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We discuss limit distributions of partial sums of bounded functions % of a long-memory moving-
average process X, = Z?ilb_,é —j with coefficients b; decaying as j ~#,1/2 < B < 1, and independent
and identically distributed innovations {; whose probability tails decay as x~*, 2 < a < 4. The case of
h having Appell rank kx =2 or 3 is discussed in detail. We show that in this case and in the
parameter region o < 2, the partial sums process, normalized by N'/*%, weakly converges to an a-
stable Lévy process, provided that the normalization dominates the corresponding kxth-order Hermite
process normalization, or that 1/af >1— (28 — 1)kx/2. A complete characterization of limit
distributions of the partial sums process remains open.
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1. Introduction

We discuss limit distributions of partial sums processes

[N7]
Sna(® =Y (h(X,) —Eh(X,), 7=0, (1.1)

t=1

where 4 is a (nonlinear) function, and X, ¢ € Z, is a long-memory moving-average process
0

X, = Z bjét—j (1.2)
Jj=1

in standardized (i.e. zero mean and unit variance) independent and identically distributed
(ii.d.) innovations &, t € Z, whose coefficients b;, j =1, are non-random and decay
hyperbolically:

bi~coj’ (j— o0) (1.3)

for some constants ¢y # 0, f € (1/2, 1). We expect that our main results (Theorems 2.1 and
2.2 below) also hold, suitably modified, in the more general case b; = £(j)j P, where
{(x), x € [1, 00), is slowly varying at infinity. The stronger assumption (1.3) is chosen mainly
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to avoid additional technicalities and to simplify notation. Assumption (1.3) is satisfied
for some important parametric families of long-memory processes (1.1) such as
FARIMA(p, d, q), d=1—-€(0,1/2), defined by the autoregressive equation
d(B)(1 — BY?X, = y(B)L,, where B is the backward shift operator, (1 — B)? is the fractional
differencing operator, and ¢(B), y(B) are polynomials in B of degree p, g, respectively, ¢(-)
satisfying the usual root requirement for stationarity of the process (see, for example,
Brockwell and Davies 1991). In this case, the asymptotic constant in (1.3) equals
co = [p(D)|/((DIT(d)) (Hosking 1981),

Moving averages (1.2)—(1.3) constitute probably the most important class of long-
memory processes. The problem of the limiting behaviour of partial sums processes (1.1)
has been investigated by many authors; see, for example, Dobrushin and Major (1979),
Taqqu (1975; 1979), Surgailis (1982; 2000), Breuer and Major (1983), Avram and Taqqu
(1987), Dehling and Taqqu (1989), Giraitis ef al. (1996), Ho and Hsing (1996; 1997), Koul
and Surgailis (1997; 2002), Wu (2003) and the references therein. Set

hoo(x) = Eh(x + Xy),  x€R. (1.4)

Let hM(x) = d*h(x)/dx* denote the kth derivative of /.. (k =1, 2, ...), provided it exists.
As shown in Ho and Hsing (1996; 1997) (see also Koul and Surgailis 1997; Wu 2003), the
limit distribution of Sy 4(7) is determined by the integer

ks :=min{k = 1: K5(0) # 0}, (1.5)

called the Appell rank of h (Koul and Surgailis 1997; Surgailis 2000) or the power rank of h
(Ho and Hsing 1996; 1997). More precisely, under some growth condition on % and some
moment and regularity conditions on the cdf of the innovations, and for k«(25 — 1) < 1, one
has the finite-dimensional convergence

kx
NS 1) = 200 M (), (1.6)
k-

where J¥)(7) is a Hermite process of order & (see Section 2 for the definition). The last result
is well known if the long-memory process X, is Gaussian (Dobrushin and Major 1979; Taqqu
1979). On the other hand, if k+«(28 — 1) > 1, then N~'/2Sy ,(7) tends in distribution to a
Brownian motion with variance depending on /4 (Ho and Hsing 1997; Koul and Surgailis
1997).

The notion of Appell rank generalizes that of Hermite rank which is defined, for any
function % € L*(R, e /2 dx), as the smallest index & =1 with ¢; # 0 in the expansion
h(x) =>" ockHi(x)/k! in Hermite polynomials with the generating series Y .,
(i2)FHi(x)/ k! = X JEe*¥, X ~ N(0, 1). Appell polynomials A(x), k =0, are defined by
an analogous generating function: Y77 ((iz)¥4,(x)/ k! = €'*¥ /Ee*¥, where X is an arbitrary
random variable having all finite moments (Avram and Taqqu 1987; Surgailis 2000).
Unfortunately, Appell polynomials lack the orthogonality property of Hermite polynomials,
and the formal Appell expansion

h(x) = Z apAr(x)/ k! (1.7)
k=0
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has been justified for % satisfying some strong analyticity conditions only; see, for example,
Kaz’min (1969). (To stress the formality of this expansion, note that even its terms starting
with some &k > k( need not be well defined, as Appell polynomials exist under corresponding
moment conditions only.) Nevertheless, the coefficients of (1.7), a; = d*Eh(y + X)/dy*|,—o,
as well as the notion of Appell rank, make sense under fairly mild regularity conditions on %
and the distribution of X, in particular on the marginal distribution X = X of the linear
process of (1.2)—(1.3). Following the suggestion of a referee, in what follows we use the
notation

ar = h(0), (1.8)

invoking the relationship between long-memory properties of partial sums process Sy »(7)
and the formal Appell expansion (1.7). One may conclude that the (nonlinear) process 4(.X,)
has long-memory if kx(28 — 1) < 1 and short memory if kx(2 — 1) > 1; moreover, in the
long-memory case the limit law of the partial sums process is determined by the first non-
zero coefficent ay, of the formal Appell expansion (1.7).

However, the above characterization of the limit behaviour of partial sums (1.1) holds
under sufficiently high moment assumptions of the innovations only. In particular, the fourth
moment condition Eég < oo seems crucial. More precisely, the ‘first-order’ convergence

N2 g 1) = a1 e D(o) (1.9)

to a fractional Brownian motion J()(7), holds for bounded 4 under mild conditions on the
innovations, namely E|&o|**® < co(36 > 0) and condition (2.1) below; see Giraitis and
Surgailis (1999). Of course, (1.9) solves the problem of the limit distribution of Sy () for
bounded % having Appell rank kx =1 only. If ECg = o0 and kx > 1, the problem becomes
much harder and is still open. We show that in this case the class of the limit laws of partial
sums (1.1) is richer and contains stable Lévy processes in particular.

In the the present paper we assume that distribution tails of the innovations decay
regularly at infinity, that is,

Py < —x)~q-x"% P(Go > x) ~ qx", (1.10)

as x — oo, where ¢.,,g_ =0 are constants such that g, +¢_ >0, and 2 <a <4.
Assumption (1.10) implies that E|{y|* = oo and E|y|" < oo, for all » < a. Our main results
refer to the case of Appell rank k+« = 2 and kx = 3. They are summarized in Tables 1 and 2.

Note that for a = 8/3, the middle column in Table 1 vanishes, a = 8/3 being a root of
(a +Va? —2a)/2a =2/a. Similarly, for a = 3, the middle column in Table 2 vanishes,
a =3 being a root of (5a+ V25a* —48a)/12a = 2/a. The cases kx =2,8/3 <a <4
and kx =3,3 < a <4 are somewhat less interesting, in the sense that the limit laws of
partial sums process are the same as in the case ECg < oo studied in Ho and Hsing (1997)
and elsewhere.

Note that for both ks« =2 and ks =3, the limit of Sy ;(z) is determined by the
dominant normalization of the three types of limiting behaviour:

(I) Hermite process of order ks, normalization N!~(A=Dk:/2,
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Table 1. Summary of results for ks« =2,2 <a < 8/3

1 Vot -2 var—2 2 2
lopcatva AXVE 220 g2 Zopgoy
2 20 20 a a
Limit distribution of  Hermite process of af-stable Lévy motion Brownian motion
Sn,(7) order 2
Normalization N2 N/ob N1/2

Table 2. Summary of results for kx =3,2 < a <3

l<ﬁ<5a+v25a2—48a 5a+\/25a2—48a<ﬁ<2 2
a

2 12a 12a o <p<l
Limit distribution Hermite process of of3-stable Lévy motion Brownian motion
of Sn.i(7) order 3
Normalization NG-0D/2 NV/ah N/

(II) ap-stable Lévy process, normalization N'/(“P);
(III) Brownian motion, normalization N'/2.

The boundaries between different normalizations in the ‘rectangle’ {(a, f5) :
2<a<4,1/2<p <1} are shown in Figure 1. A similar limit behaviour can be
expected in the general case kx > 1. However, technical difficulties increase with ks« and
our proofs in the case kx =3 are quite involved. Note that stable limits of empirical
functionals of moving averages (1.1) with infinite variance were recently discussed in Koul
and Surgailis (2001) and Surgailis (2002).
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Figure 1. Limiting behaviours: (a) kx = 2; (b) kx =3
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While behaviours (I) and (III) are commonly referred to as long memory and short
memory, respectively, (II) is less clear to classify. On the one hand, the limit process has
independent increments, which is characteristic of short-memory processes. On the other
hand, the variance of Sy in region (II) grows faster than N (which is usually interpreted
as an indication of long memory), because a linear growth of the variance would imply
Sn.n = Op(N 1/ 2), which contradicts the normalization N/@. The limiting a3—stable
distribution in region (II) depends on % via fractional derivatives of &, of order 1 + (1/f)
(see Remark 2.1), and therefore behaviour (II) cannot be characterized in terms of Appell
rank (or any finite set of coefficients a;). We also note that convergence to stable limit law
of sums of strongly dependent stationary random variables with finite variance has been
proved for several time series models arising in econometrics and telecommunications; see
Taqqu and Levy (1986), Mikosch ef al. (2002), Davidson and Sibbertsen (2002), Leipus and
Surgailis (2003), Leipus et al. (2003) and Pipiras et al. (2003).

This paper is organized as follows. Section 2 contains a rigorous formulation of our main
results (Theorems 2.1 and 2.2). We also give a heuristic explanation of the af3—stable limit,
and discuss the interesting open question of what happens if this limit is zero. Examples of
(bounded and unbounded) functions having Appell rank k% = 1,2 or 3 are discussed in
Remarks 2.2-2.4. Section 3 is devoted to the proof of the convergence to Lévy process.
Theorems 2.1 and 2.2 are proved in Sections 4 and 5, respectively. Section 5 also contains
formulations of the main auxiliary Lemmas 5.1 and 5.2, whose proofs occupy the rest of
the paper.

2. Main results

In the rest of the paper we assume that the innovations &y, s € Z, are i.i.d., have zero mean
and unit variance, and satisfy condition (1.10), for some ¢, ¢- =0, 9, +¢g_ >0 and
some 2 < a < 4. The notation ~ means that the ratio of both sides tends to 1. We shall
denote by C a generic constant which may change from line to line. We also assume the
following condition on the characteristic function of the innovations:

[Be"@| < C(1+|u)®  (YueR 3C, 0> 0). @1

Conditions (2.1) and (1.3) guarantee infinite differentiability of the function /., in (1.4); see
Lemma 3.1 below.

We introduce a kth-order Hermite process, J¥(z), as the k-tuple Ito—Wiener stochastic
integral

T k
JRO(T) = JW {L H(z —up);” dt} W(duy) ... W(duy) (2.2)
i=1

with respect to a standard Gaussian white noise W (du) with zero mean and variance du; a;ﬁ
is defined as a? if @ > 0, and as 0 otherwise. It is well known (Taqqu 1979) that (2.2) is
well defined for any integer 1 < k < 1/(28—1), B € (1/2,1). The process J(7) is a



332 D. Surgailis

fractional Brownian motion, and J®(7) is called the Rosenblatt process. For simplicity, we
shall assume below that 1/(2 — 1) is not an integer.

For afp <2, let Lfﬁ(t) denote independent copies of a totally skewed (i.e. with skewness
parameter equal to 1) stable Lévy motion Lg(r), with independent and stationary
increments and the characteristic function

Ee'“t# ™ = exp{—|u|’(1 — isgn(u)tan(maf/2))}, ueR.

Also, put
(o)
= oJ (hoo( 1) — ag F ay )t~ ~V/P ds, (2.3)
0

where ay = h(0) = EA(Xy), a; are given in (1.8), as usual, and where
0 = et/P{TQ2 — apf)| cos(nap/2)|/(af — 1)} (2.4)

Write = for weak convergence of finite-dimensional distributions.

Theorem 2.1. Assume conditions (1.3), (1.10) and (2.1). Let h be a bounded measurable
function with ay = 0, that is, having Appell rank ks« = 2.

) If p<3/4 and f < (a+ Va2 —2a)/2a, then
&2
N8y (1) = 70 aJ(7).
(i) If (a + Va2 —2a)/20 < <2/a, then
NSy @) = ¢ g P L@ + e gV P L), 2.5)
(iii) If p > 3/4 and B> 2/a, then
N7'2Sy (1) = 0,4 B(D), (2.6)
where B(t) is a standard Brownian motion and 0%, =D ez COV(A(Xo), h(X ).

Theorem 2.2. Assume the same conditions as in Theorem 2.1. Let h be a bounded measurable
function with ay = a, = 0, that is having Appell rank kx = 3.

W Ifp<2/3 and < (5a+ V250> —48a)/12a, then
3
NOF928, (1) = %agJG)(t).

(i) If (5a + V250> —48a)/12a < f < 2/a, then the convergence (2.5) holds.
(iii) If p > 2/3 and > 2/a, then the convergence (2.6) holds.

We note that statements (i) of Theorems 2.1 and 2.2 also hold in the cases a, = 0 and
a; = 0 respectively, in which cases the corresponding limits are trivial.
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Let us explain the main idea of the proof of Theorem 2.1. Put

k
R = h(X,) — Bh(X) =Y arXVIiop 11y, @.7)
(=1
R(,k’l) = R(tk’o) - Z(tl)l{aﬁ<2}9 28)
where
XPi= N by by By G (2.9)
sp<...<s1<t
z = E[h(X)) — BEh(X,) — a1 X /|51 = > E[RVIE, ). (2.10)
J=1 Jj=1
Then
[N7] [N7] [NT]
Sva@=a Y XP+> zV+ 3 R 2.11)
t=1 t=1 t=1

It is easy to show (see, for example, Surgailis 1982; Avram and Taqqu 1987) that, for any
Il<k<1/28-1),

[N7] k
- - B _ ¢
N-LHR/2)28 1)} I:X(’ ) jﬁj(k)(r)_ (2.12)
1=

According to Lemma 3.2 below, for 1 < af < 2,

[N7]
NVEN" 7P = g/ P L@ + e gV P Loy, 2.13)
=1
With (2.11)—(2.13) in mind, statements (i) and (ii) of Theorem 2.1 follow from the relevant
estimate of sums of the ‘remainder’ R(,z’l) proved in Lemma 4.2. The proof of Theorem 2.2
uses a similar rearrangement of Sy ,(7) involving an additional centring Z (,2) of (2.14), with
the crucial estimates proved in Lemmas 5.1 and 5.2.

Heuristically, the af-stable limit in Theorems 2.1 and 2.2 can be explained as a ‘joint
effect of heavy tails in the innovations and moving-average coefficients’. In the parameter
region af8 < 2, a single large fluctuation |&,| = O(N'/%) occurring at some 1 <s < N is
‘remembered by A(X,)> at typical distances t —s = O(N'/(®P)), s < t< N, and ‘dominates
the contributions of the remaining innovations’ in the sense that, at such distances,
h(X:) =~ E[h(X,)|C,] is ‘approximately constant’. A similar heuristic explanation in the
infinite-variance case is given in Surgailis (2002).

Remark 2.1. Note that the asymptotic constants ¢; of (2.3), up to a multiplicative constant,
are the Marchaud (right and left) fractional derivatives of /., of order 1 + 1/ at x = 0. If
¢} = ¢;, =0, the af-stable limits in Theorems 2.1 and 2.2 are trivial. This raises the natural
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question of the existence of a non-trivial limit distribution of Sy, h(r) under a different
normalization. As suggested by Lemma 5.2, in such a case the role of Z ) could be played
by a similar ‘second-order’ centring term

zP = > EIRPVIE . &gl (2.14)

0<j1<)2

where R(2 D s given in (2.8). According to Lemma 5.1, Z ARYA 2 — 0 p(NG2B)/2ap)
provided 2a/(3 —2p) <2, or f <3/2+ ), holds We conjecture that for such a, f3, the
partial sums process of the stationary sequence Z' of (2.14), normalized by NG-26)/205,
weakly converges to a (2a3/(3 — 2/3))-stable Lévy process. See also (6.1)—(6.3) and Lemma
6.1 for further approximation of this partial sums process. As 2af/(3 —2p8) > aff for
f > 1/2, one could expect in the case ¢ = ¢, =0 a similar competition between Hermite,
Lévy and Browman asymptotic behaviours of Sy ;(7), with af replaced by 2a8/(3 — 2/3).
The analysis of Z is more involved than that of Z (t ) and plays an important role in the
proof of Theorem 2.2.

Remark 2.2. The simplest example of functions /# with a given Appell rank k4« = 1 are the
Appell polynomials & = Ay,, relative to the marginal distribution X of the linear process in
(1.2). In particular, A;(x) =x, Ay(x)=x>— s, A3(x) =x>—3upx — us, etc., where
Uy :=EX (’;, u1 = EXy = 0. However, Appell polynomials are unbounded (and require the
existence of corresponding moments of X)), so they are excluded from our discussion. The
limit distribution of partial sums Sy, for polynomial / was studied in Surgailis (1982),
Giraitis (1985), Avram and Taqqu (1987), Vaiciulis (2003) and elsewhere. We note that
Theorems 2.1 and 2.2 essentially use the boundedness of /4; the extension of these theorems
to unbounded functions (satisfying, for example, some growth condition at infinity) is an
open problem.

Remark 2.3. An important class of bounded functions form indicator functions #,(x)
= I{x<)}, ¥y € R, in which case Sy, = N(F N(y) — Fl (y)) is the (normalized) empirical
distribution function; F(y) := P(Xo < y), Fy(y) := N~ Zt 1I{x,<,;. The formal Appell
expansion of such indicator functions is very explicit:

hy(x) =Y (=D FO()4(x)/ k!;

k=0

see Koul and Surgailis (1997). In particular, the Appell rank of /4, equals 1 for each y € R
with f(y) # 0, where f(y) = F((y) is the probability density. An interesting open problem
is to extend Theorems 2.1 and 2.2 to obtain an asymptotic expansion of the empirical
distribution function in the spirit of Ho and Hsing (1996), including the functional
convergence.

Remark 2.4. To give an example of bounded functions % with Appell rank ks« = 2, assume
that # and the probability density f of X are symmetric: h(—x) = h(x) and f(—x) = f(x),
for almost every x € R (The symmetry of f holds, for example, if the distribution of g is
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symmetric.) Then the derivative ) is antisymmetric: f(—x) = —f(x) and therefore
a; =0, where a; = (—1)* IR h(x)f O(x)dx (k = 0); see (1.4), (1.8) (the existence and
integrability of all derivatives of f under conditions (1.3) and (2.1) follow from Koul and
Surgailis 2002, Lemma 5.1). Accordingly, for such 4, f, the Appell rank kx =2 or kx =3
depending on whether a; # 0 or a, = 0 holds. For example, let /;(x) := cos(Ax) (4 € R);
then Sy, is the (normalized) empirical characteristic function and the Appell rank of #;
equals 2 for any A # 0 such that fR cos(Ax)f(x)dx = Ee*¥o £ 0. Next, let A, h, be any
linearly independent antisymmetric bounded and measurable functions with a;; # 0, i =1, 2,
where ay; := (—1)¥ [, hi(x)f P(x)dx; then a linear combination 4 = 37 ¢;h; is a bounded
function whose Appell rank kx = 3, provided constants c;, ¢, satisfy a; = Z,z-:lc,-al =0,
az = le.zlc,-ay # 0 (the relation a, =0 for any cj, ¢, follows by antisymmetry of
h;, i =1, 2). The above examples are based on general symmetry properties of 4 and f only;
they suggest that there is no intrinsic relationship between Appell rank kyx and parameters
a, B in Theorems 2.1 and 2.2.

3. Convergence to stable Lévy process

We introduce the following notation. For any integers j > 0, j, > j; > 0, put

Xiji= Z bi€i—i, Xt,j = Z biCi—i,

0<i<j i>j
Xz,j = Z biCH‘, Xt,jl,jz = Z biCt—i, (3.1)
i>0,i#j i>0,i£j1,j2
where X, := 0 and X 10 := X,. Note that
Xj+ X=X, Xy=Xi=b8j  Xijp=X=bylj —bptij,.
Also let
hi(x) == Bh(x + Xo,), hj(x) := Eh(x + Xo.), hj, ,(x) ;== Eh(x + Xo,;,), x€R. (3.2)

Lemma 3.1 is an easy corollary of the bounds of marginal distribution functions and their
derivatives of stationary processes (3.1) given in Koul and Surgailis (2002, Lemma 5.1).

Lemma 3.1. Assume conditions (2.1) and (1.3) only. For any bounded measurable function h
and any p =0, 1, ..., there exist jo =1 and a constant C < oo such that, for any j > jo
and any j, > ji > 0, the functions hj, ho, hj, hj, ;, are p times differentiable and

[BF ()| + (KD )| + [P G| + [, ()] < C. (3:3)

Moreover,

|HP () — HP(x)| < CB. (3.4)
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Lemma 3.2. Let aff < 2. Then the convergence (2.13) holds.

Proof. We follow the argument in Surgailis (2002). We have

E[A(X)) = ap — a1 X |G- 1 =D (hi(b;j&i—j) — a0 — arb;C,y).  (3.5)

J=1 J=1

1
z{ =

where the series converges in mean and almost surely; see (3.9) and (3.10) below. Let
1 1
ZV@ =Nz,
[N7] 0
On@ =Y nEi1), @)=Y (haolb;z) — Ehoo(bjbo) — arb;2).
=1 J=1
Clearly the lemma follows from

ZW(@) — (@) = 0p(N'@P), (3.6)

NP Q@) = ¢ Ly + ¢, ¢V P Loy(o). 3.7

We prove (3.6) for 7=1 only. Let ¥y := Z'(1) = On(1). Then Vy = Vi — Vo + Vs,
where Vi =" 0@ n15(Cs)s Vi =D gy n®@nis(Es), i = 2, 3, and where

N—s

Pn1(2) = > (hi(bj2) — ag — aib;2),

Jj=1=s

Pr2s(2) = Y (hoo(bj2) = Ehoo(b;Go) — aib)2),

J>N—s

N—s
Pr3s(@) =Y _{(hj(b;z) — hoo(b;2)) — (Bhj(b;E0) — Ehoo(b;E0))}-
j=1

Then (3.6) follows from
E[Vy|"< CN'" ™ i=1,231<r<ap),

EV3, < CN, (3.8)

and the inequalities (1 + 7 — ap)/r < 1/af(l <r < ap), 1/2 < 1/af(af < 2). From (3.3),
it is easy to show that

|hoo(b2) — Ehoo(b;G0) — arbjz| < Cmin(|b,|(|2] + 1), b2(|2] + 1), (3.9)
|hi(bj2) — ap — aybjz| < Cmin(|b;|(|z] + 1), B2(|2] + 1)?). (3.10)

Indeed, the left-hand side of (3.9) can be written as |E fbbj;’g(h(’,o(u) — ho(0))du| and so (3.9) is
obvious by (3.3) and the mean value theorem, while (3.10) additionally uses a, =
ER(b;50), EGo =0 and  hi(bz) — ap — arb;z = B{h;(b;z) — h(b;Co) — bj(z — Eo)h
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(b;G0)} — bE{Go(R(b;&o) — hP(0))}. Using condition (1.10) and integration by parts, for
any a/2 < r < a one has

E|min(|6,|(|o| + 1), 65(|Co| + D))" < Clb,|. (.11

In particular, (3.11) holds for r = a8 — ¢, where ¢ > 0 is small enough. Note that the random
variables ¢ n;<(Cs), s € Z, are independent and have zero mean, i = 1, 2, 3. Then, for any
lsr=2,

E[Vn|" <2 Elpnio&)"

5<0

N+s

< CY E[ Y min(|b|(|Col + ). H3(Go| + D]
s>0 1 j=1+s
N+s ”
< CZ( Z EVr min(|b;[(|Co] + 1), b§(|§0| + 1)) r>
s>0 \j=l+s

00 N+s r
< CJ ds(J j—“ﬁ/"dj) :
1 K

Decompose the last inte}gral as [[“ds{...} = LN ds{...} + [y ds{...} = iy + Loy. Then
Iy = leNs’*“ﬁds(fllH /9 x=ablr dx)r < CNT+=% as afi/r > 1 and the inner integral
is bounded by a constant. On the other hand, I,y <C f;o s"B(N /)" ds =
CN" [y s~“Fds < CN'"=F_ This proves (3.8) for i = 1. Similarly,

N 00 r
E‘ VN2|r = CJ ds <J ]aﬁ/rdj>
0 N—s

N o - v
= CJ S"*aﬁ ds <J x*aﬁ/r dx) < CJ Srfaﬁ ds — CN1+,,aﬂ.
0 1 0

Finally, using (3.4) and the fact that ¢ y3,(C;), s € Z, are independent and have zero mean,
we obtain

N—s 2
EVi,<C > (Z b§> < CN,

0=s<N \ j=1

thereby proving (3.6).

Relation (3.7) follows by the classical central limit theorem (see Ibragimov and Linnik
1971, Theorem 2.6.7), as n(C,), s € Z, are i.i.d. Thus it suffices to show that 7({) belongs
to the domain of attraction of af-stable law, namely,

lim xPP(pQ) >x) =y, lim [CP@E) <x) =7y, (3.12)
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where the constants y. are given by
v = (gl 1P o0y + 416 Pl )

yo = v(wcﬂ“ﬂl{cm} + qflczl"ﬁf{cro})’

vi=cf /(ﬁa)aﬂ. Using (3.9), it is easy to check that the series in the definition of 7(z)
converges absolutely for each z € R, and defines a locally bounded function on R. The limits
(3.12) follow by (1.10) and the existence of the limits

im 2|~ Py(z) = v/eP ek, (3.13)

Note 7(2) = 1(z) — Ef(5), where 7j(2) = 3772, (hoo(D;2) — hoo(0) — b;zh{)(0)) and E|7(Q)] <
C < o00. Let z> 0. Then

2 iy(z) = =7 Hhjz) + 0P
- z’l/ﬁro(hoo(c()zfﬁ) — hoo(0) = cozt PRD(0))dt + p(2) + O(z"11F)
0

=v!Pe) + p2) + 0P,

where
p(z) = z*/ﬂj { hoo(br1102) — hoo(cozt Py — 2(b1ipg — cot P)AL(0) }dr = o(1)
0

by the dominated convergence theorem. The limit z — —oo in (3.13) is analogous. Further
details can be found in Surgailis (2002, proof of Lemma 3.1). O

Remark 3.1. 1If cf =0, the limit in (2.13) is trivial. In such a case, we expect
SN ZW = op(NC-20/26F) in agreement with the conjecture in Remark 2.1 on the
existence of a second stable limit.

4. Proof of Theorem 2.1

The proof uses bounds of covariances of R(,k’o) and R(,k’l) given in Lemmas 4.1 and 4.2
below. We asume everywhere below that conditions (1.3), (1.10) and (2.1) are satisfied, with
1/2<p <1,a>2, as well as the boundedness and measurability of 7.

Lemma 4.1 (Koul and Surgailis 2002, Lemma 6.1). Let af3 > 2. Then for any integer
1 <k<1/Q2B—1) one can find C, k > 0 such that, for all t =1,

CBD i (ke 1B - 1) < 1,

RED pkON |
[cov(R,™, Ry )| < C 1k if (k+1D2—1>1.
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Lemma 4.2. Let afp < 2. Then for any sufficiently small ik > 0 there exists a constant C > 0
such that, for all t =1,

I .
@1 pl) t , if >3/2+a)and p>2/3,
lcov(R;™, Ry )| < C{ (~CBHAB-2-0NOB-3) oiherwise.

Proof. Note that E[h(X)[C, s < t—j] = hj,l()?,,j,l) for any integer j = 1, where 4}, X',,j
are defined in (3.1), (3.2). Following Ho and Hsing (1996; 1997), one can write the
telescoping identity

[o.°]
R =h(X)—ay—a X, = Uy (4.1)
j=1

where
U= hjfl(f(t,j—l) - hj()?t,j) —a bl

ho(X +0) = h(X,). The series (4.1) is orthogonal and converges in L?. From (4.1) and (3.5) we
obtain

RPD = "7 (4.2)
j=1

where

Vi = hja(Xoj1) = hi(X o)) = hi(b;&o ) + ap — axb;& i X jIpesmy.  (43)

Note that V,; is measurable with respect to C,, s<¢—j, and that E[V,;|{,, s <

t — j— 1] = 0; in particular, E[V, ;Vy ] =Ounless t — j =t —j', t, t € Z, j, j' = 1. Using
this fact and the Cauchy—Schwarz inequality,

lcov(R{™, RP)| =

=

EY2(Vo VB 2(V i) (4.4)

=)
= 1

> EVoVisj
J=1

8}
j=

We claim that for any k' > 0 there is a constant C < co such that, for all ¢, j = 1,

JREBaBINGE-D i )2 < B < 3/4,

BV, ) < 4.
Vi) C{iwlk if 3/4<p<1. )

The lemma follows from (4.4), (4.5) and the following elementary inequality: for any
u>0,v>0,u+v>1and any ¢ > 0,

& l—u—vy .
. o e ifo<u<l
u v > >
> sC{t_v’ oy 4.6)

Indeed, let

L ({@BHaBp—1—KkYAGB-D}/2,  if1/2<B<3/4
H=Y"=1 @B -1)2, if3/4<p <1
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First, let f <3/Q2+a) (<3/4),<2/3. Then 1 <2+ af —1 <2 (the lower bound
follows from aff > 1, 8> 1/2) and 1 < 6 —2 < 2, so that 4 € (1/2, 1) provided k" > 0 is
chosen small enough. By (4.4)—(4.6) we obtain

|cov(R§)2’1), R(zz’l))| < 1 -CBHap-1-IN6p=2) _ (o ~(2p+ap-2-KNE-3)

Next, let f<3/2+a), f>2/3. Then 65 —2>2 and we again have u=
2p+af—1—x")/2 € (1/2,1) and the lemma follows similarly.

In the case 5 >3/(2+ a), § <2/3, one has u = (6 —2)/2 € (1/2, 1) for k" > 0 small
enough and again the conclusion follows. Next, let § > 3/(2 + a), 2/3 < 8 <3/4, then
u > 1, implying the statement of the lemma with x:=u — 1> 0. Finally, in the case
B >3/4, we again have x> 1 and the statement of the lemma follows similarly, with
K:=u—1>0.

It remains to prove the claim (4.5). To that end, note that

E[V,|¢—;1=0. 4.7)

Fix ¢, j, and write the following telescoping identity similar to (4.1):

Vig=> (BIVijl&rjs Curu <t =01 = E[V,j|E s L u< t — L —1])

>

> Wi (4.8)

>
which converges by orthogonality with respect to conditional probability P[-|S,_;]. With (4.3)
in mind,
Wije=hijo1(biCrj+ Xio1) — he1(X1-1)
— hyju(biGij+ X o) + h(X 10) — asb ;8o jbelie, (4.9)
where
hie(x) == Eh <x + ) b,@i), 1<j<t
Isist,i#j
By orthogonality of the decomposition (4.8), we have
EVI,=> EW;,. (4.10)
>j

To evaluate the last expectation, we need a convenient representation of W, ;,. We introduce
the following notation, as ¢, j, £ will be fixed temporarily:

H(x) := hyje1(x), €:=Cijs n=Cre X=Xy, (4.11)

H®W(x) = d* H(x)/dx*. We also introduce an independent copy (@, 7°, X% of (¢, n, X),
and let E° denote the expectation with respect to (£°, #°, X°) only. Then W,,, can be
rewritten as
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W0 =E"{H(b;C+ b+ X) — H(b;E" + b + X) — H(b;E + b’ + X)

+ H(b;E" + b’ + X) — b;bin HO(b,;8° + bm® + X°)}. (4.12)
To evaluate this expectation, write W, ;, = Z W(t’)] ,» Where

W, =B H(b;L+ b+ X) — H(b,L* + by + X) — H(b;C+ by + X)
+ H(b;E’ + bm” + X) — bb(C — )y — ) HP (5,8 + b + X)},
WP, = bib B { HO(b,8° + b + X) — HO(b;5" + bp® + X)),

W(S)(; i= bibE{ HA(b;8° + bm" + X)("n° — &' — &n°)}.
Let 0 <y <1, which will be specified later. By using the mean value theorem together With
the boundedness of H® and the inequality min(1, u; + uy) < (u; + up)” < ul + uz,
uy, up = 0, we obtain

1
W=

bi& (b ) )
EOL Z;OL O(H(Z)(ul +uy + X) — HO(b,;&° + b’ + X))duy duy
)by

[6;(E=Co)l lbe(n—n")
< CEOJ J min(1, (u; + up))du; duy

0 0
16,E=Co)l (lbetn—n")]

= CEOJ J (M)I/ + ug)dul du,
0 0

< CE%(|b;(& — EON" 7 1beln — )| + [0, — ) bely — 5|7
=< C(Ip" 7 1bal (117 + Dl + 1) + 15166 7 (E] + Dl + 1),
almost surely. Choose y so that 2(1 +y) = a — k < a; then
E[W) |2 < C(|b,|" b} + b%|by|* ™). (4.13)

Next, consider W(tzj)f By the uniform Lipschitz condition of H® (see (3.3)), for any £ > jj
large enough,

E[W), [ < CBYEX? + (B*|X°|?) < Co2p2e' 2P, (4.14)

Finally, W7, = bibE{(H (5,8 + by’ + %) — HAG)En — Ly —Ln’)} by B =
E%° = EOC 170 = 0. Hence, using the uniform Lipschitz condition of H®, one obtains
|W(3)1,| < C|b;b¢|(|b;]| + |b¢|) almost surely, or

E|WS) P < Ch2by(b5 + b}). (4.15)

The claim (4.5) for f < 3/4 now follows from (4.13), (4.14), (4.15) and (4.10).
It remains to check (4.5) for f > 3/4. In this case, the last term on the right-hand side of
(4.3) vanishes, and V;; can be represented as
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B (hjo (b + X 1oj) — hjm1 (b8 + X1 j) — hjm1(b;Gej+ XO) + hjm1(b,;8° + X))}

biliy (Xu, 5
—E° J J KDy + up)duy duy .

b0 Jx

Hence, |V, ;| < C|bj|E°|G,—; — &% X,; — X°| almost surely, and we obtain EVij <
C b?EX 3 ,=C j'=% thereby proving (4.5) and thus the lemma.

Proof of Theorem 2.1. (i) Consider the decomposition (2.11). Let «af >2. Then
Sy.a(r) = KON XD 4 STINTRED and the statement follows from Lemma 4.1 and
(2.12). Let aff <2. Note < (o + Va? —2a)/2a is equivalent to 2 — 2 > 1/afs. Hence,
the first term on the right-hand side of (2.11) dominates the second one, in probability, in
view of relations (2.12) and (2.13). By Lemma 4.2, the third term on the right-hand side of
(2.11) is Op(N'-(F-1/20+a/2419) — o ,(N?~2P) for k > 0 small enough, which easily follows
by a > 2. This proves (i).

(i1) This follows similarly from (2.11), where now the second term on the right-hand side
dominates the other two terms.

(ii1) Note that cov((Xy), h(X,)) = cov(Rgl’O), R(tl’o)) is absolutely summable, according to
Lemma 4.1; in particular, 6% is well defined. The proof of the asymptotic normality is

similar to Koul and Surgailis (1997) or Ho and Hsing (1997). O

5. Proof of Theorem 2.2

Note that the order of the ‘remainder’ ZfilR(,z’l) given in Lemma 4.2 is greater than the
order of SN X ®) unless a > 4. Therefore, to prove Theorem 2.2, we need to modify the
remainder term by introducing the additional centring term Z (,2) (2.14). More explicitly,
from (2.8) and (3.9),

2
zP =

Z (iljl,jz(bjl Cf*jl + bjzgt*jz) - i’ljl(bjléf*jl) - iljz(bjzgf*jz) +ao — azbjl ijCt*letfjé)’

J2>ji=1
(5.1
where
hj (%) == Eh<x + > b,»éi), l<ji<jnxeR (5.2)
i#j1:)2
Accordingly, put

R = R — 201 upary — ZPL0vapsy = ROV — ZP T 0apesy. (53)
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Lemma 5.1. Let 2af3/(3 —2p) <2, or 2+ a)f < 3. Then

Z Z(z) 0 (N(3 2/3)/20!,3) (54)

Lemma 5.2. For any sufficiently small k > 0, there exists C < oo such that, for all t =1,

32
¢~ @A-D2+a/2)+x if B< min< —)
b 2 + a b 3 b
|cov(R(t3’2), R§)3’2))| sC (,7(2/3—1)(2+a/2)+x) + (@-Dt@p=Dtx)  jf L <p< %7

t_l_K, <
lf p< 2+a

The proofs of the above lemmas are given in Sections 6 and 7 below. With their help, we
shall prove Theorem 2.2.

Proof of Theorem 2.2. (i) Similarly to (2.11), write

[N7] [N7] [N7] [N7] 22
Sy.n(t) = a3 ZX ]{ﬁ<2/3} + Z Z I{aﬂ<2} + Z Z 1{(2+a)[)’<3} + Z R( ), (5.5)

1= t=1 t=1 1=

Note that f < (5a + V25a% — 48a)/12a is equivalent to 1/af < (5 — 6f5)/2. Accordingly,
the first term on the right-hand side of (5.5) dominates the second one, in probability; see
(2.12) and (2.13). As (3—2p)/20f < 1/af for f>1 by Lemma 5.1 the first term
dominates the third one as well. Hence (i) follows from

N
ST RP = op(NC-DP),

t=1

By Lemma 5.2,
OP(NI—(ﬁ—l/Z)(2+a/2)+IC) if ﬁ < min i %
’ 24a’3)’
- 3 2
R = Op (N1=(B=1/2@ta/2rx . NI=(B=1/2—(@p=D)/24x) - jf o< p<3
2 3
Op(N'/?), if -<f< .
P( ) 1 3 ﬁ 2+ a
(5.6)

Let $ <3/(2+ ). Then 1 — (5 —1/2)2 + a/2) < (5—6£)/2=1—3( —1/2) is obvious
by a>2 Next, assume 3/(2+ a) <[ <2/3. Note that this assumption implies
3/2+a)<2/3, or a>5/2. Then we need to check 1—(8—-1/2)—
(af —1)/2 <1 —3(B—1/2) only. The last inequality is equivalent to (4 —a) < 1. As
B < 2/3, this follows from 4 — a < 3/2, or a > 5/2. This proves (i).
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(i1) In this case, the second term on the right-hand side of (5.5) dominates the first and
the third, as 1/af > (5 —6f3)/2 =1 —3(f — ). Hence (ii) follows from

N
N RPD = op(NVe), (5.7)
=1

We need to examine the case 2/3 < 8 <2/a only, as (5.7) in the case f <2/3, <2/a
follows from the argument in (i). We have two possibilities: (a) 2/3 <pf,
3/Q+a)<p<2/a; (b) 2/3<B<3/2+a). In case (a), we have R?? = R*" and
(5.7) follows from the proof of Theorem 2.1. In case (b), (5.7) is immediate by (5.6).
Theorem 2.2 is proved. UJ

6. Proof of Lemma 5.1

The proof uses the decomposition
z? =F,+ D, 6.1)

with F,, the remainder term and D,, the main term, defined by

Fri= " fin®i 8 bplip). (6.2)
J2>j1>0

Dt = Z(ily)(bjgt,j) —da) — azbjijt,j))zt,j, (63)
>0

where

Xt,j = Z bilii=X:i—b;Ci;

i>0:i ]

and where the function f}, (21, 22), z1, 22 € R, is given by

Fin(z1s 22) = hj (21 + 22) = by (21) — hyy(z2) + ag — (il_(,-ll)(zl) —ay — azzl)Zz

— (;l;l)(ZZ) —da) — LZQZz)Zl — adyZ123. (64)
Lemma 6.1.
N
> Fi=0p(NC2PPeDxy (3 > 0). (6.5)
=1
Proof. Write F,=F+F,, where = ) o i<l NE > F; =

ZO<j|<jz:|jz—j1\€N’1 ..., and where 0 < 1 <1 is specified below. Then
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N N
Z Ft+ - Z Z{ Z ftfs,tfs+k(btfsgv: th+szk)}-
t=1

k>N* s<N  t=1V(s+1)

By definition (6.4), the random variable in the braces has zero conditional expectation given
either C; or C,;_;. By applying (twice) the von Bahr—Esseen inequality (von Bahr and Esseen
1965) for any 1 < r < 2, one obtains

N r N r
E Z F-t'— <4 Z Z E Z ftfs,tfs+k(btfsém btfs+kgsfk)
=1 S<N >N+ t=1V(s+1)
N r
S ( ST bmk;kw) 66
S<N k>N* \t=1V(s+1)

where the last line follows by the Minkowski inequality. In a similar way,

E[Y F,

t=1

2 N 2
$Z Z ( Z El/z‘ftfs,tﬂs%k(btfs@s, bts+k€sk)|2> . (67)

S<N 1<k<N?* \t=1V(s+1)

Put 7:=2apB/(3 —2p). Clearly, Lemma 6.1 follows if we show that there exist 1 <
r <2, K, A >0 such that, for all N = 1,

r

< CNUIPF, (6.8)

E
2 —_
E < CN@/Dx, (6.9)

N
> oF;
=1
N
D FL
=1

To proceed, we need the following lemma, whose proof will be postponed till later.

Lemma 6.2. For any 1 < r <2, r> a/2 and any 0 < j; < jy,
Elf51.2(0j,811s 18" = Clbj [*[bj|*. (6.10)
Let us prove (6.8). Below we choose r =7 — 0, with 0 > 0 small enough. Note that
2>7F>oaf and 7> a/2, so that r > afs, r > a/2, for suitable , and (6.10) applies. We
shall also need the inequality
1+ 7—206 <0, (6.11)

which will be verified below. Then by (6.6) and (6.10),
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czz( 3 |b,_s|a/r|b,_s+k|a/r)

S<N k>N+ \r=1V(s+1)

(Z +Z >_C(2 + 35

|<N

Here
) N r
DI CNJ dk (J Bl k)Pl ’dr) = CN*"2Bp
N* 0

where Iy = [, dk(fy T /" (x + k) “ﬁ/’dr)’ Write Iy = [y dk(..)" + [ dk(...)"
= []N + ]2]\] Here ]2]\] = Cono —aﬁ dk(f ‘L'_aﬂ/rdl')r = C while I[N CfN‘ 1
(k= @eB/N+yr df = Q(NG—DA+r— 2ﬂff)) because of (6.11). Thus,

Sfy < CN!TAIHr=20h) (6.12)

Next,

00 00 N r
S < cJN dsL dk (JO (t+ )P/t + s+ k)~ P/ rdt)

— CN1+(1+V—2aﬂ)I — CN1+(I+I‘—2aﬁ)’ (613)

as the integral [:= [[*ds J"O dk(f0 (t+ ) (t+s+k)yPrdy < C [[Fs P ds |7
(s+ky*Pdk < C["s*ds [["(1 + k)" dk < o0, by aff > 1.

The bounds (6.11)—(6.13) imply (6.8), with arbitrarily small A > 0 and » = 7 — 0, where
0 = 0(4) > 0 is sufficiently small. Indeed, the desired inequality 1+ A(1 + r —2a8) < r/F
follows by AQapf — 1 —r)+ r/7 > AQ2apf — 1 — 7) + r/7, where 2aff — 1 — 7> 0 by (6.11)
and 7/r is arbitrary close to 1 by taking ¢ > 0 small enough.

Let us prove (6.11), or

3+ 4ap* < 4af +2p. (6.14)

Indeed, for a =2, (6.14) becomes (S —1/2)(86 —6) <0, which is true for all
1/2<p<3/4(>3/2+ a)). Then (6.14) holds for 1/2 < <3/4 and o =2 as well,
which follows by taking the derivative of both sides of (6.14) with respect to a.

Now let us prove (6.9). Similarly to the proof of (6.8), E|Zfl:1F;|2 = C(Z v +250)
where
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NA N 2
S, <CN dk(J TR (7 4 )b/ dt>
1 0

N 00 2
< CN| dk(k/k“y (J TP (r 4 1) dt)
1 0

N)'
< CN| ¥ 2Pgk < c{
1

N1HAG-2ap), if af <3/2,

NlogN, otherwise.

Finally,
00 N 2
Sy s CNlJ ds (J (T4 5)"% dr) < CN/37248,
N 0

whence (6.9) is immediate if a8 = 3/2, while in the case af < 3/2, A has to be chosen so
that the inequalities 1+ A(3 —2af) <2/F and A+ 3 —2af <2/7 are satisfied. Since
7 <2,3—2af <1, these inequalities are clearly satisfied for A > 0 small enough. Lemma
6.1 is proved. U]

Proof of Lemma 6.2. Recall the definition (6.4) of f ;. Let us show the bound

@+D)B+Db5), i |asLn <1,

|21|(z3 + b)), if |z > 1, |z] <1,
o < J2 )
iz, 22)| < C s B (6.15)
|22l(z1 + b3, if [z1] < 1, [z > 1,
(|Z]| + |22D5 if ‘Zl| > 1, |22| > 1.

Let U] = bj]ét*jn Uz = bjzétszs H(x) = izjl,jz(x), H(k)(x) = dkH(x)/dxk, then fjl,jz can
be rewritten as
finzi, 22) =E{H(zi + 20) — H(zi + Uy) — H(U) + z) + H(U; + U,)
— (HY(z + Uy) — HY(U; + Us) — HO(Uy + Uy)z1)z2
— (HO(U, + 22) — HY(U, + Uy) — HO(Uy + Uz)z)z

— HO(U, 4 Uy)ziz3}.
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. .. . 4
The expression inside the expectation can be rearranged as » ; ,q;, Where

q0 = Ui(HD(z2) = HD(U2) — 2, HA(Uy))

+ Ua(HV(z1) — HY(UY) — 20 H2(UY)) + U U, H2(0),

Z1 Z) up uy
q = J J {J J H(4)(t1 + tp)dt dtz}dul duy,
U J U, U J U,

U] Uz
qr ‘= U] UZJ J H(4)(t1 + lz)dl1 dlz,

0 Jo
Z) U, puy

qs = _U2J {J J HY(t) + ty)dty dfz}dul,
v Uo Ju,
Z2 U] u

q4 = —U1J {J J HY(t) + ty)dt dlz}duz-
v, Uo Ju,

Note that Eqg = 0 and therefore f; ;,(z1, 22) = E{Z?Zlq,-}. Next, by boundedness of H®,

almost surely,

lq1] < C(z1 — U1)*(z2 — Ua)%,
lg2| = CUTUS,
lg3] < C(z1 — Uy)* U3,

lqa] < C(z — U,)* U7,

yielding |f}, ,(z1, 22)| < CE(z2 + U3)(z3 + U3) < C(z3 + bil)(z% + b?z), or the first inequal-
ity of (6.15); the remaining inequalities follow similarly. With (6.15) in mind, the lemma
follows from the inequality Emin(|b;§|*", |b;{|") < C|b;|* which is an easy consequence of
(1.10). Lemma 6.2 is proved. U

Lemma 6.3. >,V D, = Op(NC-2P)/2F),

Proof. Write D, = D} + D;, where

D} = Z(izﬁl)(bjg,,j) —a; — azbJCtﬁ') Z bilr—is

J=0 i>j
Dy = Z(itﬂ»”(bjéf_,—) —a — a2bj§t—j> Z bilii.
=0 >0

We shall prove the lemma for Zf;lDt* only, as the bound for Zivlet’ follows similarly. We
have Z?Lle = D) + D, where
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N
D = Z Z Z Aht—s(bt—sés)br—s+kgs—ka

S<N f>N* t=(s+1)V1

N
Dyi=Y > Y Ahy(bi &b il

S<N [<k<N* t=(s+1)V1

where Ah, ((z) := iz(,l,)s(z) —a; — apz, and where A :=1/af < 1. It suffices to show that
there exists 1 < r < 7:=2af/(3 — 2f) such that

E|D,? < CN?7,  E[Dy|" < CN"/". (6.16)

Put g s(2) = S0 (11 AR - (Db gy i Using ay = hD(0) = ERY (b,_L,), we obtain
by orthogonality

ED; =) > E(gnasE))’ 6.17)

s<N |<k<N*

Next, using the von Bahr-Esseen inequality, for any 1 < r < 2,

”

N
Z Z Ahtfs(btfsgs)btﬁwkCsfk

k> N* t=(s+1)V1

N
- C Z EE [ Z Z Ahtfs(blfsgs)btfﬁkgsfk

S<N k>N* t=(s+1)V1

E[D)["<C) E

S<N

r

]

N 2
= CZ E<SE (Z Z Aht—s(bt—sgs)bf—s—kkgv—k)

S<N k>N 1=(s+1)V1

r/2

Cs

r/2
— CZE{ > <qN,s,k<cs>)2} : (6.18)

s<N k> N*
Exactly as in (3.9), (3.10) and (3.11), one has E|Ah, (b, C)|> < C|b,_s|* and therefore

N

2
E(qN,s,k@s))Zs( > |b,s+k|bm|“/2> : (6.19)

t=(s+1)V1

With (6.17) and (6.19) in mind, the first bound (6.16) follows by integral approximation of
corresponding sums. Indeed, ED3 < C(Z‘SKN coiF Y ey o) = C(I1 + I,). Here
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N* 00 2
I, <CN| dk <J TR (4 k)P dr)
0 0

N* 00 2
=CN k“ﬂaﬁdk(J TP )P df)
0 0

NA

szzﬂ—aﬂ dk = CNz/f’
0

=< CN
according to the definition of A, 7. Next,

00 N* N 2
L= CJ dSJ dk(J (t+5) 2 (t+ s+ k)P dt)
N 0 0

o ¢N*/N 1 2
= czv“*aﬁfzﬁj dsJ dk (J (t+5) “PPt+s+ k)P dt>
1 0 0

< CN4—aﬁ—2ﬂ(Nl/N)Jms—aﬂ—2ﬂ ds = CN3—a/3—2ﬁ+i < CNz/f,
1
where the last inequality follows from af(3 — aff —28) <2 — 2 which is true for any
B =1/2, a = 2. Indeed, for a = 2 it becomes (3 —4B) < 1 — f3, or (28 — 1)> = 0. Now, for
any 8 = 1/2,the function u(a) := 2 — 25 — af(3 — aff — 2/3) increases in a, which follows from
u'(a) = pQRaf + 2 —3) > 0, due to aff > 1, f > 1/2. This proves the first bound of (6.16).
The proof of the second bound of (6.16) is more delicate. We shall need the following bound:

N—i(2/3—1)|z|%/ﬁ’
3" (@ras@) < €4 |2(6-208,
k> N* N2|s|1*2/5 min(|z|f|s|*2/5, |z|‘1‘|s|*4/3),

if [s| <N, |z| < N/e,
if |s| <N, |z| = NV/e,
if s<—N,
(6.20)

where |z|; := |z| V 1. To show (6.20), note that |Ak,_y(b,_sz)| < Cmin(|b,s||z]1, bis|z|%)

exactly as in (3.9) and (3.10), implying that

N
gvek@I < C D bresprl min(|b,|zli, b2 |z).

=(s+1)V1

Let |s| < N and z = 1. Then

k> N*
where

Ji = ZZJ dk<
N/l

0 N

21/8 2 %0
J TP+ k)P dr) , Jy = z4j dk

00 00 2
> (quas@) = CJ dk (J min(zt P, 220y (x + k)P dr) < C(J, + Ja),
N* 0

00 2
J 7+ k)P dr) )

zl/B
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Here

o0 1 2
Ji = z<3*2ﬂ>/ﬁj dk (J P+ k)P dr)
N*/z\B 0

00 1 2
< z<3*2ﬂ>/ﬁj dk (J P+ k)P dr) = CC-2P/B
0 0

if N* <z or z > N'/ holds; the convergence of the last integral follows from

1
-8 Bdr <
J TP+ k) Pdr < @61, ifo<k<l,

{Ckﬁ, if k=1,
0

and the inequality 2(28 — 1) < 1 which follows from  <3/(2+ a) <3/4. On the other
hand, if N* = z1/# then

g = Z(Hﬂ)/ﬂj 2 dk — CN-H2B-12/B.
Nz

As J, can be similarly estimated, this proves (6.20) in the case |s| < N. Finally, for s < —N,

00 N 2
> (quas@) = cL dk (J min(z(t — ) ?, 22t — ) P)a + k— )7 dr>

k> N* 0

2
Y Nlsl zls|F Z2|s|7% dr
=ClsP zﬂJ dk J m1n<(l|_i_| ik s 2/3> 7
0 0 o (1+0%)@T+k+1)

< ClsP#(N/|s)? min(z2s| %, z“|s|*“’f>j (k+ 1) dk
0

< CN?|s|'""% min(2?|s| =%, 2*|s|~*),

proving (6.20). Hence by (6.18), E|D;|" < C(Z; + Z, + ¥3), where

r/2
Y E{ Z(qN,k,s(cs))z} 1G] < N9,
\

s|I<N k> N*

r/2
2 = Z E{ Z (qN,k,s(Cs))z} [(|C5| < Nl/a)’

[s|<N k> N*

r/2
Y E{ Z(qN,k,s@s))z} :

ss—N > N*

Here X < CN'#@A-Dr2E|g|"/B[(|E| < NV/*) < CN'-ACB=Dr/2+0/B-afe —. CNY, provided
r/f>a, or r>af, holds. Recall A=1/aff and hence the exponent v =
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—(r/2aB)2B — 1)+ r/af = (r/2aB)(3 — 2B) = r/F, so that the desired bound =; < CN'"/"
(cf. (6.16)), for X; is satisfied. Next,

3, < CNE|§|(r/2ﬂ)(3_2ﬂ)I(|C| > Nl/a) < CN'HE2BB=2h)-a)/a _ con7/T
provided (r/28)(3 —2p) < a, or r < 2af3/(3 —2p) = 7, holds. Finally, for s < —N,

3, < CN’ ZS(172ﬂ)r/2Emin(|€|rsfrﬂ’ |C|2rS72rﬂ)

s=N

B -
o 1 (*z2dz 1 [(®z'dz
r (1-2B)r/2
<CN JNS <S2r/5 JO Zl+a +Sr,3 Jsﬁ Zl+a>ds

< CN"JOOS(]_Zﬁ)r/z_“ﬂ ds =CN",
N

where v :=r+ (1 — 2f)r/2 — afp + 1 < r/F is equivalent to < 7. The above estimate also
uses a/2 < r < @, in addition to the previous aff < r <7 =2af/(3—-2p) and | < r <2.
Note all these inequalities are satisfied by choosing » = a8 + ¢, where ¢ > 0 is small enough.
This proves (6.16). Lemma 6.3 is proved. ]

7. Proof of Lemma 5.2

The proof is similar to that of Lemma 4.2. First, let 8 <2/3, 8 <3/(2+ a). From (4.2),
(4.3), (4.9), (4.8), (5.3) and (5.1) we obtain

R = 3" Uy (7.1)

0<j1<)2
where R?? is defined in (5.3) and
Uijrjp = hzjn-10;8ijy + bj, 8 jy + Xl,jz) — hj1 (b 8oy + Xf,jz)
- h#]l,jz(bjlgl*jl + Xl,jz) + hjz(Xf,jz) - hjl,jz(bjICf*jl + bjzgf*jz)
+ (b 8o g) + hip(bpCijy) — a0 — asby b Co j Gy X (7.2)
From the definition of s, ,, h;, hj, ;, and hj, we have E[U, , ,|Cs, s # t — ji] = 0(i = 1, 2)

!

and hence the orthogonality property: EU,; ;, Uy i s =0 if either t—j; # 1t — ji or
t — jp» # t' — j3. Using this property, we can write

|ERE)3,2)R(Z3,2)‘ _

E EUoji.jo Uttt ji, i)

0<j1<)2

1/2 1/2
Z 2 2
= (EUtaj]»jZ) (EUt,t+j1,t+jz) : (7.3)

0</1</j2
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We now use Lemma 7.1 below. It is easy to note that the main contribution to (7.3) is
provided by the second term on the right-hand side of (7.5), and we obtain

ERGZREP) = C 3 (alt i) P(ae + jo)) P @ etz

J1.2>0

< Ct*(Zﬁ*l)(ZJrOl/Z)JrK’ (74)

thereby proving the lemma in the case f < 2/3, 8 <3/(2 + ).
Next, let 3/(2 + a) < <2/3. In this case, (7.1) and (7.3) hold with U, ;, replaced by
U;Jl,jz = Uijig +At,j1,j2’ where

At,jl,jz = iljl’jz(bjlét*jl + ijCt*jz) - iljl (bjICt*jl) - i’jz(ijCt*jz) +ap — a2bj1 bjzé‘l*jlgsz’

so that Z(Z) ZO<]1<12At]l Ja* Then E(U; ) jz)2 < Z(E(Ut,jl,jz)z + E(Al,jl,jz)z) and the
statement of Lemma 5.2 follows similarly from Lemma 7.1.

Finally, in the case 2/3 <f <3/(2+4a), (7.1) and (7.3) hold with U} j, replaced
by Ut]l]z = Ut]l J2 —I—a3b, jlb’ jzét jlgl‘ IZXtJZ leadlng4 to E(Utjl 12)2 = C(EUtjl ]2 +
b* b2 EET " EC szXz ), where b2 b> EX = Cj, 5! Ja # The remaining computations

J17J2 L2 J17 )2
are similar. Lemma 5.2 is proved. O

Lemma 7.1. For any k > 0, there exists C < oo such that
E(U”1 jz) < C(j aﬁ-Hc 11— 4/3+J 2/3] 2—-(2B— I)a/2+1<) (75)
E(A,, )0 < CGYP 2P 4 720y, (7.6)
Proof. The proof is similar to that of (4.13), (4.14), (4.15) and Lemma 6.2, so we confine
ourselves to giving an outline. To obtain a convenient expression for U, 2 fix ¢, ji, jo,
0 <ji <jp, and let H(x):= hyj j—1(x), W) = bJICt g W i=0;8j,, X = thz Let

(w?, Wg, X be an independent copy of (W, W,, X). Then Uijijp = U,j)] 5t U(,zj)l o
where

Wy (W (X ~

vl = EO{J J J (H®(uy + uy + us) — HOWY + W) +X0))du1du2du3},
wyJwyJ xo

U =EY(HO0) — HOW + W5+ X)W W, X0 + Wi WX

+ WIWLX — WX — Wim, X0 — wIWIX + wiwix%}.

Using the boundedness of H”, i=3,4 (see lemma 3.1), and the inequality
|f min(l lu — y°Ddu| < min(|y — »°|, |y — »°[>) < |y — »°|'"*” which is valid for any
v, " € R and any 0 < y < 1, we obtain
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%%

hoial =< Clo AL 17 4+ DIBAIG =] + DX | + ELX )

+ Cloj (8 |+ DIBL (G 7 + DX | + ELX 5]

+ C|bj1 |(|Ct—j|| + 1)|bjz|(|Ct—jz‘ + 1)(|Xt,jz‘l+y + E|Xf,jz|1+y)’
almost surely. By taking 2 < 2(1 4+ y) < a, we obtain

E(UY), 0 = {6, P70 EX2

Lj1sj2 1.2

2 2(1 2 2 72 o2
+ bj1|b.f2| ( +Y)EXt,j2 + bjl bj2E|Xt7_/'z| ( ﬂ/)}

<cC { JTHEV 1B | 2B 2012 | <2f jz—zﬁﬂl—zﬁ)uw)}

Here, we have used E|X, ;, X7 < Cj; @D \which follows by the Rosenthal inequality
(see, for example, Petrov 1975). The rest of the proof of (7.5), including the estimation of
E(U(f;b jz)z, is similar to (4.13) and (4.14). The proof of (7.6) follows similarly. O
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