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We prove a functional non-central limit theorem for scaled Markov processes generated by pseudo-
differential operators of periodic variable order. Two different situations occur. If the measure of the
set where the order function attains its minimum a, is positive with respect to the invariant measure,
the limit turns out to be an a,-stable Lévy process. In the other case the scaled sequence converges in
probability to the zero function. The large deviation for this convergence is typical of processes
having heavy-tail increments. It turns out that only a finite number of large jumps can be recovered on
large scales. We also apply the results in order to understand the recurrence and transience of periodic
stable-like processes.
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1. Introduction

Let A be a lattice in RY such that R?/A is compact, and let a € C'(RY) be A-periodic
with 0 < a < 2. We denote by M(S?"") the space of Borel measures on S9! satisfying
u(A) = u(—A) for all measurable 4 C S, Let u: RY — M (S9"") be A-periodic and
continuously differentiable. Furthermore, we will assume that there exist ¢y, ¢; € Rt such
that for all x € R? and p € S9! one has

= J i 1|<Ps P)“Vulx, dp) < ¢z
-
Using the notation y = y/|y| € S9!, we define the family of measures

0, dg) = |87 d|&|ucr, dE)
on R* X 8§91 = R?\{0}. The pseudo-differential operator with variable order

b = [ (w9 = ut - ST 00 . 0
R? 1+ (g
generates a Feller semigroup (7,),~o on the space of bounded continuous function C,(R9)
(see Kolokoltsov 2000; Jacob and Leopold 1993; Kikuchi and Negoro 1997). The associated
cadlag process is a Markov process X with transition probability densities given by the
fundamental solutions of the parabolic problem Lu = O,u. This process is called stable-like in
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the literature, since it behaves locally like a stable process with position-dependent scaling
exponent.

Let N¥(w, dy,ds) be the random measure associated with the jump process
AX,:=X,— X,.. Its compensator is v(w, dy, df) := n(X,—(w), dy)dt (see Schilling
1998: 582). The following pathwise description of the stable-like process L can be given by

t

Xi0) = Xo(@) + |

j W¥(w, dy, ds)
0 J B (0)¢

t
+ J j V(N (@, dy, ds) — v(o, dy, ds).
0 J B(0)

For a modern introduction to the stochastic analysis related to Lévy processes, see
Applebaum (2004). Let IT5 : RY — R?/A be the covering map. For all A-periodic functions
f there exists a unique f, : RY/A — R such that f = fs o IIx. We denote by X* the
process on R?/A obtained by projection of X with respect to I1. It follows from the A-
periodicity of 7 and a that X* is a Markov process on R?/A. The associated semigroup on
C(R?/A) will be denoted by T*. The following proposition is a version of Doeblin’s theorem
(see Doob 1953: 197).

Lemma 1. There exists an invariant measure 7w for X™ on R?/A with w(R?/A) < co and
constants C, A > 0 such that, for all A-periodic € C(RY) and t = 0,

J[R{"/AfA dr = 0 implies || T,f]|sup < Ce_'”||f||sup.

Proof. The existence of transition probability densities for X follows from the existence of
transition probability densities for X (see Kolokoltsov 2000: 759). Moreover, one has

palt, x, y) =Y p(t, X0, 1+ y0),
leA

where x; and yy are arbitrary points in IT-'({x}) and IT~!({y}), respectively. It follows from
the positivity of the transition probability densities of X given by Kolokoltsov (2000: 761)
that (x, y) — pa(t, x, y) is bounded away from zero. The lemma then follows from a result
in Bensoussan et al. (1978: 365). U

We denote by D.([0, 7]) the space of cadlag paths starting in x and by
o D0, T]) X D.([0, T]) — [0, oo[ the Skorokhod metric on D.([0, 7]) (see Jacod and
Shiryaev 1987: 288). We will show that for a, := inf a the scaled processes

X = V(X — Xo)

converge in distribution with respect to the Skorokhod topology to a suitable stable Lévy
process if w({a = a,}) > 0. For diffusions without jumps having a periodic generator,
similar results can be found in Bensoussan et al. (1978) and Bhattacharya (1985).
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Theorem 1. If (a. = a,) > 0 the processes X" converge in distribution with respect to the
Skorokhod topology to an a,-stable Lévy process Y with compensator given by

@)= | @ s a0

Proof. According to Jacod and Shiryaev (1987) we have to prove that the characteristics of
the sequence X converge to the characteristics of Y. Since the measure u is symmetric, the
process X is a local martingale. We denote by N)(w, dy, df) the random measure associated
with the jump process

AXY = 07Xy = K ).
Let
KOG A) = | Lo e, d).
Then v"(w, dy, df) := nK"(X,,_(w), dy)d¢ is the compensator of the random measure
N"(w, dy, df). Let g : RY — R be a uniformly continuous bounded function vanishing in a

neighbourhood of zero. Using the definition of the %-product from Jacod and Shiryaev (1987:
66), we can compute

nt
gx ) = JO JW g(n~ V% (X, dy)ds

t
nJ JR g(n™ % )X s, dy)ds

j J g(n! XV yyrx  dyds
J J ﬂ{a>ao}(XnS )g(nl/a(XM) l/a”y)ﬂ(Xm , dy)ds
J j Tty (X ) MK s, dy)ds

= J J ‘ﬂ{a:au}(an—)g(y)ﬂ(an—, dy)dS,
0 JR4

since g is equal to zero in a neighbourhood of zero and

T~{o¢>o¢n}(anf)7’11/01()("“’)7l/a"y —0 P-as. for n — oc.

(1)

We now prove that for n — oo the sequence g v}"” converges in L*(Q, P) to

g*vO:tJ J Tty (02 r, dy)(d).
RI/A
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Moreover, we define

U(z) == g(y)<‘{aau}(2)77(z, dy)*J Ta=a,} ()n(x, dy)ﬂ(dX)>-
RY RY/A

Therefore,

=

0 0J0

/et 2 s
<J U(an_)ds> ] :2J J E[U(X s )U(X p—)]dr ds.
The Markov property of X and Lemma 1 imply that

2Jt JS E[U(X s ) U(X p)]drds
0Jo

o S[E[[E[U(Xm,)vm]U(Xm,)]drds
0Jo

t s

=2 E [( Tn(sf r) U)(an,) U(an, )} drds
0

t s
<2| | Cce" | U2 drds
0J0

2 2
_ac|ul, J 20Ut
n

1 — e—nsl ds <
Since the martingale Y has no continuous part and no fixed time of discontinuity (see

Jacod and Shiryaev 1987: 101 and 70), the modified second characteristic with respect to a
given truncation function % is given by (see Jacod and Shiryaev 1987: 79)

nt
C(,n) — (hhT) * V(tn) — JO ﬂ{a:ao}(Xs_)J.Rd hhT(i’lil/a"y)ﬂ(Xs_, dy)ds,

where hT denotes the transpose of the vector-valued function 4. Similarly, one can prove that
C(,") converges in L*(Q, P) to the second modified characteristic of Z given by

Crm Ty =t | Sy WO, dnnta)

2. Applications

The transience and recurrence of Lévy processes have been extensively studied (see, for
example, Sato 1999). For processes generated by more general pseudo-differential operators
with non-homogeneous symbols much less is known. In Kolokoltsov et al. (2002) the
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transience of Newtonian systems driven by stable processes was analysed. We now wish to
use the limit theorem of the previous section to link the recurrence and transience of X to
those of the limiting Lévy process Y. This will give criteria for the recurrence and
transience of the stable-like process X.

For this section we assume that m({a, = a}) > 0. For a given Borel set U C RY we
define the set of recurrent paths

R(U) :={w € Do([0, cc[); Ym € N, 3¢ = m such that w(r) € U}.

We note that X is recurrent if and only if Pyx(R(U)) = 1 for all open sets U C R“. For a
Borel set U C R? we define the set of transient paths

T(U) :={w € Dy([0, oc[); Is = 0 such that w(t) ¢ U, V¢ = s},

and note that X is transient if and only if P x(T(U)) = 1 for all open bounded sets U C RY.
The set T(U) is the complement of the set R(U) in Dy([0, oo[). Furthermore, the set R(U) is
open in Dy([0, oof) if U is open in R?. In order to apply Theorem 1, we need the following
lemma.

Lemma 2. Let Y be a strong Markov process with cadlag paths on R? and let U, V C R? be
such that

0 := inf P(Yl/z e V|Yy=x)>0.
xeU
Then Py(RCUN\R(V)) = 0.

Proof. Let ©(0) =0 and 7(n) := inf{t = max(n, t(n — 1)+ 1); Y, € U}. Let t+— T, be the
semigroup associated with ¥ on L>(R?). Then by the strong Markov property for all / € N,

k
E [H 1 Vf(Yr(m)+1/2)]
m=1

Il
=3
1
T
Il

Tye(Yemys12)E[1 V“(Yr(k)+1/2)ft(k)]]

e
—

El

k—1
=(1- 6)[E [H 1 V“(Yr(m)+1/2)]

m=1

Tye(Yemyr172)T1 21 V"(Yr(k))]

3
15

<s(1-0)"=0 if k— .

With the set C,, := {Yym+1/2 € V} we see that for all /€ N,
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k k
[P’y<R(U)ﬂ N c;;,) < [E[H 1VC(YT(,,,)+1/2)1 —0  if k — 0.
m=1 m=1

Since limsup C,, C R(V), it follows that

Py(R(U)NR(V)) < PY<R(U)m UN C;,) = 0.

leN m=1

Lemma 3. For all bounded open sets U C R?, Py(OR(U)) = 0.
Proof. We have OR(U) C R(U)), where U; := {x € RY; dist(x, U) < 1}. Further, Y is a
strong Markov process on R? and

6 := inf P(Y,, € U|Yy = x) > 0.
xel,;

Therefore, one can apply Lemma 2. Since R(U) is open, it follows that

Py(OR(U)) = Py(ORU)\R(V)) < Py(R(UD)\R(V)) = 0.
Proposition 1. X is recurrent if and only if Y is recurrent.

Proof. By Lemma 3, Py(OR(B)) = 0 for all open balls B in R?. It follows from Theorem 1
that

1im Py (R(B)) = Py(R(B).

Now recurrence of X implies that Px(R(U)) =1 for all open sets U. Therefore,
Pyw(R(U)) =1 for all n € N. This implies that Py(R(U)) = 1 for all open U C RY and
thus the recurrence of Y.

Now assume that Y is recurrent. Thus

lim Py (R(B,:(0) = lim Pyxn(R(B1(0))) = Py(R(B1(0))) = 1.

For all ¢ > 0 there exists » € N such that Px(R(B,(0))) =1 —¢. Since the fundamental
solutions are positive (see Kolokoltsov 2000: 759), for a given open set U C R?, one has

0:= inf 1/2 dy >0
xéEr(mJU p(1/2, x, y)dy >0,
where p(t, x, ) is the density of the transition probability of X with respect to the Lebesgue
measure. Furthermore, X satisfies the strong Markov property. By Lemma 2 we have
Px(R(B,(0)\R(U)) = 0. Thus, we have Py(R(U)) = Px(R(B,(0))) = 1 — ¢. Letting ¢ go to
zero proves the proposition. U

Proposition 2. X is transient if and only if Y is transient.
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Proof. Since OT(U) = OR(U), we know that Py(OT(U)) = 0. Therefore, Theorem 1 implies
Jim Py (T(U) = Py(T(U)).

Now if X is transient, then P x(7(U)) = 1 for all bounded U C R?. From this it follows that
Pxw(T(U)) = 1. This implies Py(T(U)) =1 for all bounded U C R? and therefore the
transience of Y.

Assume that Y is transient, thus

Px(T(B+(0)) = Pxw(T(B(0)) — Py(T(B,(0))) = 1.
Therefore, P x(T(B,(0))) =1 for all » > 0. This means that X is transient. O

The following theorem concludes the recurrence and transience properties of the process
X in the case where n({a, = a}) > 0.

Theorem 2. Under the assumption that n({a, = a}) > 0 we have the following two cases:

(1) If d =1 the process X is transient if 0 < a, <1 and recurrent if 1< a, <2.
(i) If d = 2 then X is transient.

Proof. This follows from the two previous propositions and classical results on the recurrence
and transience of stable processes (see Sato 1999: 260). O

3. Large deviations

In this section we wish to treat the case where w({a = @,}) = 0. For this we assume that
there exists a u € M(S?"!) such that u(x, dy) = u(dyp) for all x € R?. It will turn out that
in this situation the sequence X" converges in probability to the constant zero function. It
is therefore interesting to understand the large deviations from this convergence. Large
deviations for Markov processes with increments possessing heavy tails were investigated in
Wentzell (1990). As a first step towards the large deviations of X" we analyse the Lévy
process Z with Lévy measure given by

2

0 = @)@l = | g
Ay

where F, = woa™! is the image measure of 7= with respect to a. We will soon see that the

scaled processes

Z0 =V Z,y — Zo)

satisfies conditions (A), (B), (C) and (D) in Wentzell (1990: 141). This gives us insight into
the deviations of Z" from paths performing only a finite number of jumps and being
constant between those jumps.

By Lemma 1 it is natural to expect the large deviations of X" to be similar to those of
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Z"_ However, X" does not satisfy the conditions in Wentzell (1990). We therefore have
to modify the proofs in Wentzell (1990) and use the asymptotic equality of X" and Z("
given by Lemma 1 in appropriate places. Following Wentzell’s method, we first define a
family of measures QF with support on the set of paths in Do([0, T]) which perform k
jumps and are constant between those jumps. Those paths can be represented in

EF .= {(xl, e X By e, ) 0 <L < = T,xi;éO}
in terms of the following map:
k
Ty 0 EX — Do([0, T); (t1, X1y« -y try X5) Z Xl ar + Xk U,
i=1
On EF we define the measure
R¥(dxy, ..., dtg) = j(dx))i(dx, — dxy) ... 7i(dxy — dx_A(dE) ... A(dty),

with 7(dx) := |x|~'~%d|x|u(d%). The image measure Q% := R¥ o ;' on Dy ([0, 77) describes
the limiting behaviour of the scaled processes. In the following we will denote the sup-norm
distance of two elements y; and 7y, from Dy([0, T]) by dr(y1, y2). We will also denote the
jump measure of Z(" by 5" (dy).

Proposition 3. For all | € Cy(RY) vanishing in a neighbourhood of zero and n € N large,
the following statements hold:

(i g(n)—‘j Fom(dy) — j Foydy),
Rd Rd
(i) 7"(y; |y| > 0) < K(9)g(n) for all & > 0,

iy | a7 = Keto,

with suitable constants K(0), K > 0 and

2
a(n) = J n =4/ F,(dg).

Qo

Proof. A Taylor expansion of g — |y|~!7% gives

2
J n' =% |y 7171 F,(dg)

Ao

2 2
=i e rag + [ o
a, .

e

¥ 5 Dlog(|y|) Fu(dg)

gy ™% u(dy) + h(n, y)
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for suitable &£(¢) € [y, ¢]. Therefore, for all f € C,(R?) vanishing in a neighbourhood of
zero and n — oo,

g0 | Foman | Foran

with 77(dy) = |y|~'"% d|y|u(dy). This proves statement (i).
Furthermore, for large n € N,

00 (2
W0l = o= ||| e g )

Qo

= [ (b P )

< g(m(7(y; [y > 0)+ D).

This proves (ii) with K(0) := 7(y; |y| > 0) + L.
Finally, for n € N sufficiently large, we have

| ansnay

h(n,

e [T (e 2

)dlyl (dy)

=gon(|_animan )
Therefore, (iii) follows with
Kim | @i+
O

Corollary 1. One has for all A C Dy([0, T]) satisfying dr(A, Tr_i(EF)) >0 and
lim(;ka(AH;\A,,;) =0, that

P(Z" € 4) = (g(n)*O"(A) + o((g(n)").

In particular, Z' converges in probability to the zero function.

Proof. By Proposition 3, conditions (A), (B), (C) and (D) in Wentzell (1990) are satisfied.
Therefore, the theorem presented in Wentzell (1990: 155) proves our claim. O

We now return to the large deviations of X (. Its jump measure is given by
n"(x, d&) := ny(n'/%x, dE). We will denote by P the distribution of the Markov process
generated by
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\Y
2700 = [ (& s - S 0@ ) 00

on D.(0, T]) and by [Ei”)[F ] the corresponding expectation of a random variable
F:D.(0, T]) — R. We also define a sequence of stopping times on Dy([0, T]) by
7§ :=0, ¢ = 197¢_,) with

y = 1) == inf{t > s; |y, —y,_| = ¢}
When there is no danger of ambiguity we will often write 7¢ for 7{. Finally, we define
v©:=card{k > 0; 7° < T}.

In the proof of the following theorem we will need several results concerning those stopping
times. These results, Lemmas 4-8, are straightforward modifications of lemmas presented in
Wentzell (1990: 145-148) and are given in Section 4 for the reader’s convenience.

Theorem 3. For all A C Dy([0, T) satisfying dr(A4, 0) > 0 and lims;Q'(A4s\A4_s) =0,
P™(4) = g(m)Q'(4) + o(g(n)).

In particular, X" converges in probability to the zero function.

Proof. In order to prove the statement we prove that for arbitrary x > 0 and for large n € N,
g(m(Q'(4) — ) < P(4) < g(n)(Q'(4) + ).

There exists a dg > 0 such that 6y < d7(4, 0)/6 and O'(4s,\ A4 _2s,) < K/2. Define
x-(t, x, 8) == H(dr(I'(t, x + §), A9) /60 — 1),
x+(t, x, &) == 1— H(dr(I(t, x + &), 4)/60 — 1),

where
1, forz=1,
H(z): =« z, for0sz=<1,
0, for z < 0.

It therefore follows that y.(z, x, §) = 0 for |x + &| < 30. Furthermore, we define
Va(t, x, &) v= ya(t, x, E)(1 — H(|x[/09 — 1)).
and, for 0 < 6 < 9,
X+ (t, &) = sup x (2 x, &)

|x]<o

x-(t,§) = inf y_(z, x, &).

- |x|<0

We then have V.(t, x, §) = 0 for |§| < 09 and (¢, §) = 0 =y (¢, &) for |§] < 28. If 6 in
the definition of ), and y is chosen small enough, we obtain
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r T
J dtJ 7(d&)y+(1, 0, E)—J dtJ 7(dé)x+ (¢, g)‘ < K /4
0 R4 0 Rd

and

jT dtjw By (1, 0, £) - JOT erW sy (1 §>‘ < /4.

0

Finally we choose ¢ := 6/(2m — 1) with m = 2.
We have by Lemma 6 and d7(A4, 0) > 0 that

Py (4, v = 0) < P (v =0, dr(y, 0) > ) = O((g(m))’).
Further, by Lemma 7 and the strong Markov property we have

P(()n)(A: ve=1, dT(V’ F(TE’ VT()) = 6)

<P =1, dr(y, T, yx)) = 0)
1€[0,7¢ relrrl
P;’?( sup [y, — yo| = 5)]
1€[0,7]
= 0((g(m?).

From Lemma 5 it follows that IPE)”)(A, v = 2) = O((g(n))?). Those considerations imply
that

< PEP( sup[w, — 70| = é) + Pé“( sup |y, — ye| = a)

< PS”( sup [y, — yo| = 5) + By
1€[0,2]

PLO(4) = PY (4, v = 0) + PL(4, v = 2)
+ P4, v =1, dr(y, T, 7)) < 0)
+ P(on)(A, ve=1,dr(y, T(x", yx)) = 9)

= P{(4, v = 1, dr(y. T, yr)) = 8) + O((g(m)’).

For y € {v¢ =1, dr(y, ['(z", y«)) < 8} the following two statements are valid:
y € A implies I'(z¢, yx) € A5 implies 3 (7%, Yr—, Ayr) =1,
2 (T, Y, Ayr) > 0 implies I['(7°, y) € A_s implies y € A.

Furthermore, it follows from dr(y, I'(7°, y)) < O that |y._| < o, which implies that
Xi(TC, '}/T(,, A'}/Tt) = Vi(T(, 'J/Tz,, A'J/Tz).

Therefore, we obtain the following upper and lower bounds:
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E6” [ {vemt.ar (D) <0) V- (T Yems Ay
< P{(4, v = 1, dr(y, T, y2)) <9)
< B[ pemtartrre ey <oy Vo (85 Yooy Aye)].
As shown above, we have by Lemma 7 and the strong Markov property that
ES” [T v —tar (e =0} V(T Yeees Aye)]
<Py (v =1, dr(y, T(", y2)) = 6) = O((g(m)?).
Therefore, we have
ES” [0 1y (0w <) Vi (0, v By

= B [ ey Vi (25, ey Aye)] + O((2(m))?)

+0((g(n)?).

=E” lﬂ{w—l} S Vit v Ay
1€[0,7]

However, Lemma 5 implies that

[Eg") |jJ {ve=2} Vi(t, yio, Ayo)
1€[0,7]

< E” [1e=yv] < B (v — D] = O((g(n))?).

Since ZIE[O,T] Vi(t, yi—, Ay,) =0 for v =0, we obtain from Lemma 4 that

E;” [ﬂ{w_l} Z Vilt, yi-s Aye)

te[0,T]

=E"| Y Vet v, Ay

- [E(()n) [ﬂ {ve=2} Vi(t, yi-s Ayo)
| 1€0.7]

t€[0,7]

+0((g(m)?)

= [Ez)n) V:t(t> Yis A%)
L t€[0,7]

rel
=" J drj " OVt v, é)} +0((g(m)).
LJO R4

It follows from Lemma 7 that
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T
Egn) {ﬂ {v!:O,dT(y,O)zé}JO dtJRd 1" (y., dEYVL(t, v, E)}

T
< E” {T{v'-o,dT(y,O)za}J dm ™ (y., Ba(O)c)}
0

< CPY (v = 0, d1(y, 0) = ) = O((g(n))?).

Here we remark on one main difference from the proof in Wentzell (1990). Since we
cannot prove that the probability of {v¢ = 1} is O((g(n))*), we have to split up the time
integration on the event {v“ = 1} according to the stopping time 7°. We have by Lemmas 5
and 7 that

T
T
=E" {i {vl>2}J dtjuw 1"y dEVi(t, y1s 5)}
0
. :
+ E” |:ﬂ{v<l,dr(y,F(T‘,yzt))Bé}JO deW 1 AV, y1, §)

. )
+Ey” [ﬂ{w—l,dT(y,r(rw>><6}J dtjw 7y, AEYVi(t, v, E)
0 i

. ]
=E" |:i{vfl,dr(y,F(rf,y,z))<é}J de 0" (ye, dEya(t, v4, &)
0 Bs(0)¢ J

T

T
+Ey” {Wl,dr<y,r<rf,y,()><é}J de 1"y dEVi(t, e, &)
Bs(0)¢

+0((g(m)?).

To the second term we can apply the strong Markov property. From Lemmas 1 and 5 and (i)
in Proposition 3 it then follows that
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T
EY” [ﬂ {(ve=Ldr (T e ))<6}J deRd 1y, dEV (L, ys, 5)}
»

¢

23
<E" {ﬂ{rsT}J dtJ o (., dé)]
Bs(0)¢
T
< E" [H{N} B U dt[ DRles d&)“
0 Bs(0)¢

T
iJ drE;” [ﬂ{rd} (J 7" (dE) + nCe‘n‘)}
0 B, (0)¢

T
<P = 1)J de(n"(Bs(0)) + nKe ")
0

= O(g(n)O(g(n)).

This proves that

T
Ey” U drjR 1, dEV (1, v, e’;)]
0 d
T
= [E(()n) |:ﬂ {v‘:O,dr(V,O)zé}JO dtJW ’7(’1)(%» df;‘_) Vi(t, ve, f)}
T
+Ep” [ﬂ {v’:O,dr(V,0)<(5}J deRd (e V(L y4 5)}
0
T
+ [Eg") |:1 {V‘BI}JO dtJR/ 77(")(%; dg) Vi(t’ Y g):|
T
= |:ﬂ{v‘0,dr(y,0)<5}J0 dtJRd 0"y dE)ya(t, 71, E)}

€

T
+E” |:ﬂ{V‘_l»dT<V~r(r‘,3’rz))<6}J dtJ "y, dEya(t, vi, E)}
0

B5(0)¢

+0((g(m)?).

We have so far seen that

B. Franke
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.
Ey” [1 (=L (T ) <0} J dtJ 1 A 5)]
0

Bs(0)¢
T
B [ | ar| i)

< Py’ (4) + O((g(m))?)

T
=

(n)
=B [ﬂ{V‘—l,dr(%l"(f‘,yzz))<5}J0

dtJ "y, A& (1, 5)]
B;s(0)¢

T
+E” [“ﬂ {v‘:O,dr(V,0)<6}JO deW 0"y, dEE4 (1, E)] .

We now concentrate on the lower bound. The upper bound can be treated analogously.
Applying the arguments for V. above to -, we see that the lower bound is equal to

T
EyUd4 Wmm@ga£ﬂ+wwwﬁ-
0 R4

Lemma 1 and Proposition 3 imply that

T
g@“ mJ wwwhda%xa@]
0 R4

T
= JO dt(JRd n"(dE)y—(t, &) — nCe”’> + 0((g(n))?)

T

g0

0

ar| ey 1.8+ 0((gn))

Wmﬁmxnma—xm)+0«gmﬁ

el
_ (ﬂﬁ{ }—Km)+o«gmﬁ

g(n) » 7(dE) T r1.e)e4

~8p

= g(m)(0'(4-0) — 1/2) + O((g(m)’)
= g(m)(0'(4) — x).

Using the same arguments for the upper bound proves the theorem. (|

A refinement of the proof of the theorem gives rise to the following result.
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Theorem 4. For all A C Dy([0, T]) with dr(4, Tr_1(E¥)) > 0 and lims;00*(4,5\A4_5) =0,

PX" € 4) = (g(n)* 0" (4) + o((g(n)").

4. Auxiliary results

The following results are slight modifications of results from Wentzell (1990).

Lemma 4. Let V(t1, x1, &1, - .., ti, X, Ex) be bounded and continuous such that there exists
a 0 >0 such that V(t1, x1, &1, .., tg, xi, Ex) = 0 if |&:] <O for 1 < i<k Then
EX[ Z V(t19 ’yt|77 Aylw ceey tk: Vtkfa Aytk)
0<t<..<t;<T

T T
|| an | nrs 0B, |t agic.
0 a h

T

X [Eyfk_ 1+§k—1 |:J dtkj ’7(%“ dgk)V(tla th El) sy tka Vr,(, Sk):l :|:|s
R4

tr-1

where the expectation of y,, is with respect to Pyr,,ﬁém for2<i<k
Proof. See Wentzell (1990: 23). O
Lemma 5. We have, uniformly with respect to x € R,
E[r 0 =1 (v — k+ D] = 0((g(n)")
and
P.(v = k) = O((g(m)").
Proof. We have, by Lemma 1,
E. |7, B0))| = Ex | my(X . 0/ B(0))
< my(n'/“ B(0)°) + nCe™*" = " (B.(0)°) + nCe *".

Define V(y1, ..., y&) == 1p,0)c(V1) - - 1.0y (¥x). From Lemma 4 and (ii) in Proposition 3
we see, for large n € N, that
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EPp @ = 1) (v =k + 1))

:k![Ei")[ S V(Ays. . Ayy)

0<n<.<t;<T

T T
= k'ﬂf;”) |:J dtlJ 77(”)(')/,]’ d.‘;:l)[E;r:l)+§l |:J dy, X ...
0 B.(0)¢ 4l

T
(n) o
Bt Uzkl dthB((O)‘ 7 dgk)] ”

T T
| dn[E;")U n“”(yn,dsl)j dnE? LT
0 B.(0)¢ f Yot

I
fan

T
X dt (1" (B(0)) + Cne ") . H

ti—1

I
x

T T T K
! de dlz---J dry (1 (B.(0))) +o((g(m"))

0 2 tie1
< K2T*(K(e))"(g(n)".
Since we have
PO = k) = PO @ —1) - (v — k+1) = k).
the second part follows from the first part together with Chebyshev’s inequality.

Lemma 6. For 1 > ¢ > 0 one has, uniformly with respect to x € R,

Pi”’( sup |y, — x| = e) = O(g(n)).
[

+€[0,T]N[0,7¢

Proof. We define the truncation of y € D,([0, 77) by

x ) ve for 0 < ¢t < 1,
Vi= Vo, fort‘<t<T.

If y is distributed according to the distribution IPEC"),
compensator of f(y*) is given by the expression

INT
L f(y)ds.
0

@ |

This gives, with Kolmogorov’s inequality and (iii) in Proposition 3,

567

we see that for a f € C*(R?) the
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P (suply, — x|; £ € [0, T] N[0, T[> ¢)

=P (suplyf —x|; t€ [0, T] = ¢)

1 d
a3
“ O

0

TAT

j &%mwwﬁﬂ
B(0)

Al
| =

T
3 J E, UB o Enmx, dé)]

i=1 J0

1
2

I

—
3

Z (J En"(dE) + Cne_’l"s) ds

0 =1 B.(0)

= 0(g(n)).

(8]

Lemma 7. For 1 > ¢ > 0 one has, uniformly with respect to x € R,

p@< mp|%—x>am—m>=a@ww>
1€[0,T1N[0,7[

Proof. We proceed by induction. For m = 1 the claim was proved in the previous lemma. We
define a new stopping time on D,([0, T]) by

y = 0 (x) == Ainf{t = 0; |y, — x| = ¢}.

For m = 2,

A= { sup |y, —x|=Q2m-— l)e}
te[

0,71N[0,7]
C{inf{r=0; |y, — x| = ¢} <1}
— {0 <7},

This implies |y,- —x| <¢ for all y € 4 and ¢ < 7°. Since no jump of size larger than ¢
occurs before 7¢, we see that |y, — x| < 2¢ for all ¥ € 4 and ¢ < t°. This implies that

{ sup |y, —x|=Q2m— 1)6}
£€[0, T1N[0,7]

C {of(x) <1, sup ly,— x| =Q2m — 3)6}

te[o “(x),T]N[o “(x), [

The strong Markov property, together with Lemma 6, implies that
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Pi")< sup |y, —x|=Q2m-— 1)6)

t€[0,T]N[0,7°[

< p (0‘(x) <7, sup ly,— x| =Q2m— 3)5)

te[o “(x),T]IN[o “(x),T[

<E [ﬂ{of<x><r(}”3’(y?m <t€[o swp vi—yol=@m- 3)e>]

< P (o) < r‘)supPﬁ,’”( sup  |y:—yl=Q2m-— 3)6)
y 1€10, TIN[0,7

= 0(g(n))O((g(m)" "),
where we have used the fact that

{o°(x) <7} = {suply, —x[; £ € [0, TIN[0, T[> ¢}.

Lemma 8. For any k € Ny, m € N, one has, uniformly for all x € R,

P (H sup  [yi — e | = @m - 1>c> = O((g(n)").

0,717, [

Proof. An induction argument using the the strong Markov property and Lemma 7 gives rise

to
P Sup |yi—ye| = Q@m— 1)
€00, TINT, T, [ !
< sup Pi’”( sup [y, —x|=(@2m— 1)5>
x 1€[0,71N[0,2°[
= O((g(n))").
|
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