)

di= (u,0)/2 (ieh), a;j=awh)= (i,j € Io).

For a subset I of I, we set

A =40 Zw;,  Wy=(si|iel),

iel
= b ® (@aeA,gu)’ n;— = @ae;ﬁ\A,ga’ n = @ae—A*\A,ga'

For a Lie algebra a we denote by U(a) the enveloping algebra of a.

Let us recall the definition of the quantized enveloping algebra U,(g)
(Drinfel’d [1], Jimbo [7]). It is an associative algebra over the rational
function field €(g) generated by the elements {E;, F;, K;, K;'},. 5, satisfying the
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following fundamental relations:
K.K; = K;K;,
KK'=K'K=1,
KEK ' = g/,

KEK' = ¢;"F,

Ki—K!
< 1- aj 1—a;—k
Z(—l)"[ | BT EEE =0 G#)),
k=0 qi
l_aif l_a

y l—a,--—k . .
ZH)"[ e | BOUTEF =0 G#)),
k=0 qi

where ¢; = ¢%, and

'm Il S !=mk m|___ Im}! 0).
[m], f_1 [m], II;[I[ I [n]’ (m=n=0)

For iely and ne Z-( we set

1
E™ — __ _Egr F® — —_Fn.
A

The algebra U,(g) is endowed with a Hopf algebra structure via the following
formula:

AK)=K®K;, AE)=EQ®K'+1®E, AF)=FQ1+K®F,
eK) =1, e&(E)=c¢eF)=0,
S(K)) =K', S(E)=-EK:, S(F)=-KF,

where 4 : Uy(g) — Uy(g) ® Uy(g) and e&: Uy(g) > C(q) are the algebra
homomorphisms giving the comultiplication and the counit respectively, and
S : Uy(g) — U,y(g) is the algebra anti-automorphism giving the antipode.

We define the adjoint action of U,(g) on U,(g) as follows. For x,
y € U, (g) write 4(x) =, x} ® x? and set (adx)(y) = 3, xiyS(x?). Then

ad : Uy(g) — Endg() (Ug(g))

is a homomorphism of algebras.
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Define subalgebras U,(nt), U,(h) and U,(I;) for I = I by
Uyt = (Eilieh), Uynw)=(Fliek), Uyb)=(K*'|ich),
U(lr) = (K, B, Fylie hp,jel).

For i€ Iy define an algebra automorphism 7; of U,(g) by

Ti(K;) = KK ™,

Ti(E) = { i (=)
A EIBED (2,

() = { K =)
S (-a) FORF (i #)).

(see Lusztig [9]). For w e W choose a reduced expression w = s;, - - - 5;, and set
Ty=T;---T;,. Itis known that T, does not depend on the choice of the

reduced expression.
For I = Iy let w; be the longest element of W; and define a subalgebra

Uy(ny) by
Uy(ng) = Uy(n") N T, Uy(n™).

Let wo be the longest element of W. Take a reduced expression wywy =
si, -+ -8, of wrwy and set

ﬂk = Siy " Si,y (aik)’ Yﬂk = Til tt Tik_l (Fik): Yé:) = tl o lk 1(F "))

for k=1,...,m. Then it is known that {B;|1 < k <m} = 4*\4;, and that
{Y (ch) Y(d |di,...,dm€Zso} is a basis of Uy(n;). We note that this basis
depends on "the ch01ce of the reduced expression of w;wy in general.

Let 7: Uy(g) — U, (g) be the algebra anti-automorphism given by

1K) =K', ©(E)=E, t(F)=F (iek).
LemMa 1.1. (i) tTw,(Uy(ny)) = Uy(ny).
(i) Let i,jel be such that wi(a;) = —o;. Then we have
(ad F))(Ty, (x)) = tTw,((ad E;)(x)), (ad E;)(zTy,(x)) = T, ((ad F})(x)),
(ad K;)(z T, (x)) = Ty, ((ad(K; 1)) (%))

Sor any x € Uy(g).
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PrOOF. (i) We have tTy = T !t for any k € Iy, and hence tT,, = T, 7 for
any we W. Hence

tTw,(Ug(ny)) = T, (U, (n7) N Tu_:,l(Uq(“_))

= T3} (U(n) N Ugln™) = U(np).

Wi
(i) We have
tTy,(E)) = tTuyy Ty(E) = 1Ty (-FK) = ~2(F:K) = —K;'F,.
Here we have used the formula:
Ty(Fx)=F,, T,Ke)=K, (ve W,k,{€ely,y(ox)=oy)
(see Lusztig [9]). Hence
tT,,((ad E))(x)) = 7T, (Ejx — xE))K)) = Ki(z(~K;'Fy) — (-K; ' F)z)
= Fz - (KzK; ' )F; = (ad F))(2)
with z = tT,,(x). Other formulas are proved similarly. []
ProrposiTioN 1.2.  (ad U (I7))(Us(ny)) < Ug(ny).

ProorF. We see easily that (ad U,(h))(U,(n;)) = Uy(ny). Hence it is
sufficient to show that U,(ny) is stable under ad E;, ad F; for iel.

Let ieI and define jeI by a; = —wj(;). By Lemma 1.1 we have
(ad E)(Uy(ny)) = Tyl e '2T,,, (ad E)(Uy(ny)) = Tle~ (ad By) (T, Uy(np))
< 1,7 (ad F)(Uy(n7)) = T, (Uyg(n7)).
Let us show (ad E;)(U,;(n")) = Uy(n~). For any y e Uy(n~) we can write
[Ei,y] = Kin(9) =K (n(p),n2(») € Uy(n)),

and hence (ad E;)(y) = Kir1(¥)K; — r2(y). On the other hand by Jantzen [5] we
have

{reU,(m7)|n@)=0}=U,m)N T,-_qu(n_).

Hence we have to show U,(n")NT,!'U,(n") c U,(n")N T Uy(n™). Tt is
sufficient to show for any y € W and k € I satisfying spy < y that U,(n™)N
T, Uy(n") = Uy(n") N T; Uy(n~). This follows from Lusztig [9]. Therefore
we have (adE;)(Uz(n7)) = Ug(ny). Then we see from Lemma 1.1 that
(ad Fy)(Uq(ny)) = Up(ny). O
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Let U)(n") be the Clg *']-subalgebra of U,(n~) generated by {F™|iel,
neZ-o}. We have a natural C-algebra homomorphism ¢ : U °(n y— U(n7)
given by F-") — f/n!, and it induces the isomorphism C@C[qtl]U (n) ~
U(n~) where C[gt!] — € is given by g— 1. For I < I the restriction of ¢ to
Ud(np) = UX(n") N Uy(ny) gives a surjective C-algebra homomorphism
@5 U‘;’(n,‘) — U(ny) inducing CQ® ¢+ U,?(n,‘) ~ U(ny).

For NeZ set

Uy (9) = €YY ®c(q) Uyl9),

and let Uyn(nt), Uyn(), Uyn(lr), Ugn(ny) be the €(q'/¥)-subalgebras of
U,n(g) generated by U,(nt), U,(h), U,(l;), Us(ny) respectively.

2. Highest weight modules
For a U(h)-module M and ueh* we set
M,={meM|hm=puh)m (heh)}.

It is called a weight space of M with weight u. A U(h)-module M satisfying
M= @”Mﬂ and dim M, < oo for any u is called a weight module. We define
its character ch(M) as the formal infinite sum

ch(M) = Z dim M, e*.
u

A U(g)-module M is called a highest weight module with highest weight 1 € h*
if there exists me M;\{0} satisfying M = U(g)m, ntm=0. Such m is
determined up to a nonzero constant multiple and is called the highest weight
vector of M. For each A€ h* there exists a unique (up to an isomorphism)
irreducible highest weight module with highest weight A, which we denote by
L(4). Since highest weight modules are weight modules, their characters are
defined. For I < I set

by = @ielo\lcwi b
For Ael; we define a U(g)-module M;(4) by
M;(2) = U(g)/ (Z U(g)(h — A(h)) + U(g)n™ + U(g)(I; N n_))-
heh

It is a highest weight module with highest weight A and the highest weight
vector my; =1, where 1 denotes the element of M;(A) corresponding to
1e U(g). Moreover it is a rank one free U(n;)-module generated by the
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highest weight vector m;;, and hence we have

et

naed"\dl(l —e™®) .
It contains a unique maximal proper submodule Kj;(i), and we have
L(4) = Mi()/K1(4).

Now we define the corresponding notions for the quantized enveloping
algebras. Set

ch(M;(2)) =

bz={Aeb*|A(h) eZ (iel)} = @ie[olw; cbh*
For a U, y(h)-module M the weight space M, with weight u € hz/N is defined
by
M,={meM|Km=gMm (iek)}.

We call a Uyv(h)-module M a weight module if M = (P, M, and dim M, < oo
for any uebhz/N. Let M be a U;y(g)-module. If there exists me M,
satisfying U,n(g)m =M, Eim =0 (i € I), then M is called a highest weight
module with highest weight 4 and m is called its highest weight vector. There

exists a unique irreducible highest weight module L,x(4) with highest weight
A. Highest weight modules are weight modules. For I < I set

biz= G_)ielo\lzwi <h"
For Aeb;z/N we define a highest weight module Mj,n(4) by
Mi4n(3) = Uyn(9) / (Z Upn(9)(Ki— ;™) + > Upn(QEi+ Y Uq,N(g)F,)-
iely iely jel

Its highest weight vector is given by my;, v = 1. Since My 4 n(A) is a rank one
free module generated by my,,n, we have

Ch(MI,q,N(ﬂ.)) = Ch(M[ (/1))

We have a unique maximal proper submodule K74 n(A) of Mj4n(4), and hence
Lyn(A) = Mygn(2)/Kign(A)-

ProPOSITION 2.1. Let Icly and Aeb;,/N. Let Y be a subset of
UY(ny) such that Ympsgn < Kign(4) and U(@)p;(Y)myy = Ki(A). Then we
have Ugn(9)Ymyjqn = Kign(4) and ch(Lgn(4)) = ch(L(4)).

Proor. Let M be any highest weight U, x(g)-module with highest weight
A. Take a highest weight vector me M and set

Mo = U;’(n‘)m, 1‘_{0 = M0|q=l = C@C[qtl/N]Mo.
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Then we can show as in Lusztig [8] that M? is stable under the actions of E;,
F, (Ki—K')/(qi — ¢7') (i€ Ip) and that M° becomes a highest weight U(g)-
module with highest weight 1 via the operators

= = _ Ki - K1

ei=FE;, fi=Fi: h T (ie k).
9 —9q;

In particular we have
dim M,, = dim(M"), > dim L(4),.
Now we set
M= Mion(A)/Ugn(8) Ymragn, m=mr oy M.
By the above argument M s a highest weight U(g)-module with highest

weight A and the highest weight vector m. Moreover, since Ym = 0, we have
¢;(¥Y)M=0. Hence we have M’ ~ L(1). It follows that

dim Ly y(3), < dim M, = dim(M"),, = dim L(2), < dim Lyy(4),-

Therefore we have M ~ L, y(4) and ch(L,n(4)) =ch(L(4)). O

3. Parabolic subalgebras with commutative nilpotent radicals

In the rest of this paper we fix I <l satisfying nf # {0} and
[nf,nf] = {0} (see, for example, [14] for the list of (g,/)’s satisfying the
condition). We have I = I)\{ip} for some i € L.

We set [ =1;, m* =nf for simplicity.

PROPOSITION 3.1.  The element Yp € U,(m™) for B € A*\4; does not depend
on the choice of a reduced expression of wywy.

Proor. For i, jel, set

m;;
r(i.9) = G755,
where m;; denotes the order of s;5i € W. Lets; ---s;, be a reduced expression
of we W. Then s, ---s; is a reduced expression of w if and only if (j,,...,j,)
can be obtained from (i,...,i,) by successively exchanging a subsequence of
the form r(i,j) to r(j,i).

We first show that for any reduced expression s; ---s; of wywp the
sequence (i,...,i,) does not contain a subsequence of the form r(i,j) with
m; > 3. Assume that there exists a subsequence r(i,j) with m; =3 in
(i1,...,4). We have (ip,ips1,ip+2) = (i,j,i) for some p. Set y=s; -5 ,.
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Then we have
By =y(%),  Bpr1 = ysi(ey) = y(ai + ),  Bpyp = ysisi(a) = y(ay),

and hence B, + B,,, = B,+1- This contradicts the commutativity of m~. Thus
the sequence (i1, ...,i,) does not contain a subsequence of the form r(i,j) with
m;; = 3. Similarly we can show that there does not exist a subsequence of the
form r(i,j) with m; = 4,6.

Therefore it is sufficient to show that for two reduced expressions

Siy - - - 83, 8iSjSj, c - qu, Siy + 8ip SjSiSjy - qu, (S,‘Sj = sjs;)

of wywo the resulting Yp’s are the same. This follows from Ti(Fj) = Fj,
Tj(F:) = Fi, and T\T; = T;T;. O

We fix a reduced expression wywo =s;, ---5;, and set f, = sy “ee8iy (o)
Set

o= Zzzoai, o = Zzzodi,

iely iel

r
Uy(m)" = Y C(q)¥p, - Y, (m=0)
le--yl’m=1

LemMmA 3.2. We have

Uy(m™) = @ Uy(m™)™.

m=0
Um)"= @ C@¥™.- "= @ Upm),
Zp my=m ¥ Emay +Ql+

Here U,(m™)_, is the weight space with respect to the adjoint action of U,(b) on
Ug(m™).

PRrOOF. Set

vr=_O C(q)Y;gnl)"'Yé:n')’ "= @ Um),

pmp=m yemaio+Q;L
By B, € o, + Qf we have V{" < Uy(m™)" = V. cJoSince U,(m™) =P, Vi, we
obtain V" = Uy,(m™)" = V" and Uy(m~) =P,,_,U,(m)". O
By Lemma 3.2 we can write
G WY=L AP Y, (@ eC)

5152

for P1 > pa.
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ProPOSITION 3.3. The €(q)-algebra Uy(m™) is generated by the elements
{Y, |1 <p <r} satisfying the fundamental relations (3.1) for p1 > p,.

Proor. It is sufficient to show that any element of the form Yp --- Yp,
(1 <t <r) can be rewritten as a linear combination of the elements of the
form Yp, ---Yp, (1<s1<--- <5, <71) by a successive use of the relations
(3.1) for p1 > p». For 1 <k <r let Vi be the subalgebra of U,(m~) generated
by {¥s, |1 <p <k} By Lusztig [9] we have

Vo= @ CQ@Y™. 1™,
my,...,my

We shall show by the induction on k that any element of the form Yp, --- Yp,
(1 <t; <k) can be rewritten as a linear combination of the elements of the
form Yp ---Yp (1<$ < - <5, <k) by a successive use of the relations
(3.1) for k = p; > p>. It is trivial for k= 1. Assume that £k >2 and the
assertion is proved up to k — 1. We shall show the statement by induction on
n. It is obvious for n=0. Assume that » > 0 and the statement is already
proved up to n—1. Take j such that #y =-.- ==k, tj;1 #k. We use
induction on j. Assume that j=0. Then we have ¢, # k. By using the
inductive hypothesis on » we may assume that 1, < --- <t, <k. If ¢, <k,
then we have t; <k—1 for any i, and hence the statement holds by the
inductive hypothesis on k. If #, =k, then we can apply the inductive hy-
pothesis on n to Yp ---Yp , and hence the statement also holds. Assume
0 <j<n. Then we have

— v/
Yﬂrl e Ypr,. - Yﬂk Yﬂrj_H T Yﬁr,,
with ;1 # k. Applying (3.1) for (p1,p2) = (k,t+1) we obtain

K,
Yo Yp, = > ayinYs Y.

s1<s <k

Bethy, =ﬂ.rl +ﬂ_\-2

41

Since 51 < k by the condition B, + B, = B, + B,,, we can apply the inductive

hypothesis on j to Yék’l Yp Yp, Yp  ---Yp,, and the statement holds. Ifj=n,
J " . .

then we have Y ---Yp = Y7, and the statement is obvious. []

n

Since m~ is commutative, U(m™) is isomorphic to the symmetric algebra
S(m~). By identifying m~ with (m*)* via the Killing form of g, S(m~) is
naturally identified with the algebra €[m*] of polynomial functions on m™.
Hence we have an identification U(m~) = C[m*]. We denote by C[m*]"
(m e Zy,) the subspace of C[m™*] consisting of homogeneous polynomials with
degree m.
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Set
bz(I,+) ={Aebz|i(h) 20 (ieD}.
For Aebz(I,+) we denote the finite dimensional irreducible U(I)-module
(resp. U,(I)-module) with highest weight A by V(1) (resp. V,(4)). We can
decompose the finite dimensional I-module €[m*]™ into a direct sum of sub-
modules isomorphic to ¥ (A) for some A € hz(I,+). Moreover, it is known that

dim Hom((V'(4),C[m*]) =1 (Aebz(I,+)),
and hence we have

Cm*" ~ @ V(4)

Aer™

for finite subsets I'™ of bj(I,+) satisfying I NI™ = & for m# m' (see
Schmid [11], Takeuchi [12], Johnson [6] for the explicit description of I'™). On
the other hand, since U,(m~)™ is a finite dimensional U,(I)-module whose
character is the same as that of C[m*]™, we have

Uym™)" > @ V,(4).

Aerm

Let L be the algebraic group corresponding to I. It is known that the set
of L-orbits on m* is a finite totally ordered set with respect to the closure
relation. Hence we can label the orbits by

{L-orbits on m*} = {Cy, Cy,...,C}, {0}=CocCic --- « C,=m".
Set
S(Cp) = {f e Cm*]|f(C,) = 0}.
Since #(C,) is an l-submodule of C[m*], we have

#(Cp) = (191'"(6,,), F"(Cp) = F(Cp) NCmH]™ ~ l@m V(4)

for a subset I'y' of I'™. Moreover the following fact is known (see, for
example, [14]):
PrROPOSITION 34. Let p=0,...,t—1.

i) #™(Cp)=0 for m<p.

(i) #P*Y(C,) is an irreducible -module, ie. T I‘,’“ consists of a single
element v,.

(iii) #(Cp) is generated by $P*'(C,) as an ideal of C[m™].

PROPOSITION 3.5. For p=0,...,t—1 there exists a unique A, € b} such
that Ki(4,) = F(Cp)miy,. Moreover, we have Ay € by /2.
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Let v? be the highest weight vector of the I-module #7+!(C,)( =~ V(vp)).
Then we have
Ki(4p) = F(Cp)my, = U(m™)£PH(Cp)my ,
= U(m™)((ad U(INn7))(vF))my 4,
=U(m™)(U(INn"))oPmy,, = U™ )oPmy,,
and hence Kj(4,) is a highest weight module with highest weight 4, + v,.

We set
IHCp) = AG?"' Vo) € Ug(m™)™,  F4(Cp) = D F7(Cp) < Uy(m),

fz,'N(ép) = C(ql/N)Qd:(q)f;"(ép) < q,N(m_)m’
Ign(Cp) = @jZN(Cp) < Ugn(m™).

Here we identify Uy(m™)™ with @), _ - Vq(4).
ProposiTION 3.6. For p=0,...,t—1 we have
ch(Ly2(4p)) = ch(L(4y)), Kig2(4p) = Uya(m™)SF, g;l(ép)ml,lp,qﬂ-

Proor. We shall only give a sketch of the proof. We can prove a
quantum analogue of the determinant formula for the contravariant forms on
generalized Verma modules given by Jantzen [4]. It implies that K7 g n(4) =0
if and only if K;(4),=0. In particular, we have Kjg42(4,) 44y, 70 and
Ki142(4p)), 4v,4+0, =0 for any i€ ly. Let vmy, 42 (v € Uga(m™), ) be a nonzero
element of K42(4); ,,,- Then for i€l we have

((ad E;)(v))my 4, 42 = (Eiv — vE;)Kimy 3, 42
€ C(ql/z)E,-va’Ap,q,z [ Klyq,2(lp)).,+vp+a,- = {0}
Hence (ad E;)(v) = 0 for any i e I. It follows that v is a highest weight vector
of the U,s(I)-module V,2(v,). We may assume v e U,;’(m”) and ¢;(v) #0.
By Proposition 2.1 we conclude that ch(L,2(4,)) = ch(L(4,)) and Ky g2(4,) =
Ug2(9)vmy i, 42. Then we have
Kl,q,2(}~p) = Uq,Z(Q)UmI,}.,,,q,z

= Upa(m™)(Uga(DNU,2(n7)) Ug 2() U 2 (n+)omy g, .2

= Uga(m™)(Ug2(D N Uq,z(“—))”m!,lp,qz

= Uga(m™)((ad(Ug2() N Uy2(n7)) (0))my 1,42

= Upa(m™)SE5 (Co)my g q2. O
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THEOREM 3.7. We have
£4(Cp) = Uq(m_)f:“(ép) = fqp“(ép) Uy(m™).
Proor. By Proposition 3.6 we have

ch(Uy(m™)F7(Cp)) = ch(Upa(m™) #4531 (Cp)) = ch(#(C,)),

and hence .#,(C,) = Uy(m™)SP*1(C,). Let us show Uy(m™)SP(C,) =
J;’“((_,‘,,)Uq(m‘). Since 7T, is an anti-automorphism of the algebra U,(m™)
(see Lemma 1.1), it is sufficient to show that tT,, preserves J;H(C‘p).
Since U,(m~) is a multiplicity free U,(I)-module, we have only to show that
tTy,(V4(4)) is a Uy(T)-submodule isomorphic to V,(4) for any Ae (), I'". By
Lemma 1.1 we see easily that tT,,(V,(4)) is an irreducible U,(I)-module with
lowest weight w;(4). Hence we have 7T, (V,(1)) ~ V,(4). O
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