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We study confidence sets for a parameter Ł 2 ¨ that have minimax expected measure among random

sets with at least 1� Æ coverage probability. We characterize the minimax sets using duality, which

helps to find confidence sets with small expected measure and to bound improvements in expected

measure compared with standard confidence sets. We construct explicit minimax expected length

confidence sets for a variety of one-dimensional statistical models, including the bounded normal

mean with known and with unknown variance. For the bounded normal mean with unit variance, the

minimax expected measure 95% confidence interval has a simple form for ¨ ¼ [��, �] with � < 3:25.
For ¨ ¼ [�3, 3], the maximum expected length of the minimax interval is about 14% less than that

of the minimax fixed-length affine confidence interval and about 16% less than that of the truncated

conventional interval [X � 1:96, X þ 1:96] \ [�3, 3].

Keywords: Bayes-minimax duality; constrained parameters

1. Introduction

This paper studies how to construct confidence sets that are as small as they can be, in the

sense of minimizing worst-case expected measure, while attaining at least their nominal

confidence level.

1.1. The bounded normal mean

The bounded normal mean (BNM) problem, estimate Ł 2 [��, �] � (�1, 1) from the

observation X � N (Ł, 1), is a special case. The difficulty of minimax estimation of linear

functionals of infinite-dimensional parameters in Gaussian noise is related to the difficulty

of estimating a BNM (Donoho and Liu 1991; Donoho 1994; Ibragivmov and Khas’minskii

1985). Estimating a BNM arises in robotics (Kamberova et al. 1996, Kamberova and Mintz

1999), and it is of theoretical interest in its own right (see, for example, Bickel 1981;

Casella and Strawderman 1981; and references below). Bounded parameters often arise in

physical problems, and finding sensible confidence intervals for bounded parameters is an

interesting statistical challenge (Mandelkern 2002a, 2002b; Casella 2002; Gleser 2002;

Wasserman 2002; van Dyk 2002; Woodroofe and Zhang 2002).
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The constraint Ł 2 [��, �] allows confidence sets for a normal mean to be smaller

without sacrificing coverage probability: Consider the conventional 95% confidence set

I (X ) ¼ [X � 1:96, X þ 1:96] for a normal mean with unit variance. The conventional

interval does not exploit the constraint Ł 2 [��, �]. In contrast, the variable-length

‘truncated’ interval

I T (X ) ¼ [X � 1:96, X þ 1:96] \ [��, �] (1)

also has 95% coverage probability provided Ł 2 [��, �], and is shorter than I (X ) for many

values of X .

How much can the maximum expected length be reduced? One might optimize the trade-

off between coverage and length as a decision problem using a measure of loss that

combines the two. Casella et al. (1993) show that this can produce intervals with

undesirable properties. Zeytinoglu and Mintz (1984; 1988) and Kamberova and Mintz

(1999) fix the length of the interval, then find how to centre an interval of that length to

maximize the minimum coverage probability for Ł 2 [��, �]. Their results can be used to

find 1� Æ confidence intervals of minimal fixed length; see the Appendix.

We study how much smaller the maximum expected size of a 1� Æ confidence set can

be when the size of the set can depend on the data. Lehmann (1986, p. 524) formulates this

problem in general and relates it to accuracy. Minimax equivariant expected measure

confidence sets have been constructed for some special cases (Hooper 1982; 1984; Lehmann

1986). Non-equivariant procedures – centred at shrinkage estimators and sometimes of

variable size – can improve coverage probability uniformly without increasing expected

volume (Brown 1966; Joshi 1967; 1969; Hwang and Casella 1982; Casella and Hwang

1983). We are not aware of previous work finding minimax expected measure, not

necessarily equivariant, confidence sets in problems in which there is no uniformly most

accurate set.

For inference about a normal mean Ł 2 [��, �], � < 2z1�Æ, from X � N (Ł, 1), we show

that the optimal procedure is the truncated Pratt interval

ITP(X ) � I P(X ) \ [��, �], (2)

where I P(X ) is the Pratt interval (Pratt, 1961)

IP(X ) �
[(x� c), 0 _ (X þ c)], X < 0:
[0 ^ (X � c), X þ c], X . 0,

�
(3)

with c ¼ z1�Æ. The truncated Pratt interval is minimax for expected length when � as large as

2z1�Æ, nearly twice the value of � for which the minimax mean square error point estimate

has a simple form (Casella and Strawderman 1981). For � < 2z1�Æ, the truncated Pratt

interval is minimax for expected Lebesgue measure among more general randomized 1� Æ
confidence sets. For computational techniques to find minimax expected measure or minimax

regret confidence sets numerically and for additional theory, see Hansen (2001), Schafer and

Stark (2004) and Schafer (2004).
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1.2. Improvements in expected length

Table 1 compares the maximum expected length of some 95% confidence intervals for a

bounded normal mean. For � ¼ 2, the maximum expected length of the truncated Pratt

interval is 38% less than the length of the conventional interval I (X ), 23% less than that of

the affine minimax interval IA(X ) (Stark 1992), 11% less than the maximum expected

length of the truncated conventional interval I T (X ), and 16% less than the length of the

minimax nonlinear fixed-length interval IN(X ) (see the Appendix).

More generally, in estimating a bounded shift parameter of any shift family with

monotone likelihood ratios, the truncated Pratt interval ((3), with c equal to the 1� Æ
quantile of the distribution of X when Ł ¼ 0) has minimax expected measure provided � is

small.

1.3. Outline

Section 2.1 presents the notation and assumptions. Section 2.2 applies a minimax theorem

due to Kneser (1952) and Fan (1953) to establish a Bayes-minimax duality for the expected

measure of confidence sets. Section 2.3 uses the Bayes-minimax duality to study minimax

expected measure confidence sets for restricted real-valued shift parameters of univariate

distributions with monotone likelihood ratios. Section 2.4 extends the theory to situations

Table 1. Maximum expected lengths of several 95% confidence intervals for a bounded normal mean

Ł 2 [��, �]. Previously proposed confidence sets for the BNM have maximum expected lengths up to

49% greater than that of the optimal measurable procedure, IOPT

Truncated Best affine Best meas. Opt

Conventional conventional fixed-widtha fixed-widthb meas.c

� I ¼ [X � 1:96] I \ [��, �] IA IN IOPT

1.75 3.9 +49% 2.9 +10% 3.4 +28% 3.3 +25% 2.6

2.00 3.9 +38% 3.2 +11% 3.5 +23% 3.3 +16% 2.8

2.25 3.9 +31% 3.4 +13% 3.6 +19% 3.3 +10% 3.0

2.50 3.9 +26% 3.6 +14% 3.6 +17% 3.3 +6% 3.1

2.75 3.9 +22% 3.7 +15% 3.7 +15% 3.3 +3% 3.2

3.00 3.9 +21% 3.8 +16% 3.7 +14% 3.3 +1% 3.3

3.25 3.9 +19% 3.8 +16% 3.7 +14% 3.3 +0% 3.3

3.50 3.9 +18% 3.9 +16% 3.8 +13% 3.5 +5% 3.3d

3.75 3.9 +16% 3.9 +15% 3.8 +12% 3.6 +6% 3.4

4.00 3.9 +14% 3.9 +13% 3.8 +10% 3.6 +5% 3.4

aAffine fixed-width intervals have the form [aX þ b� e, aX þ bþ e], with a, b, and e constant.
bMeasurable fixed-width intervals are of form [Ł̂Ł(X )� e, Ł̂Ł(X )þ e], with Ł̂Ł(�) measurable and e constant.
cGeneral measurable confidence sets have form fŁ 2 ¨ : (Ł, X ) 2 Sg, where S � ¨3 X is product-measurable.
dThe measurable 95% confidence set with smallest expected measure when � < 3:29 is the truncated Pratt interval
ITP. The entries in the rightmost column for � ¼ 3:50, 3:75, and 4:00 are the maximum expected lengths of
optimal confidence sets I OPT, approximated numerically.
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with nuisance parameters, and studies confidence sets for the BNM where � 2 is unknown,

but for which �=� is small. Section 3 contains most of the proofs.

2. Principal results

2.1. Framework, notation and assumptions

Let ¨ and X be measurable spaces. Let � be a sigma-finite measure on ¨, and let � be a

sigma-finite measure on X . Let fP�: � 2 ¨g be a family of probability distributions on X ,

absolutely continuous with respect to �. For � 2 ¨, let f � denote the density of P� with

respect to �. Let E� denote the expectation with respect to P�. Assume that the mapping

(�, x) 7! f �(x) is product-measurable.

We observe an X -valued random variable X � PŁ (we sometimes write X � fŁ) and an

auxiliary independent uniform random variable U � U [0, 1]. The value of Ł is unknown,

except that Ł 2 ¨. We seek a confidence set S(X , U ) for Ł based on (X , U ) that has small

�-measure. (In Section 2.4 we allow Ł to consist of two parts, the parameter of interest and

a nuisance parameter.)

Let M be the set of product-measurable mappings of ¨3 X to R. Define

D � fd 2 M : 0 < d(�, x) < 1, (�3 �)-almost surelyg: (4)

Note that D is a closed, norm-bounded subset of L1[�3 �], which is the dual of L1[�3 �],
so, by the Banach–Alaoglu theorem, D is weak-star compact. Members of D can be thought

of as families of acceptance functions for randomized tests of the hypotheses fH� : X � f �g
that are jointly measurable in the parameter value � and the datum X : if U . d(�, X ), reject
H�; otherwise not. The significance level of the test d(�, �) of H� is 1� E�d(�, X ), the
chance that U . d(�, X ) when X � f �. If º: � 7! º� is a measurable function from ¨ into

R, and if � 2 ¨,

1[ f �(x) . º� f�(x)] 2 D, (5)

so D includes likelihood ratio tests.

Each d 2 D induces a randomized confidence set Sd ¼ Sd(X , U ) for Ł, where

Sd(x, u) � f� 2 ¨ : u < d(�, x)g (6)

(Lehmann 1986). Because d 2 D, Sd(x, u) is measurable for every (x, u) 2 X 3 [0, 1].

The probability that Sd(X , U ) correctly covers � is

C�(d) � E�d(�, X ): (7)

The nominal confidence level of Sd is inf�2¨C�(d). However, we shall regard

C¨(d) � �-ess inf
�2¨

C�(d) (8)

as the confidence level of Sd : if d 2 D and C¨(d) ¼ �, then there exists d9 2 D, (�3 �)-
almost everywhere equal to d, with inf �2¨C�(d9) ¼ �, so that �(Sd) ¼ �(Sd9 ) with probability

one, whatever the value of Ł. The functions d(�, �) in
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DÆ � fd 2 D : C¨(d) > 1� Æg (9)

are families of decision functions for randomized tests whose inversions are 1� Æ confidence

sets for Ł. We call members of DÆ decision functions, families of level-Æ tests, and 1� Æ
randomized confidence sets (through the association (6)).

For Ł ¼ �, the expected �-measure of the confidence set Sd(X , U ) is

L�(d) ¼ E�

ð
¨
d(�, X )�(d�): (10)

The maximum expected �-measure of Sd over ¨ is

L¨(d) � sup
�2¨

L�(d): (11)

Schafer (2004) extends the theory presented here to allow the measure � to depend on the

parameter Ł.
We now characterize the decision functions d 2 DÆ that minimize L¨(d).

2.2. Bayes-minimax duality for confidence procedures

Let — be the set of all probability measures on ¨. For � 2 —, the �-average expected �-
measure of the confidence set corresponding to d is

L�(d) �
ð
¨
L�(d)�(d�): (12)

Theorem 1. If ~DD � D is weak-star compact in L1[�3 �], then

inf
d2 ~DD

L¨(d) ¼ sup
�2—

inf
d2 ~DD

L�(d): (13)

Theorem 1 is proved in Section 3.1. For � 2 —, define the average density

f�(�) �
ð
¨
f �(�)�(d�): (14)

Fix Æ 2 (0, 1) and let ~DD � DÆ. Given � 2 —, let d� ¼ d�(�, x) be a family of decision

functions for size-Æ randomized tests of the hypotheses fH� : X � f �, � 2 ¨g such that for

each � 2 ¨, the test d�(�, �) is most powerful against the alternative

H� : X � f�(�): (15)

Because each test is of a simple null hypothesis against a simple alternative, d� is an

amalgamation of likelihood ratio tests. For each � 2 ¨, let

º� � inf º :

ð
f�,º f�

f�(x)�(dx) > 1� Æ

( )
: (16)

Define
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d�(�, x) �
1, f�(x) , º� f �(x),
c�, f�(x) ¼ º� f �(x),
0, f�(x) . º� f �(x),

8<
: (17)

with c� chosen so that
Ð
d(�, x) f �(x)�(dx) ¼ 1� Æ. Then d� 2 DÆ, and d� minimizes L�(�)

over DÆ – this follows from the optimality of d�(�, �) and the Ghosh–Pratt identity (Ghosh

1961; Pratt 1961, eq. 2); see Section 3.1.

Corollary 1. For 0 , Æ , 1,

inf
d2DÆ

L¨(d) ¼ sup
�2—

L�(d
�): (18)

2.3. Bounded real shift parameters

In this section, we study confidence sets for bounded location parameters of one-

dimensional shift families: X � R, ¨ is a bounded subset of R, and fŁ(x) � f (x� Ł) for

some density f with respect to Lebesgue measure.

Let d� � d	� be the decision function most powerful against the alternative Ł ¼ �. Pratt
(1961) showed that the confidence set based on d� minimizes expected Lebesgue measure

when Ł ¼ �:

L�(d
�) ¼

ð
¨
E�d

�(�, X )d�: (19)

Suppose f fŁ : Ł 2 ¨g has monotone likelihood ratios: fŁ2= fŁ1 is non-decreasing in x when

Ł1 , Ł2. (The normal, uniform, logistic, and double exponential distributions have monotone

likelihood ratios.) Then the acceptance region of the likelihood ratio test of a simple null

hypothesis against a simple alternative hypothesis is a semi-infinite interval (Lehmann 1986):

d�(�, x) ¼ 1[x < �þ q1�Æ], � , �,
1[x > �þ qÆ], � . �,

�
(20)

where q� is the � quantile of P0, the distribution of X when Ł ¼ 0.

Pratt (1963) studied the case ¨ ¼ R. When ¨ is a bounded subset of R, we call d� the

truncated Pratt procedure. We show here that for shift families with monotone likelihood

ratios, when � is sufficiently small there is a point � 2 ¨ ¼ [��, �] such that the truncated

Pratt procedure d� has minimax expected Lebesgue measure among randomized 1� Æ
confidence sets.

Let F(�) �
Ð �
�1 f0(x)dx be the cdf of P0, and let � be any point in ¨ such that

F(qÆ þ �)� F(qÆ þ �) ¼ F(q1�Æ þ �)� F(q1�Æ � �): (21)

If f0(�) is symmetric about any point, � ¼ 0.

Theorem 2. Let ¨ ¼ [��, �], let f fŁgŁ2¨ � f f 0(� � Ł)gŁ2¨ be a shift family of densities

with respect to Lebesgue measure that has monotone likelihood ratios, and let � satisfy (21).

Suppose Æ , 1
2
. If
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�þ j�j < q1�Æ � qÆ, (22)

then

inf
d2DÆ

L¨(d) ¼
ð�
��
F(�þ q1�Æ)d�þ

ð�
�
(1� F(�þ qÆ))d�, (23)

and the truncated Pratt procedure d� (20) attains the infimum. When f 0 is symmetric (so that

� ¼ 0 suffices) the truncated Pratt procedure is not optimal if

� ¼ �þ j�j . q1�Æ � qÆ ¼ 2q1�Æ: (24)

Corollary 2 (Bounded normal mean). Let X � N (Ł, 1) with ¨ ¼ [��, �], and let Æ , 1
2
. If

� < 2z1�Æ, then

inf
d2DÆ

L¨(d) ¼ 2

ð�
0

�(z1�Æ � �)d�, (25)

and the truncated Pratt procedure d0 attains the infimum. If � . 2z1�Æ, the truncated Pratt

procedure is not minimax.

Table 2 compares the performance of the truncated Pratt confidence interval for the

BNM,

ITP(X ) ¼ [(X � z1�Æ) ^ 0, (X þ z1�Æ) _ 0] \ [��, �], (26)

to those of the truncated conventional confidence interval IT(X ) and the minimax affine

confidence interval IA.

2.4. Bounded normal mean with unknown variance: nuisance parameters

In this subsection, we change notation to allow the distribution of the data to depend on

two parameters, the parameter Ł 2 ¨ of interest, and a nuisance parameter � 2 �. We

denote this distribution P(Ł,� ) and define the family of distributions

P(¨,�) � fP(Ł,� ): Ł 2 ¨, � 2 �g: (27)

We assume as before that ¨ is a measure space with measure �, and we seek a confidence set

for Ł with small expected �-measure. We assume that the family P(¨,�) is dominated by a � -
finite measure �. Let f (Ł,� ) be the density of P(Ł,� ) with respect to �. We also assume that for

each fixed � 2 �, the mapping (Ł, x) 7! f (Ł,� )(x) is product-measurable.

Let D contain the product-measurable mappings from ¨3 X ! [0, 1] as before, but

define

C(�,� )(d) � E(�,� )d(�, X ), (28)

C(¨,� )(d) � �-ess inf
�2¨

C(�,� )(d) (29)

and
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Table 2. Expected lengths of the truncated Pratt procedure and some others, for small to medium �.
The truncated Pratt dominates alternative procedures for small enough �, but as � increases above

2z1�Æ, its worst-case behaviour deteriorates sharply

E0 sup�E� sup�E� sup�E�
1� Æ � �(ITP(X ))

a �(ITP(X )) �(IT(X ))
b �(IA(X ))

c

0.90 1.25 1.8* 1.8 2.0 2.5

1.50 2.1* 2.1 2.3 2.7

1.75 2.2* 2.2 2.6 2.9

2.00 2.4* 2.4 2.8 2.9

2.25 2.5* 2.5 3.0 3.0

2.50 2.6* 2.6 3.1 3.1

2.75 2.6 2.7 3.2 3.1

3.00 2.6 3.0 3.2 3.1

3.25 2.6 3.2 3.2 3.1

3.50 2.6 3.5 3.3 3.2

0.95 1.75 2.6* 2.6 2.9 3.4

2.00 2.8* 2.8 3.2 3.5

2.25 3.0* 3.0 3.4 3.6

2.50 3.1* 3.1 3.6 3.6

2.75 3.2* 3.2 3.7 3.7

3.00 3.3* 3.3 3.8 3.7

3.25 3.3* 3.3 3.8 3.7

3.50 3.3 3.5 3.9 3.8

3.75 3.3 3.7 3.9 3.8

4.00 3.3 4.0 3.9 3.8

4.25 3.3 4.2 3.9 3.8

4.50 3.3 4.5 3.9 3.8

0.99 2.50 4.0* 4.0 4.3 4.7

2.75 4.2* 4.2 4.5 4.8

3.00 4.4* 4.4 4.7 4.9

3.25 4.5* 4.5 4.9 5.0

3.50 4.5* 4.5 5.0 5.0

3.75 4.6* 4.6 5.0 5.0

4.00 4.6* 4.6 5.1 5.0

4.25 4.6* 4.6 5.1 5.0

4.50 4.7* 4.7 5.1 5.0

4.75 4.7 4.8 5.1 5.0

5.00 4.7 5.0 5.2 5.1

5.25 4.7 5.3 5.2 5.1

5.50 4.7 5.5 5.2 5.1

a� denotes Lebesgue measure. E0�(ITP(X )) is the Bayes risk of d0 (the Bayes decision rule for a prior that
concentrates at zero), or ITP. This is the worst-case risk of d0 if and only if � < 2z1�Æ.
b IT, the truncated conventional interval, is defined in (1).
c IA, the minimax affine fixed-length interval, was determined and analysed numerically by the method of Stark
(1992).
*ITP is optimal.
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DÆ ¼ fd 2 D : C(¨,� )(d) > 1� Æ, 8� 2 �g: (30)

DÆ contains only decisions corresponding to confidence sets with probability at least 1� Æ of

covering Ł, whatever the value of Ł 2 ¨ and � 2 �. The decision rules in D do not depend

on � . Define

L(�,� )(d) � E(�,� )

ð
¨
d(�, X )�(d�) (31)

and

L(¨,� )(d) � sup
�2¨

L(�,� )(d): (32)

An optimal decision rule d� 2 DÆ would satisfy, for each fixed � 2 �,

L(¨,� )(d
�) ¼ inf

d2DÆ

L(¨,� )(d): (33)

We specialize now to the BNM with unknown variance � 2. We do not find a decision

rule d� that is optimal for all � 2 Rþ, but we do show that the truncated Pratt is optimal

(among scale-invariant procedures) provided � is not too large compared with � .
We observe X ¼ (X i)

n
i¼1, where fX ign

i¼1 are independently and identically distributed as

N (Ł, � 2) with Ł 2 ¨ ¼ [��, �] but otherwise unknown, and � 2 � ¼ Rþ but otherwise

unknown. Let � be Lebesgue measure on [��, �], and let � be Lebesgue measure on R. We

seek a confidence set for Ł that has 1� Æ coverage probability whatever the value of Ł 2 ¨
and � 2 �, and we want the expected measure of the set to be as small as possible at the

worst Ł, for each value of � .
The Rao–Blackwell theorem and the principle of invariance lead us to focus on decision

rules that depend on the data through (X � �)=S, where X � n�1
Pn

i¼1X i and

S2 � (n� 1)�1
Pn

i¼1(X i � X )2. Let Di denote the set of such decision functions, and let

DÆ,i � Di \ DÆ. We call DÆ,i the scale-invariant 1� Æ confidence procedures, even though

the set does not contain all scale-invariant procedures. By sufficiency, for each � it contains

one that solves (33).

In general, which scale-invariant procedure is minimax for expected measure depends on

� , but the truncated Pratt procedure is minimax scale-invariant provided � is not too big

compared with � :

Theorem 3. Let X and S be independent random variables with X � N (Ł, � 2=n) and

(n� 1)S2=� 2 � 
2n�1, for Ł 2 [��, �] and � . 0. Suppose n > 3 and Æ 2 (1
2
, 1). Let

dTPi (�, (x, s)) � 1[(x� �)=(sn�1=2) < t1�Æ], � < 0,

1[(x� �)=(sn�1=2) > �t1�Æ], � . 0,

�
(34)

where t1�Æ is the 1� Æ quantile of Student’s t-distribution with n� 1 degrees of freedom.

Then:

(i) dTPi 2 DÆ,i.

(ii) If
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�

�
< 2t1�Æ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n� 2

n(n� 1)
,

s

then L(¨,� ) attains its minimum on DÆ,i at dTPi . In addition,

inf
d2DÆ,i

L(¨,� )(d) ¼ L(¨,� )(d
TP
i ) ¼ 2

ð�
0

F�
p
n=� (t1�Æ)d�, (35)

where Fx is the cdf of the non-central t-distribution with n� 1 degrees of freedom

and non-centrality parameter x.

Remark. The condition �=� < 2t1�Æ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(n� 2)=(n(n� 1))

p
is sufficient, but not necessary, for

dTPi to be minimax among scale-invariant procedures. Numerical experiments suggest that the

largest �=� for which the result is true is between 2t1�Æ=
ffiffiffi
n

p
and 2t1�Æ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(n� 2)=(n(n� 1))

p
.

A statement similar to the theorem holds for n ¼ 2 provided �=� <

ffiffiffiffiffiffiffiffiffiffi
1
2
ln 2

q
t1�Æ.

3. Proofs

3.1. Theorem 1

Lemma 1. For each � 2 —, d 7! L�(d) is a weak-star lower semicontinuous mapping of

L1[�3 �] into [0, 1].

Proof. Fix � 2 —. Let fAjg1j¼1 be an increasing nested sequence of measurable subsets of ¨
such that �(Aj) , 1 and [ j A j ¼ ¨. We have

L�(d) ¼
ð
¨

ð
¨3X

d(�, x)�(d�) f �(x)�(dx)

� �
�(d�)

¼
ð
¨3X

d(�, x)

ð
¨
f �(x)�(d�)

� �
�(d�)�(dx)

¼ sup
j

ð
¨3X

d(�, x) 1A j
(�)

ð
¨
f �(x)�(d�)

� �
�(d�)�(dx) (36)

by monotone convergence. The term in parentheses in (36) is in L1[�3 �], so for each j, the

outer integral is a weak-star continuous functional of d. Because L�(d) is the supremum of a

collection of weak-star continuous functionals, it is weak-star lower semicontinuous. h

The next theorem is a special case of general minimax results of Kneser (1952), Fan

(1953) and Sion (1958).

Theorem 4. Let M be a convex set and let T : M 3 N ! [�1, 1] be linear in M and
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convex-like in N, in the sense that for each n0, n1 2 N, ª 2 (0, 1), there exists nª 2 N such

that

ªT(m, n0)þ (1� ª)T(m, n1) > T(m, nª)

for all m 2 M. If either

(i) M is a compact topological space and T(m, n) is upper semicontinuous in m for

each n, or

(ii) N is a compact topological space and T(m, n) is lower semicontinuous in n for

each m,

then

inf
n2N

sup
m2M

T(m, n) ¼ sup
m2M

inf
n2N

T(m, n): (37)

Proof of Theorem 1. The set ~DD is weak-star compact by assumption. The map d 7! L�(d) is

linear in d for fixed �, and the map � 7! L�(d) is linear in � for fixed d. By Lemma 1,

d 7! L�(d) is weak-star lower semicontinuous, so Theorem 4 applies:

inf
d2 ~DD

sup
�2—

L�(d) ¼ sup
�2—

inf
d2 ~DD

L�(d): (38)

For any d 2 D and c 2 R, the set fŁ 2 ¨ : LŁ(d) > cg is measurable, and some � 2 —
concentrates on it provided it is not empty. Therefore,

sup
�2—

L�(d) ¼ L¨(d): (39)

h

Lemma 2. If Æ 2 [0, 1], then DÆ � L1[�3 �] is weak-star compact.

Proof. DÆ � D, which is a weak-star compact subset of L1[�3 �], so it is enough to show

that DÆ is closed. Now d 2 DÆ if and only if, for �-almost every � 2 ,̈

1� Æ <

ð
X
d(�, x) f �(x)�(dx): (40)

For any measurable set A � ¨ with �(A) . 0, define

CA(d) �
ð
¨

ð
X
d(�, x) f�(x)

1[� 2 A]

�(A)
�(dx)�(d�): (41)

The function

(�, x) 7! 1

�(A)
f �(x)1[� 2 A] (42)

is in L1[�3 �], so d 7! CA(d) is a weak-star continuous functional of d. Thus for each

measurable A with �(A) . 0, fd 2 D : CA(d) > 1� Æg is closed. But
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DÆ ¼
\

A:�(A).0

fd 2 D : CA(d) > 1� Æg: (43)

h

Proof of Corollary 1 from Theorem 1. By Lemma 2, DÆ is weak-star compact. Therefore,

inf
d2DÆ

L¨(d) ¼ sup
�2—

inf
d2DÆ

L�(d): (44)

By construction, C�(d
�) ¼ 1� Æ for each � 2 ¨, so d� 2 DÆ. Fix � 2 —. For each � 2 ¨,

x 7! d�(�, x) minimizes E�d(�, X ) among d(�, �) : X ! [0, 1] satisfying E�d(�, X ) > 1� Æ.
Therefore d� minimizes

Ð
¨ E�d(�, X )�(d�) among d 2 DÆ : L�(d

�) ¼ inf d2DÆL�(d). h

3.2. Theorem 2

Because f fŁ : Ł 2 ¨g has monotone likelihood ratios, d� has the form (20). Without loss

of generality, take c� � 1. Let F(�) be the cdf of P0. The risk at Ł 2 ¨ of the decision

procedure d� is

LŁ(d
�) ¼

ð�
��
F(�þ q1�Æ � Ł)d�þ

ð�
�
(1� F(�þ qÆ � Ł))d�: (45)

Therefore,

d

dŁ
LŁ(d

�) ¼
ð
h(�) fŁ(�)d�, (46)

where

h(�) � 1[qÆ þ � , � < �þ qÆ]� 1[��þ q1�Æ , � < �þ q1�Æ]: (47)

Now h(�) has at most one strict sign change. The restriction �þ j�j < q1�Æ � qÆ implies that

qÆ þ � < ��þ q1�Æ. Similarly, �þ j�j < q1�Æ � qÆ implies that �þ qÆ < �þ q1�Æ. Thus if

h has a strict sign change, it is from positive to negative.

Shift families with monotone likelihood ratios are totally positive of order 2 (Lehmann

1986, p. 509), so f is totally positive of order 2. Integration against f is therefore variation-

diminishing: the function

Ł 7!
ð
h(�) fŁ(�)d� ¼ d

dŁ
LŁ(d

�) (48)

has no more sign changes than h does, and its sign changes must be in the same directions as

those of h (Karlin 1968, Theorem 1.3.1). Consequently, any local extremum of Ł 7! LŁ(d
�) is

a global maximum.

The definition of � (21) ensures that dLŁ(d
�)=dŁ ¼ 0 at Ł ¼ �. Therefore, Ł 7! LŁ(d

�)

attains a global maximum at Ł ¼ �, and the maximum risk of the Bayes procedure for prior

�� (the point mass at f�g) is equal to the Bayes risk of ��.

Suppose that f0 is symmetric (so that � ¼ 0 suffices) and that � . 2q1�Æ. Then h has a
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sign change from negative to positive: recall that h is a difference of indicators of two

intervals, [�z, �� z] and [��þ z, z], where z ¼ q1�Æ ¼ �qÆ . 0. The sign pattern of h

depends on the ordering of the endpoints. There are six cases:

1. �z , �� z < ��þ z , z

2. �z < ��þ z < �� z < z

3. �z < ��þ z < z < �� z

4. ��þ z < �z , �� z < z

5. ��þ z , z < �z , �� z

6. ��þ z < �z < z < �� z

Case 1 (case 2) occurs if and only if � < z (if and only if � < 2z), but we have supposed that

� . 2z. Cases 3 and 4 cannot occur because they require � ¼ 2z. Case 5 is impossible

because z . �z (recall that Æ , 1
2
). In case 6, h has a sign change from negative to positive,

as asserted. A total positivity argument similar to the one above thus shows that when

� . 2q1�Æ, LŁ(d
�) attains a global minimum (rather than maximum) at Ł ¼ � ¼ 0 and hence

the truncated Pratt procedure is not minimax for expected measure.

The following lemma is a more general version of a common result (see Lehmann and

Casella 1998, Theorem 1.4, p. 310).

Lemma 3. Suppose � 2 —, the set of probability measures on ¨. Let ~DD be a closed set of

decisions. Let the risk at � of a decision d 2 ~DD be L�(d), and let the Bayes risk of a decision

d 2 ~DD with respect to prior � 2 — be

L�(d) ¼
ð
¨
L�(d)�(d�): (49)

Suppose ~DD is compact in a topology in which d ! L�(d) is lower semicontinuous, for all �.
Then for each � 2 —, ~DD contains at least one Bayes decision for prior �,
d� 2 ~DD : L�(d

�) ¼ inf d2 ~DDL�(d). Suppose º 2 — satisfies Lº(d
º) ¼ sup�2¨L�(d

º). Then dº

is minimax, and º is least favourable: Lº(d
º) > L�(d

�) for all � 2 —.

It follows from Lemma 3 that the prior �� defined above is least favourable, and that d�

is minimax. Equation (23) follows from equation (45) and Theorem 1. h

3.3. Theorem 3

We first show that Theorem 1 essentially applies to the scale-invariant confidence

procedures, so we can characterize the minimax procedures using duality.

Lemma 4. Di is a weak-star compact subset of L1[�3 �].

Because DÆ is closed, it follows that DÆ,i ¼ DÆ \ Di is weak-star compact in L1[�3 �].

Proof of Lemma 4. Suppose that, instead of observing (X , S), we observed Z ¼ (X � �)=S.
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The set ˜ of measurable decision functions based on Z is weak-star compact in L1[�3 º].
Define T : R3 ! R2 by T (�, x, s) ¼ (�, (x� �)=s). Any d 2 Di can be written as the

composition d ¼ 	sT for some 	 2 ˜. We want to show that the map 	 7! 	sT from ˜ onto

Di is weak-star continuous; that will establish that Di is weak-star compact as the image of a

weak-star compact set under a weak-star continuous map. For each � 2 ¨, consider the

bijective change of variables

(x, s) 7! (z ¼ (x� �)=s, s): (50)

The Jacobian of this transformation is s, soð
¨3R3Rþ

	(�, (x� �)=s)g(�, x, s)�(d�)�(dx, ds)

¼
ð
¨3R3Rþ

	(�, z)g(�, szþ �, s)s�(d�)�(dz, ds)

¼
ð
¨3R

	(�, z)

ð
Rþ

sg(�, szþ �, s)ds

� �
�(d�)º(dz): (51)

It follows as a special case (namely, 	 � 1) that (�, z) 7!
Ð
Rþ sg(�, szþ �, s)ds 2 L1[�3 º],

and thus that if 	n ! 	 in the weak-star topology on L1[�3 º] then 	nsT ! 	sT in the

weak-star topology on L1[�3 �], as required. h

The following lemma helps to characterize the risk function of dTPi .

Lemma 5. If n > 3 and �=� < 2u
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(n� 2)=(n(n� 1))

p
, then

Ł 7! d

dŁ
L(Ł,� )(d

TP
i ) (52)

¼ d

dŁ
E(Ł,� )

ð�
��
dTPi (�, (X , S))d� (53)

is positive for Ł , 0, negative for Ł . 0, and has a unique zero at Ł ¼ 0.

Lemma 5 is proved at the end of this subsection.

Proof of Theorem 3. Define dTPi as in Theorem 3. Let — be a set of probability measures as

specified in Section 2.2. For any � 2 — and any fixed � 2 �, define

L(�,� )(d) �
ð
¨
L(�,� )(d)�(d�): (54)

To prove Theorem 3, we apply Lemmas 2 and 4 to use Theorem 1 to obtain a result

analogous to Corollary 1 for scale-invariant procedures:

inf
d2DÆ,i

L(¨,� )(d) ¼ sup
�2—

inf
d2DÆ,i

L(�,� )(d): (55)
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For each �, the most powerful scale-invariant test of H� : Ł ¼ � against the alternative

H0 : Ł ¼ 0 is dTPi ((X1, . . . , X n), �). This implies that for any fixed � , dTPi minimizes,

among scale-invariant level-Æ procedures, the expected confidence set Lebesgue measure

when Ł ¼ 0:

inf
d2DÆ,i

L0(d) ¼ L0(d
TP
i ): (56)

The procedure dTPi is thus a Bayes decision from DÆ,i for risk L0 and prior �0, a point mass

at 0. By Lemma 5, if �=� < 2t1�Æ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(n� 2)=(n(n� 1))

p
then the risk of dTPi , L(�,� )(d

TP
i ),

attains a global maximum at 0. The maximum risk of the Bayes procedure against �0 is equal

to the Bayes risk of �0. It follows from Lemma 3 that dTPi is minimax. h

Proof of Lemma 5. Let k � n� 1 and u ¼ t1�Æ. In terms of the value (x, s2) of

X ¼ (X , S2), the procedure dTPi is

dTPi (Ł, (x, s)) � 1[(x� Ł)=(sn�1=2) < u], Ł < 0,

1[(x� Ł)=(sn�1=2) > �u], Ł . 0:

�
(57)

Fix � , � . 0. Then

L(Ł,� )(d) ¼
ð�
0

E(Ł,� ) 1��
�� Ł� uSn�1=2

� n�1=2

� �� �
d�þ

ð0
��
E(Ł,� ) �

�� Łþ uSn�1=2

� n�1=2

� �� �
d�:

(58)

Thus,

d

dŁ
L(Ł,� )(d) / E(Ł,� ) g(X , S), (59)

where

g(x, s) � 1
�x

u
<

sffiffiffi
n

p <
�� x

u

� �
� 1

x

u
<

sffiffiffi
n

p <
xþ �

u

� �
: (60)

Note that, for all x, g(�x, s) ¼ �g(x, s). Now

d

dŁ
LŁ(d) /

ð
R

E(Ł,� )(g(X , S)jX ¼ x)�
x� Ł

� n�1=2

� �
dx: (61)

Because the normal density is totally positive, the number of sign changes of

Ł 7! dL(Ł,� )(d)=dŁ is no larger than the number of sign changes of a version of

x 7! E(Ł,� )(g(X , S)jX ¼ x). One version is x 7! Ch(x), where C is a constant that depends

on � , Æ, and k, but not on Ł or x:
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h(x) �
ð1
0

g(x, r)r k�1e�kr2=(2� 2=n)dr (62)

¼

�h(�x), x < 0,ð(��x)=u

0

r k�1e�kr2=(2� 2=n)dr �
ð(�þx)=u

x=u

r k�1e�kr2=(2� 2=n)dr, 0 < x < �,

�
ð(�þx)=u

x=u

r k�1e�kr2=(2� 2=n)dr, x . �:

8>>>>>>>><
>>>>>>>>:

(63)

We make the following claims:

(i) h is antisymmetric about 0;

(ii) h is continuously differentiable in x;

(iii) h(0) ¼ 0;

(iv) h(x) , 0 for sufficiently small positive x, and h9(0) , 0;

(v) h(x) , 0 for x > �;
(vi) If �=(� n�1=2) < 2u

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(k � 1)=k

p
, then h9 takes the value 0 at most once on [0, �].

Claims (i)–(v) are clear upon inspection of (63); (vi) is discussed below. Together (i)–(vi) imply

that h changes sign once as x ranges from�1 to1, going from positive to negative as x increases

through 0. Total positivity and (61) imply that Ł 7! dL(Ł,� )(d)=dŁ follows the same pattern, and by

antisymmetry of h its zero must be at Ł ¼ 0. That is, Ł 7! L(Ł,� )(d) attains its maximum at 0.

For (vi), observe that on [0, �],

h9(x) / (x=�)k�1e�C(x=�)2=2[�e�C=2(h1(x=�)þ h2(x=�))þ 1], (64)

where

h1(�) � (1þ 1=�)k�1e�C�,

h2(�) � (1=�� 1)k�1eC�, (65)

C � k�2

u2� 2n�1
:

We now show that h1 þ h2 is strictly decreasing on (0, 1) provided �=(� n�1=2)

< 2u
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(k � 1)=k

p
, the bound in (vi). It follows that h9 is zero at most once. Clearly, h1 is

strictly decreasing on (0, 1), regardless of �=(� n�1=2). Second, h2 has derivative

h92(�) ¼ (k � 1)(1=�� 1)k�2e�C� �1=�2 þ C

k � 1
1=�� C

k � 1

� �
: (66)

Because the term in large brackets is a quadratic function of 1=�, it has a zero on (0, 1) if

and only if C . 4(n� 2). Otherwise, it does not change sign on the positive half-line. It must

be negative as � ! 1, so if it does not change sign on (0, 1), it must be negative on that

interval. Thus h92 must be negative on (0, 1), provided �=(� n�1=2) < 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(k � 1)=k

p
u. But then

h2 is decreasing, so h1 þ h2 is strictly decreasing, so, by (64), h has property (vi). h
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Appendix: Minimax fixed-length confidence intervals

Zeytinoglu and Mintz (1984; 1988) study confidence intervals [Ł̂Ł� l=2, Ł̂Łþ l=2] for a BNM

that minimize supŁ2¨PŁfŁ 62 [Ł̂Ł� l=2, Ł̂Łþ l=2]g, the maximum non-coverage probability,

among random intervals of fixed length l. Their results can be used to find 1� Æ confidence

intervals that are minimax for length among fixed-width 1� Æ confidence intervals.

Suppose Z � N (Ł, 1), Ł 2 [��, �]. Zeytinoglu and Mintz (1984, p. 949) show that if

l=2 , � < l, the minimax non-coverage interval of fixed length l is centred at

Ł̂Ł(Z) ¼ Z, jZj < �� l=2,
�� l=2, jZj . �� l=2,

�
(67)

and has maximum non-coverage probability �(�l=2). If l , � < 3l=2, then the minimax

non-coverage interval of fixed length l is centred at

Ł̂Ł(Z) ¼
0, jZj , a,

Z � a, a < jZj , aþ l,

l, aþ l < jZj,

8<
: (68)

where a is the solution of 2�(�a� l=2) ¼ �(a� l=2). In this case, the maximum non-

coverage probability is �(a� l=2) (Zeytinoglu and Mintz, 1984, p. 948).

The left-hand half of Table 3 gives maximum non-coverage probabilities of the minimax

non-coverage length-l procedure, assuming that � 2 (l=2, l]. The right-hand half gives the a

needed to specify the minimax non-coverage length-l procedure if � 2 (l, 3l=2], along with

corresponding maximum noncoverage probabilities.

When � 2 [1:6, 3:25], the optimal fixed-width 95% interval is centred at a point Ł̂Ł of

form (67) and has width between 3.25 and 3.30. Since intervals of this form have maximum

non-coverage chance �(�l=2), the minimax-width 95% interval has width precisely

2z0:95 	 3:28.
If � 2 [3:6, 5:4], an interval of width 3:60 centred at a point of form (68) has 95%

coverage. This minimax-width fixed-width 95% confidence interval is given by (68), with

a ¼ 0:158.
If � 2 [3:30, 3:60), then no interval with centring point given by (68) has sufficient

uniform coverage probability. To obtain a 95% confidence interval one must centre it at a

point of form (67). This means � 2 (l=2, l], implying that l > �. The maximum non-

coverage at l ¼ 3:30 falls under the 5% cut-off, so l need be no larger than �. It thus turns

out that for � 2 [3:30, 3:60) the maximum non-coverage probability of the minimax-width

fixed-width 95% interval is strictly less than 5% ; for � ¼ 3:60, this 95% interval has width

3.60 and is in fact a 96.4% interval.
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