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We consider the problem of estimating an unknown function f in a regression setting with random

design. Instead of expanding the function on a regular wavelet basis, we expand it on the basis

fł jk(G), j, kg warped with the design. This allows us to employ a very stable and computable

thresholding algorithm. We investigate the properties of this new basis. In particular, we prove that if

the design has a property of Muckenhoupt type, this new basis behaves quite similarly to a regular

wavelet basis. This enables us to prove that the associated thresholding procedure achieves rates of

convergence which have been proved to be minimax in the uniform design case.
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1. Introduction

In this paper we consider the problem of estimating an unknown function f in a regression

setting with random design. We will consider the problem in the framework of wavelet

thresholding. Of course, if the design is regular, the procedures are now standard; see

Donoho and Johnstone (1994) and Donoho et al. (1995). In the case of irregular design,

various attempts to solve this problem have been made: see, for instance, the interpolation

methods of Hall and Turlach (1997) and Kovac and Silverman (2000); the binning method

of Antoniadis et al. (1997); the transformation method of Cai and Brown (1998), or its

recent refinement by Maxim (2002) for a random design; the weighted wavelet transform of

Foster (1996); the isometric method of Sardy et al. (1999); the penalization method of

Antoniadis and Fan (2001); and the specific construction of wavelets adapted to the design

of Delouille et al. (2001; 2004). See also Penski and Vidakovic (2001).

Our aim here will be to stay as close as possible to the standard thresholding. For a

signal observed at some design points (for denoising or other purposes), Y (ti),

i 2 f1, . . . , 2Jg, if the design is regular (t k ¼ k=2J ), the standard wavelet decomposition

algorithm starts with ÆJk ¼ 2J=2Y (k=2J ) which approximates
Ð

Y (x)�Jk(x)dx. Then the

cascade algorithm is employed to obtain the � jk for j < J, which in turn are thresholded. If

the design is not regular, and we still employ the same algorithm, then for a function H

such that H(k=2J ) ¼ t k , we have ÆJk ¼ 2J=2Y (H(k=2J )). Roughly, then, what we are
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focusing on is in fact the standard expansion of the function Y (H(x)), or, if G � H(x) � x,

the decomposition of Y on the ‘warped’ basis, Y (x) ¼
P

I¼( j,k)� Ił I (G(x)). In the

regression setting, this means replacing the standard wavelet expansion of the function f by

its expansion on a new basis fł jk(G), j, kg, where G is adapting to the design: it may be

the distribution function of the design, or its estimation, when it is unknown. This obviously

creates some new difficulties since fł jk(G), j, kg is no longer an orthonormal basis. Still,

this also has clear advantages: among them, let us emphasize the fact that our procedure is

computationally very simple. Compared, for instance, to the transformation method of Cai

and Brown (1998), which considers this approach for the finer scale, but then projects on

the regular wavelet basis, the calculations are more direct. But overall, by doing this, we

stabilize the variance of the estimated coefficients and avoid a necessary but heavy

systematic calculation of the threshold of each coefficient.

An appealing feature of this method is that it does not provide a new algorithm. As far as

algorithms are concerned, this one uses the standard thresholding procedure and as a

consequence the two estimators do coincide at their respective design points. From this

perpective, our paper answers the interesting theoretical question: for which class of design

densities is it optimal to run the classical wavelet algorithm, ignoring the irregularity of the

grid? In this sense this paper can be considered as a generalization of Cai and Brown

(1999).

However, considered as functional objects, the two estimators (since they project on very

different atoms) are really different, and this will be revealed when we study the behaviour

of the warped estimator in various L p norms.

Adopting such a point of view shifts the difficulty towards the study of the bias, that is,

the approximation properties of the warped wavelet bases fł jk(G), j, kg.

Of course the properties of this basis truly depend on the warping factor G. Obviously, if

G is uniform, then fł jk(G), j, kg is a regular wavelet basis. We will prove that, under a

condition on G, we can expect behaviour of the warped basis which is almost as good for

statistical purposes as a standard one. As expected, this condition properly quantifies the

departure from the uniform distribution and happens to be associated with a notion

introduced some years ago in Muckenhoupt (1972) (see also Garcı́a-Cuerva and Rubio de

Francia 1985; Coifman and Fefferman 1974) and widely used afterwards in the context of

Calderón–Zygmund theory: the Muckenhoupt weights.

Beyond the study of the regression problem with random design, we wish to emphasize

that we investigate here the properties of a new kind of basis, which although definitively

not wavelet bases, turn out to behave, at least for statistical concerns, as well as ordinary

wavelet bases.

Our results will provide the rate of convergence of the procedures for various L p norms

under conditions associating the regularity of f with the design G. For instance, in the case

where the density g of G is bounded from above and below, we found exactly the same

behaviour as in the regular design, except that here the conditions of regularity are

formulated on the function f � G�1.

The assumption of boundedness from above and below for g will not be required in full

generality. Moreover, it will be proved that there is a deep connection between Besov
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‘bodies’ constructed on the warped basis and Besov spaces which are modelled on a more

general measure than the Lebesgue measure.

This paper is organized as follows. In Section 2 we introduce the notions of warped

bases, weighted spaces and their relations. In Section 3 we introduce the model and the

different procedures. In Section 4 the notion of Muckenhoupt weight is recalled and its

relation with the warping problem is detailed. Section 5 describes the performance of our

procedures in terms of minimax or maxiset properties. Section 6 is devoted to the proofs,

although some of these are postponed to Sections 7–9. Each of these three sections is of

interest in its own right and specifically illustrates one aspect of the paper: Section 7 is

devoted to Muckenhoupt weights and associated Besov spaces, Section 8 details the

embeddings of Besov bodies in the presence of weight, and Section 9 details the probability

bounds, some of which are a little delicate and require the use of very precise concentration

inequalities for the empirical process.

2. Warped bases, weighted spaces and properties

2.1. Warped bases and weighted spaces

Consider a compactly supported wavelet basis fł j,k , j > �1, k 2 Zg (note that

ł�1,k ¼ �0k denotes the scaling function). The usual expansion of a function f in L2(R) is

f (x) ¼
X

I¼( j,k)

� Ił I (x), (1)

with

� I ¼
ð

f (x)ł I (x)dx: (2)

Suppose now that instead of being in a homogeneous space, we are sitting in a medium

G(x) describing the fact that some zones in the space are dense and some are sparse. In

such a situation we may find some advantage in replacing (1) by the atomic decomposition

f (x) ¼
X

I¼( j,k)

� Ił I (G(x)): (3)

Such ‘warped’ bases have been considered, for instance, in order to catch certain geometric

features or to handle local stationarity; see Clerc and Mallat (2003) and Le Pennec and

Mallat (2003). The new family fł j,k(G), j > �1, k 2 Zg is no longer an orthonormal basis.

For instance, the coefficients � I can be calculated (under mild conditions on G) using the

following formula, which obviously differs from the standard case (2):

� I ¼
ð
ł I (G(x)) f (x)g(x)dx,

where g is the derivative of G.
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A closely connected problem is the following. Regular (Sobolev or Besov) spaces are

generally defined with respect to the Lebesgue measure. However (again when an

inhomogeneity appears in the spaces), it may be more natural to consider other measures,

especially measures of the form ø(x)dx where ø is a weighting of the space.

In this case, we are interested in considering the standard expansion (1), with a view to

measuring its approximation behaviour in the spaces L p(ø(x)dx). The connection between

the two approaches obviously lies in the following formula, where we have used a simple

change of variables (also valid under mild conditions on G):ð���� f (G�1(x)) �
X
I2¸

º Ił I (x)

����
p

1

g(G�1(x))
dx ¼

ð���� f (u) �
X
I2¸

º Ił I (G(u))

����
p

du: (4)

We see in this equation that the approximation properties of f in terms of the warped atoms

correspond to the approximation properties of f (G�1) in terms of the standard wavelet bases,

but measured with the weight ø(x) ¼ (g(G�1(x)))�1.

2.2. Properties of atoms

Many properties of the possible atoms that are shared by wavelet bases can be explored.

However, we shall concentrate here on two special properties which are sufficient, in the

treatment of most statistical applications, to restrict the complexity of the problem to the

level of a Hilbertian framework.

Property 1 Shrinkage (or unconditional) property. There exists an absolute constant K such

that if jŁij < jŁ9ij for all i, then�����
X

i

Łiei

�����
p

< K

�����
X

i

Ł9iei

�����
p

: (5)

Property 1 means, in particular, that by thresholding or shrinking the coefficients we do not

risk exploding the L p-norm, and has many more important properties of its own, as

underlined, for instance, in Donoho (1993).

Property 2 p-Temlyakov property. There exist c p and C p such that, for any finite set of

integers F, we have

c p

ðX
i2F

jeij p <

ð X
i2F

jeij2
 ! p=2

< C p

ðX
i2F

jeij p: (6)

This pair of inequalities was introduced in DeVore (1998) and Temlyakov (1998). They are

also referred to as ‘democratic’. They are obviously true for p ¼ 2 when ei is an othonormal
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basis and provide a key tool to allow extension from quadratic losses to L p ones in most

statistical applications (see Kerkyacharian and Picard 2000).

Properties 1 and 2 are true for compactly supported wavelets. They become false in

general for warped bases, even for p ¼ 2 (warped bases generally are not orthonormal

bases). However, we will see in Section 4 that they remain true if we assume good

properties on G.

3. Model and estimation procedures

3.1. Wavelet shrinkage

Wavelet shrinkage is now a well-established statistical procedure used in nonparametric

estimation. A generic wavelet estimator of an unknown function f is written as

f̂f ¼
X

f I¼( j,k),�1< j<J (n)g
�̂� I ł I Ifj�̂� I j > ºg (7)

where fł j,k , j > �1, k 2 Zg is a compactly supported wavelet basis (with ł�1,k ¼ �0k) and

�̂� I is an estimator of the true wavelet coefficients

� I ¼
ð

f ł I :

Note that procedure (7) is nonlinear since only statistically significant coefficients (e.g.

j�̂� I j > º) are kept. Here º is a threshold parameter which depends on the problem at hand.

This procedure has been investigated in many cases. For the case of regression with

equispaced design,

Yi ¼ f
i

n

� �
þ �i,

where the �i are independent standard Gaussian random variables; see Donoho and Johnstone

(1996), where this estimator has been proposed with the following estimators of the wavelet

coefficients:

�̂� I ¼
1

n

Xn

i¼1

Yi ł I

i

n

� �
: (8)

For the case with non-equispaced but still fixed design,

Yi ¼ f (Ui) þ �i, (9)

where Ui is a fixed sequence, non-decreasing with i, many adaptations of this first estimator

have been provided. At this stage we mention only Cai and Brown (1998) and Hall and

Turlach (1997), which are the closest to the forthcoming discussion.

A common assumption in this context states that the Ui are of the form G�1(i=n), where
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G is a known and regular distribution function. In this case, expression (8) can also be

written as

�̂� I ¼
1

n

Xn

i¼1

Yi ł I

i

n

� �
¼ 1

n

Xn

i¼1

Yi ł I (G(Ui)): (10)

This formula is important since it allows very simple computations. Our aim here is to stay as

close as possible to this formula. It is also used in Cai and Brown (1998), but at the very first

step of the calculation to obtain the ÆJk coefficients at the finest scale. A comparison between

the Cai and Brown procedures and the ones detailed in this paper is given in Section 5.2.

3.2. Regression with random design

Let us now consider the following model. We observe independent variables Y1, . . . , Yn,

with

Yi ¼ f (X i) þ �i, (11)

where X i and �i are independent random variables, and �i has a known distribution with

density g0. The X i are observed, the �i are not. Our aim is to estimate the function f . To

simplify, we assume that the �i are normal variables with mean zero and variance � 2; � 2 is

assumed to be known or replaced by an estimator. For the sake of simplicity, we take � 2 ¼ 1.

The X i have a density g which may be known or unknown. g is assumed to be compactly

supported on the interval I ¼ [a, b], as is f .

3.3. Warping the basis

The main idea developed in this paper is that instead of expanding the function on a

wavelet basis and obtaining as a consequence an estimator which is adapted to the basis but

not so well adapted to the statistical problem, we adopt a different strategy. We warp the

wavelet in such a way that in this new basis the estimates of the coefficients are more

natural.

If we follow the idea developed above in the non-equispaced but fixed design case and

suppose for a while that

G(x) ¼
ðx

a

g(u)du

is a known function, continuous and strictly monotone from [a, b] to [0, 1], then

�̂��I ¼ 1

n

Xn

i¼1

ł I (G(X i))Yi (12)

is a natural extension of (8).

We have
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E( �̂��I ) ¼ 1

n

Xn

i¼1

E(ł j,k(G(X i))( f (X i) þ Ei)) ¼ E(ł I (G(X )) f (X ))

¼
ðb

a

ł I (G(x)) f (x)g(x)dx ¼
ðb

a

ł I (y) f (G�1(y))dy :¼ � I ,

where � I is now the coefficient of the new function f (G�1(y)) in the wavelet basis

fł I , j > �1, k 2 Zg. This can be rewritten as

f (G�1(y)) ¼
X

I

� Ił I (y)

or

f (x) ¼
X

I

� Ił I (G(x)), (13)

and we can associate with this decomposition the estimate

f̂f �(x) ¼
XJ

j¼�1

X
k2Z

�̂��I Ifj�̂��I j > kt ngł I (G(x)), (14)

with

tn ¼ log n

n

� �1=2

, 2J � t�1
n : (15)

Obviously, (13) describes an expansion of f in the new basis fł j,k(G), j > �1, k 2 Zg:
Then one might ask what is to be done if G is not known, which is most frequently the

case. The answer is simple. Let

ĜGn(x) ¼ 1

n

Xn

i¼1

IfX i < xg

be the empirical distribution function of the X i. Let us define new empirical wavelet

coefficients

�̂�9jk ¼ 1

n

Xn

i¼1

ł jk(ĜGn(X i))Yi:

Let us also consider the estimator

f̂f 0 ¼
XJ

j¼�1

X
k2Z

�̂�9jk Ifj�̂�9jk j > ktngł jk(ĜGn(x)), (16)

again with

tn ¼ log n

n

� �1=2

, 2J � t�1
n :
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The thresholding constant k is, as usual, a tuning constant of the method. The theory will be

stated assuming only that k is ‘large enough’ to ensure good concentration inequalities.

However, it is known in practice that a universal threshold will suffer from oversmoothing

especially if it chosen very large. We do not investigate in this paper the influence of the

design on the ‘optimal’ choice of this constant, postponing such practical investigations to a

future paper.

The difference between the two estimators is the substitution of the empirical distribution

function. Notice, however, that this substitution makes the computation even easier.

The only calculation steps are as follows:

1. Sort the X i.

2. Change the numbering in such a way that X i has rank i.

3. Calculate the highest level alpha coefficients using the formula

Æ̂ÆJ 9k ¼ 1

n

Xn

i¼1

�J 9k

i

n

� �
Yi, 2J 9 ¼ n:

4. Calculate the wavelet coefficients using the classical pyramidal algorithm.

5. Employ a thresholding algorithm giving rise to ~�� jk coefficients.

6. Reconstruct the estimator, again using the standard backward pyramidal algorithm, and

obtain

f̂f 0 ¼
XJ

j¼�1

X
k2Z

~�� jkł jk(ĜGn(x)),

which is a function especially easy to draw.

It is worthwhile to notice that f̂f 0 can be considered as the same estimator as the standard

thresholding estimator (7) using (8) since the algorithms are exactly the same and the two

estimators obviously coincide at the design points. So, in this sense, investigating the

properties of this procedure is in some sense measuring the robustness of the standard

thresholding estimator with respect to the design. Considered as functions, however, they are

quite different because they are decomposed into atoms of very different kinds. The aim of

this paper will also be to partly investigate the functional aspects, and specifically to study

the behaviour, of the procedures f̂f � and f̂f 0 under conditions of regularity which will take

into account the regularity of the function f as well as the concentration properties of the

underlying design. It is interesting, at this stage, to notice that there is a slight difference here

from the standard setting in the fact that we set 2J � t�1
n , whereas we usually set 2L � t�2

n

for the finest level. This will be commented on below. It is also worthwhile to notice that, for

technical reasons, the results will be proved not quite for f̂f 0, but for a procedure which is a

little less direct from the computation point of view (but still very simple): instead of

estimating G over the whole sample, we assume that our number of observation is 2n, and

divide the sample (before sorting the X i of course!) into two (independent) parts

(X1, Y1, . . . , X n, Yn, X 91, Y 91, . . . , X 9n, Y 9n): This splitting allows us to simplify, in the

proofs, the necessary control of terms of the form ł j,k(ĜGn) � ł j,k(G) which is already

complicated enough. Note that in practice it makes sense to split the data into ‘even and odd
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observations’, especially if one suspects for instance a possible change in the design,

although in theory the splitting may be done arbitrarily. We use the first part of the data to

estimate G(x) by

ĜGn(x) ¼ 1

n

Xn

i¼1

1]�1,x](X i): (17)

Then we estimate the wavelet coefficients using the other part of the data,

�̂�@
j,k ¼ 1

n

Xn

i¼1

ł j,k(ĜGn(X 9i))Y 9i, (18)

and then consider the estimator

f̂f @ ¼
XJ

j¼�1

X
k2Z

�̂�@
jk Ifj�̂�@

jk j > kt ngł jk(ĜGn(x)): (19)

4. Muckenhoupt weight and warped bases

4.1. Muckenhoupt weight

Let us first recall the following notions:

Definition 1. Muckenhoupt weights. For 1 , p , 1, 1=p þ 1=q ¼ 1, a measurable function

ø > 0 belongs to the Muckenhoupt class A p if there exists 0 , C , 1 such that, for any

interval I included in R,

1

jI j

ð
I

ø(x)dx

� �1= p
1

jI j

ð
I

ø(x)�q= p dx

� �1=q

< C:

For p ¼ 1, the definition is modified in the following way: ø > 0 belongs to the

Muckenhoupt class A1 if there exists 0 , C , 1 such that

ø�(x) < Cø(x) almost everywhere,

where ø�(x) is the Hardy–Littlewood maximal function.

For p ¼ 1, we set

A1 ¼
[
p>1

A p:

Definition 2 Maximal function. If B is the set of all the intervals of R and if f is a

measurable function, then the Hardy–Littlewood maximal function associated with f is

f �(x) ¼ sup
I2B,x2 I

1

jI j

ð
I

j f (u)jdu

� �
:
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The concept of Muckenhoupt weight was introduced in Muckenhoupt (1972) (see also

Garcı́a-Cuerva and Rubio de Francia 1985; Coifman and Fefferman 1974) and widely used

subsequently in the context of Calderón–Zygmund theory. It is easy to observe that the

Muckenhoupt spaces form an increasing family when p varies. Many functions belong to

one of these classes. Of course, if ø is bounded from above and below, it belongs to A1

(and so to any A p), but ø can also approach zero. For instance w(x) ¼ jxja belongs to A p

for �1 , a , p � 1.

We see in the definition that this property in some sense quantifies how close ø is to a

uniform weight, where the function and its inverse evenly weight each interval. Some of the

important properties of these classes of functions will be recalled in Section 7. In what

follows we will assume the following condition:

(H p) y 7! ø(y) ¼ (g(G�1(y)))�1 is a Muckenhoupt weight belonging to A p([a, b]):

(We recall that G(x) ¼
Ð x

a
g(u)du.) This will be proved to be equivalent (see Proposition 9) to

the condition that there exists C such that, for all intervals I � [a, b],

1

jI j

ð
I

g(x)q dx

� �1=q

< C
1

jI j

ð
I

g(x)dx, 1=p þ 1=q ¼ 1:

Again, these conditions are obviously true when the design g is uniform or uniformly

bounded from above and below. More generally, they obviously quantify the usual

assumption that the design gives enough mass to any interval. To fix the ideas, if we take

the example of the density g(x) ¼ (Æþ 1)xÆ on the interval [0, 1], it satisfies (H p) for

Æ . �1 þ 1=p. We see in this example that this condition does not require the density to

be bounded from above or from below.

4.2. Properties of the warped wavelet basis

As shown in formula (13), our construction builds on the new ‘basis’ fł jk(G(:)),
j > �1, k 2 Zg.

Let us consider the following L p risk:

Ek f̂f � f k p
p ¼ E

ð
[a,b]

j f̂f (x) � f (x)j p dx:

Let 1 , p , 1, ø 2 A p, and ł j,k be a compactly supported wavelet. Let T and S be two

real measurable functions defined on R such that

S(T (x)) ¼ x, a:e:, T (S(x)) ¼ x, a:e:;

for any non-negative measurable function h,

ð
R

h(T (x))dx ¼
ð
R

h(y)ø(y)dy:
(20)

We now state the following theorem from Kerkyacharian and Picard (2002):

Theorem 1. Under conditions (20), the family fł jk(T (:)), j > �1, k 2 Zg satisfies

Properties 1 and 2.
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Typically, these conditions are realized if we take T (x) ¼ G(x), defined on ]a, b[, and if

S ¼ G�1 is a locally Lipschitz function on ]0, 1[. It is well known then that if S is

almost everywhere differentiable, then the following change-of-variable formula holds

(cf. Gol’dshtein and Reshetnyak 1983):

for any non-negative measurable function,

ð
R

h(x)ø(x)dx ¼
ð
R

h(T (y))dy,

where ø is the Jacobian of S, that is, ø(y) ¼ (g(G�1(y)))�1. Then we see that our

assumption (H p) states precisely that (20) is realized, with ø 2 A p.

4.3. Weighted Besov spaces

It is natural in this context, if we wish to obtain a global rate of convergence in terms of L p

risk, to impose regularity conditions taking into account the fact that the design is non-

equispaced, and it is to this that we now turn. Let us define, for every measurable function,

˜h f (x) ¼ f (x þ h) � f (x):

Then, recursively, ˜2
h f (x) ¼ ˜h(˜h f )(x) and so on, for ˜N

h f (x), N 2 N�.

Let

rN (t, f , ø, p) ¼ sup
jhj< t

ð
j˜N

h f (u)j pø(u)du

� �1= p

,

with the usual modification for p ¼ 1, and let us define the following modified Besov space:

Bs, p,q(ø) ¼ f :

ð1

0

rN (t, f , ø, p)

t s

� �q
dt

t

� �1=q

, 1
( )

:

The only difference from the usual Besov spaces is the fact that the modulus of continuity rN

is calculated weighting the space with the measure ø(x)dx instead of the Lebesgue measure

corresponding to the function ø ¼ 1. One of the major advantages of regular Besov spaces is

that they can be expressed in terms of wavelet coefficients: under standard oscillating

conditions on the wavelet ł (see, for instance, Meyer 1990), we have, for f ¼P
j>�1,k� jkł j,k ,

ð1

0

rN (t, f , 1, p)

t s

� �q
dt

t

� �1=q

, 1 ,
X
j>�1

2 js2 j=2
X
k2Z

j� j,k j p2� j

 !1= p
8<
:

9=
;

q2
4

3
5

1=q

, 1:

We show in the following proposition that, under conditions on ø, the direct sense of the

implication is still true if, in the sum over k, 2� j is replaced by ø([k=2 j, (k þ 1)=2 j]). It is

worthwhile to notice that, in fact, in most statistical applications, only the direct sense is

used.
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Proposition 1. For 1 < p < 1, let us suppose that ø is in A p, and let us put, for every

interval I � R,

ø(I) ¼
ð

I

ø(x)dx:

Then, if ł is a real compactly supported wavelet, such thatð
ł(x)x k dx ¼ 0, k ¼ 0, . . . , N � 1,

then for

f ¼
X

j,k

� jkł j,k , I j,k ¼ k

2 j
,

k þ 1

2 j

� �
,

ð1

0

rN (t, f , ø, p)

t s

� �q
dt

t

� �1=q

, 1 )
X

j

2 js2 j=2
X
k2Z

j� j,k j pø(I j,k)

 !1= p
8<
:

9=
;

q2
4

3
5

1=q

, 1,

with the usual modification if q ¼ 1:

This proposition is proved in Section 7. A corollary will be necessary since we are not

expanding the function in the wavelet basis but in the warped basis. Let us define

˜h(G) f (x) ¼ f (G�1[G(x) þ h]) � f (x):

As above, recursively, ˜2
h(G) f (x) ¼ ˜h(G)(˜h(G) f )(x) and so on for ˜N

h (G) f (x), N 2 N�,

and again,

~rrN (t, f , G, p) ¼ sup
jhj< t

ð
j˜N

h (G) f (u)j p du

� �1= p

:

Notice that ~rrN is defined with the standard uniform weight. The ‘spatial inhomogeneity’ now

lies in the definition of ˜(G). Let us define the spaces

BG
s, p,q ¼ f :

ð1

0

~rrN (t, f , G, p)

t s

� �q
dt

t

� �1=q

, 1
( )

:

Notice that, in the particular case p ¼ q ¼ 1, it is easy to prove that

f 2 BG
s,1,1 , f � G�1 2 Bs,1,1:

The following corollary concerns the representation of spaces BG
s, p,q in terms of coefficients

in the expansion using the warped basis.

Corollary 1. Under the conditions of Proposition 1 and condition (H p), for

f ¼
X

j,k

� jkł j,k(G)
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(i.e. � jk¼
Ð

[ f �G�1]ł j,k), we have

ð1

0

~rrN (t, f , G, p)

t s

� �q
dt

t

� �1=q

, 1 )
X

j

2 js2 j=2
X
k2Z

j� j,k j pø(I j,k)

 !1= p
8<
:

9=
;

q2
4

3
5

1=q

, 1,

with the usual modification if q ¼ 1:

The corollary is an obvious consequence of the previous proposition applied to f � G�1 just

by observing that ~rrN (t, f , G, p) ¼ rN (t, f � G�1, ø, p).

5. Performance of the estimation procedures

The properties of the procedures f̂f � (corresponding to the case where G is assumed to be

known) and f̂f @ (where G is not known) will be expressed in two different ways. The first,

developed in Section 5.1, is commonly used. It consists of proving that we obtain minimax

rates of convergence for a large variety of loss functions and a wide class of regularity

spaces (Theorem 2 and Proposition 2).

The second way (see Theorem 3 and Proposition 5 below) consists of determining the

maxiset of the procedures.

5.1. Minimax properties of the procedures f̂f � and f̂f @

Theorem 2. Assume that we observe model (11), with f bounded and g satisfying conditions

(H p), where p . 1, � > p are given real numbers, and that the two estimators f̂f � and f̂f @

are those defined in (14) and (19). Then

Ek f̂f � � f k p
p < C

n

log n

� ��Æ

if f 2 BG
s,�,1, s > 1

2
: (21)

If, in addition, f � G�1 belongs to the space lip1=2 of Hölderian functions of coefficient 1
2
,

Ek f̂f @ � f k p
p < C

n

log n

� ��Æ

if f 2 BG
s,�,1, s > 1

2
, (22)

where

Æ ¼ sp

1 þ 2s
: (23)

A number of remarks and comments are in order. The rates of convergence obtained here

for f̂f � correspond to the rates which were proved to be minimax in a uniform design, up to

logarithmic factors. Notice, however, that we do not observe the so-called ‘elbow’ here, that

is, the division of the set of parameters into a sparse and a dense region with different rates

of convergence, as occurs in the case of regular design (see, for instance, Donoho et al.
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1995). This is essentially due to the fact that the Sobolev embeddings which are true with

regular Besov spaces, no longer occur in the context of weighted spaces.

The results on f̂f @ are the same as for f̂f �, except that we need an additional Lipschitz

condition on f � G�1 in the first case. We do not know if this is necessary.

The limitation s > 1
2

is standard in the regression setting. Let us observe that this

restriction appears in our choice of J . In standard thresholding (standard denoising or

density estimation, for instance) one usually sets the highest level L so that 2L � n=log n;

here we have to stop much sooner (2J � (n=log n)1=2). This is especially necessary to

obtain the exponential inequalities of Proposition 3.

If we need to be more explicit, we can also express the results in terms of ‘regular’

Besov spaces. This can be done if we are ready to impose more restrictive assumptions on

the underlying design (e.g. its density is bounded from above and below). In this case, we

have the following proposition:

Proposition 2. Assume that we observe model (11), with f bounded and g satisfying

0 , m < g < M , 1. If p . 1, � > 1 are given real numbers and if the two estimators f̂f �
and f̂f @ are those defined in (14) and (19), then

Ek f̂ �f � � f k p
p < C

n

log n

� ��Æ(s,r)

if f � G�1 2 Bs,�,r, s > 1
2
: (24)

If, in addition, f � G�1 belongs to the space lip1=2 of Hölderian functions of coefficient 1
2
,

then

Ek f̂f @ � f k p
p < C

n

log n

� ��Æ(s,r)

if f � G�1 2 Bs,�,r, s > 1
2
, (25)

where

Æ(s, r) ¼
Æ ¼ sp

1 þ 2s
, for s .

p � �

2�
, r 2 [1, 1],

(s � 1=�þ 1=p) p

1 þ 2(s � 1=�)
, for

1

2
þ 1

�
< s <

p � �

2�
, r <

p � 2

2(s � 1=�) þ 1
:

8>><
>>: (26)

This proposition proves that, under the condition that g is bounded from above and below (as

already investigated in Stone 1982), we observe exactly the same behaviour as in the regular

setting, with the sole exception that the regularity is stated with the function f � G�1 instead

of f .

The proofs of Theorem 2 and Proposition 2 will be given in the next section.

5.2. Illustration of the minimax results

We now illustrate the above results by a comparison of our procedure with the more

sophisticated procedure provided in Cai and Brown (1998). Let us first explain why the

Cai–Brown procedure is more difficult to implement: it consists of starting at the finest

level with the same estimate – using formula (12) at the highest level J 9 (2J 9 ¼ n) – and
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then projecting this high-resolution estimate onto the lower j levels. But as this projection is

performed on the true wavelet basis instead of the warped one, the cascade algorithm is no

longer usable. This creates two difficulties: first, the algorithm is much more involved; and

second, the variance of the estimated wavelet coefficients is no longer constant and not so

easy to calculate. As this variance enters into the threshold, it has to be calculated for each

coefficient, and this creates another source of difficulty in the procedure.

Among the advantages of our results let us emphasize that we obtain the rates of

convergence for various L p losses and a wider class of regularity spaces, as well as much

lighter conditions on the design. This allows us, for instance, in the case where g is

bounded from above and below, to find the elbow again as in the uniform design case, as

described in Section 5.1.

Among the drawbacks let us just mention that the results are expressed in terms of

BG
s, p,q-spaces, which are spaces mixing the regularity of f with the design G. For instance,

(22), which considers the case where G is unknown, states the rate (n=log n)�sp=(1þ2s) if

f (G�1) belongs to the space Bs,1,1, when comparatively close (for p ¼ 2) results in Cai

and Brown (1998) are expressed in terms of f belonging to Bs,1,1. If we again take the

example where

g(x) ¼ (Æþ 1)xÆ If[0, 1]g(x),

condition H( p) is satisfied for Æ . �1 þ 1=p and f (G�1)(x) ¼ f (x1=(Æþ1)). Obviously, if, for

instance, s < k and Æ < �1 þ 1=k, f 2 Bs,1,1 ) f (G�1) 2 Bs,1,1. But in general this may

not be true. In fact, this is precisely the type of cases where the Cai–Brown procedure may

be more accurate, since estimating f (G�1) may lead to loss of regularity. As a consequence,

a procedure using this estimation only at the higher scales (as in Cai and Brown, only using

the formula (12) at the highest level J 9 (2J 9 ¼ n)) where the bias is less important, obviously

leads to more computations but might exhibit more precise behaviour at this point.

5.3. Maxiset properties of the procedures

Let us quickly recall this notion. For a sequence of models E n ¼ fPn
Ł , Ł 2 ¨g, where the

Pn
Ł are probability distributions and ¨ is the set of parameters, we consider a sequence of

estimates q̂qn of a quantity q(Ł), a loss function r(q̂qn, q(Ł)) and a rate of convergence Æn

tending to 0.

Definition 3. We define the maxiset associated with the sequence q̂qn, the loss function r, the

rate Æn and the constant T as the following set:

Max(q̂qn, r, Æn)(T ) ¼ Ł 2 ¨, sup
n

En
Łr(q̂qn, q(Ł))(Æn)�1 < Tg:

�

This way of measuring the performance of procedures has been particularly sucessful in

the nonparametric framework (see, for example, Cohen et al. 2001; Kerkyacharian and

Picard 2000; Rivoirard 2002). It has the advantage of giving less arbitrary and pessimistic

comparisons of procedures. It also has the advantage of being very powerful at giving as
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subproducts the upper bound inequalities in the minimax comparisons. And, for instance,

the following Theorem 3 providing the maxisets for the procedure f̂f � will be a key tool for

the minimax results. Indeed, using Theorem 3, we are able to deduce the rates of

convergence of f̂f � over a large number of regularity classes just by proving their inclusion

in the maxiset. Then we deduce the results for the more general procedure f̂f @ by taking

advantage of the proximity of f̂f � and f̂f @ when n is large (Theorem 2).

We now need to introduce the following notation. Let us suppose that � is the following

measure for j 2 N, k 2 Z:

�f( j, k)g ¼ 2 jp=2ø(I jk):

We define the following function spaces:

lq,1(�) ¼ f ¼
X

I

� Ił I � G, sup
º.0

ºq�f( j, k)k� jk j . ºg , 1
( )

:

Theorem 3. Let p . 1, 0 , q , p. Under condition (H p), the maxiset of the estimator f̂f �,

Max(q) ¼ f , Ek f̂f � � f k p
p

log n

n

� �(q� p)=2

, 1
( )

, (27)

can be expressed in the following form if �f( j, k)g ¼ 2 jp=2ø(I jk):

Max(q) ¼ lq,1(�) \ f ¼
X

I

� Ił I � G, sup
l>0

�����
X
j> l,k

� jkł jk � G

�����
p

p

2 l( p�q) , 1

8<
:

9=
;: (28)

5.4. Illustration of the maxiset properties

Determining the maxiset of a procedure may have various applications. First, it can help in

the comparison of the procedure with others, by proving for instance that its maxiset is

systematically larger. This presupposes the calculation of the maxiset of the other

procedures. It might have been interesting in our context to also calculate the maxiset of the

Cai–Brown procedure, but this is beyond the scope of this paper. The second purpose is to

use the maxiset as a very powerful tool to prove rates of convergence on specified

functional spaces (such as Besov spaces) just by proving their inclusions in the maxiset.

This aspect will be extensively used in the following sections. The third aspect is more

descriptive, and helps to understand the particular shape of functions which are well

estimated (or, on the contrary, badly estimated) by the procedure. In our case it is natural to

compare our results with the maxiset of the standard wavelet thresholding (see

Kerkyacharian and Picard 2000) since, as explained earlier, this will help us to understand

how far we can go with the standard wavelet thresholding instead of turning to more

sophisticated procedures when the design is irregular. The previous result shows that in fact

the properties of the function are clearly expressed in terms not of f itself, but of f � G�1.

So the design appears once in this aspect, and as we have precisely calculated the maxiset
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we see that the appearance of f � G�1 is in some sense unavoidable. But the design also

appears in the following way. As in the case of regular design, the functions which are well

estimated are characterized by the fact that their ‘number’ of large wavelet coefficients is

small. The way this number is calculated is reflected in the definition of the space lq,1(�).

We see that the design again makes an appearance here through ø(I jk), which might greatly

influence the counting. We also see that the closer we are to the uniform design

(ø(I jk) ¼ 2� j), the better interpretable this counting is.

6. Proofs

6.1. Proof of Theorem 3

This proof takes advantage of the following Theorem 4 taken from and proved in

Kerkyacharian and Picard (2000). The aim of the theorem is to determine the ‘maxisets’ of

the thresholding methods for a completely general basis. It will be applied to obtain

Theorem 3.

Let us introduce the following notation. Let fe jk , j > �1, k 2 Ng be a set of functions in

L p(R). � will denote the measure such that, for j 2 N, k 2 Z,

�f( j, k)g ¼ ke jkk p
p:

We also define the function spaces

lq,1(�) ¼ f ¼
X

� jk e jk , sup
º.0

ºq�f( j, k)j j� jk j . ºg , 1
( )

:

Theorem 4. Let p . 1, 0 , q , p. Suppose that fe jk , j > �1, k 2 Ng satisfies Properties 1

and 2. Suppose that c(n) is a sequence of real numbers tending to zero and ¸n is a set of

pairs ( j, k) such that

sup
n

�f¸ngc(n) p , 1: (29)

We suppose in addition that, for any pair ( j, k) in ¸n, there exists an estimator �̂� jk such that

Ej�̂� jk � � jk j2 p < Cc(n)2 p (30)

and

P j�̂� jk � � jk j > kc(n)=2
� 	

< Cc(n)2 p ^ c(n)4: (31)

Then the thresholding estimator

f̂f ¼
X

( j,k)2¸n

�̂� jk Ifj�̂� jk j > kc(n)ge jk (32)

is such that there exists C . 0 such that,
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8n 2 N�, En
f k f̂ nf n � f k p

p < Cc(n) p�q

if and only if

f 2 lq,1(�)

and

sup
n

c(n)q� p

����� f �
X

( j,k)2¸n

� jk e jk

�����
p

p

, 1:

In using Theorem 4 to prove Theorem 3, we make the following observations:

1. The principal result of Theorem 4 says that the maxiset of the procedure f̂f ,

Max(q) ¼ f f , Ek f̂f � � f k p
p c(n)ð Þq� p

, 1g

¼ lq,1(�) \ f ¼
X

� jk e jk sup
n

c(n)q� p

����� f �
X

( j,k)2¸n

� jk e jk

�����
p

p

, 1

8<
:

9=
;:

2. This theorem will be applied to obtain Theorem 3 with

e jk ¼ ł jk � G, f̂f ¼ f̂f �, ¸n ¼ f( j, k); jkj < D2 j, �1 < j < Jg:

The basis satisfies Properties 1 and 2 because of condition (H p) and Theorem 1.

3. The estimators of the coefficients will be taken to be �̂��jk . It will be proved in the

following Proposition 3 that inequalities (30) and (31) hold with

c(n) ¼ tn ¼ log n

n

� �1=2

and 2J � c(n)�1:

4. It will be proved in Section 7 (see Theorem 5) that condition (H p) implies that

�f( j, k)g ¼ ke jkk p
p ¼ kł jkk p

L p(ø) � 2 jp=2ø(I jk). Then condition (29) is satisfied if

XJ

j¼�1

2 j p=2
X

k

ø(I jk)c(n) p , 1:

This is obviously true if ø belongs to L1 and 2J c(n)2 is bounded, which is the case

under our assumptions.

Proposition 3. If f is bounded, there exist constants C p, C9p, and for any ª . 0 there exists

a constant kª, with

E(j�̂� jk � � jk j p) < C p

1 þ k f k p
1

n p=2
, for 2 j < n, (33)

P j�̂� jk � � jk j . k

ffiffiffiffiffiffiffiffiffiffi
log n

n

r !
< C9p n�ª p for k > kª, 2 j <

ffiffiffiffiffiffiffiffiffiffi
n

log n

r
: (34)
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Proposition 3 is proved in Section 9.

6.2. Proof of Theorem 2 and Proposition 2

To prove Theorem 2 and Proposition 2, we begin by investigating the behaviour of f̂f �. The

first step (proving (21) or (24)), consists of proving that the space BG
s,�,r is included in the

maxiset Max(q) with q properly chosen to obtain the prescribed rate of convergence (i.e.

Æ(s) ¼ ( p � q)=2) and the corresponding behaviour for (24).

6.2.1. Proof of inequalities (21) and (24)

Proposition 4. For p . 1, s > 1
2
, s . ( p � �)=2�, r > 1, for q ¼ p=(1 þ 2s), we have, if g

satisfies condition (H p),

BG
s,�,r � BG

s,�,1 � Max(q):

For p . 1, s > 1
2
, s < ( p � �)=2�, if furthermore 0 , m < g < M , 1, for q ¼ ( p � 2)=

(2(s � 1=�) þ 1), r < q, we have

BG
s,�,r � Max(q):

This proposition is proved in Section 8.

6.2.2. Proof of inequalities (22) and (25)

Now that our result is established for f̂f �, we just need to transfer it to f̂f @ by proving that

the two estimators are reasonably close. This will be done in two steps, reflecting the fact

that the difference between f̂f @ and f̂f � is decomposable into two parts with different levels

of difficulty: first replacing �̂�� by �̂�@, then replacing G by ĜGn=2 in ł I (G). It will be seen

that the first step is far less difficult than the second, which deals with random atoms and

will require fine concentration inequalities.

Maxiset for an intermediate estimate Let us consider an intermediate estimate (which will

only be used for the convenience of the proof),

f̂f 9(x) ¼
XJ

j¼�1

X
k2Z

�̂�@
jk Ifj�̂�@

jk j > ktngł jk(G(x)):

f̂f 9 is intermediate between f̂f @ and f̂f �. The difference between f̂f @ and f̂f 9 only lies in the

basis system, which is (as for f̂f �) ł jk(G(x)) for f̂f 9, whereas it is a random system for f̂f @.

Our first concern is to investigate the behaviour of f̂f 9 by proving the following

proposition, using a technique similar to that used for f̂f �.

Proposition 5. Let p . 1, 0 , q , p. Under condition (H p), the maxiset of the estimator f̂f 9,
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Max9(q) ¼ f , Ek f̂f 9� f k p
p

log n

n

� �(q� p)=2

, 1
( )

is such that

Max9(q) ¼ Max(q):

The proof of this result exactly mimics the proof of the result concerning f̂f �. The only

problem is showing that we have a result similar to Proposition 3 if we replace �̂�� by �̂�@.

Proposition 6. Let us suppose k f k1 < D,k f � G�1k lip1=2
< D. There exist constants C p, C9p

such that for any ª . 0 there exists k(ª, D) such that

E( �̂�@
j,k � � j,k j p) < C p

1 þ D p

n p=2
, for 2 j <

ffiffiffiffiffiffiffiffiffiffi
n

log n

r
, (35)

P j�̂�@
j,k � � j,k j . k

ffiffiffiffiffiffiffiffiffiffi
log n

n

r !
< C9p n�ª p, for k > k(ª, D), 2 j <

ffiffiffiffiffiffiffiffiffiffi
n

log n

r
: (36)

Proposition 6 is proved in Section 9.

Evaluating the difference f̂f @ � f̂f 9 The second part of the proof involves evaluating the

difference

f̂f @ � f̂f 9:

Proposition 7. Under condition (20), if f is bounded and such that f (G�1) is in the space

lip1=2, then, for s > 1
2
,

E(k f̂f @ � f̂f 9k p

L p(R)) < Ck f (G�1)k p
Bs, p, 1(ø)

ffiffiffiffiffiffiffiffiffiffi
log n

n

r !sp=(1þ2s)

,

where C only depends on universal constants and the sup and lip1=2 norms of f (G�1):

This proposition is proved in Section 9.

7. Muckenhoupt weights and Besov spaces

7.1. Definitions

The definition of a Muckenhoupt weight was given in Section 4.1. There are several

equivalent definitions which are well known (see Stein 1993). We give here another

important one, together with the very helpful ‘doubling property’.

Proposition 8. If I denotes a bounded interval of R, and jI j its Lebesgue measure, for
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1 < p , 1 and q such that 1= p þ 1=q ¼ 1, ø a non-negative locally integrable function,

the following statements are equivalent:

(i) ø 2 A p, that is,

8I ,
1

jI j

ð
I

ø

� �1= p
1

jI j

ð
I

ø�q= p

� �1=q

< C , 1 (37)

(with the obvious modification if q ¼ 1, p ¼ 1).

(ii) For any measurable function f,

1

jI j

ð
I

j f j
� �

< C
1

ø(I)

ð
I

j f j pø

� �1= p

(38)

(where ø(I) ¼
Ð

I
ø).

Moreover, the measure ø(A) ¼
Ð

A
ø(x)dx then satisfies the following ‘doubling’ property: if

I ¼ [a � h, a þ h] and 2I ¼ [a � 2h, a þ 2h], then

ø(2I) < (2C) pø(I): (39)

Proof. Inequality (38) easily implies (37), taking f ¼ ø�q= p: To prove that (37) implies (38),

we apply the Hölder inequality to j f j ¼ (j f jø1= p)(ø�1= p):

1

jI j

ð
I

j f j
� �

<
1

jI j

ð
I

j f j pø

� �1= p
1

jI j

ð
I

ø�q= p

� �1=q

< C
1

jI j

ð
I

j f j pø

� �1= p
1

jI j

ð
I

ø

� ��1= p

:

Applying (38) with 2I instead of I and f ¼ 1 I, we obtain (39). h

7.2. Muckenhoupt weight and densities

We prove the following proposition:

Proposition 9. Let 1 < p , 1. Let g be a density on [a, b] and G(x) ¼
Ð x

a
g(s)ds be the

associated partition function. Suppose that G is strictly increasing from [a, b] to [0, 1]: The

following statements are equivalent:

(i) (g(G�1(t)))�1 2 A p([0, 1]).

(ii) For q such that 1=p þ 1=q ¼ 1, for any J subinterval of [a, b], we have

1

jJ j

ð
J

g(s)q ds

� �1=q

< C
1

jJ j

ð
J

g(s)ds

� �
:

Proof. Since G is strictly increasing and continuous from [a, b] to [0, 1], we have a natural

one-to-one correspondence between the intervals of [a, b] and those of [0, 1]: The result is an

obvious consequence of the following lemma (with Y ¼ [0, 1], X ¼ [a, b], dm and d� the

Lebesgue measure). h
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Lemma 1. Let (X , m) and (Y , �) be two measure spaces, G : X 7! Y a measurable function.

Let us suppose that,

for all non-negative measurable functions F,

ð
X

F(G(x))dm(x) ¼
ð

Y

F(y)ø(y)d�(y):

Let us put g(x) ¼ ø(G(x))�1 and let Q be a class of measurable subsets of Y and
~QQ ¼ G�1(Q). Then we have an equivalence between the two following statements:

8Q 2 Q,
1

�(Q)

ð
Q

ø(y)d�(y)

� �1= p
1

�(Q)

ð
Q

ø�q= p(y)d�(y)

� �1=q

< C, (40)

8 ~QQ 2 ~QQ,
1

m( ~QQ)

ð
~QQ

g(x)qdm(x)

� �1=q

< C
1

m( ~QQ)

ð
~QQ

g(x)dm(x)

� �
: (41)

Proof. Inequality (40) is equivalent to,

8Q 2 Q,

ð
Q

ø(y)d�(y)

� �1= p ð
Q

ø�q= p(y)d�y)

� �1=q

< C�(Q)

and (41) to,

8 ~QQ 2 ~QQ,

ð
~QQ

g(x)qd�(x)

� �1=q

< Cm( ~QQ)�1= p

ð
~QQ

g(x)dm(x)

� �
:

But, as 1Q(G(x)) ¼ 1 ~QQ(x),ð
Q

ø(y)d�(y) ¼
ð

Y

ø(y)1Q(y)d�(y) ¼
ð

1Q(G(x))dm(x) ¼ m( ~QQ),

ð
Q

ø�q= p(y)d�(y) ¼
ð

Y

ø�q(y)ø(y)1Q(y)d�(y) ¼
ð

X

ø�q(G(x))1Q(G(x))dm(x)

¼
ð
~QQ

g(x)qdm(x)

and

�(Q) ¼
ð

Y

ø(y)ø(y)�11Q(y)d�(y) ¼
ð

X

ø(G(x))�11Q(G(x))dm(x) ¼
ð
~QQ

g(x)dm(x):

h

7.3. Weighted spaces, wavelets and approximation

The aim of the rest of this section is to prove Proposition 1. We necessarily begin by

expressing the L p norm of linear combinations of wavelets at the same resolution level.

1074 G. Kerkyacharian and D. Picard



In this subsection � is a compactly supported scaling function of a multiresolution

analysis and ł an associated compactly supported wavelet. We fix the notation as follows:

supp(�) � [0, L], supp(ł) � [0, L];

�̂�(�) ¼ m0(�=2)F (�)(�=2), ł̂ł(�) ¼ m1(�=2)F (�)(�=2), (42)

where ĝg denotes the Fourier transform of g and m0(�) and m1(�) are trigonometric

polynomials. As usual, for k, j in Z and any function g, we put

g j,k(x) ¼ 2 j=2 g(2 jx � k), I j,k ¼ k

2 j
,

k þ 1

2 j

� �
, ~II j,k ¼ k

2 j
,

k þ L

2 j

� �
,

so that supp(� j,k) � ~II j,k , supp(ł j,k) � ~II j,k . For a measurable function f we define

Æ j,k ¼
ð

f (x)� j,k(x)dx, � j,k ¼
ð

f (x)ł j,k(x)dx;

Pj f ¼
X

k

Æ j,k� j,k ¼ PV j
f , Pjþ1 f � Pj f ¼ PW j

f ¼
X

k

� j,kł j,k :

The following theorem states the equivalence of the L p(ø) norms of functions in V j or

W j in terms of wavelet coefficients. Notice, however, that here the weight ø appears in the

sum.

Theorem 5. Let 1 < p , 1, and suppose ø belongs to A p(R).

(i) There exists C, depending only on �,ł and ø, such that

1

C

X
k

jÆ j,k j pø(I j,k) < 2� jp=2

�����
X

k

Æ j,k� j,k

�����
p

L p(ø)

< C
X

k

jÆ j,k j pø(I j,k), (43)

1

C

X
k

j� j,k j pø(I j,k) < 2� jp=2

�����
X

k

� j,kł j,k

�����
p

L p(ø)

< C
X

k

j� j,k j pø(I j,k): (44)

(ii) We have

8 j 2 Z, kPj f kL p(ø) < C2k f kL p(ø), (45)

lim
j!1

kPj f � f kL p(ø) ¼ 0: (46)

(iii) Let 0 , q < 1 and f 2 L p(ø). Then

X
j

(2 jskPj f � f kL p(ø))
q

" #1=q

, 1()
X

j

2 js2 j=2
X
k2Z

j� j,k j pø(I j,k)

 !1= p
2
4

3
5

q2
4

3
5

1=q

, 1,

(47)

with the usual modification if q ¼ 1:
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This theorem is the consequence of the following lemmas.

Lemma 2. Let ø be in A1(R) and Ł be a bounded function, with support in [0, L] and

Ł j,k(x) ¼ 2 j=2Ł(2 jx � k). Then for 0 , p , 1,

�����
X
k2Z

º j,kŁ j,k(x)

�����
L p(ø)

< C92 j=2
X
k2Z

jº j,k j pø(I j,k)

 !1= p

,

and for p ¼ 1,

�����
X
k2Z

º j,kŁ j,k(x)

�����
L1(ø)

< C92 j=2 sup
k2Z

jº j,k j
� �

:

Proof. The main tool of this proof is the doubling property (39) of the measure ø(x)dx: For

p ¼ 1 the result is obvious. We give separate proofs for 1 , p , 1 and 0 , p < 1.

Let 1 , p , 1: As Ł is a bounded function, with support in [0, L], Ł j,k is supported in
~II j,k and there exists C , 1 such that

P
k jŁ(x � k)j < C: Hence,

����X
k2Z

º j,kŁ j,k(x)

����
p

< 2 jp=2
X
k2Z

jº j,k j pjŁ(2 jx � k)j
 ! X

k2Z
jŁ(2 jx � k)j

 ! p=q

< C p=q2 jp=2
X
k2Z

jº j,k j pjŁ(2 jx � k)j
 !

and

ð����X
k2Z

º j,kŁ j,k(x)

����
p

ø(x)dx < C p=q2 jp=2
X
k2Z

jº j,k j p

ð
~II j, k

jŁ(2 jx � k)jø(x)dx

 !

< C p=qkŁk12 jp=2
X
k2Z

jº j,k j pø(~II j,k)

 !
:

We finish the proof using the doubling property (39), which implies

ø(~II j,k) < cø(I j,k):

Finally let 0 , p < 1. Then
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ð����X
k2Z

º j,kŁ j,k(x)

����
p

ø(x)dx <
X
k2Z

jº j,k j p

ð
~II j, k

jŁ j,k(x)j pø(x)dx

<
X
k2Z

jº j,k j pkŁk p
12 jp=2ø(~II j,k)

< ckŁk p
12 jp=2

X
k2Z

jº j,k j pø(I j,k):

h

Lemma 3. For 1 < p < 1, ø 2 A p, we have

2 j=2
X

k

����
ð

f � j,kdx

����
p

ø(I j,k)

 !1= p

< Ck f kL p(ø),

with the obvious modification if p ¼ 1. The same inequality holds if we replace � by ł:

Proof. The main tool here is property (38). We have

2 jp=2
X

k

����
ð

f � j,kdx

����
p

ø(I j,k) < 2 jp=2
X

k

ð
~II j, k

j f k� j,k jdx

 ! p

ø(I j,k)

< C2 jp=2
X

k

1

ø(~II j,k)

ð
j f � j,k j pø(x)dxø(I j,k)j~II j,k j p

< C92� jp=2

ð
j f (x)j p

X
k

2 jp=2j�(2 jx � k)j pø(x)dx

< C 0

ð
j f (x)j pø(x)dx,

using j~II j,k j � 2� j and the doubling property (39). Of course � and ł can be exchanged. h

Proof of Theorem 5. From Lemmas 2 and 3 we deduce (43) and (44).

Using these lemmas we also deduce (45):

kPj f kL p(ø) ¼
�����
X

k

ð
f (y)� j,k(y)dy� j,k

�����
L p(ø)

< C2 j=2
X

k

����
ð

f � j,kdx

����
p

ø(I j,k)

 !1= p

< C2k f kL p(ø):

Now, to prove (46), it is enough to prove that the family f�k , ł j,kg is total in L p(ø): But

this is obvious, since if g 2 L p(ø)� ¼ Lq(ø) and
Ð

g�kø ¼
Ð

gł j,k9ø ¼ 0 for all k, k9, j,

Regression in random design and warped wavelets 1077



then gø ¼ 0 ø-a.e. so g ¼ 0 ø-a.e. (It is clear that if g 2 Lq(ø) then gø is locally

Lebesgue integrable.)

It remains to prove (47). But for f 2 L p(ø),

kPW j
f kL p(ø) < kPjþ1 f � f kL p(ø) þ kPj f � f kL p(ø)

and

kPj f � f kL p(ø) <
X1
l¼ j

kPW l
f kL p(ø):

Hence

X
j

(2 jskPj f � f kL p(ø))
q

" #1=q

, 1 ()
X

j

(2 jskPW j
f kL p(ø))

q

" #1=q

, 1:

We have used the following well-known convolution lemma:

Lemma 4. Let (a j) j2Z and (b j) j2Z be two sequences and a ? bk ¼
P

jak� jb j. Then

ka ? bk lq(Z) < kak lq^1(Z)kbk lq(Z): (48)

Moreover, using (44), we obtain

X
j

(2 jskPW j
f kL p(ø))

q

" #1=q

, 1 ()
X

j

2 js2 j=2
X
k2Z

j� j,k j pø(I j,k)

 !1= p
2
4

3
5

q2
4

3
5

1=q

, 1:

h

7.4. Weighted Besov spaces and wavelet expansions

Using the notation of Section 4.3, we prove Proposition 1. We begin with the following

standard lemma.

Lemma 5. The following statements are equivalent:

(i) There exists Ł 2 L1(R) such that ł(x) ¼ (�1)N˜N
�1=2Ł(x).

(ii) There exists ª 2 L1(R) such that ł(x) ¼ (DNª)(x).

(iii)
Ð

x kł(x)dx ¼ 0, k ¼ 0, 1, . . . , N � 1.

(iv) m1(�) ¼ O(j�jN ).

(v) There exists a trigonometric polynomial ~mm such that

m1(�) ¼ (1 � exp(�i�))N ~mm(�)
.

Moreover,

supp(Ł) � [0, L], supp(ª) � [0, L]:
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For the reader’s convenience we give a very short proof of this lemma.

Proof. (i) ) (ii). The hypothesis is equivalent to

ł̂ł(�) ¼ (1 � exp (�i�=2))N Ł̂Ł(�):

So

ł̂ł(�) ¼ (1 � exp(�i�=2))N Ł̂Ł(�) ¼ (i�)N exp(�iN�=4)
1

2N

sin �=4

�=4

� �N

Ł̂Ł(�):

And obviously

exp(�iN�=4)
1

2N

sin �=4

�=4

� �N

Ł̂Ł(�)

is the Fourier transform of an integrable function.

(ii) , (iii). This is standard using Taylor’s formula.

(ii) ) (iv) (i�)N ª̂ª(�) ¼ ł̂ł(�) ¼ m1(�=2)�̂�(�=2) implies, as j�̂�(0)j ¼ 1, that m1(�) ¼
O(j�jN ).

(v) ) (i). We have ł̂ł(�) ¼ m1(�=2)�̂�(�=2) ¼ (1 � exp(�i�=2))N ~mm(�=2)�̂�(�=2):

(iv) , (v). This follows from Lemma 6 below. h

Lemma 6. Let m(ø) be a trigonometric polynomial. The following statements are equivalent.

(i) m(ø) ¼ (1 � exp(�iø))N ~mm(ø), with ~mm a trigonometric polynomial.

(ii) m(ø) ¼ O(jøjN ):

Proof. (i) ) (ii) is obvious.

(ii) ) (i). Let us put m(ø) ¼
PM

k¼0ak exp(ikø): If N ¼ 1, we have to find a

trigonometric polynomial
P

k bk exp ikø such that

XM

k¼0

ak exp(ikø) ¼ (1 � exp(iø))
P

k bk exp(ikø):

So

XM

k¼0

ak exp(ikø) ¼
X
k2Z

(bk � bkþ1)exp(ikø):

Let us put ˜bk ¼ (bk � bkþ1) ¼ ak , so that bk ¼
P

j>k a j: But, by hypothesis, m(0) ¼
0 ¼

PM
l¼0al. So bk ¼ 0 for k , 0 and k . M : We can now finish the proof using a

recurrence on N. h
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The following corollary of Lemma 5 is now clear:

Corollary 2. Let ł be a compactly supported wavelet satisfying one of the equivalent

properties of Lemma 5. Let f a locally integrable function, with

� j,k ¼
ð

f (x)ł j,k(x)dx:

Then

� j,k ¼ (�1)N 2 j=2

ð
˜N

2�( jþ1) f (u)Ł(2 ju � k)du (49)

and, if DN f exists,

� j,k ¼ (�1)N 2� jN 2 j=2

ð
DN f (u)ª(2 ju � k)du: (50)

Proof. We have

� j,k ¼ 2 j=2

ð
f (x)ł(2 jx � k)dx ¼ 2 j=2

ð
f (x)

XN

l¼0

C l
N (�1) lŁ(2 jx � l=2 � k)

¼ 2 j=2

ðXN

l¼0

C l
N (�1) l f (u � l2� j�1)Ł(2 ju � k)

¼ (�1)N 2 j=2

ð
˜N

2�( jþ1) f (u)Ł(2 ju � k)du:

One can prove (50) using integration by parts. h

Proof of Proposition 1. For ø 2 A p, using (49), (38) and (39), we have

j� j,k j p < 2 jp=2

ð
~II j, k

j˜N
2�( jþ1) f (u)kŁ(2 ju � k)jdu

 ! p

< C2 jp=2 j~II j,k j p

ø(~II j,k)

ð
~II j, k

j˜N
2�( jþ1) f (u)j pjŁ(2 ju � k)j pø(u)du:

So

2 jp=2j� j,k j pø(I j,k) < C9

ð
~II j, k

j˜N
2�( jþ1) f (u)j pjŁ(2 ju � k)j pø(u)du

and
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2 j=2
X
k2Z

j� j,k j pø(I j,k)

 !1= p

< C 0

ð
R

j˜N
2�( jþ1) f (u)j pø(u)du < C 0rN (2�( jþ1), f , ø, p): (51)

h

8. Embeddings of Besov bodies with weight

This section is devoted to the proof of Proposition 4. Recall that we consider the following

spaces:

BG
s,�,r ¼ f :

ð1

0

(~rrN (t, f , G, �)

t s

� �r
dt

t

� �1=r

, 1
( )

:

Recall also that Corollary 1 proves that under condition (H�), for I j,k ¼ [k=2 j, (k þ 1)=2 j]

and f ¼
P

j,k� jkł j,k(G), we have

f 2 BG
s,�,r )

X
j

2 js2 j=2
X
k2Z

j� j,k j�ø(I j,k)

 !1=�
0
@

1
A

r2
4

3
5

1=r

, 1,

with the usual modification if r ¼ 1:
As Max(q) is the intersection of two conditions, we will have to prove the inclusion of

BG
s,�,r in the following two sets:

L1 ¼ f ¼
X

I

� Ił I � G, sup
º.0

ºq�f( j, k)k� jk j . ºg , 1
( )

, (52)

L2 ¼ f ¼
X

I

� Ił I � G, sup
l>0

�����
X
j> l,k

� jkł jk � G

�����
p

p

2 l( p�q) , 1

8<
:

9=
;: (53)

We remind the reader that we will concentrate on the case where

�(I) ¼ kł I � Gk p
p � 2 jp=2ø(I jk):

Let us introduce the following Besov bodies:

bG
s,�,r ¼ f ¼

X
I

� Ił I � G,
X
j>�1

2 jsr2 jr=2
X
k2Z

j� j,k j�ø(I j,k)

 !r=�
2
4

3
5

1=r

, 1

8><
>:

9>=
>;, (54)

with the usual modification if r ¼ 1: Hence, we reduce the proof of Proposition 4 to

embeddings of Besov bodies which are quite simple, as shown below. Some embedding

properties are obvious:

bG
s,�,r bG

s,�,1, if 0 , r , r9: (55)#
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Because of the fact that ø is a finite weight, the following embeddings are also obvious:

bG
s,�,r bG

s,r,1, if 0 , r < �: (56)

Notice, however, that other embeddings which are standard in the regular case (ø(I jk) ¼ 2� j,

which occurs for instance if 0 , m < g < M , 1) may not be satisfied here (see condition

(58) in the following proposition).

Consider condition (52).

Proposition 10. (i) For q , �, for s related to q by

s ¼ p

2q
� 1

2
, (57)

we have

bG
s,�,r bG

s,�,1 lq,1(�):

(ii) For q > �, if ø is such that

bG
s,�,r bG

s9,�9,r, 8� < �9, s9� 1

�9
¼ s � 1

�
(58)

and if s is now related to q by

s � 1

�
¼ s9� 1

q
, s9 ¼ p

2q
� 1

2
, (59)

then

bG
s,�,r bG

s9,q,r lq,1(�), for r < q:

Proof. Let us put, for simplicity, � pf( j, k)g ¼ 2 jp=2ø(I j,k), and consider that the support of

f and ł is [0, 1]. Let us consider f 2 bG
s,�,1, such that

f (G�1(x)) ¼
X1
j¼�1

X
0<k,2 j

� j,kł j,k(x);
X

0<k,2 j

j� j,k j�ø(I j,k) < C�2� j(sþ1=2)�:

We observe that for all j > �1,
P

0<k,2 j� pf( j, k)g ¼
P

0<k,2 j 2 j p=2ø(I jk) ¼ 2 j p=2ø([0, 1]).

To simplify, let us suppose that ø([0, 1]) ¼ 1:
We will use the following decomposition, and then consider every j level separetely:

� pf( j, k), j� j,k j . ºg ¼
X1
j¼�1

� pf( j, k) 2 f jg3N, j� j,k j . ºg:

Now, for fixed j 2 N,

#
# #

#
# #
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� pf( j, k) 2 f jg3N, j� j,k j . ºg < 2 j p=2 ^ � pf( j, k) 2 f jg3N, j� j,k j . ºg

< 2 j p=2 ^
P

0<k,2 j j� j,k j�2 j p=2ø(I j,k)

º�

< 2 j p=2 1 ^ C2� j(sþ1=2)

º

� ��
( )

:

Let J be such that C2�J (sþ1=2) � º: As p=2 , (s þ 1=2)�, we have

� pf( j, k) 2 f jg3N, j� j,k j . ºg <
XJ

j¼0

2 j p=2 þ C

º

� �� X1
j¼Jþ1

2 j p=22� j(sþ1=2)�

� 2J p=2 þ C

º

� ��

2�J ((sþ1=2)�� p=2):

But as 2J p=2 � º�q, and 2�J ((sþ1=2)�� p=2) ¼ 2�J ( p=2q)�2J p=2 � º�º�q, we obtain the first

inclusion. The second one is obtained simply using Markov’s inequality, observing that

bG
s9,q,q ¼ f

P
jk j� jk jq , 1g. h

Now consider condition (53). First, if � > p, then bG
s,�,r � bG

s=1þ2s, p,1. Using Theorem 5,

we have:�����
X
j> l,k

� j,kł j,k � G

�����
p

2 l( p�q)= p <
X
j> l

�����
X

k

� j,kł j,k � G

�����
p

2 l( p�q)= p

< C
X
j> l

2 j=2
X

k

j� j,k j pø(I j,k)

 !1= p

2 l( p�q)= p:

Hence, if f 2 bG
(1�q= p), p,1, condition (53) obviously holds. Hence the problem remaining is to

check whether bG
s,�,r is included in bG

(1�q= p), p,1. Now, if we use the embeddings (56), with

r ¼ p, we only need to check that s > 2s=(1 þ 2s) ¼ 1 � q=p, when q is chosen as in (57),

which is always true for s > 1
2
, or s > 2(s � 1=�þ 1=p)=(1 þ 2(s � 1=�)) ¼ 1 � q=p, when

q is chosen as in (59), which is always true for p > 2�, but observe that this condition is

necessary for 1=2 < s < ( p � �)=2�: Hence, (53) will always hold if s > 1
2
, for p < �.

For � , p, g bounded from above and below, we have, using (58), bG
s,�,r �

bG
s�1=�þ1= p, p,1. Now, bG

s�1=�þ1= p, p,1 � bG
(1�q= p), p,1 for s � 1=�þ 1=p > 2(s � 1=� þ 1=p)

=(1 þ 2(s � 1=�)) (q is necessarily in this case chosen as in (59)). The last inequality is

true for s > 1=�þ 1=2.

9. The probability bounds

In this section we summarize all the proofs for the probability bounds used for the results

above. We recall the following elementary facts.
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If, for all x 2 R, G(x) ¼ P(X < x) denotes the distribution function of the variable X ,

then we set

8y 2 [0, 1], G�1(y) ¼ sup fx, G(x) < yg:

It is well known that

8y 2 [0, 1], G(G�1(y)) > y, and G(G�1(y)) � y () G continuous:

8x 2 R, G�1(G(x)) > x, and G�1(G(x)) � x () G strictly increasing:

Moreover, if U a is random variable with uniform law on [0, 1], then X has the same

distribution as G�1(U ), and

8�, E�(X ) ¼ E�(G�1(U )) ¼
ð1

0

�(G�1(y))dy:

If G is a continuous function, G(X ) has the uniform law on [0, 1]. The following facts are

also equivalent:

• G is absolutely continuous and G9(x) ¼ g(x) a.e.

• For all F > 0, ð
F(G(x))g(x)dx ¼

ð1

0

F(u)du:

• For all F > 0, ð
F(G(x))dx ¼

ð1

0

F(u)ø(u)du:

Moreover,

g(x) ¼ 1

ø(G(x))
and ø(u) ¼ 1

g(G�1(u))
:

We recall that the definitions of the estimators of the empirical partition function, and the

different estimates of the wavelet coefficients, considered below, are given respectively in

(17), (12) and (18). Obviously,

E( �̂��j,k) ¼
ð
ł j,k(G(x)) f (x)dG(x) ¼ � j,k ¼

ð1

0

ł j,k(G(G�1(y))) f (G�1(y))dy,

E( �̂�@
j,k) ¼

ð
EX [ł j,k(ĜGn(x))] f (x)dG(x) ¼

ð1

0

EX [ł j,k(ĜGn(G�1(y)))] f (G�1(y))dy,

where EX denotes expectation with the respect to X1, . . . , X n. If G is a continuous function,

we also have

� j,k ¼
ð1

0

ł j,k(y) f (G�1(y))dy:

Moreover,
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ĜGn(G�1(y)) ¼ 1

n

Xn

i¼1

1]�1,G�1( y)](X i) ¼
1

n

Xn

i¼1

1]�1, y](G(X i)):

Let us put U1 ¼ G(X 1), U2 ¼ G(X 2), . . . , Un ¼ G(X n); these variables are independently

and identically uniform on [0, 1]. So if we put

ÛU n(y) ¼ 1

n

Xn

i¼1

1]�1, y](Ui), (60)

then

E[�̂�@
j,k] ¼

ð1

0

Eu[ł j,k(ÛUn(y))] f (G�1(y))dy, (61)

where Eu denotes expectation with respect to the law of U1, . . . , Un.

Now if we put

A(y, Æ) ¼ fjÛUn(y) � yj > Ætng, tn ¼
ffiffiffiffiffiffiffiffiffiffi
log n

n

r
,

and if
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log n=n

p
< 2� j, then there exists Ljk ¼ Ljk(Æ), an interval homothetical to the

support of ł jk , with a ratio bounded independently of jk, such that

ł j,k(ÛUn(y)) ¼ IfA(y, Æ)gł j,k(ÛUn(y)) þ IfAc(y, Æ)gł j,k(ÛUn(y))IfLjkg(y):

So we can prove the following lemma which will later be a key tool:

Lemma 7. Let 2 j <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n=log n

p
. With the previous notation, there exists A such thatð1

0

Ejł j,k(ÛUn(y))j p dy < Af1 þ 2 j( p=2�1)g: (62)

Proof. Using Hoeffding’s inequality,

PfjÛUn(y) � yj > ºg < 2 exp(�2nº2) (63)

and

Ejł j,k(ÛU n(y))j p ¼ E(IfA(y, Æ)gjł j,k(ÛUn(y))j p) þ E(IfAc(y, Æ)gjł j,k(ÛU n(y))j p)IfLjkg(y)

< C
2 jp=2

n2Æ2 þ 2 jp=2 IfLjkg(y)

� �
:

So ð1

0

Ejł j,k(ÛUn(y))j p dy < C
2 jp=2

n2Æ2 þ 2 j( p=2�1)

� �
< Cf1 þ 2 j( p=2�1)g

if Æ is chosen large enough. h
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9.1. Bounds for �̂��jk � � jk: Proof of Proposition 3

We need to prove the following inequalities:

E(j�̂��jk � � jk j p) < C p

1 þ k f k p
1

n p=2
, for 2 j < n, (64)

P j�̂��jk � � jk j . k

ffiffiffiffiffiffiffiffiffiffi
log n

n

r !
< C9p n�ª p, for k > kª, 2 j <

ffiffiffiffiffiffiffiffiffiffi
n

log n

r
: (65)

First, we observe that for p , 2, using Jensen’s inequality,

E(j�̂��jk � � j,k j p) < (E(j�̂��jk � � j,k j2)) p=2:

Hence, it is enough to prove (64) for 2 < p , 1. Using Rosenthal’s inequality (see Härdle et

al. 1998, p. 241), for p > 2,

E(j�̂��jk � � jk j p) < C
Ejł j,k(G(X 9))Y 9j p

n p�1
þ (Ejł j,k(G(X 9))Y 9j2) p=2

n p=2

� �
,

Ejł j,k(G(X 9))Y 9j p ¼ Ejł j,k(G(X 9))( f (X 9) þ E)j p

< 2 p�1(Ejł j,k(G(X 9)) f (X 9)j p þ Ejł j,k(G(X 9))Ej p):

But

Ejł j,k(G(X 9)) f (X 9)j p ¼
ð
jł j,k(G(x)) f (x)j p g(x)dx < k f k p

1

ð
jł j,k(G(x))j p g(x)dx

¼ k f k p
1

ð
jł j,k(u)j pdu < k f k p

12 j( p�2)=2kłk p�2
1

ð
jł j,k(u)j2du

¼ k f k p
1kłk p�2

1 2 j( p=2�1):

Furthermore,

Ejł j,k(G(X 9))Ej p ¼ Ejł j,k(G(X 9))j pEjEj p ¼ EjEj p

ð
jł j,k(G(x))j p g(x)dx < C p2 j( p=2�1):

So

Ejł j,k(G(X 9))Y 9j p < C p(1 þ k f k p
1)2 j( p=2�1):

This proves (64) if 2 j < n (and a fortiori if 2 j <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n=log n

p
).

Now let us prove (65). We have

1

n

Xn

i¼1

ł j,k(G(X 9i))( f (X 9i) þ Ei) � � jk

¼ 1

n

Xn

i¼1

ł j,k(G(X 9i))

 !
( f (X 9i) � E(ł j,k(G(X 9)) f (X 9))) þ 1

n

Xn

i¼1

ł j,k(G(X 9i))Ei:
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Hence

P j�̂ jk� jk � � jk j . k

ffiffiffiffiffiffiffiffiffiffi
log n

n

r !

< P

���� 1

n

Xn

i¼1

ł j,k(G(X 9i))( f (X 9i) � E(ł j,k(G(X )) f (X )))

���� . k
2

ffiffiffiffiffiffiffiffiffiffi
log n

n

r !

þ P

���� 1

n

Xn

i¼1

ł j,k(G(X 9i))Ei

���� . k
2

ffiffiffiffiffiffiffiffiffiffi
log n

n

r !
:

Let us observe that, conditionally on (X 91, . . . , X 9n), we have

1

n

Xn

i¼1

ł j,k(G(X 9i))Ei � N 0,
1

n2

Xn

i¼1

ł2
j,k(G(X 9i))

 !
:

So

P

���� 1

n

Xn

i¼1

ł j,k(G(X 9i))Ei

���� . k
2

ffiffiffiffiffiffiffiffiffiffi
log n

n

r !
< E(X 91,...,X 9n) exp � k2 log n

8n�1
Pn

i¼1 ł
2
j,k(G(X 9i))

 !

< P

���� 1

n

Xn

i¼1

ł2
j,k(G(X i)) � 1

���� . Æ

 !

þ exp � k2 log n

8(1 þ Æ)

� �
:

Using Hoeffding’s inequality (see Härdle et al. 1998, p. 241), we have, using the fact that

ł2
j,k(G(X 9i)) are i.i.d. variables bounded by 2 jkłk2

1 and such that Eł2
j,k(G(X 9i)) ¼ 1,

P

���� 1

n

Xn

i¼1

ł2
j,k(G(X 9i)) � 1

���� . Æ

 !
< 2 exp � 2n2Æ2

nkłk4
122 j

 !
< 2n�2Æ2=kłk4

1 (66)

if 2 j <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n=log n

p
. Hence, we can easily fix Æ and then k large enough in such a way that

P

���� 1

n

Xn

i¼1

ł j,k(G(X 9i))Ei

���� . k
2

ffiffiffiffiffiffiffiffiffiffi
log n

n

r !
< Cn�ª,

if 2 j <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n=log n

p
.

Using Bernstein’s inequality,
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P

���� 1

n

Xn

i¼1

ł j,k(G(X 9i))( f (X 9i) � E(ł j,k(G(X 9)) f (X 9)))

���� . k
2

ffiffiffiffiffiffiffiffiffiffi
log n

n

r !

< 2 exp � n((k=2)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log n=n

p
)2

2
3
(3� 2 þ M(k=2)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log n=n

p
)

 !
,

where

M ¼ kł j,k(G(X 9))( f (X 9) � E(ł j,k(G(X 9)) f (X 9)))k1 < 2:2 j=2kłk1k f k1,

� 2 ¼ Ejł j,k(G(X 9))( f (X 9) � E(ł j,k(G(X 9)) f (X 9)))j2 < Ejł j,k(G(X 9)) f (X 9)j2 < k f k2
1,

as

Ejł j,k(G(X 9))j2 ¼
ð
jł j,k(G(x))j2d�(x) ¼

ð1

0

jł j,k(GG�1(y))j2 dy ¼
ð1

0

jł j,k(y)j2 dy ¼ 1:

Furthermore,

2 exp � n((k=2)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log n=n

p
)2

2
3
(3� 2 þ M(k=2)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log n=n

p
)

 !
< 2 exp � 3k2 log n

4k f k1(3 þ 2:2 j=2(k=2)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log n=n

p
)

 !

< 2 exp � 3k2 log n

4k f k1(3 þ k)

if 2 j=2 <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n=log n

p
. Hence, we find that for any ª, there exists k large enough such that

P

���� 1

n

Xn

i¼1

ł j,k(G(X 9i))( f (X 9i) � E(ł j,k(G(X 9)) f (X 9)))

���� . k
2

ffiffiffiffiffiffiffiffiffiffi
log n

n

r !
< C9n�ª:

h

9.2. Bounds for �̂�@
j,k � � j,k: Proof of Proposition 6

We now need to prove the same inequalities as above but for �̂�@
j,k, namely,

Ej�̂�@
j,k � � j,k j p < C p

1 þ D p

n p=2
, for 2 j <

ffiffiffiffiffiffiffiffiffiffi
n

log n

r
, (67)

P j�̂�@
j,k � � j,k j . k

ffiffiffiffiffiffiffiffiffiffi
log n

n

r !
< C9p n�ª p, for k > k(ª, D), 2 j <

ffiffiffiffiffiffiffiffiffiffi
n

log n

r
: (68)

As above, it is enough to prove (67) for 2 < p , 1. Let us observe that conditioning on

(X1, . . . , X n), we have
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E[ �̂�@
j,k j(X 1, . . . , X n)] ¼ E

1

n

Xn

i¼1

ł j,k

1

n

Xn

i¼1

1]�1,X 9i](X i)

 !
( f (X 9i) þ Ei)

����(X1, . . . , X n)

" #
:

¼ E
1

n

Xn

i¼1

ł j,k

1

n

Xn

i¼1

1]�1,X 9i](X i)

 !
( f (X 9i))

����(X 1, . . . , X n)

" #
:

¼
ð1

0

ł j,k(ÛUn(y)) f (G�1(y))dy,

with ÛU n(y) defined as in (60). It is natural to introduce

~�� jk ¼ ~�� jk(X 1, . . . , X n) ¼
ð1

0

ł j,k(ÛU n(y)) f (G�1(y))dy: (69)

Moreover, using (61),

E[ ~�� jk] ¼ E[�̂�@
j,k] ¼

ð
Eu[ł j,k(ÛUn(y))] f (G�1(y))dy,

where Eu denotes the expectation with respect to the law of U1, . . . , U n. We have,

Ej�̂�@
j,k � � jk j p < 2 p�1(Ej�̂�@

j,k � ~�� jk j p þ Ej~�� jk � � jk j p), 2 < p , 1, (70)

P j�̂�@
j,k � � j,k j . k

ffiffiffiffiffiffiffiffiffiffi
log n

n

r !
< P j�̂�@

jk � ~�� jk j .
k
2

ffiffiffiffiffiffiffiffiffiffi
log n

n

r !
þ P j~�� jk � � j,k j .

k
2

ffiffiffiffiffiffiffiffiffiffi
log n

n

r !
:

(71)

9.2.1. Bounds for �̂�@
jk � ~�� jk

We consider two cases: p > 2 and p , 2.

For p > 2, using Rosenthal’s inequality, conditionally on (X1, . . . , X n),

E(j�̂�@
j,k � ~�� jk j pj(X 1, . . . , X n)) < C p

 
Ejł j,k(ĜGn(X 9))( f (X 9) þ E)j pj(X1, . . . , X n)

n p�1
:

þ Ejł j,k(ĜGn(X 9))( f (X 9) þ E)j2j(X 1, . . . , X n)

n

" # p=2!
:

But

2�( p�1)Ejł j,k(ĜGn(X 9))( f (X 9) þ E)j pj(X 1, . . . , X n)

< Ejł j,k(ĜGn(X 9)) f (X 9)j pj(X1, . . . , X n) þ Ejł j,k(ĜGn(X 9))j pjEj pj(X 1, . . . , X n)

and
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Ejł j,k(ĜGn(X 9)) f (X 9)j pj(X 1, . . . , X n) ¼
ð
jł j,k(ĜGn(x9)) f (x9)j pd�(x9)

¼
ð
jł j,k(ĜGn(G�1(y))) f (G�1(y))j p dy ¼

ð
jł j,k(ÛU n(y)) f (G�1(y))j p dy

< k f k p
1

ð
jł j,k(ÛUn(y))j p dy

and

Ejł j,k(ĜGn(X 9))j pjEj pj(X1, . . . , X n) ¼ E(jEj p)

ð1

0

jł j,k(ÛU n(y))j p dy:

So integrating with respect to X i and using Lemma 7,

Ej�̂�@
j,k � ~�� jk j p ¼ E[Ej�̂�@

j,k � ~�� jk j pj(X1, . . . , X n)]

< 2 p�1C p

A(1 þ 2 j( p=2�1))(EjEj p þ k f k p
1)

n p�1
þ [2A(1 þ k f k2

1)] p=2

n p=2

 !

< C9p
1 þ k f k p

1
n p=2

:

For p , 2, we have

P j�̂�@
j,k � ~�� jk j >

k
2

ffiffiffiffiffiffiffiffiffiffi
log n

n

r !
¼ E(X1,...,X n) P j�̂�@

j,k � ~�� jk j >
k
2

ffiffiffiffiffiffiffiffiffiffi
log n

n

r ����(X1, . . . , X n)

 !" #
:

But

P

�����̂�@
j,k � ~�� jk

���� > k
2

ffiffiffiffiffiffiffiffiffiffi
log n

n

r ����(X 1, . . ., X n)

 !

< P

���� 1

n

Xn

i¼1

ł j,k(ĜGn(X 9i))( f (X 9i) � ~�� jk)

���� > k
4

ffiffiffiffiffiffiffiffiffiffi
log n

n

r ����(X 1, . . . , X n)

 !

þ P

���� 1

n

Xn

i¼1

ł j,k(ĜGn(X 9i))Ei

���� > k
4

ffiffiffiffiffiffiffiffiffiffi
log n

n

r ����(X 1, . . . , X n)

 !
:

The two right-hand-side terms will now be investigated separately. We have
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P

���� 1

n

Xn

i¼1

ł j,k(ĜGn(X 9i))( f (X 9i) � ~�� jk)

���� > k
4

ffiffiffiffiffiffiffiffiffiffi
log n

n

r ����(X1, . . . , X n)

 !
:

< 2 exp �
n k=4ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log n=n

p� 	2

2� 2 þ M k=6ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log n=n

p
0
B@

1
CA

where

M < 2kEjł j,k(ĜGn(X 9i))( f (X 9i))k(X1, . . . , X n)k1 < 2:2 j=2kłk1k f k1

� 2 < jEjł j,k(ĜGn(X 9i))( f (X 9i))k(X 1, . . . , X n)j2 < Ejł j,k(ĜGn(X 9i)) f (X 9i)j2j(X 1, . . . , X n)

¼
ð1

0

jł j,k(ÛUn(y))j2j f (G�1(y))j2 dy < k f k2
1

ð1

0

jł j,k(ÛU n(y))j2 dy:

So, if 2 j < n=log n, there exists some constant C such that

P

���� 1

n

Xn

i¼1

ł j,k(ĜGn(X 9i))( f (X 9i) � ~�� jk)

���� > k
4

ffiffiffiffiffiffiffiffiffiffi
log n

n

r ����(X1, . . . , X n)

 !
:

< 2 exp � Ck log n

k f k2
1
Ð 1

0
jł j,k(ÛUn(y))j2 dy þ kk f k1

 !
:

So

P

���� 1

n

Xn

i¼1

ł j,k(ĜGn(X 9i))( f (X 9i) � ~�� jk)

���� > k
4

ffiffiffiffiffiffiffiffiffiffi
log n

n

r !

< E(X1,...,X n) 2 exp � Ck log n

k f k2
1
Ð 1

0
jł j,k(ÛUn(y))j2 dy þ kk f k1

 !" #
:

But by the Dvoretzky–Kiefer–Wolfowitz inequality (Dvoretzky et al. 1956),

P sup
y2R

jÛUn(y) � yj > º

 !
< K exp(�2nº2),

with K a universal constant. Let

Bn(Æ) ¼ sup
y2R

jÛUn(y) � yj > Æ

ffiffiffiffiffiffiffiffiffiffi
log n

n

r( )
: (72)

It is clear that there exists, for all j, k, an interval Lj,k homothetical to the support of ł jk

with a ratio bounded by a constant independent of j, k (but depending on Æ) and D(Æ) such

that, for 2 j <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n=log n

p
,
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I Bc
n(Æ)

ð1

0

jł j,k(ÛUn(y))j2 dy ¼ I Bc
n(Æ)

ð
L j, k

jł j,k(ÛUn(y))j2 dy < D(Æ), (73)

E(X1,... , X n) 2 exp � Ck log n

k f k2
1
Ð 1

0
jł j,k(ÛUn(y))j2 dy þ kk f k1

 !" #

< E(X1,...,X n) I Bn(Æ) 2 exp � Ck log n

k f k2
1
Ð 1

0
jł j,k(ÛUn(y))j2 dy þ kk f k1

 !" #

þ E(X1,...,X n) I Bc
n(Æ) 2 exp � Ck log n

k f k2
1
Ð 1

0
jł j,k(ÛUn(y))j2 dy þ kk f k1

 !" #

< 2K exp �2n Æ

ffiffiffiffiffiffiffiffiffiffi
log n

n

r !2
0
@

1
Aþ 2 exp � Ck log n

k f k2
1 þ kD(Æ)k f k1

 !
< Cn�ª,

with a suitable choice of Æ and then k.

Again let us observe that conditionally on (X 91, . . . , X 9n), we have

1

n

Xn

i¼1

ł j,k(ĜGn(X 9i))Ei � N 0,
1

n2

Xn

i¼1

ł2
j,k(ĜGn(X 9i))

 !

and

P

���� 1

n

Xn

i¼1

ł j,k(ĜGn(X 9i))Ei

���� > k
4

ffiffiffiffiffiffiffiffiffiffi
log n

n

r !

< E(X1,...,X n)E(X 91,...,X 9n) exp � k2 log n

32n�1
Pn

i¼1 ł
2
j,k(ĜGn(X 9i))

 ! !

< 2K exp �2n Æ

ffiffiffiffiffiffiffiffiffiffi
log n

n

r !2
0
@

1
A

þ E(X1,...,X n) I Bc
n(Æ)E(X 91,...,X 9n) exp � k2 log n

32n�1
Pn

i¼1 ł
2
j,k(ĜGn(X 9i))

 ! !
:

But

E(X 91,...,X 9n)ł
2
j,k(ĜGn(X 9i)) ¼

ð1

0

jł j,k(ÛU n(y))j2 dy,

and on Bc
n(Æ) for 2 j <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n=log n

p
, this quantity is less than D(Æ). Using the same argument

as for (66), by the Hoeffding inequality,
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P

���� 1

n

Xn

i¼1

ł2
j,k(ĜGn(X 9i)) �

ð1

0

jł j,k(ÛU n(y))j2 dy

���� . º

 !
< 2 exp � 2n2º2

n(kłk4
122 j þ D(Æ))

 !
:

But if ���� 1

n

Xn

i¼1

ł2
j,k(ĜGn(X 9i)) �

ð1

0

jł j,k(ÛUn(y))j2 dy

���� < º,

we have

exp � k2 log n

3n�1
Pn

i¼1 ł
2
j,k(ĜGn(X 9i))

 !
< exp � k2 log n

32(ºþ D(Æ))

� �
:

So

P

���� 1

n

Xn

i¼1

ł j,k(ĜGn(X 9i))Ei

���� > k
4

ffiffiffiffiffiffiffiffiffiffi
log n

n

r !

< 2K exp �2n Æ

ffiffiffiffiffiffiffiffiffiffi
log n

n

r !2
0
@

1
Aþ 2 exp � 2n2º2

n(kłk2
122 j þ D(Æ))

 !
þ 2 exp � k2 log n

32(ºþ D(Æ))

� �
:

With a suitable choice of Æ, then º, and finally k, we obtain

P

���� 1

n

Xn

i¼1

ł j,k(ĜGn(X 9i)Ei

���� > k
4

ffiffiffiffiffiffiffiffiffiffi
log n

n

r !
< C

1

nª
:

9.2.2. Bounds for ~�� jk � � jk

Let us observe that

~�� jk � � jk ¼
ð1

0

(ł j,k(ÛU n(y)) � ł j,k(y)) f (G�1(y))dy:

In this subsection we will use refinements very specific to wavelets. Let us recall that if ł is

a compactly supported wavelet, then there exists a compactly supported function Ł such that

ł ¼ ˜�h(Ł), h ¼ 2�1, ˜h(Ł)(y) ¼ Ł(y þ h) � Ł(y):

So

ł j,k ¼ ˜�h(Ł j,k), h ¼ 2� j�1, Ł j,k ¼ 2 j=2Ł(2 j y � k):

Let us prove the following lemma:

Lemma 8. Let h 2 R and Ł be a compactly supported function. Then

(˜hŁ)(ÛUn(y)) � (˜hŁ)(y) ¼ ˜h[Ł(ÛUn(y)) � Ł(y)] þ Ł(ÛUn(y) þ h) � Ł(ÛUn(y þ h)): (74)
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Proof. The left-hand side is equivalent to

Ł(ÛU n(y) þ h) � Ł(ÛUn(y)) � Ł(y þ h) þ Ł(y):

The right-hand side equals

˜h[Ł(ÛU n(y)) � Ł(y)] þ Ł(ÛU n(y) þ h) � Ł(ÛUn(y þ h))

¼ (Ł(ÛU n(y þ h)) � Ł(y þ h) � Ł(ÛU n(y)) þ Ł(y)) þ Ł(ÛU n(y) þ h) � Ł(ÛUn(y þ h))

¼ �Ł(y þ h) � Ł(ÛUn(y)) þ Ł(y) þ Ł(ÛU n(y) þ h),

which is equal to the left-hand side. h

As a consequence of this lemma we have

~�� jk � � jk ¼
ð1

0

(ł j,k(ÛUn(y)) � ł j,k(y)) f (G�1(y))dy

¼
ð1

0

(˜�2� j�1Ł j,k)(ÛU n(y)) � (˜�2� j�1Ł j,k)(y) f (G�1(y))dy

¼
ð1

0

˜�2� j�1 [Ł j,k(ÛUn(y)) � Ł j,k(y)] f (G�1(y))dy

þ
ð1

0

[Ł j,k(ÛUn(y) � 2� j�1) � Ł j,k(ÛUn(y � 2� j�1))] f (G�1(y))dy

¼
ð1

0

[Ł j,k(ÛUn(y)) � Ł j,k(y)]˜�2� j�1 ( f � G�1)(y)dy

þ
ð1

0

[Ł j,k(ÛUn(y) � 2� j�1) � Ł j,k(ÛUn(y � 2� j�1))] f (G�1(y))dy:

So

j~�� jk � � jk j < 2� j=2k f � G�1k lip1=2

ð1

0

jŁ j,k(ÛUn(y)) � Ł j,k(y)jdy

þ k f k1
ð1

0

jŁ j,k(ÛUn(y) � 2� j�1) � Ł j,k(ÛUn(y � 2� j�1))jdy:

If we now recall that k f k1 < D, k f � G�1k lip1=2
< D, then

j~�� jk � � jk j < 2� j=2 D

ð1

0

jŁ j,k(ÛUn(y)) � Ł j,k(y))jdy

þ D

ð1

0

jŁ j,k(ÛUn(y) � 2� j�1) � Ł j,k(ÛU n(y � 2� j�1))jdy:
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We tackle the two terms on the right-hand side separately. First we obtain bounds for

2� j=2
Ð 1

0
jŁ j,k(ÛUn(y)) � Ł j,k(y))jdy, using definition (72). It is clear that there exists, for all

j, k, an interval Lj,k homothetical to the support of Ł jk with a ratio bounded by a constant

independent of j, k (but depending on Æ) such that, for 2 j <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n=log n

p
,

2� j=2

ð1

0

jŁ j,k(ÛU n(y)) � Ł j,k(y)jdy

¼ 2� j=2 IfBn(Æ)g
ð1

0

jŁ j,k(ÛU n(y)) � Ł j,k(y)jdy þ 2� j=2 IfBc
n(Æ)g

ð
L jk

jŁ j,k(ÛUn(y)) � Ł j,k(y)jdy

< 2kŁk1 IfBn(Æ)g þ 2 jkŁ9k1 IfBc
n(Æ)g

ð
L jk

jÛUn(y) � yjdy:

We obtain

E 2� j=2

ð1

0

jŁ j,k(ÛUn(y)) � Ł j,k(y)jdy

� � p

< (2kŁk1) p K

n2Æ2 þ 2 jpkŁ9k p
1E

ð
L jk

jÛUn(y) � yjdy

 ! p

:

Using Hölder’s inequality, and then Rosenthal’s inequality applied to the binomial

distribution,

2 jpkŁ9k p
1E

ð
L jk

jÛUn(y) � yjdy

 ! p

< 2 jpkŁ9k p
1C(Æ)2� j( p�1)

ð
L jk

EjÛUn(y)) � yj p dy

< kŁ9k p
1C(Æ)C p

(1 � y) p y þ y p(1 � y)

n p�1
þ (y(1 � y)) p=2

n p=2

� �

< C
1

n p=2
:

We also obtain

P 2� j=2

ð1

0

jŁ j,k(ÛUn(y)) � Ł j,k(y)jdy > k

ffiffiffiffiffiffiffiffiffiffi
log n

n

r" #

<
K

n2Æ2 þ P 2 jkŁ9k1
ð

L jk

jÛUn(y) � yjdy >
k
2

ffiffiffiffiffiffiffiffiffiffi
log n

n

r" #
:

But

P 2 jkŁ9k1
ð

L jk

jÛUn(y) � yjdy >
k
2

ffiffiffiffiffiffiffiffiffiffi
log n

n

r" #

< P C(Æ)kŁ9k1 sup
y2[0,1]

jÛU n(y) � yj > k
2

ffiffiffiffiffiffiffiffiffiffi
log n

n

r" #
<

K

nª
,
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using the Dvoretzky–Kiefer–Wolfowitz inequality, with ª ¼ k2=2C(Æ)2kŁ9k2
1.

Now we obtain bounds for
Ð 1

0
jŁ j,k(ÛUn(y) � 2� j�1) � Ł j,k(ÛUn(y � 2� j�1))jdy, again using

(72). It is clear that there exists, for all j, k, an interval Lj,k homothetical to the support of

Ł jk with a ratio bounded by a constant independent of j, k (but depending on Æ) such that,

for 2 j <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n=log n

p
,

ð1

0

jŁ j,k(ÛU n(y) � 2� j�1) � Ł j,k(ÛUn(y � 2� j�1))jdy

¼ IfBn(Æ)g
ð1

0

jŁ j,k(ÛU n(y) � 2� j�1) � Ł j,k(ÛUn(y � 2� j�1))jdy

þ IfBc
n(Æ)g

ð
L jk

jŁ j,k(ÛUn(y) � 2� j�1) � Ł j,k(ÛU n(y � 2� j�1))jdy

< 2 j=2 IfBn(Æ)g2kŁ9k1 þ 23 j=2kŁ9k1 IfBc
n(Æ)g

ð
L jk

jÛUn(y) � 2� j�1 � ÛU n(y � 2� j�1)jdy

¼ 2 j=2 IfBn(Æ)g2kŁ9k1 þ 23 j=2kŁ9k1 IfBc
n(Æ)g

ð
L jk

���� 1

n

Xn

i¼1

1] y�2� j�1, y](Ui) � 2� j�1

����dy:

We have

E

ð1

0

jŁ j,k(ÛUn(y) � 2� j�1) � Ł j,k(ÛU n(y � 2� j�1))jdy

� � p

<
n

log n

� � p=4

ð2kŁ9k1) p K

n2Æ2 þ 23 pj=2kŁ9k p
1E

ð
L jk

���� 1

n

Xn

i¼1

1] y�2� j�1, y](Ui) � 2� j�1

����dy

 ! p

:

Again, using Hölder’s inequality, and then Rosenthal’s inequality applied to the binomial law,

23 pj=2kŁ9k p
1E

ð
L jk

���� 1

n

Xn

i¼1

1] y�2� j�1, y](Ui) � 2� j�1

����dy

 ! p

< 23 pj=2kŁ9k p
1C(Æ)2� j( p�1)

ð
L jk

E

���� 1

n

Xn

i¼1

1] y�2� j�1, y](Ui) � 2� j�1

����
p

dy

< 2 pj=2kŁ9k p
1C(Æ)C p

(1 � 2� j�1) p2� j�1 þ 2�( jþ1) p(1 � 2� j�1)

n p�1
þ (2� j�1(1 � 2� j�1)) p=2

n p=2

� �

< 2 pj=2kŁ9k p
1C(Æ)C p

2� j

n p�1
þ 2� jp=2

n p=2

� �
¼ kŁ9k p

1C(Æ)C p

1

n p=2

2 j

n

� � p=2�1

þ 1

 !
< C

1

n p=2
:

We also have
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P

ð1

0

jŁ j,k(ÛUn(y) � 2� j�1) � Ł j,k(ÛUn(y � 2� j�1))jdy > k

ffiffiffiffiffiffiffiffiffiffi
log n

n

r" #

<
n

log n

� �1=4

2kŁ9k1
K

n2Æ2 þ P 23 j=2kŁ9k1
ð

L jk

���� 1

n

Xn

i¼1

1] y�2� j�1, y](Ui) � 2� j�1

����dy >
k
2

ffiffiffiffiffiffiffiffiffiffi
log n

n

r" #
:

But

P 23 j=2kŁ9k1
ð

L jk

���� 1

n

Xn

i¼1

1] y�2� j�1, y](Ui) � 2� j�1

����dy >
k
2

ffiffiffiffiffiffiffiffiffiffi
log n

n

r" #

¼ P
1

jLjk j

ð
L jk

���� 1

n

Xn

i¼1

1] y�2� j�1, y](Ui) � 2� j�1

����dy >
k

2C(Æ)kŁ9k1
2� j=2

ffiffiffiffiffiffiffiffiffiffi
log n

n

r" #

< P sup
y2L jk

���� 1

n

Xn

i¼1

1] y�2� j�1, y](Ui) � 2� j�1

���� > k
2C(Æ)kŁ9k1

2� j=2

ffiffiffiffiffiffiffiffiffiffi
log n

n

r" #
:

Let us recall Talagrand’s inequality (see Ledoux 2001, p. 149): for

Z ¼ sup
y2L jk

���� 1

n

Xn

i¼1

1] y�2� j�1, y](Ui) � 2� j�1

����, � 2 ¼ n2� j(1 � 2� j),

there exists a universal constant K such that

P Z > 2E(Z) þ 1

n
�
ffiffiffiffiffiffi
Kr

p
þ 1

n
2Kr

� �
< exp(�r):

So

P Z > 2E(Z) þ 1

n
�

ffiffiffiffiffiffiffi
Kª

p
log n þ 1

n
2Kª log n

� �
<

1

nª

and this implies

P Z > 2E(Z) þ 2� j=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kª

log n

n

r
þ 1

n
2Kª log n

" #
<

1

nª
,

and as 2 j <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n=log n

p
, this in turn clearly implies that there exists a new constant K such

that

P Z > 2E(Z) þ 2� j=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kª

log n

n

r" #
<

1

nª
: (75)

But now, by the Vapnik–Chervonenkis inequality (Devroye and Lugosi 1996),

E(Z) < 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log 2SA(n)

n

r
< 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log 2n2

n

r
,
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where SA(n) is the shattering number of the class

A ¼ f1] y�2� j�1, y], y 2 Ljkg,

which can be easily computed:

SA(n) ¼ 1 þ n(n þ 1)

2
< n2:

Actually we need a slight improvement on this inequality, taking into account the fact that the

variance is 2� j(1 � 2� j). Using such an improvement (Lugosi 2003, p. 17), we obtain

E(Z) <
16 log 2SA(2n)

n
þ 2� j=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32 log 2SA(2n)

n

r
:

So, as 2 j <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n=log n

p
,

E(Z) < C2� j=2

ffiffiffiffiffiffiffiffiffiffi
log n

n

r
: (76)

Now using (75) and (76), we obtain

P sup
y2L jk

���� 1

n

Xn

i¼1

1] y�2� j�1, y](Ui) � 2� j�1

���� > k
2C(Æ)kŁ9k1

2� j=2

ffiffiffiffiffiffiffiffiffiffi
log n

n

r" #
<

1

nª
,

for k suitably choosen.

9.3. Bounds for E(k f̂f @ � f̂f 9k p

L p(R))

Our aim now is to prove Proposition 7. We have

f̂f @ � f̂f 9 ¼
X

J> j>�1

X
k2¸ j

�̂�@
jk Ifj�̂�@

jk j > Ktngfł jk(ĜGn(x)) � ł jk(G(x))g

andð
j f̂f @(x) � f̂f 9(x)j p dx ¼

ð���� X
J> j>�1

X
k2¸ j

�̂�@
jk Ifj�̂�@

jk j > ktngfł jk(ĜGn(x)) � ł jk(G(x))g
����

p

dx

¼
ð1

0

���� X
J> j>�1

X
k2¸ j

�̂�@
jk Ifj�̂�@

jk j > ktngfł jk(ĜGn(G�1(y))) � ł jk(y)g
����

p

ø(y)dy

¼
ð1

0

���� X
J> j>�1

X
k2¸ j

�̂�@
jk Ifj�̂�@

jk j > Ktngfł jk(ÛU n(y)) � ł jk(y)g
����

p

ø(y)dy:

Let
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A(n, y) ¼ fjÛUn(y) � yj > Ætng, tn ¼
ffiffiffiffiffiffiffiffiffiffi
log n

n

r
:

So, as before, using Hoeffding’s inequality, PfjÛUn(y) � yj > ºg < 2 exp(�2nº2), and

P(A(n, y)) ¼ PfjÛU 9n(y) � yj > Ætng <
2

n2Æ2 ,

EjÛUn(y) � yj p <
1

(2n) p=2
pˆ

p

2

� 	
:

Let us define

˜ jk(y) ¼ fł jk(ÛU n(y)) � ł jk(y)g

and clearly

Ej˜ jk j p < C p

2 j3 p=2

n p=2
: (77)

From now C denotes a constant depending only on the wavelet system, p, but not on the

data, and may vary from line to line in the proof. We have

X
j<J

X
k2¸ j

�̂�@
jk Ifj�̂�@

jk j > Ktngfł jk(ÛU 9n(y)) � ł jk(y)g ¼ F1 þ F2

¼
X
j<J

X
k2¸ j

�̂�@
jk Ifj�̂�@

jk j > Ktng˜ jk(y)IfA(n, y)g

þ
X
j<J

X
k2¸ j

�̂�@
jk Ifj�̂�@

jk j > Ktng˜ jk(y)IfAC(n, y)g:

So

E

ð
j f̂f @(x) � f̂f 9(x)j p dx < C

ð1

0

E(jF1(y)j p)ø(y)dy þ
ð1

0

E(jF2(y)j p)ø(y)dy

� �
:

We first bound E
Ð 1

0
jF1(y)j pø(y)dy. Using Hölder’s inequality,

ð1

0

jF1(y)j pø(y)dy < (J2J ) p�1
X
j<J

X
k2¸ j

j�̂�@
jk j p Ifj�̂�@

jk j > Ktng

3

ð1

0

jł jk(ÛU n(y)) � ł jk(y)j p IfA(n, y)gø(y)dy,

and using Schwarz’s inequality,
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E

ð1

0

jF1(y)j pø(y)dy < (J2J ) p�1
X
j<J

X
k2¸ j

[E(j�̂�@
jk j2 p Ifj�̂�@

jk j > Ktng)]1=2

3 E

ð1

0

jł jk(ÛU n(y)) � ł jk(y)j p IfA(n, y)gø(y)dy

� �2
" #1=2

:

But, using (67) and the a priori information, f � G�1 2 Lip1=2,

[E(j�̂�@
jk j2 p Ifj�̂�@

jk j > Ktng)]1=2 < [E(j�̂�@
jk � � jk j2 p)]1=2 þ j� jk j p

< C p

(1 þ D2 p)

n p

� �1=2

þ f2� jk f � G�1k lip1=2
g p < C(1 þ D p)

1

n p=2
þ 2� jp

� �

and

E

ð1

0

jł jk(ÛUn(y)) � ł jk(y)j p IfA(n, y)gø(y)dy

� �2
" #1=2

< C2 jp=2 1

nÆ2 :

So

E

ð1

0

jF1(y)j pø(y)dy < C(J2J ) p�1
X
j<J

X
k2¸ j

(1 þ D p)
1

n p=2
þ 2� jp

� �
2 jp=2 1

nÆ2

< CJ p�1(1 þ D p)
1

nÆ2

2Jp

n p=2
þ 1 _ 2�J ( p=2�1ÞJ

� �
< C(1 þ D p)

1

n p=2

if Æ is large enough.

We now estimate E
Ð 1

0
jF2(y)j pø(y)dy. Using Hölder’s inequality,

E

ð1

0

jF2(y)j pø(y)dy < J p�1
X
j<J

E

ð1

0

���� X
k2¸ j

�̂�@
jk Ifj�̂�@

jk j > Ktng˜ jk(y)IfAC(n, y)g
����

p

ø(y)dy;

but obviously

˜ jk(y)IfAC(n, y)g ¼ ˜ jk(y)IfAC(n, y)gIfLjkg(y),

where Ljk is some fixed homothetic interval of [k=2 j, (k þ 1)=2 j]. Let us observe that

X
k2¸ j

IfLjkg < CIf[0, 1]g (78)

so, applying Hölder’s inequality again,
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���� X
k2¸ j

�̂�@
jk Ifj�̂�@

jk j > Ktng˜ jk(y)IfAC(n, y)g
����

p

<
X
k2¸ j

j�̂�@
jk j p Ifj�̂�@

jk j > Ktngj˜ jk(y)j p IfAC(n, y)gIfLjkg(y)

0
@

1
A X

k2¸ j

IfLjkg

0
@

1
A

p�1

< C
X
k2¸ j

(j�̂�@
jk � � jk j p þ j� jk j p)Ifj�̂�@

jk j > Ktngj˜ jk(y)j p IfLjkg(y)

< C
X
k2¸ j

j� jk j pj˜ jk(y)j p IfLjkg(y) þ
X
k2¸ j

j�̂�@
jk � � jk j p Ifj�̂�@

jk j > Ktngj˜ jk(y)j p IfLjkg(y)

8<
:

9=
;:

Thus

E

ð1

0

jF2(y)j pø(y)dy < C(A1 þ A2 þ A3):

We conclude by bounding each of the Ai in turn. First,

A1 ¼ J p�1
X
j<J

E

ð1

0

X
k2¸ j

j� jk j pj˜ jk(y)j p IfLjkg(y)ø(y)dy

< J p�1
X
j<J

X
k2¸ j

j� jk j p

ð1

0

Ej˜ jk(y)j p IfLjkg(y)ø(y)dy

< J p�1 1

n p=2

X
j<J

2 jp
X
k2¸ j

j� jk j p2 jp=2ø(I jk)

< CJ p�1 1

n p=2

X
j<J

2 jp2� jspk f (G�1)kBs,p,1 < Ck f (G�1)k p
Bs,p,1(ø)

ffiffiffiffiffiffiffiffiffiffi
log n

n

r !sp=(1þ2s)

,

because if s > 1, then

J p�1 1

n p=2

X
j<J

2 jp2� jsp < J p 1

n p=2
< C(log (n)) p 1

n p=2
< C

ffiffiffiffiffiffiffiffiffiffi
log n

n

r !sp=(1þ2s)

;

and if 1=2 < s , 1, then
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J p�1 1

n p=2

X
j<J

2 jp2� jsp < C(log(n)) p�1 1

n p=2
2Jp(1�s) < C(log(n)) p�1 1

n p=2

ffiffiffiffiffiffiffiffiffiffi
n

log n

r� � p(1�s)

< C
1

nsp=2
(log n)( p=2)(1�s)�1 < C

ffiffiffiffiffiffiffiffiffiffi
log n

n

r !sp=(1þ2s)

:

Next,

A2 ¼ J p�1
X
j<J

E

ð1

0

X
k2¸ j

j�̂�@
jk � � jk j p Ifj� jk j , Ktn=2gIfj�̂�@

jk j > Ktngj˜ jk(y)j p IfLjkg(y)ø(y)dy

< J p�1
X
j<J

X
k2¸ j

ð1

0

Ej�̂�@
jk � � jk j p Ifj�̂�@

jk � � jk j . Ktn=2gj˜ jk(y)j p IfLjkg(y)ø(y)dy

¼ J p�1
X
j<J

X
k2¸ j

ð1

0

(Ej�̂�@
jk � � jk j3 p)1=3(Pfj�̂�@

jk � � jk j . Ktn=2g)1=3

3 (Ej˜ jk(y)j3 p)1=3 IfLjkg(y)ø(y)dy

using Hölder’s inequality. But by (77) and (67) applied to 3 p instead of p,

A2 < J p�1
X
j<J

C
1 þ D p

n p=2

1

n�ª p

23 jp=2

n p=2

ð1

0

X
j<J

IfLjkg(y)ø(y)dy:

So certainly

A2 < C

ffiffiffiffiffiffiffiffiffiffi
log n

n

r !sp=(1þ2s)

:

Finally,

A3 ¼ J p�1
X
j<J

X
k2¸ j

ð1

0

E j�̂�@
jk � � jk j p Ifj� jk j > Ktn=2gIfj�̂�@

jk j > Ktngj˜ jk(y)j p
h i

3 IfLjkg(y)ø(y)dy

< J p�1
X
j<J

X
k2¸ j

Ifj� jk j > Ktn=2g
ð1

0

E j�̂�@
jk � � jk j pj˜ jk(y)j p

h i
IfLjkg(y)ø(y)dy

< J p�1
X
j<J

X
k2¸ j

Ifj� jk j > Ktn=2g
ð1

0

(Ej�̂�@
jk � � jk j2 p)1=2(Ej˜ jk(y)j2 p)1=2 IfLjkg(y)ø(y)dy,

using Schwarz’s inequality. Again by (77) and (67) applied to 3 p instead of p,
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A3 < CJ p�1
X
j<J

X
k2¸ j

Ifj� jk j > Ktn=2g
ð1

0

C
1 þ D p

n p=2

23 jp=2

n p=2
IfLjkg(y)ø(y)dy

< C
1 þ D p

n p
J p�1

X
j<J

2 jp
X
k2¸ j

Ifj� jk j > Ktn=2gø(I jk)2 jp=2:

But X
k2¸ j

Ifj� jk j > Ktn=2g2 jp=2ø(I jk) <
1

Ktn=2

� � pX
k2¸ j

j� jk j p2 jp=2ø(I jk)

<
n

(K=2)log n

� � p=2

k f (G�1)k p
Bs, p,1(ø)2

� jsp:

So

A3 < C
1 þ D p

n p
(log n) p�1 n

(K=2)log n

� � p=2

k f (G�1)k p
Bs, p,1(ø)

X
j<J

2 jp(1�s)

< C
1 þ D p

n p=2
(log n) p=2�1k f (G�1)k p

Bs, p,1(ø)

X
j<J

2 jp(1�s):

If s > 1, then clearly

A3 < C
1 þ D p

n p=2
(log n) p=2k f (G�1)k p

Bs, p,1(ø) < C(1 þ D p)k f (G�1)k p
Bs, p,1(ø)

ffiffiffiffiffiffiffiffiffiffi
log n

n

r !sp=(1þ2s)

:

If 1=2 < s , 1, then

A3 < C
1 þ D p

n p=2
(log n) p=2�1k f (G�1)k p

Bs, p,1(ø)

ffiffiffiffiffiffiffiffiffiffi
n

log n

r� � p(1�s)

< C(1 þ D p)(log n)�1k f (G�1)k p
Bs, p,1(ø)

ffiffiffiffiffiffiffiffiffiffi
log n

n

r !sp=2

< C(1 þ D p)k f (G�1)k p
Bsp1(ø)

ffiffiffiffiffiffiffiffiffiffi
log n

n

r !sp=(1þ2s)

:

as obviously s=2 > s=(1 þ 2s).
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Delouille, V., Simoens, J. and Von Sachs, R. (2004) Smooth design-adapted wavelets for nonparametric

stochastic regression. J. Amer. Statist. Assoc., 99, 643–658.

DeVore, R. (1998) Nonlinear approximation. In A. Iserles (ed.), Acta Numerica, Vol. 7, pp. 51–150.

Cambridge: Cambridge University Press.

Devroye, L. and Lugosi, G. (1996) A Probabilist Theory of Pattern Recognition. New York: Springer-

Verlag.

Donoho, D.L. (1993) Unconditional bases are optimal bases for data compression and statistical

estimation. Appl. Comput. Harmon. Anal., 1, 100–115.

Donoho, D.L. and Johnstone, I.M. (1994) Ideal spatial adaptation via wavelet shrinkage. Biometrika,

81, 425–455.

Donoho, D.L. and Johnstone, I.M. (1996) Neoclassical minimax problems, thresholding and adaptive

function estimation. Bernoulli, 2, 39–62.

Donoho, D.L., Johnstone, I.M., Kerkyacharian, G. and Picard, D. (1995) Wavelet shrinkage:

asymptopia? (with discussion). J Roy. Statist. Soc. Ser. B, 57, 301–369.

Dvoretzky, A., Kiefer, J. and Wolfowitz, J. (1956) Asymptotic minimax character of the sample

distribution function and of the classical multinomial estimator. Ann. Math. Statist., 27,

642–669.

Foster, G. (1996) Wavelet for period analysis of unequally sampled time series. Astronomy J., 112,

1709–1729.

Garcı́a-Cuerva, J. and Rubio de Francia, J.L. (1985) Weighted Norm Inequalities and Related Topics,

North-Holland Math. Stud. 116. Amsterdam: North-Holland.

Gol’dshtein, V.M. and Reshetnyak, Y. (1983) Quasiconformal Mappings and Sobolev Spaces.

Dordrecht: Kluwer Academic Publishers.

Hall, P. and Turlach, B.A. (1997) Interpolation methods for nonlinear wavelet regression with

irregularly spaced design. Ann. Statist., 25, 1912–1925.
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Muckenhoupt, B. (1972) Weighted norm inequalities for the Hardy maximal function. Trans. Amer.

Math. Soc. 165, 207–226.

Pensky, M. and Vidakovic, B. (2001) On non-equally spaced wavelet regression. Ann. Inst. Statist.

Math., 53, 681–690.

Rivoirard, V. (2002) Estimation bayesienne non parametrique. Doctoral thesis, Université Paris VII.
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