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The variance-optimal martingale measure
for continuous processes
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We prove that for continuous stochastic processes .S based on (2 # P) for which there is an equivalent
martingale measure @° with square-integrable density d @°/d P, we have that the so-called ‘variance
optimal’ martingale measure @°P* for which the density d@°P'/d® has minimal L*(®)-norm is
automatically equivalent to P. The result is then applied to an approximation problem arising in
mathematical finance.
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1. Introduction

Let §=(S8))cr, be an R<-valued semi-martingale based on (2, %, (#.)ien, P) which in
most of this paper will be assumed to be continuous. The process S may be interpreted to
model the discontinued price of 4 stocks.

A very important tool in mathematical finance is to replace the original measure P by an
equivalent local martingale measure @, sometimes also called a risk-neutral measure. More
formally, we denote as in Delbaen and Schachermayer (1994) by

M#(P) = {@ « P:Q is a probability measure and § is a ©-local martingale}

the set of all probability measures  on % which are absolutely continuous with respect to
P and such that S becomes a local martingale under @. By

HA°(P) = {Q ~ P: Q is a probability measure and S is a @-local martingale}

we denote the subset of .#(P} formed by the probability measures @ € .#(P) which are
equivalent to .

A basic problem in mathematical finance is to determine (that is, find necessary and
sufficient conditions on §) whether or not .#°(P) is non-empty. This issue is settled by the
fundamental theorem of asset pricing, where some kind of no arbitrage assumption is needed
to ensure that .#°(®) # B. We refer {0 Delbaen and Schachermayer (1994) for a general
version of this theorem and a detailed account on related work on this problem, starting from
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the seminal papers of Harrison and Kreps (1979), Harmison and Pliska (1981} and Kreps
(1981).

Once it is established that the set 4°(P) of equivalent local martingale measures is non-
empty, the question arises as to which element @ in .#°(P) is the ‘most natural’ choice and
how the cheice of @ is related to the pricing and hedging of a given contingent claim, that is
an & -measurable random variable /. The term ‘most natural’, of course, depends on the
context. Note that in the general setting of the fundamental theorem of asset pricing (as
presented in Delbaen and Schachermayer 1994}, it does not make sense te ask for a ‘most
natural’ element of .#°(P) as this setting is invariant under changes of equivalent measures.
Hence the question is as meaningful (or meaningless) as asking what is the most natural
point in a2 convex set.

But once we fix the original measure P, we may ask which element @ € .#°(P) is most
natural (relative to this measure P). In applications in mathematical finance and in
particular in actuarial mathematics one often has quite a good knowledge of what the
measure P, which describes the ‘real” world, should be. For example, insurance companies
usually have a very precise knowledge of the ‘true’ mortality in their (life insurance)
portfolios, which is modelled by P (‘mortality tables of second order’), while for calculating
premiums and reserves they use substantially different probability measures @ (‘mortality
tables of first order’).

If we have good reason to fix the measure P, it makes sense to ask for the element
@ e #°(P) which is ‘closest’ to P. So far two main notions of ‘closest’ element have been
considered. For continuous semi-martingales Folimer and Schweizer (1990) called the
element @ € #°(P) which minimizes the relative entropy

H(@|P) = jlog (%%) 40

the minimal martingale measure. If § is continuous and its Doob—Meyer decomposition is
of the form S=M + A =M +o'-(M) (where ’ denotes transposition in Rd) for some
predictable process a, then the density of the minimal martingale measure @™* is given by
the Girsanov-type formula

min la'v] la'e]
i:1—.——=é’{—ce’-M)oo=exp +J a:dM,—-lJ d{a’-M}, |,
dP 0 2h

provided this measure exists, i.e. provided that &{—a- M), is a strictly positive uniformly
integrable martingale (cf. Folimer and Schweizer 1990). This formula is particularly
appealing if we know from arguments involving martingale representation (for example,
in the case of a ‘Brownian’ setting) that there is at most one equivalent (local) martingale
measure. In this case one simply has to verify whether the process #(—a - M}, is a uniformly
integrable strictly positive martingale or not; several sufficient conditions, e.g. Novikov’s
and Kazamaki’s condition (Karatzas and Shreve 1991; Revuz and Yor 1991) are known to
guarantee this,

However, it turns out that the Girsanov-type formula above may go astray, although
there may be equivalent martingale measures around: Schachermayer (1993) and Delbaen
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and Schachermayer (1995) constructed a continuous process S = M + a - (M) such that
there exist equivalent martingale measures @ (even with d@/dP uniformly bounded) but
nevertheless the local martingale £{—a- M) is not uniformly integrable. Hence, despite
many appealing properties (see, for example, Duffie and Richardson 1991; Féllmer and
Schweizer 1990; Schweizer 1992a; Ansel and Stricker 1993; Schil 1994) one cannot rely on
the existence of the minimal martingale measure, even if S is continuous and models a
perfectly arbitrage-free market.

Another natural approach is to look at the element of .#°(P) of smallest L-norm, in
other words to look for the element @ € #°(P) which minimizes

4@ aQ }
=|var{—]+1],
Li(B) (v r(dp) )

dP
provided such an element exists (uniqueness will follow from strict convexity of the norm of
L*). We refer to Schweizer (1992a) for the name ‘variance-optimal’ and for the relevance
and history of this idea.

To introduce this concept in a precise way it is convenient to introduce the notion of
‘signed local martingale measures” which was introduced by Miiller (1985) (cf. Ansel and
Stricker 1992; Schweizer 1992a). Let K denote the subspace of L°(Q, # | P) spanned by the
‘simple’ stochastic integrals of the form

f=H(Sy, ~ 51,)
where T, < T, are stopping times such that the stopped process S 72 is bounded and 4 is a
bounded B¢-valued & r,-measurable function. Obviously, if S is assumed to be a locally

bounded cadlag semi-martingale, a probability measure @ on # is a local martingale
measure for § if and only if @ vanishes on K, that s,

Ealf1=E| 5/ =0 Wek

Identifying absolutely continnous measures with their Radon—Nikodym derivatives —
which we shall freely do throughout this paper without further notice — thus leads to the
following definition.

D(Q,P) =

Definition 1.1. The set of signed local martingale measures for the process S is the affine
subspace #°(P) of L' (P)

,{(S(P)={g€LI(P)3EIng=O for f€kKy, and E[g]:l},

that is, A°(P) is the intersection of the annihilator of Ky with the set H = {g : E[g] = 1}.
Note that H is an affine hyperplane (i.e., an affine subspace of codimension 1) of L'(P) and
that H is spanned by (the densities of ) the probability measures in 1" (B), that is H is the
smallest affine subspace of L' (P) containing these probability measures.

Obviously #(P) (or .#°(P)) is the intersection of .#°(P) with the gositive {or strictly
positive) orthant of L' (P). Noting that the intersection of .#° () with L*(P) is closed in the
norm of L*(P) and that a (non-empty) closed, convex subset of L2(P) has a unique element
of minimal norm, we can now define the central concept of this paper:
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Definition 1.2. ( Schweizer 1992a). If #°(P) N L (P) # 0, we call the element of 4°(P) with
minimal L*(P)-norm the variance-optimal signed local martingale measure for the process S.

Why do we have to pass to the space of signed local martingale measures? As observed in
Ansel and Stricker (1992) one may easily construct examples (the underlying probability
space {2 may be chosen to comsist of three elements only} such that the variance-optimal —
as well as the minimal — martingale measure is only a signed measure, that is, assumes
negative values. This phenomenon is due to the fact that if S has jumps the stochastic
exponential £(—o - M) may become negative.

On the other hand, for continuous processes the stochastic exponential &(—a- M) is
certainly non-negative, hence the minimal local martingale measure — if it exists - certainly is a
probability measure.

This triggered the question, whether for continuous processes we always have that the
variance-optimal local martingale measure (whose existence foliows from the very weak
assumption 4°(P) N L*(P) # 8, of Lemma 2.1 below) is automatically non-negative. In
fact, it turns out that it is automatically strictly positive, that is, equivalent to P, provided
that the obviously necessary requirement #°(RP) N L*(P) # @ is satisfied.

Theorem 1 3. Let S be a continuous, R%-valued semi-martingale and suppose that
A (BYNLA(P) £ 0, that is, there is at least one equivalent local martingale measure with
square-integrable density. Then the variance-optimal measure Q%% is a probability measure
equivalent to B.

We finish this section by pointing out that Schweizer (1994) showed independently that in
the setting of Theorem 1.3 we have that @°" is a P-absolutely continuous probability
measure, that is, @' € .#(P) (as opposed to the stronger conclusion @°F' € .#°(P) in the
preceding theorem; compare Theorem 3.1 below).

By § = (S,),en, we denote an ®%-valued cadlag locally bounded semi-martingale. We
choose R, as the time index set as this setting covers the most general case. The process
S will be based on a filtered probability space (Q,F,(# ).cm,.P) satisfying the usual
conditions. By K, we denote the closure of K, in LZ(Q #,P) and by K the closure of
the span of K, and the constants in L2(P):

K =span(Kg, 1).

The following easy lemma shows the orthogonality relation between the space K, of simple
stochastic integrals on S and the affine space of signed local martingale measures for §.

Lemma 2.1.

(a) A (BN LZ(F—’)) is non-empty if and only if K, does not contain the constant function 1.

(b) A (signed) measure @ on F with dQ/dP e L*(P) is in #4°(P) if and only if Bg|-]
vanishes on Ky and equals 1 on the constant function 1.

() If M(PYNLYP) # B, then Q% is the unique element of K vanishing on Ky and
equalling 1 on the constant function 1. ( Here we identify the measure Q' with the linear
Sunctional Eg[+] and linear functionals on L*(P) with elements of L*(P).)
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Proof. The assertion (b) is an immediate consequence of the very definition of the space
4 (P) of signed local martingale measures, and (a) follows from the fact that the linear
functional ¢ on K which satxsﬁes | £, = 0and (1} = 1 is well defined and continuous on
the closed subspace K of L*(®) if and only if 1¢Ko Finally, (c) is implied by the elementary
fact that the extension of ¢ from K to L%(P) with minimal norm vanishes on the orthogonal
complement of K. 0

In the following we shall assume that .#°(P) n L*(®) # # so that the (signed) variance-
optimal local martingale measure, denoted by @°P', exists. We denote by Z3F' the Radon—
Nikodym derivative d@°™ /d[F’ and by Z¥' the Radon-Nikodym derwauve of the
restrictions to #, so that (Z;™),ep, is a P-martingale convergmg so Z% in L(P).

In most of thlS paper we shall assume that .#°(P) N L*(P) # @ and fix some element

O ¢ #°(P)NL*(P), i.e., an arbitrarily chosen equivalent local martingale measure with
square-integrable density Zﬁo = d@°/d®. Again we denote by Z? the conditional expecta-
tion of Z° with respect to F,.

We also associate with Z%" the @%-martingale

Z?pt = E@'J[ZSE‘I«SWI]-

The next lemma shows that the process Z°™ is independent of the choice of @° and may be
written as a constant ¢, given by || Z5F HiZ([g), and a stochastic integral on S. This basic fact
was already been observed in Duffie and Richardson (1991), Schil (1994) and Schweizer
(1994) in various degrees of generality. We refer to Schweizer (1994) for an account on these
resuits.

Lemma 2.2. Let S be a locally bounded semi-martingale such that #°(P) 0 L*(P) # 8 and fix
@ e 4PN LZ(P

Letting ¢ = |Z2| 1@y we may find a predictable S-integrable RY-valued process 3 such
that

prl =c+ (88,

where the stochastic integral 3"+ S is well defined and is a uniformly integrable martingale with
respect to @° as well as with respect to any other measure @' € #°(P) N L*(P).
The choice of B is independent of the choice of @° € .#°(P)N L(P),

Proof. Let f be in K = span (K, 1), that is,

f=6+Y hi{Sp ~ Sp),

i=1

where & € R and where 7% > T} are stopping times such that, for i = 1, ..., #, the process
ST is bounded and A, is a random variable in L™, F 11, B, R?). Clearly the uniformty
integrable @°-martingale '

=alf|F]
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is a simple stochastic integral on S (plus a constant) as
N
=6+ Zh;(si"fz\: = Sriad)
=1

=6+ (H.S),

where H = X BT, TA.

By Lemma 2.1 {c) there is a sequence { )2 =1 € K converging to ZZ" in L*(P), whence
also, by the Cauchy-Schwarz inequality, in L' (@), If &; denotes the real numbers in the
representation of f; as stochastic integrals, we get
lim §; = lim Ego[f;]

j—oo

=jﬁng@[Zomﬁ]
= Ep[Z3.Z']
= Ep[(ZZ")] = ||z°Pt||L2(ﬁs

The last line follows from the fact that, by the optimality of ZX', the random variable
Z%, — Z°%s orthogonal to Z%* in L3(P).

The random variables ( f; — §;);2; converge in L'(Q% to ZF" — ]IZ‘QE‘HiZ(P} and we may
apply Theorem 4.2 in Yor (1978) — for the vector-valued case, see Theorem 4.60 in Jacod
(1979, p. 143) - to obtain the desired integrand 3.

As regards the last assertion of the lemma, note that, if we choose instead of @° another
element Q' of #°(®) N L2(P) the process 3 - S remains unchanged and is a &' uniformly
integrable martingale converging to Z5%* — ﬂZf,’(‘,"Ifiz(p} in L'{@". O

Corollary 2.3. If the semi-martingale S is continuous, then the process Z?™ is continuous 100.

Remark 2.4. On the other hand, the continuity of S does not imply that the P-martingale
Z7™ is continuous. The following easy example goes back to Harrison and Pliska (1981) —
see also Example 5.13 in Fdllmer and Schweizer (1990) — and may serve as a general source
of intuition for the theory developed in Section 3.

Example 2.5. Let W = (W )<, be standard Brownian motion based on
(.7, (% )oci<2P) and let r be a random variable based on (€2, &, P), independent of
W, taking the values 0 and 1 with probability % Fort<lletF, =% andfort > 7 let #,
be the o-algebra generated by %, and r and define

S =W, +r(t-1)".
We may and do assume that %, is the filtration generated by W and that & is generated by

W and r.
The process § models the following situation. Before time 1 we simply have Brownian
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motion; at time 1 a coin is flipped and according to the result the process either continues to
be Brownian motion or it becomes Brownian motion with constant drift equal to 1. We
stop the example at time ¢ = 2.
In this case we do not have uniqueness of the martingale measures for §. Indeed,
ZY = 2{r =0}

is the density of a martingale measure Q! and so is, by Girsanov’s formula,

2 2
Z2 =2{r=1}.exp (— _[1 dw, —%L ds) =2l{r= 1}.exp(cp—%),

where ¢ denotes the standard Gaussian random variable ¢ = W) — W,.
The general form of the density Z of a signed martingale measure for $ is given by
Zoo =220 + (1~ 0)Z2,

where A € B and Z, is the density of a probability measure (or an equivalent probability
measure) if and only if A € [0,1] (or A €]0,1]).
Denoting again
Z= E[Zm|5’",],

the process Z is continuous if and enly if A =1, in which case Z is the density of the
‘minimal’ martingale measure, as one easily verifies.
As regards the ‘variance-optimal’ martingale measure, note that by elementary calcula-
tions we obtain
12
”Z&})”I}{P} =2,
while
22
"Zgo]";_?(m =2e
hence by Pythagoras’s theorem
IAZE) + (1 = NZE N2y = 207 + 26 — A,
The value of A which minimizes the above expression is nos equal to 1 but equals
A% =¢/(e+ 1) > } for which we get
2e
e+1"

In particular the (cadlag version of the) P-martingale Z™' equals identically 1 for 0 < 1 < 1,
while

1ZE 2my = X2 + (1 =~ APYZDY 21, =

2
e+1

so that Z°" has a jump at ¢ = 1. For 7 €]1, 2] the process Z{™ is continuous and we also may
explicitly calculate it:

2e
pl——i =
zy —e+1]{r 0} +

{r=1},

2e 2 t—1
Zapl=_ = _ = — _ —_——_—
: e+lﬂ{r 0}+e+l|]{r l}exp( W, — W) 5 )
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3. The proof of the theorem

Throughout this section we assume that S is a continuous adapted process. We start with
the preliminary result that, under very general conditions, @ is a well-defined probability
measure absolutely continnous with respect to P and with square-integrable density, that is,
Q™ c.#(P)NLL (P;. The more delicate issue of showing that @°™ is equivalent to P, that
is, @°P' € .#°(P) N L2 (P}, will only be tackled later.

Theorem 3.1. If the adapted stochastic process S is continuous and if the constant function is
not in K, then the variance-optimal measure Q" exists and as in L(P).

Proof. We cannot make use of the result of Lemma 2.2 and hence we cannot state that Z3'
is given by a stochastic integral with respect to the process S. We in fact do not even assume
that S is a semi-martingale. Some approximation is therefore needed. Let f be the
orthogonal projection of the constant function 1 onto the space Kp. From elementary
linear algebra it follows that the optimal measure is given by Z&" = (1 -~ f)/(1 - E{f.
Also it is clear that E[f] = E[{ f] = E[f?] < I, proving that 0 < E[f] < 1. Showing that
@°" is non-negative is therefore the same as proving that /' < 1.

Suppose on the contrary the existence of € > 0 such that P[f < 1 +¢] > e. Take K, a
simple integrand such that g = (K + §),, € Ko and such that ||g — f || < n where < €*/32.
We may, as is easily seen, also suppose that |1 — (K 8)xll» £ 1, where || - || denotes the
norm of L*(P). From Chebyshev’s inequality we deduce that

P[(K-S)>1+5] 2Bl > 1+ -B[lf — (K-S)ul > 5] 26——;21}22;
Now define T = inf{¢#{(K - 5}, > 1}. Clearly we have that
1= (K Sl = (1 - (K- 8)7)"1{T = 00} + (1 = (K - §)c)*1{T < 00}
=(1- (K-8 + (1 = (K- 8)e)" T < o0},

where the last equality follows from the continuity of S. From this we deduce that (denoting
by || - | the norm of L*(B))

1= (K- S)ell? 2 It — (K- 8)rl + jmu (K- 8))?

> 11 - (K°S)r||2+j (1-(K-8))
(K« 8y 1+e/2

RSl (8

21— (K- )l +5(5)

3

€
> 1- (K-8)7lP +5-
On the other hand,

1= (K-Sl S IL~S{[+m,
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and hence, as |1 — (K- S),| <1,

I =F1F 2 111 = (K S)ol* = 20
3 3
2 1= (K-S)el?+5 =202 11 - (K- )7l + 1.

These inequalities show that f cannot be the projection of the function 1. O

Remark. Some of the ideas of the above proof come from Stricker (1990).

From now on we again make the assumption that .#%(P) N LZ(P) # ¢, which implies in
particular that S is a semi-martingale. Again we denote by @° the element of 4°(P) of
smallest L2(P)-norm, we fix some @° € 4°(P) N L*(P) and w let

de
ZOPI=EP[%I§{|

d@®
Z?=Eplﬁi§:lr

where, of course, we choose cadlag versions for the processes Z°P' and Z2°. The density
dQ/dP = ZT' is given by Z>' = (I — f }/1 — E[f ] where f is the orthogonal projection of
1 on K. As shown in Section 2, the element f is given by a stochastic integral and is of the
form f = (H - §), for some predictable process H. To show that @°P' is equivalent we only
need to show that / > | a.s. Let us put

Y, =1—{H-8),=Ego[Y,|#,] where Y =1-f
X, = EP[leﬁr] = (1 - E[f])z?pt

o = inf{¢|¥, = 0}

T =inf{1}X, = 0}.

From the previous Theorem 3.1 we know already that both processes ¥ and X are non-
negative. We also have that on the stochastic interval [o, oo[(or. [ T, o) the process ¥ (or
X)is constant as, by the preceding Theorem 3.1, the random variables X, and ¥, are non-
negative. Because the process Y is continuous, the stopping time o is clearly predictable;
indeed it is announced by the sequence o, = inf{z| ¥, < 1/{(n + 1)}An.

Lemma 3.2. Let S be a continuous semi-martingale. If the set #°(PYN L7 (R) # 0 then
o = T. Conseguently T is predictable.
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Proof. On the set {¢ < T'} we have
0 < X, = E[X | F,]
= E[Y|#,]
=Y, because Y, = Y, is & ,-measurable
=0 since {¢ < T} C {o < o0}

This clearly shows that P[{oc < T'}] = 0.
On the set {T < o} C {T < o0} we have that

0=Xr =E[X,|#7]
= E(Y|# 1]
= E[Y,| F 1]
We therefore obtain that [r., Y,dP =0 and hence we have that Y, =0 on the set

{T < ¢}. From the martingale property for @° we then obtain that [, ¥7d@° =0.
But this is clearly a contradiction to the definition of o. O

Corollary 3.3. Under the hypothesis and with the notation of Lemma 3.2 we have that

(1) the jump of the martingale Z"' at the stopping time T is zero, that is, Z¥' is continuous
att=1T,
(2) the stopping time T is announced by the sequence of stopping times

T, = {r!Zf"‘ < %}An

Proof. The first claim follows from the fact that T is predictable and from the martingale
property. Indeed E[AZ7|# 1_] = 0. On the other hand, the jump can only take non-
positive values (as Z; = 0 while Z, > 0 for ¢ < T'), hence AZP* = 0 a.s. The second claim
follows trivially from the first claim. O

The following lemma should be folklore, but for completeness we give a proof,

Lemma 3.4. If U is a non-negative square-integrable martingale, if Uy > 0, if the stopping
time T = inf{t|\U, = 0} is predictable and announced by a sequence of stopping times (T,,)5;,
then

on the set {Ur = 0}.
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Proof. Since the martingale is uniformly integrable, non-negative and since Uy, > 0, we find
by the Cauchy—Schwarz inequality that

-Um
1]——E-U—T" ﬁfn]

o
= E[Z2 0y # 0}1#7
L~ Ty

U\ 172
<E (U—‘”) |ffr,] E[1{Ur £ 0)| #1]""

Since E[1{Uy # 0}|# 1] tends to 2ero on the set {Uy = 0}, the proof of the lemma is
completed. d

We are now ready to prove the main theorem of this paper.

Proof of Theorem 1.3, We use the notation introduced above. Suppose that
P[X7r = 0] > a > 0. The stopping tlme T is predictable and is announced by the sequence
(T)uz1- Because the martingale Z° is strictly positive it is umforrnly bounded away
from zero a.s., that is, Plinfy ¢, Z} > 0] = 1. Since the martingale Z° is also bounded in
L*(P) we have that supy<, E[(Z%)?|#,] < oo a.s. On the other hand, the previous
lemma shows that the expression

E(ZZ)V|F 1]
ZFy
tends to oc on the set {ZF¥' = 0}. It follows that for n large enough the set
042 12
E[(ZE)|F
4= [qupElZar1#] EZ2)| )
o<t (Z]) (Z7)
is non-empty. As a consequence, for large enough #, the set
4 = JElZ0)1# 7] BUZ2)1# 1)
” (z3)* (ZF)
is a non-empty set in # 5 . The martingale
Zr=2" for 1<T,

Z°
= ZOpt for ¢ > T, on the set A,
= pr‘ for ¢ > T, outside the set 4,

defines an equivalent martingale measure @,d@ = Z,dP with density Z,, in L*(P),
Because | Z |2 < [ Z%"||; we arrive at a contradiction. d
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4. Approximation of continuous processes

In this section we apply the main theorem to a very natural and basic problem in
mathematical finance, which was pointed out to us by H. Féllmer some vears ago.

Problem 4.1. Given a continuous-time stochastic process (S, ),eg, based on and adapted to
the structure (Q, #, (#,).eq, , P) (satisfying suitable assumptions), find a sequence {S7),cp,
of processes based on and adapted to Q, F”, (%7 )er_, P with the following properties.

(i} Each 5" is finite, in the sense that S” is adapted to (€0, #7, (#7),en, ) where F" and
F7 are finite sub-o-algebras of F and F, respectively.

(i) S” as well as (F",(F7).em,) converge in some reasonable sense to S and
(#, (ﬁr)re[m)-

(iii) For each » there is an — in some sense naturally chosen — measure @" on #”
equivalent to the restriction of B to %" such that there are only two possibilities: either
(@")72, converges, in which case it converges to an equivalent measure @ on & under
which S is a local martingale or (Q");2; diverges which implies that there is no equivalent
local martingale measure for S on #.

There is an obvious interest in finding reasonable sclutions to this problem of discrete
approximation, which we deliberately formulated in somewhat vague terms. For example,
we might think of a process § with stochastic volatility which we want to approximate by
discretizations modelled on finite trees. We shall not elaborate on particular examples but
rather present a general methodology.

Of course, there is much known and a huge literature on aspects (1) and (ii) of the above
problem. The new ingredient is aspect (iii) pertaining to the construction of equivalent
martingale measures, which is of central importance in mathematical finance. The problem
pertains, in particular, to the question in which ‘natural sense’ the martingale measures @"
should be chosen for the finite processes §”.

Let us start with the easy situation of a complete market, that is, if the process 5 admits
exactly one equivalent local martingale measure @ on F. In this case the problem of
‘natural choice’ does not arise and it is standard to approximate § by a sequence of
complete discretizations S”, that is, such that there is exactly one equivalent martingale
measure @" on F” and such that @" converges to @ (in a sense to be specified). For
example, we have the well-known approximation of Brownian motion by binormial
processes.

The fun in Problem 4.1 starts if we pass to non-complete markets where the problem of
‘natural choice’ becomes crucial. For example, choosing for each » € N the minimal local
martingale measure @" on #” may turn out to be a poor decision: the limit measure
should — in any reasonable construction — again be the minimal local martingale measure;
but the examples in Schachermayer (1993} and Delbaen and Schachermayer (1994) show
that — even if S is a very nicely behaved process — the minimal martingale measure need not
exist. In other words, the minimal martingale measure may fail to be the target, to which the
@" can aim to converge.
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On the other hand, Theorem 1.3 gives us a possible target for the @" to aim for, namely
the variance-optimal measure. We shall present a possible construction responding to
Problem 4.1 in the following sitnation. We assume S = (§,),cp, to be a continuous semi-
martingale, which we also assume to be one-dimensional. We shall add some technical
assumptions as we proceed in our construction. For the moment, we only suppose that Sis
based on (Q, &, (% ), , P) satisfying the usual assumptions and such that &, consists of
the null sets and their complements only and S5, = 0. We also assume that the process §
‘never runs out of steam’, that is,

:Engc(S), =00 as.
This assumption will be convenient for the time-change arguments below; it 15 easy 1o
convince oneself that this assumption is not really a restriction of generality.

Theorem 4.2. Let (S,)cp, be a one-dimensional continuous semi-martingale based on
(0, F,(F )iem, , P) such that {S), — co almost surely. Define

T,=inf{t: (S}, > u}

and denote by (R,).cr, the time-changed process

Ru = ST},
and by (%,)uen, the natural filiration generated by (R.)uem, S0 that $,C Fr, and
4 =a((%)uer,) S F.-

(a) If there is an equivalent local martingale measure @° for the process R, on' ¥, then under
Q° the process R, is a standard Brownian motion with respect to its natural filtration
(%.)uen, - The Doob—Meyer decomposition (with respect to P and the filsration ($,)) of R, is
of the form

dR, =dM, + e, d{M}, = AM, + o, du

where (M, ),cm, is a standard Brownian motion with respect to P and to the filtration (%) uer,
and o is a (‘:’ﬁ )-predictable process with [y° |a,jdu < 00 almost surely. In this case the
measure @° and € is the unique local martingale measure for R, and its density is given by

dQ’
dF

Furthermore, R, is a martingale (and not only a local martingale) under Q°.

(b) If the process S, admits an equivaient local martingale measure @ on F, then the
restriction of Q 1o & coincides with the above defined unique local martingale measure @° for
R,.

= é"(—a M)o:f

Proof. (a) is rather cbvious and (b) results from the fact that each simple stochastic integral
on R (with respect to the filtration %,) may be written as a simple stochastic integral on §
(with respect to the filtration # ). O

The theorem suggests the following strategy for analysing the set .#°(®) of equivalent
local martingale measures for the process § on . First we pass to the time-change R, of §;
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and check whether the (unique) martingale measure @° for R exists on ¢. This should be
(relatively) easy to check as there is a formula to hand. The existence of @° is a necessary
condition for the existence of a local martingale measure @ for S on #. As a second step
one has to analyse, whether (and in which possible ways) @° may be extended from & to #
by maintaining the property that @ is a local martingale measure for § with respect to the
filtration #,.

To study the enlargements of the filtration (%,,),.r, Which are contained in the filtration
(F 1. )uem. we introduce a somewhat formal concept.

Definition 4.3 Let of denote the family of all objects A of the form
A= (uh"'!um‘#uls---s-#u,,)

wheren € N0 < u) < ... < u, and #, are finite sub-o-algebras of ¥ 1 ; such that (3, )i—s
is increasing. We sometimes denote uy = 0, 3¢, = {0, 0} andu, | = co. On the family of we
define a partial order by saying that

B=(vla‘”svmsxu]:---axfum)

is bigger than A if {v,, ... v,} contains {u),...,u,} and v; = u; implies that X', 2 .
For A € o we define the filtration (‘?f)mg[;g+ by

% = (%, Hy lu; < u),
and the o-algebra %% by
9 =o(9,4,)

It is intuitively obvious that the family of filtrations (42) sew converges to the filtration
(F 1 )uem, - To make this statement precise we adopt the usual L -setting of this paper. It
will be convenient to add a mild technical assumption.

General Assumption: For rhe rest of this section we assume that S is a one-dimensional
continuous semi-martingale, (S});~ oo as., and that, for each uy€ R, R, =
SUPg <<y, | Ru| € L2(P} for some p > 2.

We shall also assume that the martingale measure @° for the process (Ru)uew, With
respect to the filtration (%, },c5, exists and is equivalent to P (on the o-algebra 4).

Proposition 4.4. Under the above assumption let f = (H + S}, be an element of Ky, ie., a
simple tntegral on S of the form introduced in Definition 1.1 above (with respect to the
filtration (F )iep, ).

For € > 0, there exist A € &/ and a simple integrand H* with respect to (Ry}uem, and the
filtration (%2) such that, for f4 = (H* - R)oo, we have that

If A= f e < e

Proof. We may suppose that
f= h(Srtzl - S;rm)
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where TV < T are stopping times such that the stopped process S 7 is bounded and 4 is
a bounded & ;. -measurable function. We may also suppose that & is a simple function and
that T is bounded by some T, say T < Ty, for some M € R,. Indeed, for the last
assertion note that {T,),cg, increases to infinity, hence (Sr s7im — ST[I])ueﬁ as well as
(St are — Sr@)uen, tend 10 zero almost surely as u — oc. As they also remain uniformly
bounded they also converge to zero in L3(P).

By writing/ = h(Sya — S7,, ) + #(S7, — Sym) we see that we even may assume that T
equals Ty,.

Let 0 < u < . < U, == M, and define #,, inductively, for i = 1,...,n, to be generated
by #, TV < T,}, and k’ﬂ{rm <T,} Let A= (uy,...u xul, ...#, ) and define
the random variable

Zh'ﬂ{T w351, = S7,., Zh‘ﬂ{T“}<T JR - R,)

which is a simple stochastic integral on R with respect to the filtration (% Jue, -
Note that our technical assumption implies that the random vanables f remain
bounded in L®; if (47)2; is a sequence in &, 47 = (u],..., u’J .9} ) constructed as

above such that limy;_, max; gcp iu" u’ d=0,1t follows from the continuity of § that
(4 )_, ) converges almost surely to f. Therefore f % converges to f with respect to the
norm of L?(®), which finishes the proof. O

We may reformulate the assertion of Proposition 4.4 in the follovnng way. Identifying
L, %", P) with a subspace of L2(9, #,P) and denoting by X' the space of simple
stochastic integrals on R, with respect to the filtration {#7), the assertion of Proposition 4.4
then becomes tantamount to saying that (.., K& is a || - ||;-dense subspace of K.

As a next step we analyse in detail the possible martingale measure extensions of the
measure @° on G to a martingale measure @ on 9*. In order to do the bookkeeping for the
following Proposition 4.5 we introduce some notation. We denote by atom {#) the atoms
of a finite o-algebra 5, i.e., the elements of 3# which contain only # as a proper subset.
If | C #, are both finite s-algebras and 7 is an atom of #, we denote — if no
confusion can arise — by atom (f) the atoms of #, contained in I. If #, C ... C 3%,
are increasing finite o-algebras of 0 < & < j < » and 7 an atom of ;, then we denote by
m(I) the unique atom of X, which contains 7. The reader may want to consult
Example 2.5 as an easy illustration of the situation described by the following result.

Proposition 4.5. Under the above assumption let
A= (gt oy, K ) €A
be given. There is a one-ta-one correspondence between

(i) the extensions @ of @° 10 the g-algebra 9 such that Qis an equivalent local martingale
measure for R, with respect to the filtration 9], and

(i) the families of functions ((f,") Leatom{st'y,)) With the following properties:
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(a) each f,vf" is measurable with respect to the o-algebra {fﬁi- and takes values a.s. in
J0,1] on the support of E[1 I;|@‘f,5__] and zero elsewhere;
(b) for each 1 <i < nandeach atom I,y € X, | we have that

j‘ff; = 1]1;_1 a.s.
Leatomifi_;}

The correspondence berween (i} and (ii) is given by the subsequent formula for the density
Z = dQ/dP of the measure @ on 94

n

Zow)= Y. Z&(w)- [J(e" w)iLw)) (4.1)
IyCatom{ Ay} i=1
where
NSt
& TELeL

with the usual convention that 0/0 =0,

Remark, We may interpret, for given 0 <i<rnand I, ; € #, , the family of functions
( ﬂ""),{_emm(;‘._,) as the rule of distributing the mass of the probability measure € on I_;
among the atoms [; € atom(J,_,). The assertion of Proposition 4.5 means that we obtain
the general form of a local martingale measure extension @ to %* if and only if this
distribution of weights is done in a o(%,,3¢,,,...,5,_)-measurable (but otherwise
arbitrary) way, assigning to each I; strictly positive mass.

Proof. The verification of the assertion of the proposition is mainly a matter of book-
keeping,

Let @ be a local martingale measure for R, on ¥ with respect to the filiration %2,
Denote by (Z,).er, the corresponding density process. For 1 <i<n and an atom
I; € #y, define

i Zu,-_ .

The verification of properties (ii} (2) and (b) is straightforward. To verify that Z is indeed of
the form given by (4.1), dencie by Z the density process of @ with respect to the filtration
(%2).en, and by Z the %/ -martingale given by taking conditional expectations in (4.1}, so
that, forj=1,...,n+ 1 and 1 € [u;_y, 4;[, we have

=1
= i fj—l
z= Y Z[Id"u.. (4.2)

I E:J.'(on:l{.sﬂ",,;._1 ] i=1
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Indeed, to verify (4.2), note that

Z,= > ZOH s,

I, gatom{#,, )

n—1
2,-=z) Y Egnnwl ]f[e®
=1

I,€atom{ ¥, ]

I A n-|
0 S BLIG;, - L)
=z Y )( I Eg,

T.eatom (X,

= 23" Z Hg"a(fn 1’?[

I, catom (A ]) i=1

Continuing in an obvious way for i = n — 1,...,0 we verify (4.2).
To establish that Z equals Z we observe that

z, Zy

i iy i
== > g, (4.3)
= Z“;— i catom H# {u;)
forj=1,...,n and
Z,- Z, Z,.
SN i 5 (44)
z,, Z,, 7,

for j=1,...,n+ 1. Equation (4.3) follows from the definition of f f and (4.4) from the
uniqueness of the local martingale measure @° with respect to the filtration 97,
Summing up, we have shown that for each equivalent local martingale measure @ on %~
we may define functions ((f;*) Zcatom .a!",,:]):—l verifying (i), (ii} and (4.1). Conversely, given a
family of functions ({£;%) Leatom (#, )) =1 verifying (i) and (ii), we may define @ via (4.1) and
by going through the above identities again it follows that @ is a probability measure
equivalent to P on 94, such that R, is a local martingale with respect to @ and the ﬁltratlon
(%) en. . Note that the equivalence of @ 1o P follows from the fact that the functions f;
are almost surely strictly positive on the support of E[17,|9,,_]. O

The explicit description of the possible equivalent local martingale extensions of @ to

%" in Proposition 4.5 now allows us to obtain an explicit characterization of the ‘variance-
optimal’ extension. We start with an clementary lemma.

Lemma 4.6, (a) Let (@), b strictly positive real numbers. Then the minimization problem

N
Minimize F{x,...,x5) = foak,
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where we minimize over all real numbers x|, ..., xy under the constraint
N

Zxk = 1,

=1

has a unigque solution, namely

We have that F(%;,...,%x) = (K a7
{b) More generally, let (a.(w))i-, be strictly positive measurable functions, defined on
some (3. F, P). Then the minimization problem

Minimize E [i xf(w)a;_.(w)],

where we minimize over all real-valued measurable functions x,(w),...,xy{w) under the
constraint

N
Z W) =1,
k=1

has a unique solution (unique up ro equality almost everywhere), namely

X a(w)™!
n —_—

Proof. (a) follows from elementary calculus with Lagrange multipliers. The second part is
an almost immediate consequence of the first by reasoning pointwise on w € €. Let x;(w) be
defined as above and let y,{w) be any measurable real-valued function satisfying the

constraint
N
Z ¥jlw)
k=1

n
—_

Then for each w € £ we have
N N
Z xp(Wap(w) <7 riwim(w)
k=1 k=1

with equality holding if and only if x;(w) = u.(w), for each k = 1,..., N. The conclusion
now follows, O

Note that in Lemma 4.6 we have in particular that, for the solution %,, . .., %,, each %, is
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strictly positive. The lemma provides us with a formula for the variance-optimal distribu-
tlon of weights which allows us to calculate explicitly the family of functions
(( f ") 1.catom (%, ))I_I, for the variance-optimal measure @*°P* with respect to R, and the
filtration @7 Let us show this in some detail.

Denoting by Z*°™ the density process associated with @*°P, we shall determine Z4*
by backward induction on i = #,.. ., 1. First note that

ZADpl zo
ZA,opt Z° for € [u,, 00|

Indeed, this follows from the fact that any local martingale measure @ on ¢* for R — R* is
uniquely determined by its restriction to @A

The subtle point consists in calculating the (possible) jumps of Z#°P* at time u,. To do so,
denote, for I, € atom (5, ), the @fn_-measurable functions

[ (24 opt ’
E || o 1|90
P

E[17,|%4_ )

(70 2 )
E ( 7 ) 11,1% _]
A7
To construct the functions (/") catom (#,,) corresponding to @4 via Proposition 4.5, let
(@)™
(@)

featom (1 (L)}

=

Va1 (4n)

and
A
E['EI |€§ -]

We have 1o verify that ( ﬁ;’");"emm( w#,,) satisfies the conditions of Proposition 4.5.
The verification of (a) and (b) of assertion (ii) is straightforward. For example, note that

(@)™
1 'eﬂln_l :1][__1.

gh =

-1 Lycatom (1.}
Jar = I
Iyeatom{Z, ;) ( n)
I,,Ealom (-'rn—l}
We claim that — given the function Z22%' — the formula

ZA,Opl

&1,

) 0Pt =
Z I, catom (#, )
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minimizes the quantity || Z 2 L2y Over all local martingale densities Z, with Z, _ = Zﬁ;‘_’p‘.
Indeed, we have to solve the opumlzatlon problem

2
Z
()]

where we minimize over all densities Z,, obtained via functions (£,");catom (o, .y lor
(&)1, catom( x,)) as described in Proposition 4.5. Noting that an atom 1, €
atom (s, ) is 92 _-measurable, we may argue on each I, € atom (3, _,) separately
so that in order to venfy (4.5) we have to show that ZAP solves the problem

Minimize E 4.5)

Minimize E

2
Zy
(Zgopt) 17, 1] for I, , € atom(sf, ). (4.6)
U~

Using the equations
Z AL, =ZF% Y g,

I, eatom (£, 1)
— z:‘lipl . fRI"
" I,,eatom(f_;)E['“ |{§ ]
and
0
Zu_Z&
Zun - Z‘?n 1

we may calculate

2 [ 2
Z, Z
n— = 9
o) ) -, 5, () ]
' 22\ (Ui Y
=E e X 11,
_f,eat;-ﬂf._n(z'?n) (EW |4:,-]

| (%) |

_ (i
|, EALieE T

I,catom{Z,_ )

=E| > ](ﬁ")z-ﬂ,f"]-

| f-catom (Fpmt

Noting the constraint £; catom s, ) il =11,_,, we are exactly in the situation of Lemma 4.6
(b) which allows us to conclude that — whatever Z£° may be — the use of (/) catom (¢, 3
is the optimal choice to extend Z;-% 1o Z;°% and therefore to 24",
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Now we may continue by backward induction to calculate Z°%, By the unigueness of
@° with respect to %, there is no problem in calculating the ratio of Z°P' in the interval
[un—l » ¥p [:

A,opt 0 0
Ziom 70 Z8

z‘ B ZD T2,
and, more generally, for 1 € [u,_y, #,]
A opt Z;O
z::‘,f"‘ TzZg,

The next, more delicate, point comes with the (possible) jumps of ZA% at u,_,. Defining
again, for I, , € atom (5%, ),

onpt
N _E- Zi 1, (%8 _
- E[1L,_;|%4__)

we may proceed analogously as above to calculate { f ' M. catom( #., )
Note that in the definition above we used the quotlcnt

-A.0pt A0 Aopt A.opt
ZE ZE™ Z; z2e

Aopt - A0pt y) Jopt A ont
Zﬂn—l Z“n, ZU - Z“J!-]

ZU ZA opt ZD

" T Aot ¥
Tz, ZAw

for which we need to know the relative jump of Zfﬂ"’p‘ which we calculated in the previous
inductive step. This is the reason why we have to use backward induction,

Continuing in an obvious inductive way, we finally arrive at the ratio Z4%P'/ZJ°P',
which equals Z2:°". Hence we obtain an (at least in theory) explicit way to_ calculate the
density of the measure @*°P. Noting that by Lemma 4.6 all the functions f are strictly
positive on the support of E[17;|¥_], we see that Z* is equivalent to P and we have, in
particular, proved the following proposition:

Proposition 4.7. Under the above assumption, the variance-optimal measure %" for R, with
respect to the filtration (44 Jucm, exists for every A € of and is equivalent to P. In addition,
Q**" may be calculated explicitly by backward induction.

Next we turn to the behaviour of the family (@*°") .., as 4 increases along the partial
order defined on .

Theorem 4.8. Under the above assumptions the following assertions are equivalent.
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(i) The variance-optimal local martingale measure @7 for the process S relative 1o the
filtration (F }icq, exists and is a P-absolutely conrmuous probability measure, i.e.. in 4 (P).
(ii) The famdy (@) 1 o remains bounded in L*(P).
(ili) The family (@) . .; converges in L*(P) along the partial order on of . In this case
the limit equals Q.
(iv) The constant function 1 is not in the L*(P)-closure of K, 1\ L*(P).

If, in addition, the intersection of the L*(B)-closure of Ky N LZ{F’) with L2(R), is reduced to
{0} the measure @' is equivalent to P.

Proof. (i) < (iv) The equivalence of (i) and (iv) follows from Lemma 2.1 and Theorcm 31

As regard (i) and (iii) denote, for 4 € o, by K§' (or K*) the subspace of L? ( P) spanned
by the simple stochastic integrals on (R, ),eg, With respect to the filtration (@4 Juer, (or by
K§ and the constants). We know by Proposmon 4.4 above that £K0 Jaear (0T (K Jacar
form a dense supspace of Ky (or K) with respect to the norm of L*(P).

i) & { 2) Simply note that @™ is, by Lemma 2.1, the orthogonal projection of @°™
onto the L*(P)-closure of K.

(iil) < (ii): This is obvious, noting that, for B > 4,

H @B opt @A ot

ey H Py

(i1) «> (i): This is an easy Hilbert space argument. For the convenience of the reader we
isolate it in the Lemina 4.9 below.

The final assertion of the theorem follows from Theorem 2 of Stricker (1990) and our
main Theorem 1.3. d

Lemma 4.9, Let (K;);c; be an upward-directed family of subspace of a Hilbert space H and
(xi)icr be elements of K; such that K; C K; implies that x; equals the orthogonal projection of
x; onto K;.

If (x;)icy is bounded in H then (x;);c; converges with respect to the norm of H to an element
Xo € H such that the orthogonal projection of x, onto K; equals x;.

Let us pause for a moment and recapitulate what we have achieved (or not achieved) in
our attempt to give a satisfactory solution to Problem 4.1.

First of all, we have not yet discretized the continuous process (S;),cz, . All we have done is
to timechange the process S to obtain a process R, = Sy, which is adapted to the ‘natural
Brownian filtration’ (%,),em, 50 that we have a unique martingale measure ©°. Then we
defined the family of ‘finite extensions’ (€§ Juem, and gave a method to calculate the variance-
optimal measures @*°P*. Finally the L(P)- boundedness of the family {@jé’;‘) guarantees its
convergence to the P-absolutely continuous non-negative local martingale measure @°™.

If we know in addition that .#°(P) N L%(P) # @, which is guaranteed by Stricker’s ‘no
free lunch’ type condition Ko N L2(P), = {0}, we may conclude that Q°® is in fact
equivalent to B.
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We now modify the above construction to ebtain the finite discretizations of §. We apply
the most obvious way of discretizing a continuous one-dimensional process by looking at
the instances when it moved by n~'. We do this at a sufficiently large number of instances,
e.g., n°, to make sure that we follow the process all the time ¢ € .. as n tends to infinity. For
n € M, define inductively the stopping times (T,-("))?io by Ty =0 and

T = inf{t > TS, - Spwl 2 s

It follows from our assumption hm,_,m(S), =oc a s as well as from the existence of the
equivalent martingale measure @° on ¢ that each T  is almost surely finite and it is easy to
verify that

im T " =t as.

Define the process S" = (S,(")) <R, bY
S(ﬂ) S:‘“w1

where 0 < : < r;3 is the biggest m.gmber such that T(”} < 1. Denote by R™ = (R; fm) );—0 the
process (S (D:—O and by ({9‘(. "o the filtration generatcd by R™. Obviously R™ is a
binomial process (scaled with step size »7!) and %% = g(") consists of 27
atoms each having strictly positive P-measure (under the above assumpt:ons on S).
There is a unique equivalent martingale measure @ on ™ for R which assigns to
each atom the mass 277

Now we define the ﬁmte extens:ons @”! of the filtration %, ) We let &, denote the set of
all 4, = (# (“)) 3#( ))where 929 Y7, is an increasing sequence of finite o-algebras
contained in (F 1.._(.,.)),z

For each 4, € o, one may similary as (and somewhat easier than) above calculate the
variance-optimal extensions QP of @ to the o-algebra ¥ = {ﬁf;‘ . We refer to [Schweizer
1994] for an extensive treatment of the variance-optimal measure in finite discrete time.

Finally, it should be clear how to proceed analogously as above to obtain the following
theorem:

Theorem 4.10. Under the above assumptions the following assertions are equivalent.

(1) The variance-optimal local martingale measure @' for the process S relative to the
Siltration (F )5, exists and is a P-absolutely continuous probab:kry measure, i.e in H{P).
(i) The family ((@A" ') 4, cat, Incie Temains bounded m L(P).
(i) The family (@), coly Incii converges in L) as n tends to infinity and A,
increases in of . In this case the limit equals @7
(iv) The constant function 1 is not in the L*(P)-closure of Ky L*(P).

If, in addition, the intersection of the L*(®)-closure of Ko N L*(P) with L*(B),. is reduced
to {0} the measure @' is equivalent to P.

We believe, that Theorem 4.10 gives quite a satisfactory solution to Problem 4.1 in the
case of the continuous R-valued processes S. Note that, without the continuity assumption



104 F. Delbaen and W. Schachermayer

on S, there seems to be no hope for a reasonable solution to Problem 4.1. On the other
hand, it should be possible to extend the above construction to the case of continuous R4-
valued processes. We leave this question as an open problem.
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