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ABSTRACT. Suppose X is a simply connected mod/? loop space such that the mod/?

cohomology H*(X) is finitely generated as an algebra. We show that if X is a Cn-

space in the sense of Williams then X is the total space of a C«-fibration over a finite

Cn-space. By using this result, we can reduce problems about Cn-spaces with finitely

generated cohomology to the case of finite Q-spaces. In particular, we give classi-

fication theorems for C2-spaces and Cp-spaces with finitely generated cohomology.

1. Introduction

Loop space plays an important role in homotopy theory of Lie groups,

and it has been investigated from several points of view (cf. [15], [19], [25],

[26]). It is convenient to consider the loop space at a prime by using com-

pletion theory due to Bousfield-Kan [3]. Let p be a prime. A loop space

which is completed at p is called a mod/? loop space. Throughout the paper,

homotopy equivalence means mod/? homotopy equivalence and cohomology is

mod/? cohomology unless otherwise specified.

Dwyer-Wilkerson [11] defined the /7-compact group and studied its pro-

perties. A loop space X is said to be a /^-compact group if the classifying

space BX is /?-completed and the mod/? cohomology H*(X) is finite dimen-

sional. Besides compact Lie groups, other useful examples of /7-compact groups

are known. In fact, the /7-cornpletion of an odd dimensional sphere S2n~ι is

a /7-compact group if n\(p — 1). In recent years, many theorems have been

proved about /?-comρact groups (cf. [11], [26]), and those theorems suggest

that /7-compact groups have similar properties to those of Lie groups.

In this paper, we consider loop spaces which need not be finite, but

whose mod/7 cohomology rings are finitely generated. Recently, Broto and

Crespo [4], [8] gave remarkable results for //-spaces with finitely generated

cohomology. It follows from their results that a mod/7 loop space with
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finitely generated mod p cohomology is the total space of a loop ίibration over

a /7-compact group.

The present paper is devoted to study the higher homotopy commutativity

of mod p loop spaces with finitely generated cohomology. Such a notion was

first introduced by Sugawara [36]. He used it to give a criterion of a homotopy

commutative loop space to be the loop space of an //-space. McGibbon [22]

proved that a connected finite C^-space in the sense of Sugawara has the

homotopy type of a torus, and Kawamoto-Lin [17] generalized his result to the

case of finitely generated cohomology.

Later Williams [38] defined another kind of higher homotopy commu-

tativity which is weaker than the one of Sugawara. If X is a loop space, then

by using the Moore loop structure, we can choose a multiplication on X which

is associative. C\ -space means a loop space, and C2-space is just a homotopy

commutative loop space. Let X be a C2-space, and Qj : / x X2 —> X be a map

satisfying that 62(0,#i,#2) = x\ xi and Qi{\,x\,xi) = xi x\ for x\,X2 e X.

By using the map β 2 , we can define a map Q3 : Sι x X3 —• X such that

Q3(t,x\,x2,X3) is a loop connecting {xσ(1) xσ ( 2 ) xσ(3)}σeΣ3

 f o r *i>*2,*3 e l ,

where 273 denotes the symmetric group on 3 letters. X is said to be a C3-space

if there exists a map Q3 : D2 x X3 —> X such that Q3\siχχ* — Qi- I n gen-

eral, a Cn -space is defined as a loop space together with a C«-form

{Qi'.KiX X'^> X}ι<i<n satisfying certain boundary conditions (see §2),

where Kt is homeomorphic to the (i — 1)-dimensional cell. If there exists a

system of maps {Qi : Kt x X1 —> X}i>x such that {Qΐ]\<i<n is a d-form for

n > 1, then X is said to be a C^-space. It is known that the loop space of

an //-space is a C^-space, and in particular, Eilenberg-MacLane spaces are

Coo-spaces. Similarly, a Cw-map is defined as a loop map preserving the

Cn-forms (see §2). A C«-fibration is a loop fibration consisting of C-spaces

and Crt-maps.

Our main result is stated as follows:

THEOREM A. Let p be an odd prime. If X is a simply connected Cn-space

such that the mod/? cohomology H*(X) is finitely generated as an algebra, then

there exists a Cn-fibration

K-+X -> F,

where F is a simply connected finite Cn-space and K is a finite product of

K(Z,2).

From Theorem A, we can reduce problems about Cn -spaces with finitely

generated cohomology to the case of finite C«-spaces. In the case of p = 2,

Slack has shown the following classification theorem about homotopy com-

mutative mod 2 //-spaces:
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THEOREM 1.1 ([34; Cor. 0.2]). If X is a simply connected homotopy

commutative mod 2 H-space such that the mod 2 cohomology H*(X) is finitely

generated as an algebra, then X is homotopy equivalent to a finite product of

K(Z,2).

Broto-Crespo [4] reproved Theorem 1.1 by using another method. On the

other hand, at odd primes, it is known that any connected mod/? //-space

admits an //-structure which is homotopy commutative by a result of Iriye-

Kono [14]. Furthermore, there are examples of mod p loop spaces which have

homotopy commutative loop structures.

Clark-Ewing [7] constructed many ^-compact groups. Let G a GL(l, Zp)

be a finite pseudo-reflection group contained in the list [7]. We see that G acts

on the mod/7 cohomology H*(BTι), where BTι denotes the classifying space of

the /-dimensional torus. Clark-Ewing proved that if the order \G\ is coprime

to /?, then there exists a space BX(G) such that

H*{BX{G)) s H*(BT')G s Z/p\yx,..., y,},

where deg yt = 2ί, for 1 < ί < I and the order \G\ = t\... t[. Moreover, Dwyer-

Miller-Wilkerson [10] has shown that the homotopy type of BX(G) is deter-

mined by the cohomology and the action of the mod/7 Steenrod algebra. If

we put X(G) = ΩBX(G), then by a spectral sequence argument, the mod/?

cohomology H*(X(G)) is finite dimensional, which implies that X{G) is a

/7-compact group. The sequence of numbers (ίi,...,f/) is called the type

of X{G).

McGibbon [21] studied the homotopy commutativity of compact Lie

groups, and Saumell [32] generalized his result to the cases of several /7-compact

groups. From their results, we have the following theorem:

THEOREM 1.2 ([21; Thm. 2], [32; Thm. 1.1]). Let p be an odd prime and G

be a pseudo-reflection group contained in the Clark-Ewing list. If the pair (G,p)

is contained in the following table, then the p-compact group X{G) is a Ci-space.

G

G

Gib

G9

Gu

GΊ7

<J20

G24

G30

P

>2t,
>3

17

19

41

19

11

19

X(G)

S2''-1 x xS 2 "- 1

BI(P)

2*7(17)

B5(l9)

2*i9(41)

2*π(19)
2*3(11) x S "
21,(19) x 21,1(19)

Types

(*,,...,*/)

(2,p + l)
(8,24)
(6,24)
(20,60)
(12,30)
(4,6,14)
(2,12,20,30)
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Here Bn{p) denotes the S2nJrl-bundle over S2n+2p~ι whose mod/? coho-

mology is given as H*(Bn(p)) ^Λ(σ,0>ι(σ)) with degσ = 2 « + l (cf. [24]).

Let F be one of the /^-compact groups X(G) given in Theorem 1.2. From

Theorem 1.2, we see that F is a C2-space with finitely generated cohomology.

If the integral cohomology i / 3 ( F ; Z) ^ Z, then we can define a map [pι] : F —>

tf(Z, 3) as [/? ' ]» = plu for / > 0, where u e H3(F; Z) and υ e H3(K(Z, 3); Z)

denote the generators. Let F(3;p1} be the homotopy fiber of the map [pι] :

F -> A;(Z,3). In the case of / = 0, we see that F<3; 1> = F<3> is the three-

connected cover of F. From a result of Williams [38; Thm. 21, 23], we see

that F<3;/?'> is a C2-space, and by a spectral sequence argument the coho-

mology H*(F(3;p1}) is not finite but finitely generated as an algebra for i > 0.

Now from Theorem A, we obtain a classification of C2-spaces with finitely

generated cohomology.

THEOREM B. Let p be an odd prime and X be a simply connected mod/7

loop space such that the mod/? cohomology H*(X) is finitely generated as an

algebra. Then X is a Cj-space if and only if there exists a system {Fj}γ<i<q

consisting of some of the finite Ci-spaces X(G) on the table in Theorem 1.2 such

that

X * Π*ί<3> x Π FiO'>Peι>
i=\ i=s+\ i=t+\

where 1 < et< e/+i for s+\ < i < t — 1.

The next theorem can be regarded as an odd prime version of Theorem 1.1

since C2-space is exactly a homotopy commutative loop space.

THEOREM C. Let p be an odd prime. If X is a simply connected Cp-space

such that the mod/? cohomology H*(X) is finitely generated as an algebra, then

X is homotopy equivalent to a finite product of K(Z,2).

We remark that Theorem C is extended to the case of connected Cp -spaces

(see Corollary 3.12).

Hemmi [13; Thm. 1.1] proved that if X is a simply connected finite quasi

C^-space, then X is contractible, where quasi C^-space is defined on the category

of higher homotopy associative i/-spaces. On the category of loop spaces, the

quasi Cp -space is exactly the Cp -space of Williams, and Theorem C can be

regarded as a generalization of his result in the case of finitely generated coho-

mology. Theorem C also generalizes results of Kawamoto and Lin [16], [17],

[18], in which the same type of problems were treated in the cases of the loop

spaces of //-spaces and Cp-spaces in the sense of Sugawara.

It is natural to ask the explicit higher homotopy commutativity of the
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/^-compact groups X(G) on the table in Theorem 1.2. Saumell [33] gave a

partial result for this problem. In §4, we determine the higher homotopy

commutativity of almost all /^-compact groups (see Theorems 4.2 and 4.5).

This paper is organized as follows: In § 2, we give a proof of Theorem A.

It is shown that the Dror Farjoun localization functor [9] preserves Cn -forms

(see Theorem 2.14), and by combining Theorem 2.14 with results of Broto and

Crespo [4], [8], we can complete a proof of Theorem A. §3 is devoted to the

proofs of Theorems B and C. By generalizing results of McGibbon [21] and

Saumell [32], we give a classification for finite C2-spaces (see Theorem 3.3).

Theorem B is proved by using Theorems A and 3.3. A result of Hemmi [13]

about the classification of finite C^-spaces is used to prove Theorem C. In §4,

we study the higher homotopy commutativity of ^-compact groups, by which

we give a necessary condition for a mod/? loop space with finitely generated

cohomology to be a Cp-\-space (see Corollary 4.9).

The author would like to thank Prof. Y. Hemmi, Prof. J. P. Lin and

Prof. M. Imaoka for their helpful suggestions and Prof. T. Matumoto for his

encouragement. We also appreciate the referee for many useful comments.

2. Proof of Theorem A

Dror Farjoun [9] introduced the localization functor with respect to a

space. In Theorem 2.14, we show that the localization functor preserves the

higher homotopy commutativity of mod/7 loop spaces. By combining

Theorem 2.14 with results of Broto and Crespo [4], [8], we can complete the

proof of Theorem A. First we recall the localization functor.

Let i be a space. A space X is called ^4-local if the base point

evaluation mape : Map(^4, X) —> X is a homotopy equivalence, or equivalently,

if Map* (.4, X) is contractible. Dror Farjoun constructed a localization functor

LA : £f*—> &* with respect to the space A, where Sf+ denotes the category of

pointed spaces. For any space X, the localization LA(X) is A -local, and there

exists a natural map φx : X—> LA(X). It is known that the map φx is

homotopically universal, that is, for an ^4-local space Z and a map ζ : X —> Z,

there exists a map ζ: LA (X) —• Z unique up to homotopy so that

ζφx ~ ζ. Furthermore, the natural map φx induces a homotopy equivalence

(2.1) (φxy : Map*(LA(X),Z) -> Map#(JT,Z)

for any ^4-local space Z.

The localization functor LA does not necessarily preserve a fibration.

Dror Farjoun has shown the following:

PROPOSITION 2.2 ([9; Thm. l.H.l, Cor. 3.D.3]). Let F,E and B be
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connected spaces and F —> E —> B be a fibratίon. If the base space B is A-local
or LA (F) ~ *, then the localization LA preserves the fibration.

Let Y be a space and Y® denote the /-fold smash product of Y for
/ > 1. In the proof of Theorem 2.14, we need the following:

PROPOSITION 2.3. Let A be a space and Z be a A-local space. If X is a
space and φx : X —• LA(X) denotes the natural map, then (φx)

1 : X1 —> LA(X)1

and {φx)^ : X^ —> LA{X)^ induce the following homotopy equivalences:

(2.4) ((φ

(2.5) ((Φχ)W)* : Mapφ(L^(Jf)W,Z) - Map,(JΓ»,Z)

/or / > 1.

To prove Proposition 2.3, we need the following lemma:

LEMMA 2.6. Let X and Y be spaces and λX: Y = LA{ΦX Λ ^ y ) L ^ I Λ Γ)

—> LA(LA(X) ΛLA(Y)). Then λXiγ is a homotopy equivalence and λx,γφXAY

- ΦLA(X)ALA(Y)(ΦX AΦY)-

PROOF. For a space W, we put L{W) = LA{W). From the definition of
λXiY, we have that λx,YφXAY c~ ΦL{X)AL{Y)(ΦX ΛφY).

Let a : X —• Map,, (Γ, L( JΓ Λ F)) be the adjoint map of ^ Λ y : I Λ F ^
L(JTΛy). From [9; 1.A.8 e.2], the mapping space Mapt(Y,L(XΛY))
is ^4-local. By the universality of φx, there exists a map a: L(Z) —>•
Map*(Y,L(XΛY)) with α ^ - α . If % ) y : L ( I ) Λ r ^ L ( l Λ r ) is the adjoint
map of a, then icx, γ(φx A lY) ^ ^ Λ y . By using the same arguments, we have
a map kx^ Y : L(X) ΛL(Y) —> L(ZΛ Y) with /c^ r ( ^ x Λ φY) ^ ^χΛy, and the
universality of ΦL{X)ΛL{Y) gives a map κx,Y : L(L(X) ΛL(Y)) —> L ( X Λ Γ) with

Since A:X? y/l̂ , r ^ Λ y - κx, YΦL(X)ΛL(Y)(ΦX Λ ^y) - ΦXΛY> w e h a v e t h a t

κχ,γλχ,γ^lL(XΛY) Similarly, we see that λXiYκXiYφL{x)AL{Y)(φx ΛφY) ~
ΦL(X)ΛL(Y)(ΦXAΦY)>

 a n d by u s i n β t h e universality of φx, φY and ΦL{X)AL{Y), we
have that λx^YκXY ^ IL(L(X)ΛL(Y)) This completes the proof. •

Now we prove Proposition 2.3 as follows:

PROOF OF PROPOSITION 2.3. First we show (2.4). By [9; 1.A.8 e.4],
there exists a homotopy equivalence yχi x : LA(Xi+x) —> LA{X1) X LA(X) with
y ,̂ xφXi+\ — ̂ x/ x ^x for / > 1. If we define a map yf : LA(X1) —> LA(X)' as
7/ = (y*,* x ^ ^ m ' - 2 ) ' * * (^'-2,^ x U.m)^ ' - ! ,^ , then 7i is a homotopy equiv-
alence and (φxY ^ ϊiΦx'' By (2.1), (^/)* is a homotopy equivalence, and so
((φxyY : Map,(Z^W 7,Z) -^.Map^JT^Z) is a homotopy equivalence, which
shows (2.4).
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Next we show (2.5). By using the induction on / > 1, we show that

there exists a homotopy equivalence d : LA(X^) —» LA{LA{xγ")) satisfying the

following homotopy commutative diagram:

(Φxf
Λ w

(2.7)

For i = 1, we can put Ci = ΦLA{X) : LA(X) —> LA(LA(X)). Now we assume

that there exists a homotopy equivalence ί/_i : LΛ{X^~^) -• LA(LA(X){i~ι))

such that the diagram (2.7) is homotopy commutative. If we define a map ζt :

+ LA(LA(X){ι)) by £• = κ

LΛχf-v,LΛχ)LA(ζi-\ ^ΦLA{x))λx^),x> where

* L (x) *s *n ^ e P r o ° f °f Lemma 2.6, then C, is a homotopy equivalence

and the diagram (2.7) is homotopy commutative.

By taking the mapping spaces for the diagram (2.7), we have a homotopy

commutative diagram

M^(LA(LA(X){ί)),Z) —ii—> Map,(L

Map, (L^ (ΛΓ)(/), Z) ^ ^ X Map, {X®, Z),

which shows (2.5). This completes the proof of Proposition 2.3. •

Now we recall the definition of the Crt-space in the sense of Williams [38].

Let n = (1,. . . ,«). A subsequence of n is denoted as α/ = (a\,..., a{) for / > 1

with the inclusion ia : α/ —> n, and α : 1 —> n denotes the composite /αyα, where

7α : 1 —> α/ is defined as yα(/) = α, for 1 < / < /. A (/,w)-partition of n is an

ordered pair (θLι,βm) with / + m = n of disjoint subsequences of n satisfying that

/α(α/) U iβ(βm) = n. If we consider n = (1,.. .,«) as a point of Rw, then the

symmetric group Σn on « letters acts on R" by permuting the coordinates. Let

Kn denote the convex hull of the orbit of n of this action. Then from the

definition, we see that Kn is homeomorphic to an (n — 1)-dimensional cell.

If we denote the boundary of Kn as Ln = dKn, then it is the union of

(n — 2)-dimensional cells which are corresponding to partitions (α/,/?w) of n.

Let ε(aLι,βm) : Kι x Km —> Ln denote the inclusion.

If X is a loop space, then by using the Moore loop structure, we can

assume that X is an associative //-space. A Cn-form on X in the sense of

Williams [38] is defined as a sequence of maps { g ^ x Γ - ) ! } ^ ^
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satisfying the following conditions:

(2.8) Qx = \x : Kx x X -> X,

where K\ x X = {1} x X is identified with X. For a partition {θLr,βs) of i,

(2.9) Qi{ε(ocnβs)(p,σ),xu...,*,-) = βr(/>,xα(i), ,*α(r)) Qs(σ,xβiιh .. . , ^ ( ί ) ) ,

where p e Kr and σ e Ks.

(2.10) β / ^ X i , . . . , ^ - ! , * , ^ ! , . . . , ^ - ) = βf_i (.Sy(τ), ΛΓi, . . . , X/_i, Xy+i, . . . , ΛΓ/),

where Sj : Kt —> Λ̂  _i denotes the degeneracy map for 1 < j < i (see [38; Lemma

4]). A mod/7 loop space X together with a d-form is said to be a Cn-space.

If X has a sequence of maps {Qi : Ki x X1 —• Ar}1 .̂ \ such that {β/}κ/<π is a

Crt-form on ^ for any n > 1, then X is called a C^ -space.

Let X and Γ be C«-spaces with the Cn-forms {Qi : Kt x X1 —> A r} 1 < 1 < / 1

and {^ : Â/ x Γ' —> Y}\<i^n, respectively. A loop map φ : X —> F is said to

be a Cn-map if there exists a sequence of maps {A : / x Ki x A^ —> F } κ / < w

satisfying the following conditions:

(2.11) ^ ί ' τ ' X l ' ' ^ - t ^ ( a . ( τ , X l , . . . , x , . ) ) if ί = i .

For a partition (otnβs) of i,

(2.12) Di(t,ε(o

where p e Kr and σ G AΓ5.

(2.13) /)/(*, τ, x i , . . . , Xj-ι, *, xj

for 1 < 7 < i.

The following theorem is the key in the proof of Theorem A:

THEOREM 2.14. Let A be a space. If X is a Cn-space, then the localization

LA{X) is a Cn-space and the natural map φx : X —• LA(X) is a Cn-map.

LEMMA 2.15. Let A and B be spaces and φ : A —> B be a homotopy

equivalence. If (K, L) denotes a relative CW-complex, then the following

statements hold:

(1) If there are maps f : K —> B and g : L —• A with φg = f\L, then there

exists a map h : K —> A such that h\L = g and φh ~ / r e l L .

(2) If h, k : K —> A are maps satisfying that h\L = k\L and φh ~ φkroiL,

then h ^ kre\L.
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Now we prove Theorem 2.14 as follows:

PROOF OF THEOREM 2.14. Since X is a mod/? loop space, there exists a

space Z such that X = ΩZ. By a result of Dror Farjoun [9; Thm. 3.A.1], there

exists a homotopy equivalence ζ : LA (X) —> ΩLΣA (Z) so that ζφx ~ Ω(φz) :

X —> ΩLΣA(Z). Then it is sufficient to show that Γ = ΩLΣA(Z) is a Cw-space

so that ι/f = Ω(φz) : X -+ Y is a Cw-map. By using the following homotopy

commutative diagram:

" , Y) ^ ^ Mapt(Λr', Y)

(CΎ I -

', Y) ^ ^ Map.(ΛΓ', Y)

4,
Map.(Lil(Λr)/,Ly4(Λr))

we have a homotopy equivalence

(2.16) (φ'Y M a p ^ r ,

since ( ( ^ ) / ) * : M a p + ( L ^ ( ^ ) / , ^ ( J r ) ) - ^ M a p , ( X i - , ^ ( Z ) ) is a homotopy

equivalence by (2.4). By using (2.5) and the same arguments as above, we

have that

(2.17) (ψ{i)Y : Map,(r ( / ) , Y)

is a homotopy equivalence for / > 1.

Since A" is a Cn-space, there exists a system of maps {Qi : Ki x X' —•

^}κ/<« satisfying the conditions (2.8)-(2.10). By using induction on /, we

shall construct Cn-forms {Rt : Kt x Y* -> F } ^ ^ ^ and {A : I x Kt x X1 ->

^}i</<« satisfying the conditions (2.8)-(2.10) and (2.11)—(2.13), which implies

that Y is a d-space and ^ : X —> F is a C«-map. In the case of / = 1, we can

define maps R\ : K\ x Y -+ Y and Z)i . I x K\ x X —> F as ^ 1 ( 1 , 7 ) = ^ and

Now we assume that there exist maps ify : Kj x YJ ^ Y and Dj : I x Kj x

X-*-+ Y for I < y < / - 1 satisfying the conditions (2.8)-(2.10) and (2.11)—

(2.13). Let Si = I x (Lt x Xi U Kt x X®) U {1} x Kt x X\ If we define a map

E:Si^ Y as

E(t, ε(otnβs)(p, σ),xu...,Xi)= Dr(t,p, x α ( 1 ) , . . . , xα{r)) Z)5(/, σ, xβ{x),..., ^ ( j ) ) ,

JE(ί, T, Xi, . . . , Xy_i, *, Xy+i, . . . , ΛΓ/) = A _ l (jy(τ), X], . . . , Xj-\, Xj+\, . . . , */)
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and
E(l,τ,xu...,xϊ)= ψ{Qi{τ, x\,..., x, )),

then we have the extension E : / x Kι x Xi —> Y with £ Ί 5 — E by using the

homotopy extension property. Let F : Kx x X1 —> y be a map defined as

F(τ, ΛΓI,..., JC|) = 2£(0, τ, JCI , . . . , x, ) and γ : Ki —> Msφ^(X\ y) denote the adjoint

map of /*". If we set a map λ: Lt -^ M a p ^ y , y) as

λ(ε(otr,βs)(p, σ),yu..., y() = ΛΓ(/>, j α ( 1 ) , . . . , j α ( r ) ) Λ,(σ, ^ ( 1 ) , . . . , yβ{s)),

then we see that (ψι)*λ = γ\L. By Lemma 2.15 and (2.16), there exists a map

θ\Ki-> Map#(yf", r ) such that 0|L/ = A and (φ^θ - yrelL/.

To construct a map Λf : Ki x F z —> F satisfying the conditions (2.8)-

(2.10), we show that the induced map

(2.18) (ψMγ : Map.(rM, Y)f

is a homotopy equivalence, where Y^ denotes the /-fold fat wedge of Y defined

as

Y[ίl - {0>i, J , ) e ^z> I Jy = * for some 1 < j < i},

and / : yW -^ F is a map defined as f(yχ,..., Jz ) = ( (ji y2) ) * J/

Since Y is a mod^ loop space, if we define a map vi : M a p ^ F ^ , Y)c

r W , ^ and v2 : Map.pfM, y) c -^ Map,(JrM, y ) ( ^ W ) y as vi(^) =

f)AY\ί[ and v2(Λ) = μY{h x ( ^ ' ' ' ) * / ) ^ ^ M , then the following diagram is

homotopy commutative:

Map, (yW, y) c ^ X Map, (Z«, Y)

Map,(yw.yjy. - Ά Map # ( j rw,y) ( ^ 1 ) y ,

where c denote the constant maps and the vertical arrows are homotopy

equivalences. Hence it is sufficient to show that the top horizontal arrow

is a homotopy equivalence. There is the following homotopy commutative

diagram of fibrations:

(PYY I (PxY
•X-

Map.pΓ ' , Y)c

('!-)* I ('A-)*

, (χ[*\ Y)
*\ 5 /c '
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where C{ = {g : Y® -> Y \ (ργ)*g ^ c} and C2 = {h : X® -> F | (^)*A ^ c}.

By using the homotopy exact sequences for the fibrations and the five lemma,

the bottom horizontal arrow is a homotopy equivalence, and so we have (2.18).

If we define a map ω : Kt —> M a p ^ F ^ , F)y as

j j J>, ) = Λ, - i ( s, (τ), ^ , . . . , yj_{, yj+u . . . , yt)

for 1 < j < i, then we see that (^w)*(iy)*0 - (^[lΊ)*ωrelLI . By Lemma 2.15

and (2.18), we have that (iγ)*θ ^ ωrelL/, and so there exists a map

ξ:IxKi^ Map+(rW, y) 7 such that

, , x ί (ir)*»W if (ί, τ) e {0} x Kt U / x I,,
ς i ' ; \ω(τ) if {t,τ) e {\} x Kt.

Let ϊ; = / x ( L / x Γ U ί χyM)U{O}xί x Γ . For a map G: 7 W Γ

defined as G(/,τ, yu . . . , j z )

if (ί,τ,^ 1 , . . . , Λ )6/xL I -x r U { 0 } x ^ x y',

if ( ί ,τ, Λ Λ ) e / x ί x rM,

we have the extension G : I x Kt x Yι —> F with G|Γ = G by using the

homotopy extension property. If we define a map i?, : Kt x Yιf —• Γ as

Λ, (τ, ^ ! , . . . , yt) — G(l, τ, >>! ,...,>>;), then Λ, satisfies the conditions

(2.8)-(2.10). Since ^ ( 1 ^ x ψ*) ~ FrelLj x X\ there exists a map

7/ \IxKixX1 -> Γ satisfying that

, ) , . . , ^ - ) ) if ί = 0,

l ^ ( β ( , x i , . . . , x , )) if t= 1

and

//(ί, ε(oιr,βs)(p, σ),*i, . . . , x, ) = DΓ(ί,/?, xα (i),..., xα(r)) £),(/, σ , x β { ι ) , . . . , ^ ( j ) ) .

If we set a map M : I x Ki x X^ —> F as

Af (ί, τ, x i , . . . , X/ -i, *, χ y + 1 , . . . , Xj) = Di-ι (sj(τ),xι,..., Xj-\, xj+\,..., x, )

for l < 7 < / 5 then ^ | ( a / x A i U / x L / ) X j r w = Af|(a/xAiU/xL/)xΛ,M. By [38; Remark

10], there exists a map D, : I x Ki x X1 —> F such that A^/x^u/x^Ox^' =

^^/XAΓ/U/XL OXΛ-' a n ( ^ Di\IxKjXX[ί\ = M. Hence we see that the map Z>, satisfies

the conditions (2.11)—(2.13), which implies that Y is a C/-space and ψ : X -+ Y

is a Q-map. This completes the proof of Theorem 2.14. •

Now we give a proof of Theorem A as follows:

PROOF OF THEOREM A. Let X be a simply connected C^-space with finitely

generated cohomology. From Theorem 2.14, the localization LBZ/P(X) is a



328 Yusuke KAWAMOTO

Cn-space and the natural map φx : X —> LBZ/p(X) is a Cw-map. By using

results of Broto and Crespo [4], [8], there exists an //-fibration

(2.19) K-+X-+F,

where F is a simply connected mod/? finite i/-space and K = K(Z,2)m for

some ra > 0. Since the mod/? cohomology H*(F) is finite dimensional, by

Miller [23; Thm. A] F is BZ/p-local. By Proposition 2.2 the localization

functor LBZ/p preserves the iZ-fibration (2.19), and so we have the following

homotopy commutative diagram of fibrations:

K > K > *

K

LBZ/P{K) • LBZ/p(X) —^—> LBZ/p(F),

where K denotes the homotopy fiber of φx : X —> LBZ/p{X). It is shown in [2;

Remark 9.5] that LBZ/p(K) ~ *, which implies that LBZ/p(X) ^ F and K ~ K.

Since φx : X -^ LBZ/p{X) is a Crt-map, by Williams [38; Thm. 21], the homotopy

fiber K is a C^-space and the fiber inclusion K —• ^ is a C-map. This com-

pletes the proof of Theorem A. •

3. Proofs of Theorems B and C

Let X be a simply connected Crt-space with finitely generated cohomology.

Then from Theorem A, X is the total space of a Cn-fibration over a simply

connected finite Cn -space, and so we can reduce the problems to the cases of

finite Cί-spaces.

If F is a simply connected finite C2-space, then by a result of Browder

[6; Thm. 8.6] the mod/? cohomology H*(F) is an exterior algebra generated by

the odd dimensional elements. By a spectral sequence argument H*(BF) is a

polynomial algebra, where BF denotes the classifying space of F. We can put

where degX| = 2ί/ for 1 < / < /. From results of Adams-Wilkerson [1] and

Dwyer-Miller-Wilkerson [10], there exists a pseudo-reflection group G(F) a

GL(l,Zp) such that H*(BF) ^ H*(BTι)G{F\ where BTι denotes the classifying

space of the /-dimensional torus. This implies that the type (t\,..., //) of F is

a union of irreducible types on the Clark-Ewing list [7].
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The topological realizations of the invariant rings H*(BTι)G for pseudo-

reflection groups G c GL(l,Zp) have been investigated by Clark-Ewing [7] and

many others (cf. [26; §3]). Notbohm [27] studied the topological realization of

a family of pseudo-reflection groups. Let p be an odd prime, q > 1, r > 1 and

/ > 1 such that q\(p — 1) and r\q. A subgroup G(q,r,l) a GL{l,Zp) is defined

as the semidirect product G{q,r,l) = A(q,r,l) x Σι, where

A ( q , r , l ) = { ( z u . . . , z ι ) e ( Z p ) ι \ z ? = 1 f o r \ < i < l a n d (z{ .. . z / ) r = 1 } ,

and Σι denotes the symmetric group on / letters. Here an element of A(q, r, /)

is considered as a diagonal matrix and Σι acts on (Zp)
1 by the permutation

of the coordinates. It is known that G(q,r,l) is generated by the pseudo-

reflections (cf. [27; Remark 1.3]), and G(q,r,l) acts on the mod/7 cohomology

H*(BTι). From [27; Prop. 1.4], the invariant ring is given as

where yt — σ/(.sf,..., sf) for 1 < / < / — 1 and e = (s\... s/)r. We see that

the invariant ring has the type of no. 2a on the Clark-Ewing list [7]. The

following result is due to Notbohm:

THEOREM 3.1 ([27; Thm. 1.5, 1.6]). Let p be an odd prime. Ifq>\,r>\

and / > 1 such that q\(p — 1) and r\q, then the following statements hold:

(1) There exists a space BX(q,r,l) such that the mod/? cohomology

H*(BX(q,r,l))^Z/p[yu...,yι_ue).

(2) If Y is a space such that the mod/7 cohomology H*(Y) ^

H*(BX(q,r,l)) as algebras over the mod/7 Steenrod algebra, then Y~

BX{q,r,l).

By generalizing results of Saumell [32; Prop. 3.3, 4.1], we have the following:

LEMMA 3.2. Let p be an odd prime. If q > I, r > 1 and I > 1 such that

q\(p — 1) and r\q, then the p-compact group X(q,r,l) = ΩBX(q,r,l) is not a

C2~space.

PROOF. If p > I or r = q, then we have the required result by results of

Saumell [32; Prop. 3.3, 4.1], and so we assume that p < I and r < q. Let

s = (p - \)/q. Then s < I since s\(p - 1) and p < I. If D3 denotes the 3-fold

decomposable module of H*(BX(q,r,l)) defined as D3 = H*(BX(q,r,l)) >

H*(BX(q,r,l)) - H*(BX(q,r,l)), then D3 is closed under the action of the

mod/7 Steenrod algebra, and by [32; Lemma 3.2], the action of &ι on

H*(BX(q,r,l))/D3 is given as
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jqyfis+i-j if l < i < I - s ,

if l - s + l < ι < / - 1,

= {-\)s+xsryse,

where j ^ = yt for 1 < / < / — 1 and yι — eqlr. By applying a result of

McGibbon [21; Lemma 3.2] (see also Lemma 4.6 in §4) to e e H*(BX(q,r,l))

and &>ι, we see that X(q,r,l) = ΩBX(q,r,l) is not a C2-space. This completes

the proof. •

THEOREM 3.3. If F is a simply connected finite C2-space, then there exists

a system {Fi}ι<i<k consisting of some of the p-compact groups X(G) on the

following table such that the classifying space BF ~ J\f=χ BFi-

G

G

Gib

G9

G\4

Gxi

G20

G24

G30

P

>2t,

>3

17

19

41

19

11

19

X{G)

S 2 ' 1 " 1 x ••• xS2t -χ

Bχ(p)
BΊ(Π)
Bs(l9)
5,9(41)
Bu(l9)
Ai(ll) xS"
5i(19)x5,,(19)

Types

(t\, -..,//)
( 2 ) j P + l )
(8,24)

(6,24)

(20,60)

(12,30)

(4,6,14)

(2,12,20,30)

PROOF. By results of Dwyer-Wilkerson [12] and Notbohm [28], there exists

a decomposition BF ~ Ylf=\ BFi with simple /?-compact groups Fj for 1 < / < k

(cf. [11], [26]). From a result of Dwyer-Miller-Wilkerson [10], H*(BFi) ^

H*(BT)G for some pseudo-reflection group G since the cohomology H*(BFi) is

a polynomial algebra. This implies that the type of Fj is obtained from the

Clark-Ewing list [7] for \ <i <k. Since F ^ Y[f=\ Fi as /^-compact groups, we

can show that Fi is a C2-space for 1 < i < k. Hence it is sufficient to consider

the homotopy commutativity of /7-compact groups on the Clark-Ewing list.

Recently, Notbohm [30] determined the condition for which a type on the

Clark-Ewing list is realizable as the cohomology of a space. From results of

Notbohm [29; Thm. 1.4], [30; Thm. 1.4, 1.5], McGibbon [21; Thm. 2], Saumell

[32; Thm. 1.1] and Lemma 3.2, we see that each Ft must be contained in the

table given in the theorem for 1 < i < k. This completes the proof of Theorem

3.3. •
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Now we proceed to the proof of Theorem B. Let F be a finite C2-space.
Then by Theorem 3.3, there exists a homotopy equivalence BF ~ Πf=ι BFiy

where F, is one of the /^-compact groups X(G) on the table of Theorem 3.3 for
1 <ί<k. By permuting Fj if necessary, we can assume that H3(Fi\Z^p)) ^
Z(p) for 1 < / < r and Ft is 3-connected for r + 1 < i <k. Thus the /7-localized
cohomology of F is given as

where κ, G /^(Ή; Z(/?)) is the generator for I < i < r. Since H3(K(Z, 3); Z(/?))
^ Z(/>), we put the /?-localized cohomology of ϋΓ(Z, 3)m as

where ι?; denotes the generator of H3(K(Z,3);Z(p)) for I <j <m.
Let φ:F-^ K(Z, 3)m be a map and ^* : H3(K{Z, 3)m; Z ( / 0)

be the induced homomorphism. Then it is easy to see that there exist systems
of generators {ϋj e #3(tf(Z,3)w;Z ( / 7 ))} l 5 Ξ y<m and fae H3(F;Z(p))}x^r

satisfying that

ί
ύj if 1 <j<su

peJύj if Ji + 1 <j<s2,

0 if ^2 4- 1 < j < m,
w h e r e ^ i < si < r a n d 1 < e}< eJ+\ f o r s\ + l < j < S 2 — \.

In the proof of Theorem B, we need the following fact:
PROPOSITION 3.5. If F is a finite C2-space and φ : F —> K(Z, 3)m is a map,

then there exist systems of generators {vj e H?>(K(Z, 3)m; Z(P))}\<j<m and
{ύi £ H3(F]Z(p))}x<i<r satisfying (3.4), and moreover, there is a homotopy
equivalence ω : F —> F such that ω*(w, ) = W/ /or 1 < / < r on the p-localίzed
cohomology H3 (F; Z^).

By permuting F, for 1 < i < r, we assume that Ft = B\ (p) x /} for
\<i<q and F, = S3 x /} for ^ + 1 < / < r. Let p* : H3(F; Z{p)) -> i/3(F)
denote the mod/7 reduction map and σx•= /?*(«,•) G H3(F) be the modj!?
reduction of wz for I < i < r. Since the mod/? cohomology of B\(p) is

with degσ = 3, we can assume that &x{σi) φ 0 in H2p+ι(F) for 1 < / < q and
^1(C Γ /) = 0 for q+ 1 < ι <r.

The following lemma is used to prove Proposition 3.5:

LEMMA 3.6. Let F and φ: F -»Jf(Z, 3)m be as in Proposition 3.5. Then
we can choose systems of generators {VJ e H3(K(Z13)m; Z( /,))} 1 < ; < m
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{w/ e/ί 3 (F;Z( / ,))} 1 < i < r such that the following conditions hold:

(1)

φ*(ij) =
1

l o Uq~tλ+J

if
if
if

1

h

<j
+ 1
+ 1

<
<
<

j <

j< m,

where t\ < q, t2 < r - q + tu 0 < fj < fj+ι for 1 < j < t{ - 1 and 0 < gj < gj+\

for tx + 1 < j < t2- 1.

(2) If we put di=p*(ui)eH3(F) for 1 < j < r, ίΛe« ^(σ^φO in

H2P+X(F) for \<ί<q and &>ι(άi) = 0 for q + 1 < i < r.

PROOF. By using induction on r > 1 and m > 1, we show the lemma. If

φ* = 0, then we can put that ϋj = Vj for 1 < j < m and w, = ut for I < i < r,

and the result follows. Thus we assume that φ* φ 0.

In the case of r — 1, we can set φ*(vj) = pajCjU, where α; > 0 and (c7, p) = 1

for 1 < j < m. By permuting Vj, we can assume that a\ < aj for 2 < j <m.

I f w e p u t t h a t e = a \ , v \ = v \ , ϋj = t;7 - p a j ~ e ( c j / c \ ) v \ f o r 2 < j < m a n d

ύ = c\u, then the result follows.

In the case of m = 1, we can set

where a^b\ > 0 and (Q,/?) = 1, (d/,/?) = 1 for 1 < / < r. By permuting w,, we

can assume that a\ < at for 2 < / < q and ^ + i < bt for q + 2 < i < r. If «i <

bq+\, then we put / = a\ and choose generators ύ\ e H3(F;Z^) as ύ\ =

Σi=\ PaiJciui + Σί=^+i pbi~^diUi and ώ/ = wz for 2 <i <r. In this case, we

see that »λ(σλ) = 0»ι(p*(ύ\)) = Σϊ=i Pai~fCi&x(σi) φ 0, and the result follows.

If a\ > bq+u then we put g = bq+u uq+\ = Σ ί i Pai~9CiUi + Σ\=q+\ Pbi~gdiUi and

ύi = Ui for l < / < ^ , q+2<i<r. In this case, 0>ι(σq+\) = Σϊ=q+ιPbi~β{1i0'l(σi)

= 0 since ai — g>a\—g>0 for 1 < / < #, and so we have the required

conclusion.

Now we assume that the result holds if r and m are replaced by r — 1 and

m — 1. In the case of r,m > 1, the induced homomorphism φ* : H3(K(Z,3)m;

Z{p)) ^ H3(F;Z{p)) is give as

q

i=\ i=q+\

for 1 < j <m, where a^^b^j > 0 and (cij,p) = 1, (dij,p) = 1 for 1 < / < r and

1 < j < m. By using the similar arguments to the cases of r = 1 and m = 1,

there exist systems of generators {vj e i / 3 (X(Z,3) m ; Z(p))}γ<7 < w and
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{ΰi e H3(F;Z(p))}ι<i<r satisfying (2) and either of the following conditions:

ι=2 i=q+\

for 2 < j < m or

φ*(v\) = pgιaq+u

q r

Φ^ϋj) = Σ^'Wi + Σ A*J"ί
/ = 1 ι=^+2

for 2<j<m, where 0 < fx < a^h bUh 0 < gx < aijΊ bid and (c/j, /?) =

(dij,p) = l for l < / < r and 2<j<m. From the inductive hypothesis,

we can choose systems of generators {6̂  e H3(K(Z,3)m;Z(p))}ι<J<m and

{wz G i/ 3(i 7;Z( / ?))} 1< /< r satisfying the required conditions. Π

PROOF OF PROPOSITION 3.5. Let {vj e H3(K(Z,3)m;Z{p))}{<j<m and

{w/G i/ 3(i 7;Z( / 7))} 1< /< r be the systems of generators of Lemma 3.6. We

construct maps fi\B\(p)-+F and gt : S3 —> F such that /.*(«,•) = «,• for

\ <ί < q and <7*(M/) = w, for ^ + 1 < / < r.

By the universal coefficient theorem, we have that π3(T) ^ H^(F]Z^) ^

Z(/7){wi,... ,wr}, and so there exists a map gi : S3-+F such that g*(ύi) = u

in the /7-localized cohomology for 1 < / < r. If σ e H3(S3) denotes the mod/?

reduction of we H3(S3;Z^), then we have that g*{dj) = σ for 1 < / < r.

From the mod/? cohomology H*(B\(p)), the cell structure of 2?i(/>) is

given as

where α e π2p(S3) ^ Z//? is the generator and β : S2p+3 -+ S3 Uae
2p+ι denotes

some attaching map. In the case of I < i < q, &x(σΐ) φ 0 in H2p+ι(F) by

Lemma 3.6. If we consider a cofibration

then giOL ^ * since 0>x(pϊ) φ 0, and so there exists a map A/ : 5 3 Uα^ 2 / 7 + 1 —»• F

such that A/7 ^ gt. By Theorem 3.3, [24; Thm. 3.2] and [37; Thm. 3], we see

that π2P+i{F) = 0. If we consider the following cofibration:

then hίβ ̂  *, and so there exists a map ft : B\{p) -+ F such that ffi ^ hi for

1 < / < q.
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If we put F = ΓLLi Ft x Π t r + i Fi> w h e r e Fi = B\(p) x Fi for \ <i<q and

Ft = S 3 x /)• for q + 1 < i < r, then F = Bλ(p)q x (S 3) r~* x f . Let ε : F -> F

denote the inclusion map. Since F is a loop space, by using the maps / :

B\ if) -^ F for 1 < i < q, gx• : S3 —> T7 for q + 1 < / < r constructed above and

ε : F ^ F, we can construct a map ω : F -+ F which induces an isomorphism

on the mod/? cohomology.

By permuting the generators obtained in Lemma 3.6, we have systems of

generators {ute H\F',Z{p))}^^r and {ϋj e H3(K(Z,3)m;Z(p))}lsJ^m sat-
isfying the required conditions. This completes the proof. •

Now we can prove Theorem B as follows:

PROOF OF THEOREM B. If X is a simply connected C2-space with finitely

generated mod/? cohomology, then by Theorem A, there exists a C2-fibration

(3.7) K->X-*F,

where F is a simply connected finite C2-space and K = K(Z,2)m for some

m > 0. By extending the fibration (3.7), we have an iZ-fibration

and we may assume that the /7-localized cohomology of K(Z, 3)m and F are

given as

and

H3(F; Z(p)) = Z(p){u\,..., wr},

where υj e H3(K(Z, 3); Z{p)) for \<j<m and w, e Z / 3 ^ ; Z ( / ? )) for \<i<r

denote the generators. By Proposition 3.5, we can choose systems of gen-

erators {vj E 7/ 3 (^(Z,3) m ;Z ( / 7 ) )} 1 < y < m and {ύi e H3(F Z{p))}^^r such that

the induced homomorphism φ* : i/3(A:(Z,3)m;Z ( /,)) -> H3(F;Z{p)) is given as

if 1 <j <s\,

if Ji -hi <j<si,
if s2 + 1 < j < m,

where 1 < e} < eJ+\ for s\ + 1 < j < s2 — 1. Furthermore, there exists a

homotopy equivalence ω : F -+ F satisfying that ω*(«, ) = w, for 1 < / < r. If

C : A:(Z, 3) m -> A:(Z, 3) m is a map defined as ζ*(vj) = vj for 1 < j < m, then ζ is

a homotopy equivalence, and there exists the following homotopy commutative

diagram of fibrations:
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(3.8)

X • F —^ K(Z,3)m,

where

k

and φ :F -• K(Z, 3) m is a map defined as

/ if 1 <j<su

Φ*(Vj) — ^ peJUj Ίϊ S\ + \ < j < S2,

0 if s2 + l < j < m .

By using the homotopy exact sequences for the fibrations (3.8) and the five

lemma, we see that κ\ Y —> X is also a homotopy equivalence. This completes

the proof of Theorem B. •

REMARK 3.9. In the proof of Theorem B, if X is a Crt-space, then F is a

finite Cw-sρace by Theorem A. Since BF ~ Y[f=ι BFiy by using the next lemma,

we have that Ft is a Cw-space for 1 <i<k.

LEMMA 3.10. Let X, Y and Z be loop spaces. If Z is a Cn-space and

Z ~ X x Y as loop spaces, then X and Y are Cn-spaces.

PROOF. Let iχ : X —> Z be the inclusion map and px : Z —• X

be the projection map. Since Z is a Cn-space, there exists a Crt-form

{Qi : Kt-x Zι'^ Z}ι<i<n satisfying the conditions (2.8)-(2.10). If we define

a map Qf : Kt x X1 -^ X as Qf = ρxQi(\Ki x (ix)') for 1 < i < n, then the

system {Qf : Jζ x Xi -> ̂ }i</< r t satisfies the conditions (2.8)-(2.10), which

implies that I is a Cw-space. By using similar arguments, we see that Y

is a Cn-space. This completes the proof. •

Next we proceed to the proof of Theorem C. By using Theorem A, we

can reduce the problem to the case of finite C^-spaces.

Hemmi [13] introduced the concept of the quasi C«-space. Let X be an

^-space in the sense of Stasheίf [35] and Pi{X) denote the z-th protective space

of X for 1 < i < n. From the construction of Pi(X), we have the inclusion map

ii:Pi(X)->Pi+ι(X) for I < z < « - 1 and the projection map ρi\Pi{X)-^{ΣX){ί)

for 1 < z < n. Let Ji{ΣX) denote the z-th James reduced product space of ΣX

and 7Γ| : Ji(ΣX) —>> (ΣX)^ be the projection map for i > 1. A quasi Crt-form

on X is a system of maps {φt : Ji(ΣX) —> Pi(X)}ι<i<n satisfying the following
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conditions:

φι = \ΣX : ΣX -> ΣX,

for 2<i<n,

for ! < / < « ,

where the action of the symmetric group 27, on {ΣX)^ is given as the per-

mutation of the coordinates, and the summation on the right hand side is

defined by using a co-/f-structure on (ΣXγ\ An ^4w-space X together with a

quasi Crt-form is said to be a quasi Crt-space. Hemmi has shown the following

result:

THEOREM 3.11 ([13; Thm. 1.1]). Let p be an odd prime. If X is a simply

connected finite quasi Cp-space, then X is contractible.

By using the above theorem, we can prove Theorem C as follows:

PROOF OF THEOREM C. Let X be a simply connected C^-space with finitely

generated mod/? cohomology. By Theorem B and Remark 3.9, there exists a

homotopy equivalence

z " = l i=s+\ i=t+\

where Ft is a simply connected finite C^-space for \ <ί < q. On the category

of loop spaces, the quasi C^-space is exactly the Cp-space in the sense of

Williams by Hemmi [13; Thm. 2.2]. Then by Theorem 3.11, we see that

Fi ~ * for \ < i < q, and so X ~ K(Z,2)r. This completes the proof of

Theorem C. •

In the case of connected C^-spaces, we have the following:

COROLLARY 3.12. Let p be an odd prime. If X is a connected Cp-space

such that the mod/? cohomology H*(X) is finitely generated as an algebra, then

X is homotopy equivalent to a finite product of K(Z,, I), K(TL,ΐ) and K(Z/p\ 1)

for i > 1.

To prove Corollary 3.12, we need the following lemma:

LEMMA 3.13. If X is a connected Cn-space, then the universal cover X is a

Cn-space and the covering projection map ω : X —> X is a Cn-map.

PROOF. We give an outline of the proof. Let μ : X x X —> X denote the

associative //-structure which makes X a Cw-space. By [25; Thm. Π.4.2, 4.3],
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there exists an associative //-structure μ: X x X —> X on X such that ωμ =

μ(ω x ω).

Since J is a CΉ-space, there exists a CM-form {Q, : Kt x Γ ^ J Γ } ^ ^

satisfying the conditions (2.8)-(2.10). By the covering lifting property (cf.

[25; Lemma II. 1.7]), there exists a map Qi\KixXi-+X such that ωQ{,=

Qi(\κ, x coι) for 1 < / < n. By using the uniqueness of the lifting, we see that

the system {Qt,: Ktx X1:^ X}\<i<n satisfies the conditions (2.8)-(2.10), and

thus I is a CΛ-space. This completes the proof. •

The proof of Corollary 3.12 is given as follows:

PROOF OF COROLLARY 3.12. If X denotes the universal cover of X, then

there exists an //-fibration

(3.14) X-*X^>K(m(X),l),

where K(m(X), 1) is a finite product of K(Z, 1) and K(Z/p\ 1) for i > 1. By

Lemma 3.13, X is a simply connected C^-space, and by using a spectral

sequence argument, we see that H*(X) is finitely generated as an algebra. By

applying Theorem C to X, we have that X ~ K(Z,2)r for some r > 0. By a

result of Browder [5], we can use a spectral sequence for the //-fibration

(3.14). Then the ^2-term is given as

EΪ*^H*(K{πx(X),\))® H*(X),

and by the DHA lemma [15; p. 14], the spectral sequence collapses, and so we

have that

H*(X) * H*(K(m(X), 1)) ® H*(X).

Since X - K(Z,2)\ there exists a map ζ : X -> K(πx(X), 1) x K{Z,2)r which

induces an isomorphism on the mod/? cohomology, which implies the required

conclusion. This completes the proof of Corollary 3.12. •

4. Higher homotopy commutativity of /?-compact groups

In §3, we proved the classification theorems for C2-spaces and C^-spaces

with finitely generated cohomology. In this section, we are interested in

Crt-spaces for 2 <n< p. If X is a simply connected C«-space such that the

mod/? cohomology H*(X) is finitely generated as an algebra, then by Theorem

B and Remark 3.9, there exists a homotopy equivalence

X - f[FiQ> x J ] FiO;pet> x Π Ft x K{Z,2Y,
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where Ft is a simply connected finite CVspace for 1 < i < q. So we can reduce

the classification of Cn -spaces with finitely generated cohomology to the higher

homotopy commutativity of the /^-compact groups X(G) given in Theorem

1.2. We can give another interpretation of the higher homotopy commutativity

of loop spaces by using the generalized higher Whitehead product due to

Porter [31].

Let X be a loop space and X^ denote the «-fold smash product of X. By

Porter [31; Thm. 1.2], there exists a map ωn : Σn~xX^ -> (ΣX)[n] such that

Σn-lχ{n) _

is a cofibration sequence, where {ΣX)^ is the «-fold fat wedge of ΣX and

εn : (ΣX)[n] -> (ΣX)n denotes the inclusion. Let i : ΣX -> BX be the adjoint

map of the homotopy equivalence X —• ΩBX. Then the «-fold generalized

Whitehead product of / is defined as

[z,..., i] = { W(φ) = φωn\φ: (ΣX)[n] -• BX with φ\ΣX = ι for each factors}.

Williams [39] studied the connection of the Cn-space and the higher

Whitehead product, and by using his result, Saumell [33] determined the higher

homotopy commutativity in the case that a /^-compact group I is a finite

product of odd dimensional spheres. The following lemma is due to Saumell:

LEMMA 4.1 ([39; Cor. 1.5], [33; Thm. 3.2]). Let n > 2 and X be a loop

space. Then X is a Cn-space if and only if the k-fold generalized Whitehead

product [i,..., i] contains zero for 2 < k < n.

Now we can prove the following result:

THEOREM 4.2. Let p be an odd prime. Then we have the following:

(1) S2tι~ι x x S2tι~ι is a Cn-space if p > nth

(2) Bx{p) is a C{p_x)/2-space.

(3) £5(19) is a C3-space.

(4) Λii (19) is a C3-space.

(5) Bι(l9) x 511(19) is a C3-space.

PROOF. In the case of X = S2ίι~ι x x S2tι~\ the result follows from

[33; Thm. B].

Let X = B\(p) and G = S3UOίe
2p+\ where α e π2p(S3) ^ Z/p denotes

the generator. By the cell structure of X, we see that G c X. A result of

McGibbon [20] implies that ΣG is a retract of ΣX, and so there exists a map

r : ΣX —> ΣG with r(Σi) ^ \ΣG, where /: G —> X denotes the inclusion map.

Let K = ι(Σi) : ΣG —> BX. As in the proof of [21; Thm. 4], we can assume

that Kr ~ i, and so it is sufficient to show that the /c-fold generalized Whitehead

product [JC, . . . ,JC] contains zero for 2 < k < (p - l)/2.
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If k = 2, then [K, κ\ is the ordinary generalized Whitehead product, and

so [κ,κ] =0 since I is a C2-space. Now we assume that the (k — l)-fold

generalized Whitehead product contains zero. Then there exists a map φ :

(ΣG)[k] -• BX with φ\ΣG = i for each factors. To show W(φ) = φωk ~ *, it

is sufficient to construct a map φ : (ΣG)k —• BX with Φ\,ΣGf] = φ, and the

obstructions for the existence of φ belong to the following cohomology groups:

(4.3) H

for / > 1. By [37; Thm. 3], the homotopy groups of BX are given as

i f '' = 2/> + 2/'(/>-l) + l for l < 7 < / 7 ,
(4.4) π,(**) = I Q o t h e r w i s e f o r i < 2 p 2 + L

By the cell structure of (ΣGfk\ the obstruction groups (4.3) are zero

unless i = 4k + 2y(/> - 1) - 1 for 0 < j < k. Since 2 < k < (p - l)/2, we have

that 2 p + 1 + 2(y-1)(/7-1) < 4k + 2y(/?-l) - 1 < 2/7 + 1-f 2y(/7-l) for 0 <

j < k, which implies that the obstruction groups are zero by (4.4). By using

similar arguments, we can obtain the required results for (3) and (4).

In the case of X = Bx(19) x Bn(l9), we put that G = (S3 U α e 3 9 ) v

( S 2 3 ^ 5 9 ) , where α e π3s{S3) ^ Z/19 and β eπ5S(S23) ^ Z/19 denote the

generators. Since iΓG is a retract of Z ^ , we can show the required result as

in the case of (2). This completes the proof of Theorem 4.2. •

Next we show the following result:

THEOREM 4.5. Let p be an odd prime. Then we have the following:

(1) S2tι~ι x x S2tι~ι is not a Cn-space if p < nth

(2) B\{p) is not a Cp-space.

(3) Bη (17) is not a C^-space.

(4) i?5(19) is not a C4-space.

(5) i?i9(41) is not a C^-space.

(6) B\\(19) is not a C^space.

(7) #3(11) x Su is not a C3-space.

(8) B\(19) x Bu(l9) is not a C4-space.

Let X be a simply connected /^-compact group. If the mod p cohomology

H*(X) is an exterior algebra, then the mod/? cohomology of BX is

a polynomial algebra. For n > 1, we define the «-fold decomposable module

of H*(BX) as Dι =H*(BX) and Dn = Dn~ι H*(BX). Then we see that

Dn+\ ^ jr)«5 a n c j 2)" is closed under the action of the mod/7 Steenrod algebra

for n > 1. In the proof of Theorem 4.5, we need the following lemma:

LEMMA 4.6 ([13; Lemma 4.8], [33; Prop. 4.1]). Let 2 < n < p - 1 αra/ X be

a simply connected p-compact group. If there exists an element x e H*(BX)
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satisfying that θ(x)=0 mod/)" and θ(x) φO mod/)"+1 +θ(Dn)for some Steenrod
operation θ e srfp, then X is not a Cn-space.

By using Lemma 4.6, we can prove Theorem 4.5 as follows:

PROOF OF THEOREM 4.5. In the cases of X = S2tι~ι x x S2tl~ι and
X — B\(p), we have the required results from [33; Thm. B] and Theorem 3.10,
respectively.

Let X = Bη(\l). Then the mod 17 cohomology of BX is given as
H*(BX) ^ Z/Π[x,y] with &x(x) = y, where degx = 16 and degy = 48, and
we can set that ^ι(y) — a\x5 + a2X2y for a\,a2 eZ/\7. If we assume that
a2 — 0, then

{0>λ)\y) = Ίa2x5y4 + ?>a\xn y2 + 3a4xι\

which contradicts the fact that 0>*{x) = x17, and so a2 ΦO. Since 0>2(x) =
0 mod/)3 and 0>2(x) Φ 0 modD4 + 0>2(D3), by applying Lemma 4.6 to
xeH*(BX) and SP2\ X is not a C3-space.

If X = B5(l9), then H*(BX) ^ Z/I9[x,y] with 0>\x) = y, where degx =
12 and degj = 48. For the dimensional reason, we can set that &>ι(y) =
a\xΊ + aixly for αi,«2 e Z/19. If 2̂ = 0, then &*ι(y) = a\xη, and by using a
routine calculation, we have that (0>ι)5(y) = 4aλx

3y4 + 13a^xny2-\-4a3

xx
19.

Since ^ 6 (x) = x19, this causes a contradiction, and so aι Φ 0. Hence 0>2(x) =
0 mod/)4 and 0>2(x) Φ0 modD5 + 0>2(D4), which implies that X is not a
C4-space.

In the case of X = B\g(4\), the mod41 cohomology of BX is given
as H*(BX) ^ Z/4l[x,y] with ^ ( J C ) = y, where degx = 40 and deg^ = 120.
For the dimensional reason, we can set that 0*ι(y) = a\x5 +aix2y for a\,a2e
Z/41. If we assume that a2 = 0, then

(0>xf(y) = 5a4x5yu + 35alxny10 + 9^x 1 7 j 8

+ 7α?x23^6 + 29flf x2 V + 25^?x35j;2 + 22a\°x41,

which contradicts the fact that ^20(x) = J C 4 1 , and so we have that #2 # 0 .
Hence ^ 2 (x) = 0 mod/)3 and ^ 2 (x) ^ 0 mod/)4 + ^ 2(Z) 3), which implies that
X is not a C3-space.

Let X = B\\(19). Then the mod 19 cohomology of BX is given as
H*(BX) ^ Z/19[x, y] with ^ ( x ) = 3;, where degx = 24 and degj; = 60. For
the dimensional reason, we can set that 0>l(y)=ax4 for aeZ/19. If we assume
that a = 0, then (^ι)U(y) =0, which contradicts the fact that 0>n(x) = x19,
which implies that a φ 0. Hence &x{y) = 0 mod/)4 and »x{y) Φ 0 mod/)5 +

ι ) , and so by Lemma 4.6, X is not a C4-space.
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In the case of X = B3(ll) x S11, the mod 11 cohomology of BX is given
as H*(BX) ^Z/U[x,y,z] with 0>x{x) = y, where degx-8, degj = 28 and
degz = 12. For the dimensional reasons, we can set that

(4.8) &ι(z) = aλx
Λ + a2xz2,

0>\y) = bxxyz + b2z
4 + b3x

3z2 + b4x
6,

where a^ bj e Z/l 1 for 1 < / < 2, 1 < j < 4. If we assume that a2 = b\ = 0,
then by using (4.8), we have that

(Pι)\y) = (2a2b3 + 6bj)xn + (a2b2 + 9b3b4)z2x* + 9axb3zx6y

+ (3ft3

2 + 6b2b4)z4x5 + 5^^2z
3x3^ + 6^z 2 xj 2

+ 3b2b3z
6x2 + 864;tV,

which contradicts the fact that 0>4(x) = xn, and so a2 φ 0 or Z>i ^ 0 .
If α2 ^ 0, then 0>\z) = 0 mod/)3 and ^ ( z ) # 0 modi)4 + 0>ι(D3), and

so by Lemma 4.6, X is not a C3-space. In the case of b\ Φ 0, we see that
0>2(x) =0 mod/)3 and ^ 2 (x) ^ 0 modi)4 + ^ 2 (/ ) 3 ) , and so X is not a
C3-space.

Finally, we consider the case of X = B\(19) x B\\(19). In this case, the
mod 19 cohomology of BX is given as

H*(BX) *Z/19[x, y,z,w],

where degx = 4, degj> = 24, degz = 40, degw = 60, έ?ι(x) = z and £Px(y) = w.
For the dimensional reason, we can set that

0>x (w) = axx
24 + a2x

ι %y + a3x
ny2 + a4x

6y3 + α 5 / 14

H- αγ ̂ 8 ^ + a%x2y2z + tf9*4z2 + ^IO ̂ 9 ^ +

where Λf eZ/19 for 1 < 1 < 11. If (x,z) denotes the ideal of H*(BX) gen-
erated by x and z, then (x,z) is closed under the action of 0>x since ^ι(z) =
2x19 e (x, z). If we assume that (25 = 0, then έ?ι(w) e (x, z), which implies that
(^1)11(w) G (JC,Z). This contradicts the fact that 0>u(y) = y19 φ (x,z), and
so we have that α5 # 0. Hence 0>ι(w) = 0 modi)4 and 0>ι(w) φ 0 modi)5 +
0>ι(D4), which shows that X is not a C4-space. This completes the proof of
Theorem 4.5. •

From Theorems 4.2 and 4.5, we can determine the higher homotopy
commutativity of almost all the /7-compact groups on the table in Theorem
1.2. In the following table, n denotes the maximal number for which X is a
C-space but not a Cn+\ -space.
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X

S2"-1 x- xS 2 "- 1

Blip)

BΊ{Π)
B5(\9)
5,9(41)
Bn(l9)
B3(ll) xSu

Bι(19) x Bn(\9)

P

>2t,
3

>5

17

19

41

19

11

19

Types

( * ! , . . . , U)

(2,4)

(2,/>+l)
(8,24)
(6,24)
(20,60)
(12,30)
(4,6,14)
(2,12,20,30)

n

[p/tι]
2

(p-l)/2< <p-\
2

3

2

3

2

3

By using Theorem B, Remark 3.9 and Theorem 4.5, we have the following
corollary:

COROLLARY 4.9. Let p be an odd prime. If X is a simply connected
Cp-i-space such that the mod/? cohomology H*(X) is finitely generated as an
algebra, then X is homotopy equivalent to a finite product of K(ZJ, 2), B\ (p),
i?i(/?)<3> and 2»i(/0<3;/>'"> for i > 1.

Kawamoto-Lin [17; Thm. C] has shown the same result under the assump-
tion that X is Si Cp-\-space in the sense of Sugawara. Corollary 4.9 implies
[17; Thm. C] since it is shown in [22; Prop. 6] that the higher homotopy
commutativity of Williams is weaker than the one of Sugawara.

It is natural to ask if the converse of Corollary 4.9 holds. In the case of
p = 3, it is known that B\(3) has the homotopy type of Sp(2). McGibbon
[21; Thm. 2] proved that Sp(2) is a C2-space, and moreover, Sp(2)Q} and
S/?(2)<3;3'> are C2-spaces for i> 1. At present, the author does not know
the corresponding result for p > 3. However, it seems to be reasonable to
conjecture that B\(p) is a Cp-\-space for p > 3.
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