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Abstract

This article deals with the introduction of Gould-Hopper based Frobenius-Euler polynomials
and derivation of their properties. The summation formulae and operational rule for these
polynomials are derived. Also, certain identities for these polynomials are established by using
operational formalism.
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1 Introduction and preliminaries

Frobenius [4, 11] studied in great detail the Frobenius-Euler polynomials Fn(x|u) satisfying the
following exponential generating function:

1− u
et − u

ext =

∞∑
n=0

Fn(x|u)
tn

n!
, ∀ u ∈ C; u 6= 1. (1.1)

In particular, Fn(u) = Fn(0|u) are called the Frobenius-Euler numbers defined by the following
generating relation:

1− u
et − u

=

∞∑
n=0

Fn(0|u)
tn

n!
, ∀ u ∈ C; u 6= 1. (1.2)

In fact, the Frobenius-Euler polynomials can also be defined recursively by the Frobenius-Euler
numbers, as follows:

Fn(x|u) =

n∑
k=0

(
n

k

)
Fk(u)xn−k, n ≥ 0, (1.3)

where, Frobenius-Euler numbers satisfy the recurrence relation

F0(u) = 1,

(F (u) + 1)n − Fn(u) =

{
1− u, n = 0,

0, n ≥ 1,
(1.4)

with the usual convention about replacing Fn(u) by Fn(u).
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Some analogues of the Frobenius-Euler polynomials are the classical Bernoulli polynomials Bn(x)
and Euler polynomials En(x). They are given by the following generating relations:

t

et − 1
ext =

∞∑
n=0

Bn(x)
tn

n!
(1.5)

and
2

et + 1
ext =

∞∑
n=0

En(x)
tn

n!
, (1.6)

respectively.

Especially, the rational numbers Bn = Bn(0) and integers En = 2nEn( 1
2 ) are called the classical

Bernoulli numbers and Euler numbers, respectively. These numbers and polynomials play impor-
tant roles in many different areas of mathematics including number theory, combinatorics, special
functions and analysis. Obviously, the Frobenius-Euler polynomials give the classical Euler poly-
nomials when u = −1 in equation (1.1).

The special polynomials of two variables are important from the point of view of applications.
These polynomials allow the derivation of a number of useful identities in a fairly straight forward
way and help in introducing new families of special polynomials. For example, Bretti et al. [3] intro-
duced general classes of the Appell polynomials of two variables by using properties of an iterated
isomorphism, related to the Laguerre-type exponentials. The two variable forms of the Hermite,
Laguerre and truncated exponential polynomials as well as their generalizations are considered by
several authors, see for example [2, 6–8].

To solve the problems arising in many branches of mathematics, going from the theory of partial
differential equations to abstract group theory, requirement of multi-index and multi-variable spe-
cial functions are realized. The theory of multi-index and multi-variable Hermite polynomials was
initially developed by Hermite himself [13]. The Hermite polynomials turn up in combinatorics, as
an example of an Appell sequence, obeying the umbral calculus; in numerical analysis as Gaussian
quadrature; in physics, where they give rise to the eigen states of the quantum harmonic oscillator
and also turn up in the solution of the Schrödinger equation for the harmonic oscillator.

The Gould-Hopper polynomials g
(m)
n (x, y) [12] are defined by the following series expansion:

g(m)
n (x, y) = n!

[ n
m ]∑
r=0

xn−mryr

(n−mr)!r!
, (1.7)

where m is a positive integer. These polynomials possess the following generating function:

ext+yt
m

=

∞∑
n=0

g(m)
n (x, y)

tn

n!
(1.8)

and are the solutions of the generalized heat equation [9]

∂

∂y
{f(x, y)} =

∂m

∂xm
{f(x, y)}, f(x, 0) = xn. (1.9)
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These polynomials are also defined by the following operational rule:

g(m)
n (x, y) = exp

(
y
∂m

∂xm

)
{xn}, (1.10)

and satisfy the following multiplicative and derivative operators:

M̂g := x+my
∂m−1

∂xm−1
(1.11)

and

P̂g :=
∂

∂x
. (1.12)

The idea of monomiality traces back in 1941, when J. F. Steffensen [16] suggested the concept of
poweroid. The monomiality principle is reformulated and developed by Dattoli [6], according to
the monomiality principle, there exist two operators M̂ and P̂ playing, respectively, the role of
multiplicative and derivative operators for a polynomial set {pn(x)}n∈N, that is, M̂ and P̂ satisfy
the following identities, for all n ∈ N:

M̂{pn(x)} = pn+1(x) (1.13)

and
P̂{pn(x)} = n pn−1(x). (1.14)

The polynomial set {pn(x)}n∈N is then called a quasi-monomial. These multiplicative and derivative
operators must satisfy the commutation relation

[P̂ , M̂ ] = P̂ M̂ − M̂P̂ = 1̂ (1.15)

and therefore exhibits a Weyl group structure.
If the expressed polynomial set {pn(x)}n∈N is quasi-monomial, its properties can be established
from those of the M̂ and P̂ operators. In fact the following holds:

(i) If M̂ and P̂ have differential realizations, then the polynomials pn(x) satisfy the differential
equation

M̂P̂{pn(x)} = n pn(x). (1.16)

(ii) Assuming that p0(x) = 1, then pn(x) can be explicitly constructed as

pn(x) = M̂n {1}. (1.17)

(iii) In view of identity (1.17), the exponential generating function of pn(x) can be cast in the
form

etM̂{1} =

∞∑
n=0

pn(x)
tn

n!
, |t| <∞ . (1.18)
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Most properties of polynomial families, identified as quasi-monomials, can be deduced by making
use of operational rules associated with the relevant multiplicative and derivative operators. The
concept of quasi-monomiality has been exploited within different contexts to deal with isospectral
problems [15] and to study the properties of new families of special functions, see for example [6].
Thus, the families of isospectral problems can be defined by using the following correspondence:

M̂ ⇔ x,

P̂ ⇔ ∂

∂x
,

pn(x) ⇔ xn.

(1.19)

There is continuous use of operational methods in research fields like quantum and classical optics
and in these respective areas, the operational methods provide powerful and efficient means of
investigation.

The article is organized as follows: In Section 2, Gould-Hopper based Frobenius-Euler polynomials
are introduced and certain properties of this family of polynomials are derived. In Section 3,
Summation formulae for the Gould-Hopper based Frobenius-Euler polynomials are derived . In
the last Section, certain identities for these polynomials are established by using the operational
formalism.

2 Gould-Hopper based Frobenius-Euler polynomials

In this section Gould-Hopper based Frobenius-Euler polynomials are introduced and their quasi-
monomial properties are derived.

To generate the Gould-Hopper based Frobenius-Euler polynomials denoted by g(m)Fn(x, y|u), we
prove the following result:

Theorem 2.1. For the Gould-Hopper based Frobenius-Euler polynomials g(m)Fn(x, y|u), the fol-
lowing generating function holds true:

1− u
(et − u)

exp(xt+ ytm) =

∞∑
n=0

g(m)Fn(x, y|u)
tn

n!
. (2.1)

Proof. Replacing x in equation (1.1) by the multiplicative operator M̂g of the Gould-Hopper poly-

nomials g
(m)
n (x, y), we have

1− u
(et − u)

exp(M̂gt){1} =

∞∑
n=0

Fn(M̂g|u)
tn

n!
. (2.2)

Using the expression of M̂g given in equation (1.11) and then decoupling the exponential operator
in the l.h.s of the resultant equation by using the Crofton-type identity

f

(
y +mλ

dm−1

dym−1

){
1
}

= exp

(
λ
dm

dym

){
f(y)

}
, (2.3)
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we find
1− u

(et − u)
exp

(
y
∂m

∂xm

)
exp(xt) =

∞∑
n=0

g(m)Fn(x+my
∂m−1

∂xm−1
|u)

tn

n!
. (2.4)

Which on using equations (1.10) and (1.8) in the l.h.s. of above equation and denoting the Gould-
Hopper based Frobenius-Euler polynomials in the r.h.s. of equation (2.4) by g(m)Fn(x, y|u), that
is

g(m)Fn(x+my
∂m−1

∂xm−1
|u) = g(m)Fn(x, y|u) (2.5)

we get assertion (2.1).
q.e.d.

In order to frame the Gould-Hopper based Frobenius-Euler polynomials g(m)Fn(x, y|u) within the
context of monomiality principle formalism, we prove the following result:

Theorem 2.2. For the Gould-Hopper based Frobenius-Euler polynomials g(m)Fn(x, y|u), the fol-
lowing multiplicative and derivative operators hold true:

M̂g(m)F = x+myDm−1
x − eDx

eDx − u
(2.6)

and
P̂g(m)F = Dx, (2.7)

respectively.

Proof. Differentiating (2.1) partially with respect to t, we have(
x+mytm−1 − et

et − u

)
1− u
et − u

ext+yt
m

=

∞∑
n=0

g(m)Fn+1(x, y|u)
tn

n!
. (2.8)

Using the identity

Dx

{ 1− u
et − u

ext+yt
m
}

= t
{ 1− u
et − u

ext+yt
m
}

(2.9)

and generating relation (2.1) in the equation (2.8), we find(
x+myDm−1

x − eDx

eDx − u

)( ∞∑
n=0

g(m)Fn(x, y|u)
tn

n!

)
=

∞∑
n=0

g(m)Fn+1(x, y|u)
tn

n!
. (2.10)

Equating the coefficients of same powers of t on both sides of above equation, we are lead to asser-
tion (2.6).

Again making use of generating function (2.1) on both sides of identity equation (2.9), we have

Dx

{ ∞∑
n=0

g(m)Fn(x, y|u)
tn

n!

}
=
{ ∞∑
n=0

g(m)Fn−1(x, y|u)
tn

(n− 1)!

}
. (2.11)

Equating the coefficients of same powers of t on both sides of the above equation, we are lead to
assertion (2.7).

q.e.d.
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Remark 2.1. Using expressions (2.6) and (2.7) in equation (1.16), we find the following differential
equation for the Gould-Hopper based Frobenius-Euler polynomials g(m)Fn(x, y|u):(

xDx +myDm
x −

eDx

eDx − u
Dx − n

)
g(m)Fn(x, y|u) = 0. (2.12)

Remark 2.2. On substituting y = 0, the Gould-Hopper based Frobenius-Euler polynomials

g(m)Fn(x, y|u) reduces to the Frobenius-Euler polynomials Fn(x|u), thus taking y = 0 in equa-
tions (2.1), (2.6), (2.7) and (2.12), the following generating function, multiplicative and derivative
operators and differential equation for the Frobenius-Euler polynomials Fn(x|u) given by

1− u
(et − u)

exp(xt) =

∞∑
n=0

Fn(x|u)
tn

n!
, (2.13)

M̂F = x− eDx

eDx − u
, (2.14)

P̂F = Dx (2.15)

and (
xDx −

eDx

eDx − u
Dx − n

)
Fn(x|u) = 0, (2.16)

are obtained respectively.

Next, we find the series definitions for the Gould-Hopper based Frobenius-Euler polynomials

g(m)Fn(x, y|u) by proving the following result:

Theorem 2.3. The Gould-Hopper based Frobenius-Euler polynomials g(m)Fn(x, y|u) are defined
by the following series expansions:

g(m)Fn(x, y|u) =
n∑
k=0

(
n

k

)
Fk(u)g

(m)
n−k(x, y) (2.17)

and

g(m)Fn(x, y|u) = n!

[ n
m ]∑
k=0

Fn−k(x|u) yk

k! (n−mk)!
, (2.18)

respectively.

Proof. Using equations (1.2) and (1.8) in the l.h.s. of the equation (2.1), we have

∞∑
k=0

Fk(u)
tk

k!

∞∑
n=0

g(m)
n (x, y)

tn

n!
=

∞∑
n=0

g(m)Fn(x, y|u), (2.19)

which on using the cauchy product rule in the l.h.s. of the above equation and equating the coeffi-
cients of like powers of t on both sides, assertion (2.17) follows.
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Similarly, using equation (1.1) and expanding the term eyt
m

in the l.h.s. of the equation (2.1), we
have

∞∑
n=0

Fn(x|u)
tn

n!

∞∑
k=0

yk tmk

k!
=

∞∑
n=0

g(m)Fn(x, y|u)
tn

n!
, (2.20)

which on using the cauchy product rule in the l.h.s. of the above equation, assertion (2.18) follows.
q.e.d.

Finally, we find the operation connection between the Gould-Hopper based Frobenius-Euler poly-
nomials g(m)Fn(x, y|u) and Frobenius-Euler polynomials Fn(x|u) by proving the following result:

Theorem 2.4. The Gould-Hopper based Frobenius-Euler polynomials g(m)Fn(x, y|u) are defined
by the following operational rule:

exp

(
y
∂m

∂xm

)
Fn(x|u) = g(m)Fn(x, y|u). (2.21)

Proof. Differentiating generating function (2.1) partially m times with respect to x and y, we have

∂m

∂xm
(
g(m)Fn(x, y|u)

)
= n(n− 1)(n− 2) · · · (n−m)

(
g(m)Fn−m(x, y|u)

)
(2.22)

and
∂

∂y

(
g(m)Fn(x, y|u)

)
= n(n− 1)(n− 2) · · · (n−m)

(
g(m)Fn−m(x, y|u)

)
. (2.23)

Thus from equations (2.22) and (2.23), it follows that

∂m

∂xm
(
g(m)Fn(x, y|u)

)
=

∂

∂y

(
g(m)Fn(x, y|u)

)
(2.24)

and in view of the initial condition:

g(m)Fn(x, 0|u) = Fn(x|u), (2.25)

assertion (2.21) follows.
q.e.d.

In the next section, certain summation formulae for the Gould-Hopper based Frobenius-Euler poly-
nomials g(m)Fn(x, y|u) are derived.

3 Summation formulae

In order to obtain the implicit summation formula for the Gould-Hopper based Frobenius-Euler
polynomials g(m)Fn(x, y|u), the following result is proved:

Theorem 3.1. The Gould-Hopper based Frobenius-Euler polynomials g(m)Fn(x, y|u) satisfies the
following implicit summation formula:

g(m)Fn(x+ ν, y|u) =

n∑
k=0

(
n

k

)
νkg(m)Fn−k(x, y|u). (3.1)
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Proof. Replacing x→ x+ ν in generating function (2.1), we have

1− u
(et − u)

exp
(
(x+ ν)t+ ytm

)
=

∞∑
n=0

g(m)Fn(x+ ν, y|u)
tn

n!
. (3.2)

Expanding the exponential in the l.h.s. of the above equation and then using the Cauchy product
rule in the resultant equation, it follows that

∞∑
n=0

n∑
k=0

(
n

k

)
νkg(m)Fn−k(x, y|u)

tn

n!
=

∞∑
n=0

g(m)Fn(x+ ν, y|u)
tn

n!
. (3.3)

Exchanging the sides and equating the coefficients of same powers of t in the resultant equation,
assertion (3.1) follows.

q.e.d.

Corollary 3.1. For, ν = 1, the following implicit summation formula for the Gould-Hopper based
Frobenius-Euler polynomials g(m)Fn(x, y|u) holds true:

g(m)Fn(x+ 1, y|u) =

n∑
k=0

(
n

k

)
g(m)Fn−k(x, y|u). (3.4)

Theorem 3.2. For the Gould-Hopper based Frobenius-Euler polynomials g(m)Fn(x, y|u), the fol-
lowing implicit summation formula holds true:

g(m)Fn+k(η, y|u) =

n,k∑
l,s=0

(
n

l

)(
k

s

)
(η − x)l+sg(m)Fn+k−l−s(x, y|u). (3.5)

Proof. Replacing t→ t+ w in generating function (2.1), we have

1− u
(et+w − u)

exp
(
x(t+ w) + y(t+ w)m

)
=

∞∑
n=0

g(m)Fn(x, y|u)
(t+ w)n

n!
. (3.6)

Using
∞∑
N=0

f(N)
(x+ y)N

N !
=

∞∑
l,m=0

f(l +m)
xl ym

l! m!
(3.7)

in equation (3.6) and shifting the exponential term to the r.h.s in the resultant equation, we have

1− u
(et+w − u)

exp
(
y(t+ w)m

)
= exp

(
− x(t+ w)

) ∞∑
n,k=0

g(m)Fn+k(x, y|u)
tn wk

n! k!
. (3.8)

Replacing x→ η in above equation and then equating the resultant equation to the above equation,
we find

∞∑
n,k=0

g(m)Fn+k(η, y|u)
tn wk

n! k!
= exp

(
(η − x)(t+ w)

) ∞∑
n,k=0

g(m)Fn+k(x, y|u)
tn wk

n! k!
. (3.9)
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In view of equation (3.7), the above equation gives

∞∑
n,k=0

g(m)Fn+k(η, y|u)
tn wk

n! k!
=

∞∑
l,s=0

(η − x)l+s
tl ws

l! s!

∞∑
n,k=0

g(m)Fn+k(x, y|u)
tn wk

n! k!
. (3.10)

Applying the Cauchy product rule in the r.h.s. of the above equation and equating the coefficients
of same powers of t in the resultant equation, assertion (3.5) follows.

q.e.d.

Corollary 3.2. For, n = 0 in Theorem 3.2, Gould-Hopper based Frobenius-Euler polynomials

g(m)Fn(x, y|u) satisfies the following implicit summation formula:

g(m)Fk(η, y|u) =

k∑
s=0

(
k

s

)
(η − x)sg(m)Fk−s(x, y|u). (3.11)

Corollary 3.3. Replace η → η+x and y = 0 in Theorem 3.2, the Gould-Hopper based Frobenius-
Euler polynomials g(m)Fn(x, y|u) satisfies the following implicit summation formula:

g(m)Fn+k(η + x, 0|u) =

n,k∑
l,s=0

(
n

l

)(
k

s

)
(η)l+sg(m)Fn+k−l−s(x, 0|u). (3.12)

Corollary 3.4. For, η = 0 in Theorem 3.2, the Gould-Hopper based Frobenius-Euler polynomials

g(m)Fn(x, y|u) satisfies the following implicit summation formula:

g(m)Fn+k(0, y|u) =

n,k∑
l,s=0

(
n

l

)(
k

s

)
(−x)l+sg(m)Fn+k−l−s(x, y|u). (3.13)

Theorem 3.3. The following implicit summation formula for the Gould-Hopper based Frobenius-
Euler polynomials g(m)Fn(x, y|u) holds true:

g(m)Fn(x+ v, y + w|u) =

n∑
k=0

(
n

k

)
g(m)Fn−k(x, y|u) g

(m)
k (v, w). (3.14)

Proof. Replacing x→ x+ v and y → y + w in generating function (2.1) and using equation (1.8),
we find

∞∑
n=0

g(m)Fn(x+ v, y + w|u)
tn

n!
=

∞∑
n=0

∞∑
k=0

g(m)Fn(x, y|u) g
(m)
k (v, w)

tn+k

n! k!
. (3.15)

Applying the Cauchy product rule in the r.h.s. of the above equation and then comparing the
coefficients of the like powers of t in the resultant equation yields assertion (3.14).

q.e.d.

In the next section, some examples are considered to give applications of the operational formalism
developed here.
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4 Applications

Several identities involving Frobenius-Euler polynomials are known. The operational formalism
developed in the previous section can be used to obtain the corresponding identities involving the
Gould-Hopper based Frobenius-Euler polynomials. To achieve this, we perform the following oper-
ation:

(O) operating exp
(
y ∂m

∂xm

)
on both sides of a given relation.

We recall the following functional equations involving Frobenius-Euler polynomials Fn(x|u) [5]:

Fk(x|u) Fn(x|v) = Fkn(x|uv)
(1− u)(1− v)

1− uv
+
u(1− v)

1− uv

k∑
r=0

(
k

r

)
Fk(u)Fk+n−r(x|uv)

+
v(1− v)

1− uv

n∑
s=0

(
n

s

)
Fs(v)Fk+n−s(x|uv), (4.1)

where u, v ∈ C, u 6= 1, v 6= 1 and uv 6= 1.

Performing the operation (O) on above equation and using operational rule (2.21) on the resultant
equation, the following identity involving the Gould-Hopper based Frobenius-Euler polynomials

g(m)Fn(x, y|u) is obtained:

g(m)Fk(x, y|u) Fn(x|v) = g(m)Fkn(x, y|uv)
(1− u)(1− v)

1− uv
+
u(1− v)

1− uv

k∑
r=0

(
k

r

)
Fk(u)

× g(m)Fk+n−r(x, y|uv) +
v(1− v)

1− uv

n∑
s=0

(
n

s

)
Fs(v) g(m)Fk+n−s(x, y|uv), (4.2)

where u, v ∈ C, u 6= 1, v 6= 1 and uv 6= 1.

Also, consider the following identities for the Frobenius-Euler polynomials F
(α)
n (x;u) from [14]:

u Fn(x|u−1) + Fn(x|u) = (1 + u)

n∑
k=0

(
n

k

)
Fn−k(u−1) Fk(x|u), (4.3)

1

n+ 1
Fk(x|u) + Fn−k(x|u) =

n−1∑
k=0

(
n
k

)
n− k + 1

n∑
l=k

(
(−u)Fl−k(u) Fn−l(u)

+ 2u Fn−k(u)
)
Fk(x|u) Fn(x|u), (4.4)

F (α)
n (x|u) =

n∑
k=0

(
n

k

)
F

(α−1)
n−k (u) Fk(x|u) (n ∈ Z+), (4.5)
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Fn(x|u) =
1

(1− u)α

n∑
k=0

(
n

k

) α∑
j=0

(
α

j

)
(−u)α−jFn−k(j|u)

F
(α)
k (x|u) (n ∈ Z+). (4.6)

Again performing the same operation (O) on equation (4.3) - (4.6) and using operational rule (2.21)
on the resultant equation, the following identity involving the Gould-Hopper based Frobenius-Euler
polynomials g(m)Fn(x, y|u) are obtained:

u g(m)Fn(x, y|u−1) + g(m)Fn(x, y|u) = (1 + u)

n∑
k=0

(
n

k

)
Fn−k(u−1) g(m)Fk(x, y|u), (4.7)

1

n+ 1 g
(m)Fk(x, y|u) + g(m)Fn−k(x, y|u) =

n−1∑
k=0

(
n
k

)
n− k + 1

n∑
l=k

(
(−u)Fl−k(u) Fn−l(u)

+ 2u Fn−k(u)
)
Fk(x|u) g(m)Fn(x, y|u), (4.8)

g(m)F (α)
n (x, y|u) =

n∑
k=0

(
n

k

)
F

(α−1)
n−k (u) g(m)Fk(x, y|u) (n ∈ Z+), (4.9)

g(m)Fn(x, y|u) =
1

(1− u)α

n∑
k=0

(
n

k

) α∑
j=0

(
α

j

)
(−u)α−jFn−k(j|u)


g(m)F

(α)
k (x, y|u) (n ∈ Z+).

(4.10)
Operational methods can be exploited to simplify the derivation of the properties associated with
ordinary and generalized special functions and to define new families of functions. The importance
of the use of operational techniques in the study of special functions are aimed at providing explicit
solutions for families of partial differential equations including those of Heat and D′Alembert type
and their applications has been recognized by Dattoli and his co-workers, see for example [6,9,10].
In the case of multi-variable generalized special functions, The method proposed in this article can
be used in combination with the monomiality principle as a useful tool in new means of analysis for
the solutions of a wide class of partial differential equations often encountered in physical problems.
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