
Nonparametric independent component

analysis

A L E X A N D E R S A M A ROV 1 and ALEXANDRE TSYBAKOV2

1Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139-4307,

USA. E-mail: samarov@mit.edu
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We consider the problem of nonparametric estimation of a d-dimensional probability density and its

‘principal directions’ in the independent component analysis model. A new method of estimation

based on diagonalization of nonparametric estimates of certain matrix functionals of the density is

suggested. We show that the proposed estimators of principal directions are
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corresponding density estimators converge at the optimal rate.
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1. Introduction

Let X1, . . . , X n be independent and identically distributed random vectors with common

probability density p on Rd , d > 2. We consider the problem of nonparametric estimation

of the density p, assuming that it has the form

p(x) ¼ jdet(B)j
Yd

j¼1

pj(x
T� j), x 2 Rd , (1)

where �1, . . . , �d are unknown, linearly independent, unit-length column vectors in Rd ,

det(B) is the determinant of the matrix

B ¼ (�1, . . . , �d),

and pj(�), j ¼ 1, . . . , d, are unknown probability densities on R1. We assume that the pj are

smooth densities belonging to Hölder classes �(s j, Lj) with some s j . 2, Lj . 0,

respectively. Here the Hölder class �(s j, Lj) is defined as the class of all probability

densities on R1 satisfying

j p( l j)

j (z) � p
( l j)

j (z9)j < Ljjz � z9js j� l j , 8z, z9 2 R1,

where l j ¼ bs jc and 0 , s j, Lj , 1.

Model (1) has recently become popular in the engineering literature in the context of

independent components analysis (ICA); see Hyvärinen et al. (2001) and Roberts and
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Everson (2001). ICA is a statistical and computational technique for identifying hidden

factors that underlie sets of random variables, measurements, or signals. ICA defines a

model for the observed multivariate data, in which the data variables are assumed to be

linear mixtures of some unknown latent variables, called the independent components, and

the mixing system is also unknown. The goal of ICA is to estimate these independent

components, also called sources or factors. The data analysed by ICA include digital

images, biomedical, financial and telecommunications data, as well as economic indicators

and psychometric measurements. Typically, ICA is applied in blind source separation

problems where the measurements are given as a set of parallel signals, for example,

mixtures of simultaneous speech signals that have been picked up by several microphones,

brain waves recorded by multiple sensors, interfering radio signals arriving at a mobile

phone, or parallel time series obtained from some industrial process.

In the engineering literature model (1) is usually stated in an equivalent form,

U ¼ BT X ,

where X is a random vector in Rd , U is a random vector in Rd with independent

components, and B is an unknown non-degenerate matrix. The goal of ICA is to estimate the

matrix B based on a sample X 1, . . . , X n from X . Most known methods of solving the ICA

problem involve specification of the parametric form of the latent component densities pj and

estimation of B together with parameters of pj using maximum likelihood or minimization of

the empirical versions of various divergence criteria between densities; see Hyvärinen et al.

(2001), Roberts and Everson (2001) and references therein. Statistical properties of such

methods are usually not analysed in this literature, but can be derived from the theory of

minimum contrast parametric estimation. In practical applications, the distributions pj of

latent independent components are generally unknown, and it is preferable to consider ICA as

a semi-parametric model in which these distributions are left unspecified.

Note that in the ICA literature it is usually assumed that the right-hand side of (1)

represents not the true density p but only its best independent component approximation.

One is then supposed to find the best approximation of p in a class of product densities,

with respect to a given loss criterion. Accordingly, the problem of estimation of p is not

considered. In a recent paper in this direction, Bach and Jordan (2002) propose an ICA

algorithm which does not rely on a specific parametric form of component distribution.

Among earlier methods of this kind we mention those of Pham (1996) and Cardoso (1999)

because we believe that under appropriate conditions these methods provide consistent

estimators of the directions � j. However, the proof of this conjecture is not available.

Model (1) is a special case of the projection pursuit density estimation (PPDE) model. As

in ICA, in PPDE one uses the approximation of the joint density by a product of univariate

densities of rotated components, rather than the exact representation assumed in (1); see, for

example, Huber (1985). The difference from ICA is that the number of univariate densities

used to approximate p in PPDE is not necessarily equal to the dimension d; it can be larger

or smaller. Using minimization of the Kullback–Liebler divergence method, Hall (1988) has

shown that the direction vector of the one-component projection pursuit approximation can

be estimated at n�1=2 rate; extension of this result to multiple-component approximation as

in the right-hand side of (1) is not obvious.
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The aim of this paper is twofold. First, we propose a method of simultaneous estimation

of the directions �1, . . . , �d which does not rely on parametric distributional assumptions

on pj(�). Our method is based on nonparametric estimation of the average outer product of

the density gradient and on simultaneous diagonalization of this estimated matrix and the

sample covariance matrix of the data. We show that our estimates converge to the true

directions �1, . . . , �d with the parametric n�1=2 rate. Second, unlike in the ICA framework,

we also consider the estimation of p. In fact, we show that (1) is a particular form of

multivariate density for which the ‘curse of dimensionality’ can be avoided in the

asymptotic sense. We show that the component densities can be estimated at the usual one-

dimensional nonparametric rate and that the resulting product estimator of the joint density

p(x) has the one-dimensional (optimal) nonparametric rate corresponding to the independent

component density with the worst smoothness.

In Section 2 we outline our approach and define the estimators of independent component

directions and of the density (1). Root-n consistency of the direction estimators is proved in

Section 3, while the rate of convergence of the joint density estimators is established in

Section 4. The Appendix contains proofs of our technical lemmas.

2. The method of estimation

We first outline the idea of our
ffiffiffi
n

p
-consistent estimators of the directions � j, j ¼ 1, . . . , d.

Denote by X a random vector in Rd distributed with the density p. Under model (1) the

components of the random vector U ¼ BT X are independent, so that the covariance matrix

var(U ) ¼ D is diagonal, that is,

BT var(X )B ¼ D: (2)

Consider also a matrix-valued functional

T ( p) ¼ E[= p(X )=T p(X )], (3)

where =p is the gradient of p and E denotes the expectation with respect to p. For densities

satisfying (1) the functional T ( p) takes the form

T ( p) ¼
Xd

j¼1

Xd

k¼1

c jk� j�
T
k , (4)

where c jk ¼ (det(B))2E[
Q

i 6¼ j pi(X T�i)
Q

m6¼k pm(X T�m) p9j(X T� j) p9k(X T�k)] (we assume that

the c jk are finite). Making the change of variables ul ¼ X T� l, l ¼ 1, . . . , d, and integrating

out the ul with l 6¼ j, k, we obtain, under mild boundary assumptions on the marginal

densities pj,

c jk ¼ C jk

ð
p9j(u j) p9k(uk) p2

j(u j) p2
k(uk)du j duk ¼ 0, (5)

for j 6¼ k and some constants C jk . Hence, (4) can be written as
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T ( p) ¼
Xd

j¼1

c jj� j�
T
j ,

or, in matrix form,

T ¼ T ( p) ¼ BCBT, (6)

where C ¼ diag(c jj). It is easy to see that c jj . 0 for all j. Thus T is positive definite and (6)

implies that

BTT �1 B ¼ C�1, (7)

Denote � ¼ var(X ), P ¼ BC1=2 and ¸ ¼ C1=2 DC1=2. Then equations (2) and (7) imply that

PT�P ¼ ¸, (8)

PTT �1 P ¼ I , (9)

where I is the identity matrix. It is known from matrix algebra (see Lewis 1991, Section 6.7),

that for any two positive semidefinite symmetric matrices � and T �1, such that at least one of

these matrices is positive definite, there exists a non-singular matrix P and a diagonal matrix

¸ such that (8) and (9) hold, where the elements º j of ¸ are eigenvalues of the matrix T�
and the columns of P are the corresponding eigenvectors of T�. So, if all the º j are different,

the columns of P can be uniquely identified as vectors p j solving

T�p j ¼ º jp j, j ¼ 1, . . . , d:

This last equation can be rewritten as

T 1=2�T 1=2q j ¼ º jq j, j ¼ 1, . . . , d, (10)

where T 1=2 is the symmetric square root of T and q j ¼ T �1=2p j. Since the matrix

W ¼ T 1=2�T 1=2 is symmetric, the vectors q j, qk are orthogonal for j 6¼ k.

Now our plan for estimating the � j is as follows: we first construct
ffiffiffi
n

p
-consistent

estimators of matrices � and T and use them to
ffiffiffi
n

p
-consistently estimate the matrix

W ¼ T 1=2�T 1=2, then find the principal components of this estimator and use them to

estimate q j, j ¼ 1, . . . , d. These last estimates are then used to construct
ffiffiffi
n

p
-consistent

estimates of p j ¼ T 1=2q j, and finally, since

� j ¼ c
�1=2
jj p j ¼ p j=kp jk, (11)

where k � k denotes the Euclidean norm in Rd , the estimators of � j are obtained from

estimators of p j by normalizing them to have unit length.

We now define our estimators of � j more precisely. Denote

S ¼ 1

n

Xn

i¼1

(X i � X )(X i � X )T,

the sample covariance matrix. Consider next an estimator of T ( p) defined by
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T̂T ¼ 1

n

Xn

i¼1

= p̂p�i(X i)=
T p̂p�i(X i),

where = p̂p�i(X i) is the column vector with components

@ p̂p�i

@xl

(X i) ¼
1

(n � 1)hdþ1

Xn

j¼1, j 6¼i

Ql

X j � X i

h

� �
, l ¼ 1, . . . , d: (12)

Here

Ql

X j � X i

h

� �
¼ K1

X jl � X il

h

� � Yd

k¼1,k 6¼ l

K
X jk � X ik

h

� �
,

X ik is the kth component of X i, h . 0 is a bandwidth and K : R1 ! R1, K1 : R1 ! R1 are

kernels satisfying the conditions that will be stated below. If K is differentiable, one can take

K1 ¼ K9; in this case (12) can be viewed as a partial derivative of the leave-one-out kernel

density estimator

p̂p�i(X i) ¼
1

(n � 1)hd

Xn

j¼1, j 6¼i

Yd

k¼1

K
X jk � X ik

h

� �
:

The symmetric non-negative definite matrix T̂T admits a spectral decomposition

T̂T ¼ V̂V M̂M V̂V T with an orthogonal matrix V̂V and a diagonal matrix M̂M ¼ diag(m̂m1, . . . , m̂md),

where m̂m j > 0, j ¼ 1, . . . , d. The square root matrix estimator T̂T 1=2 is then defined as

T̂T 1=2 ¼ V̂V M̂M1=2V̂V T.

We next compute the orthogonal eigenvectors q̂q j, j ¼ 1, . . . , d, of the symmetric matrix

ŴW ¼ T̂T 1=2ST̂T 1=2, and finally obtain our direction estimators �̂� j by normalizing vectors

T̂T 1=2q̂q j to have unit length.

Our final step is to estimate p(x) by

p̂p(x) ¼ jdet(B̂B)j
Yd

j¼1

1

n~hh j

Xn

i¼1

~KK
X T

i �̂� j � xT�̂� j

~hh j

 !
, (13)

where the matrix B̂B ¼ ( �̂�1, . . . , �̂�d), with vectors �̂� j, j ¼ 1, . . . , d, constructed by the

procedure described above, and the kernel ~KK(�) and bandwidths ~hh j satisfy the conditions that

will be stated below.

Remark 1. The matrix-valued functional (4) can be written in the form

T ( p) ¼ E[ p2(X )= log p(X )=T log p(X )]:

Dropping the scalar weight function p2(X ) under the expectation, we obtain the Fisher

information matrix of the density p, I( p) ¼ E[= log p(X )=T log p(X )]: Under suitable

conditions I( p) satisfies the analogue of (6): I( p) ¼ B ~CCBT, where ~CC is a diagonal matrix.

More generally, one can replace T ( p) by a functional of the form

�( p) ¼ E[w(X )=p(X )=T p(X )], (14)
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where w(X ) is a scalar weight function. For example, one can take w(x) ¼ pª(x) for some

power ª . 0, and our argument again carries through. Therefore, the above method of

estimation of the directions � j works with I( p) or �( p) in place of T ( p), with suitably

defined estimators of those functionals. We prefer to consider the functional T ( p) since it

makes proofs less technical and allows us to obtain results under milder conditions.

Finally, the matrix � in (8) can be also replaced by a matrix of the form (14) since under

mild conditions the latter is also transformed to a diagonal one by the action of B.

Therefore, instead of simultaneously diagonalizing � and T �1 we can, in general,

simultaneously diagonalize �1 and ��1
2 , where �1 and �2 are matrix functionals of the

form (14) with two distinct weight functions w ¼ w1 and w ¼ w2. An advantage of such a

procedure is robustness to outliers: in general, no moment assumptions on X are needed to

ensure the existence of �1 and �2.

Remark 2. In this paper we assume that the smoothness indices s j are known: they enter in

the definition of bandwidths of density estimators (see Theorem 2). In practice the

bandwidths should be selected in a data-driven manner. Classical bandwidth selection

methods cannot be applied here since a possibility of anisotropic smoothness s j for different

directions � j should be taken into account. Using the estimators of the present paper as a

building block, one can construct a density estimator that adapts to anisotropic smoothness

using the ideas of aggregation of estimators; see, for example, Nemirovski (2000). This topic

will be discussed in our forthcoming work.

Remark 3. The idea of using matrix average derivative functionals of the underlying

functions to identify multivariate nonparametric models appeared earlier in regression context

(Samarov 1993; see also Härdle and Tsybakov 1991). Samarov (1993) shows that, under

certain regularity conditions, kernel plug-in estimators of a class of integral functionals areffiffiffi
n

p
-consistent and asymptotically normal. While these results are applicable in our context,

we give a separate proof of
ffiffiffi
n

p
-consistency of T̂T under weaker regularity conditions.

Remark 4. Our method can be applied to a generalization of ICA where the independent

components are multivariate:

p(x) ¼ jdet(B)j
Yk

j¼1

pj(Bjx), x 2 Rd ,

with some unknown matrices Bj of dimension d 3 n j, and B ¼ (B1, . . . , Bk), n1 þ
� � � þ nk ¼ d, BT

j Bi ¼ 0 for i 6¼ j, such that B is of full rank. Here the functional T ( p) has a

block-diagonal form, and we can estimate the subspaces corresponding to the matrices Bj, up

to an arbitrary non-singular transformation.
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3. Root-n consistency of the estimators �̂� j

Assume that the bandwidth h and the kernels K and K1 satisfy the following conditions for

some b . d þ 3.

Condition 1. nh2dþ4 ! 1, nh2b�2 ! 0, as n ! 1.

Condition 2. The kernels K and K1 are bounded functions supported on [�1, 1] and such

that ð
K(u)du ¼ 1,

ð
u l K(u)du ¼ 0, l ¼ 1, . . . , bbc,ð

uK1(u)du ¼ 1,

ð
u l K1(u)du ¼ 0, l ¼ 0, 2, . . . , bbc:

Note that there exist several ways of constructing the kernels satisfying Condition 2. One of

them is to take K(u) ¼
Pbbc

j¼0� j(u)� j(0)1(juj < 1), K1(u) ¼
Pbbc

j¼0� j9(u)� j(0)1(juj < 1),

where f� jgbbc
j¼0 are the first orthonormal Legendre polynomials on [�1, 1]. Here 1(�) denotes

the indicator function.

Next, we introduce assumptions on the density p. The first is a usual smoothness

assumption:

Condition 3. The density p satisfies (1), where the pj are probability densities on R1

belonging to Hölder classes �(s j, Lj) with b < s j , 1 and 0 , Lj , 1, for j ¼ 1, . . . , d.

It is easy to see (in view of standard embedding theorems) that Condition 3 implies uniform

boundedness and continuity of all the pj, as well as of all their derivatives up to order bbc,
for j ¼ 1, . . . , d. This, in particular, implies that the diagonal elements c jj of the matrix C

are finite. These elements are always positive since the pj are probability densities, thus T is

positive definite provided that (5) holds.

The next assumption guarantees that (5) holds.

Condition 4. ð
p9j(u) p2

j(u)du ¼ 0, j ¼ 1, . . . , d: (15)

Note that Condition 4 is very mild: it is satisfied, for example, for any density pj supported

on R1 (or any symmetric density supported on a bounded subset of R1) such that the integral

in (15) is well defined.

Condition 5. The matrices T and T 1=2�T 1=2 do not have multiple eigenvalues.

This condition, in particular, rules out the case where the densities pj are normal: in fact,
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it is easy to see that the matrix T in this case is proportional to ��1. Note that the

condition of non-normality (of all independent components except possibly one) is always

imposed in the context of ICA, see, for example, Hyvärinen et al. (2001). It is important to

emphasize that the non-normality is only a necessary condition for identifying independent

components. Additional conditions are required to obtain root-n consistency of the

estimators. For our method Condition 5 plays exactly this role. More precisely, it is needed

in Lemma 2 below. If Condition 5 is not satisfied, any vectors in the subspaces spanned by

the eigenvectors with equal eigenvalues can be chosen by our method. So, one cannot prove

consistency of estimation of the � j corresponding to those subspaces; one may only

consider consistency of subspace estimation in the spirit of Li (1991), but this is beyond the

scope of this paper.

Theorem 1. Assume that Conditions 1–5 are satisfied and EkXk4 , 1. Then

k�̂� j � � jk ¼ O p(n�1=2), j ¼ 1, . . . , d: (16)

The proof of Theorem 1 is based on the following two lemmas. For a d 3 d matrix A, define

kAk2 ¼
def

sup
kvk¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vT AT Av

p
:

Lemma 1. Assume that Conditions 1–3 are satisfied and EkXk4 , 1. Then

S � � ¼ 1ffiffiffi
n

p ˜�, (17)

and

T̂T � T ¼ 1ffiffiffi
n

p ˜T , (18)

where the matrices ˜� and ˜T are such that k˜�k2 ¼ O p(1) and k˜Tk2 ¼ O p(1), as

n ! 1.

The proof of this lemma is given in the Appendix.

Lemma 2. Let A and ˜A be symmetric d 3 d matrices such that A has distinct eigenvalues

º j(A) and the corresponding eigenvectors e j(A), j ¼ 1, . . . , d, and let ÂA ¼ A þ ˜A be a

perturbed matrix with eigenvalues and eigenvectors (º j(ÂA), e j(ÂA)), j ¼ 1, . . . , d. Then, there

exists a constant 0 , c1 , 1, depending only on A, such that, for j ¼ 1, . . . , d,

jº j(ÂA) � º j(A) � eT
j (A)˜Ae j(A)j < c1k˜Ak2

2

and �����e j(ÂA) � e j(A) �
Xd

s¼1,s6¼ j

eT
s (A)˜Ae j(A)

ºs(A) � º j(A)
es(A)

����� < c1k˜Ak2
2:
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This lemma can be viewed as a mild refinement of standard results in matrix perturbation

theory (see Kato 1995; or Stewart and Sun 1990). It follows from Lemma A of Kneip and

Utikal (2001), so we omit the proof.

Proof of Theorem 1. Let T ¼ VMV T be the spectral decomposition of T with an orthogonal

matrix V and a diagonal matrix M ¼ diag(m1, . . . , md) where m j . 0, j ¼ 1, . . . , d. The

columns v j of V are normalized eigenvectors of T with eigenvalues m j : Tv j ¼ m jv j,

j ¼ 1, . . . , d. Now, we set A ¼ T , ÂA ¼ T̂T , e j(A) ¼ v j, e j(ÂA) ¼ v̂v j, º j(A) ¼ m j, º j(ÂA) ¼ m̂m j,

and obtain, using Lemmas 1 and 2,

m j � m̂m j ¼ O p(n�1=2), j ¼ 1, . . . , d (19)

kv j � v̂v jk ¼ O p(n�1=2), j ¼ 1, . . . , d, (20)

as n ! 1. Now,

R ¼def
T̂T 1=2 � T 1=2 ¼ (V̂V � V )M̂M1=2V̂V T þ V (M̂M1=2 � M1=2)V̂V T þ VM1=2(V̂V � V )T:

Using (19), (20) and the fact that V and V̂V are orthogonal matrices we find

kRk2 ¼ O p(n�1=2): (21)

Next,

ŴW � W ¼ (T 1=2 þ R)S(T 1=2 þ R) � T 1=2�T 1=2

¼ n�1=2T 1=2˜�T 1=2 þ T 1=2S R þ RST 1=2 þ RS R,

and from Lemma 1 and (21) we deduce that ŴW ¼ W þ ˜W , where k˜Wk2 ¼ O p(n�1=2), as

n ! 1. Applying Lemma 2 again to the eigenvectors q̂q j of ŴW , we obtain

kq̂q j � q jk ¼ O p(n�1=2), (22)

as n ! 1. Also,

T̂T 1=2q̂q j � T 1=2q j ¼ (T 1=2 þ R)(q̂q j � q j) þ Rq j:

This, together with (21) and (22), entails that T̂T 1=2q̂q j � T 1=2q j ¼ O p(n�1=2), as n ! 1. Now,

since the estimators �̂� j of � j are obtained by normalizing the vectors T̂T 1=2q̂q j, the theorem is

proved. h

4. Asymptotics for estimators of the density p

We now prove that the estimator p̂p defined in (13) has optimal rate of convergence when

Condition 3 holds. We will need the following assumption on the kernel ~KK used in (13).

Condition 6. The kernel ~KK : R1 ! R1 is a function supported on [�1, 1] that satisfies the
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Lipschitz condition, that is, j ~KK(u) � ~KK(u9)j < LK ju � u9j, for all u, u9 2 R1, for some

LK , 1, and ð
~KK(u)du ¼ 1,

ð
u l ~KK(u)du ¼ 0, l ¼ 1, . . . , bsc,

where s ¼ min1< j<d s j.

Theorem 2. Let �̂� j be estimators of � j based on X1, . . . , X n such that (16) holds. Assume

that Conditions 3 and 6 are met and EkXka , 1 for some a . d(2b þ 1)=(2b � 1). Then,

for every x 2 Rd, the estimator p̂p defined in (13) with ~hh j � n�1=(2s jþ1), j ¼ 1, . . . , d, satisfies

p̂p(x) � p(x) ¼ O p n�s=(2sþ1)ð Þ,

as n ! 1.

The rate given in Theorem 2 (characterized by s ¼ min1< j<d s j) is optimal in a minimax

sense under our smoothness assumptions on the densities pj. In fact, at the expense of a

routine technical effort, the result of Theorem 2 can be turned into a uniform one over the

class of densities satisfying (1) such that pj 2 �(s j, Lj), j ¼ 1, . . . , d. This gives an upper

bound on the minimax risk for estimation of p at a fixed point x. The lower bound with the

same rate n�s=(2sþ1) is a trivial consequence of the one-dimensional lower bound (Stone

1980) applied successively to d subclasses of densities such that only one component

density in the right-hand side of (1) is allowed to vary, all others being fixed.

Proof of Theorem 2. Let ~ppj(u) denote a marginal kernel estimator based on the sample

X T
1 �̂� j, . . . , X T

n�̂� j:

~ppj(u) ¼ 1

n~hh j

Xn

i¼1

~KK
X T

i �̂� j � u

~hh j

 !
:

We have

j p̂p(x) � p(x)j < jdet(B) � det(B̂B)j
Yd

j¼1

pj(x
T� j) þ jdet(B̂B)j

����Yd

j¼1

~ppj(x
T�̂� j) �

Yd

j¼1

pj(x
T� j)

����:
Define the random event

�1 ¼ fk�̂� j � � jk < n�1=2 log n, for all j ¼ 1, . . . , dg:

In view of (16) we have, for the complement �̂�1, P(�̂�1) ¼ o(1), as n ! 1, so it suffices in

what follows to work on the event �1. Since the pj are uniformly bounded, on �1 we have
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j p̂p(x) � p(x)j < C n�1=2 log n þ
����Yd

j¼1

~ppj(x
T�̂� j) �

Yd

j¼1

pj(x
T� j)

����
0
@

1
A

< C n�1=2 log n þ max
1< j<d

j ~ppj(x
T�̂� j) � pj(x

T� j)j
� �

:

(Here and later we denote by C finite positive constants, possibly different on different

occasions.) Thus, to prove the theorem it remains to show that

max
1< j<d

j ~ppj(x
T�̂� j) � pj(x

T� j)j ¼ O p n�s=(2sþ1)ð Þ, (23)

as n ! 1. Introduce the functions

g j(v) ¼
ð
~KK(u) pj(vþ u ~hh j)du ¼ 1

~hh j

ð
~KK

w � v

~hh j

� �
pj(w)dw, j ¼ 1, . . . , d:

We have

j ~ppj(x
T�̂� j) � pj(xT� j)j < J1 þ J2 þ J3, (24)

where

J1 ¼ j ~ppj(xT� j) � pj(x
T� j)j, J2 ¼ jg j(x

T�̂� j) � g j(xT� j)j,

J3 ¼
����[ ~ppj(x

T�̂� j) � ~ppj(x
T� j)] � [g j(x

T�̂� j) � g j(x
T� j)]

����:
It follows from standard bias-variance evaluations for one-dimensional kernel estimates (see

Ibragimov and Has’minskii 1981, Chapter 4) that

J1 ¼ O p n�s=(2sþ1)ð Þ (25)

as n ! 1. Next, using the fact that pj is Lipschitz (cf. Condition 3 and the remarks after it),

we obtain

J2 <

ð
j ~KK(u)j j pj(x

T�̂� j þ u~hh j) � pj(x
T� j þ u~hh j)jdu

< Ckxk k�̂� j � � jk
ð
j ~KK(u)jdu < Cn�1=2 log n, (26)

provided the event �1 holds. We now prove that

lim
n!1

P J3 > n�s=(2sþ1)
� �

¼ 0: (27)

We have

P J3 > n�s=(2sþ1)
� �

< P J3 > n�s j=(2s jþ1)
� �

< P(�1) þ P(�2),

where �2 is the random event defined by
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�2 ¼ sup
�:k� j��k<n�1=2 log n

j[ ~ppj(xT�) � ~ppj(x
T� j)] � [g j(x

T�) � g j(x
T� j)]j > n�s j=(2s jþ1)

� 	
:

Hence, to prove (27), it remains to show that P(�2) ¼ o(1), as n ! 1. We will do this using

the following lemma (Ibragimov and Has’minskii 1981, Appendix 1):

Lemma 3. Let �(t) be a continuous real-valued random function defined on Rd such that, for

some 0 , H , 1 and d , a , 1, we have

Ej�(t þ ˜) � �(t)ja < Hk˜ka, for all t, ˜ 2 Rd ,

Ej�(t)ja < H , for all t 2 Rd :

Then for every � . 0 and t0 2 Rd such that kt0k < C0,

E
sup

t:k t� t0k<�
j�(t) � �(t0)j


 �
< B0(C0 þ �)d H1=a�1�d=a, (28)

where B0 is a finite constant depending only on a and d.

Consider now the process

�(�) ¼ ~ppj(x
T�) � g j(x

T�) ¼ 1

n

Xn

i¼1

1

~hh j

~KK
(X i � x)T�

~hh j

 !
� g j(x

T�), � 2 Rd , (29)

and choose a satisfying the assumptions of the theorem. Since �(�) defined in (29) for any

fixed � is an average of independent and identically distributed zero-mean bounded random

variables

�i ¼
1

~hh j

~KK
(X i � x)T�

~hh j

 !
� g j(xT�),

we have, by Rosenthal’s inequality (see Petrov 1995),

Ej�(�)ja < Cn�a=2Ej�1ja < Cn�a=2 ~hh1�a
j , (30)

where the last inequality follows from the fact that p and ~KK are bounded and ~KK is compactly

supported. Again, by Rosenthal’s inequality,
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Ej�(�þ ˜) � �(�)ja < Cn�a=2 ~hh�a
j E

���� ~KK (X i � x)T(�þ ˜)

~hh j

 !
� ~KK

(X i � x)T�
~hh j

 !����
a

< Cn�a=2 ~hh�a
j

ð���� ~KK (z � x)T(�þ ˜)

~hh j

 !
� ~KK

(z � x)T�
~hh j

 !����
a

p(z)dz

< Cn�a=2 ~hh�a
j LK

~hh�a
j

ð
kz � xkak˜ka p(z)dz

� �

< Cn�a=2 ~hh�2a
j k˜ka, (31)

in view of Condition 6 and of the assumption that EkXka , 1. It follows from (30) and (31)

that the assumptions of Lemma 3 are satisfied for the process � defined in (29) with

H ¼ Cn�a=2 ~hh�2a
j , and thus (28) yields

E sup
�:k��� jk<�

j�(�) � �(� j)j

 �

< C H1=a�1�d=a < Cn�1=2 ~hh�2
j �1�d=a:

Using this inequality for � ¼ n�1=2 log n and the Markov inequality, we may bound P(�2) as

follows:

P(�2) < Cns j=(2s jþ1)�1=2 ~hh�2
j �1�d=a ¼ O ( log n)1�d=a n(s jþ2)=(2s jþ1)�1þd=(2a)

� �
¼ o(1),

as n ! 1, whenever a . d(2s j þ 1)=(2s j � 1) (which is implied by the assumption on a in

the theorem). This proves (27). Now, (24)–(27) entail (23), and hence the theorem. h

Appendix. Proof of Lemma 1

In view of the assumption EkXk4 , 1, relation (17) easily follows from application of

Chebyshev’s inequality to each component of the matrix S. We therefore prove only (18). It

suffices to prove (18) componentwise, that is, to show that

t̂t lk � t lk ¼ O p(n�1=2), n ! 1,

where t̂t lk and t lk are the (l, k)th entries of the matrices T̂T and T, respectively. Due to the

bias-variance decomposition, the last relation is proved if we show that

bias( t̂t lk) ¼ E( t̂t lk) � t lk ¼ O(n�1=2), n ! 1, (32)

var( t̂t lk) ¼ E[( t̂t lk � E( t̂t lk))2] ¼ O(n�1), n ! 1: (33)

Since b < min1<i<d si, Condition 3 entails that all the partial derivatives up to order bbc of

the density p are bounded and continuous and satisfy the Hölder condition with Hölder

exponent b � bbc. Using this fact and Condition 2 we obtain, for any l ¼ 1, . . . , d,

Nonparametric independent component analysis 577



E Ql

X j � X i

h

� �����X i

 !
¼
ð

K1

zl � X il

h

� � Yd

r¼1,r 6¼ l

K
zr � X ir

h

� �
p(z1, . . . , zd)dz1 . . . dzd

¼ hd

ð
K1(ul)

Yd

r¼1,r 6¼ l

K(ur) p(X i1 þ hu1, . . . , X id þ hud)du1 . . . dud

¼ hd @ p

@xl

(X i)h þ O(hb)

� �
(34)

as h ! 0. Consequently, for any l ¼ 1, . . . , d, uniformly in X i, we get that (almost surely)

E Ql

X j � X i

h

� �����X i

 !
¼ O(hdþ1) (35)

as h ! 0.

Without loss of generality, we prove (33) for l ¼ 1, k ¼ 2. We have

t̂t12 ¼ 1

n(n � 1)2 h2(dþ1)

Xn

i¼1

Xn

j¼1, j 6¼i

Xn

m¼1,m 6¼i

Uijm,

where

Uijm ¼ Q1

X j � X i

h

� �
Q2

X m � X i

h

� �
:

Clearly,

var( t̂t12) <
C

n6 h4(dþ1)
A1 þ A2ð Þ, (36)

where

A1 ¼ var
XXX �Uijm

 !
, A2 ¼ var

XX �Vij

 !
, Vij ¼ Uijj,

and
PP�

,
PPP�

are the sums over i, j and i, j, m varying from 1 to n such that all the

indices of every summand are distinct. To evaluate the right-hand side of (36) we will use the

following lemma.

Lemma 4. Let U (x, y, z) and V (x, y) be real-valued functions of x, y, z 2 Rd, such that

E(U 2
123) and E(V 2

12) are bounded, where Uijm ¼ U (X i, X j, X m) and Vij ¼ V (X i, X j). Then

there exists an absolute constant C� , 1 such that

var
XX �Vij

 !
< C� n2E(V 2

12) þ n3[E(V2
1�) þ E(V 2

�2)]
� �

(37)

and
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var
XXX �Uijm

 !
< C�(n3E(U 2

123) þ n4[E(U2
12�) þ E(U 2

1�3) þ E(U 2
�23)]

þ n5[E(U 2
1��) þ E(U2

�2�) þ E(U 2
��3)]), (38)

where the dot in the index means that the random variable in the corresponding position is

integrated out: for example, Vi� ¼ E(VijjX i), V� j ¼ E(VijjX j), Uij� ¼ E(UijmjX i, X j),

Ui�� ¼ E(UijmjX i).

The proof of Lemma 4 is analogous to the well-known Hoeffding projection argument for

U -statistics, the only difference being in the lack of symmetry. Similar calculations can be

found in Hall (1988, Lemma 5.5): to prove (37) and (38) it suffices to write Vij�
E(Vij) ¼ �ij þ Vi� þ V� j and

Uijm � E(Uijm) ¼ Wijm þ (Uij� þ Ui�m þ U�ij) � (Ui�� þ U� j� þ U��k),

and to note that the random variables �ij and Wijm satisfy the assumptions of Lemma 5.5 in

Hall (1988), namely all their conditional expectations are 0. Application of that lemma

finishes the proof of Lemma 4.

We first evaluate A2 using Lemma 4. Since the kernels Q1, Q2 are bounded and

compactly supported and p is bounded, we obtain

E(V 2
12) < Chd , E(V 2

1�) < Ch2d , E(V 2
�2) < Ch2d , (39)

which yields, together with (37), that

A2 < C(n2 hd þ n3 h2d): (40)

We now control the term A1. For the same reason as in (39), we obtain

E(U2
123) < Ch2d : (41)

Note also that, in view of (35),

jU12�j ¼
����Q1

X 2 � X1

h

� �
E Q2

X 3 � X1

h

� �����X 1

 !���� < Chdþ1

����Q1

X2 � X1

h

� �����,
which implies, together with the fact that the kernel Q1 is bounded and compactly supported

and that p is bounded, that

E(U2
12�) < Ch3dþ2: (42)

Quite similarly,

E(U2
1�3) < Ch3dþ2: (43)

Next, since p is bounded,

U�23 ¼ EX1
Q1

X 2 � X 1

h

� �
Q2

X3 � X 1

h

� �� �
< Chd Q�

X 2 � X3

h

� �
,
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where EX1
denotes the expectation with respect to X1 and Q� ¼ jQ1j � jQ2j is the

convolution kernel. This, and the fact that Q� is bounded and compactly supported and p is

bounded, yields

E(U2
�23) < Ch3d : (44)

Now, using (35),

jU1��j ¼
����E Q1

X 2 � X1

h

� �����X 1

 !
E Q2

X3 � X 1

h

� �����X1

 !���� < Ch2(dþ1),

and therefore

E(U2
1��) < Ch4(dþ1): (45)

To evaluate E(U2
�2�) and E(U 2

��3) we use the following relation obtained in the same way as

(34), (35):

EX1
Q1

X2 � X 1

h

� �
@ p

@x2

(X1)


 �
¼ O(hdþ1)

as h ! 0. This relation and (34) yield

U�2� ¼ EX1
Q1

X2 � X 1

h

� �
E Q2

X3 � X 1

h

� �����X1

 !" #

¼ EX1
Q1

X2 � X 1

h

� �
hd @ p

@x2

(X 1)h þ O(hb)

� �" #

¼ O(h2(dþ1)):

A similar calculation is valid for U��3. Thus,

E(U 2
�2�) < Ch4(dþ1), E(U 2

��3) < Ch4(dþ1): (46)

Combining (38), (41)–(45) and (46), we obtain

A1 < C(n3 h2d þ n4 h3d þ n5 h4(dþ1)):

This inequality, together with (36) and (40), gives

var( t̂t12) ¼ O
1

n4 h3dþ4
þ 1

n3 h2dþ4
þ 1

n2 hdþ4
þ 1

n

� �
¼ O

1

n

� �

as n ! 1, where the last equality holds because nh2dþ4 ! 1 (see Condition 1). This

finishes the proof of (33).

We now prove (32). Again set l ¼ 1, k ¼ 2. The bias of t̂t12 is
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bias( t̂t12) ¼ 1

n(n � 1)2 h2(dþ1)

XXX �E(Uijm) � t12

 !
þ
XX �E(Vij)

" #

¼ (n � 2)E(U123)

(n � 1)h2(dþ1)
� t12

� �
þ E(V12)

(n � 1)h2(dþ1)
: (47)

Now, using (34), we find

E(U123) ¼ EX1
E Q1

X2 � X1

h

� �����X 1

 !
E Q2

X 3 � X 1

h

� �����X1

 !" #

¼ h2(dþ1)E
@ p

@x1

(X 1)
@ p

@x2

(X1)


 �
þ O(h2dþbþ1)

¼ h2(dþ1) t12 þ O(h2dþbþ1), (48)

as h ! 0. Also, as in (39),

E(V12) ¼ O(hd),

as h ! 0. Substitution of this relation and of (48) into (47) and application of Condition 1

yields

bias( t̂t12) ¼ O hb�1 þ 1

nhdþ2

� �
¼ O(n�1=2),

as n ! 1. This proves (32) and hence the lemma.
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