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1. Introduction and statements of main results

Consider the nonparametric test of

H0 : X 1, . . . , X n are independent

against

H1 : X 1, . . . , X n are serially dependent,

where X1, . . . , X n are observations of a time series at times i ¼ 1, . . . , n, and under H0 the

random variables X1, . . . , X n are also assumed to have a common continuous distribution

function. Many of the standard nonparametric test statistics for H0 against H1 are based upon

the vector of ranks (R(1), . . . , R(n)), where R(i) denotes the rank of X i. Such statistics are

typically of one of two basic forms, which we introduce below. First, let N :¼ f1, . . . , ng,

and for any 0 , k , n set

N k :¼ f(i0, . . . , ik) 2 N kþ1 : i j 6¼ i l for any j 6¼ lg: (1:1)

Further, for 0 , r , n, let

A ¼ fa(I) : I 2 N rg (1:2)

be an array of real constants. Define the generalized serial rank statistic

WA :¼
Xn
i¼1

a(R(i), R((i� 1)mod n), . . . , R((i� r)mod n)), (1:3)

where, for any �nþ 1 < M < n� 1,

Mmod n ¼
M þ n, if M < 0,

M , if M . 0:

�
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Many classical serial rank statistics can be put into one of these two general forms. For

instance, the Wald–Wolfowitz statistic (Wald and Wolfowitz 1943)

WAn
:¼
Xn
i¼1

an(R(i))an(R((i� 1)mod n))

is of the form WA. Serial rank statistics of a non-circular form

TA :¼
Xn
i¼rþ1

a(R(i), R(i� 1), . . . , R(i� r))

have been systematically studied by Hallin et al. (1985) and Hallin and Puri (1988; 1994).

Among other results, they have shown how to construct statistics of this form that are

asymptotically locally most powerful against certain ARMA alternatives.

The aim of this paper is to prove a Berry–Esseen theorem for serial rank statistics by

exploiting their underlying graph structure, in combination with the method of Stein (1972).

The graph structure of such statistics was first disclosed in Haeusler et al. (2000). The

graph representation is particularly helpful when computing the moments of serial rank

statistics. For future reference, we record here two results about the mean and the variance

of such statistics. In order to state these results we must introduce some notation. First, note

that by definition (1.1), for any 0 < k , n,

jN k j ¼ n(n� 1) . . . (n� k), (1:4)

where jCj denotes the cardinality of a set C. Now set

�A :¼ n

jN rj
X
I2N r

a(I), (1:5)

and, for all n . 2r þ 1,

� 2
A :¼ n

jN rj
� n(n� (2r þ 1))

jN 2rþ1j

� � X
I2N r

a2(I) (1:6)

þ 2
Xr
k¼1

n

jN rþk j
� n(n� (2r þ 1))

jN 2rþ1j

� � X
(i0,...,i rþ k )2N rþ k

a(i0, . . . , ir)a(ik , . . . , irþk):

Proposition 1.1. Under the hypothesis H0 one has

EWA ¼ �A, (1:7)

and under the additional assumption that

�A ¼ 0, (1:8)

one also has, for all n . 2r þ 1,

EW 2
A ¼ var(WA) ¼ � 2

A: (1:9)
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Formula (1.7) is of course trivial, and the proof of (1.9) becomes an easy exercise after

we have discovered the underlying graph structure (see formula (2.3) below).

To state our Berry–Esseen theorem we require the following assumption on the array A:

for some 0 , K , 1 and all 0 , r , n,

KA :¼ n

jN rj
X
I2N r

a2(I) < K: (1:10)

Further, we introduce the notation

�A ¼
X
I2N r

ja3(I)j

and

n(s) ¼ (n� 1) . . . (n� s):

From now on Z will denote a standard normal random variable.

Theorem 1.1. Under assumptions (1.8), (1.10) and

� 2
A ¼ 1, (1:11)

we have, for any fixed r . 0 and n . r þ 1,

sup
�1,x,1

jPfWA < xg � PfZ < xgj < c(r, K)
�A

n(r)
, (1:12)

where the constant c(r, K) does not depend on n.

A similar theorem holds for the statistics TA as well, but we omit the details here for the sake

of brevity.

The first Berry–Esseen theorem for serial rank statistics was proven by Hallin and Rifi

(1997) for the subclass of TA of the form

TAn
:¼ (n� r)�1=2

Xn
i¼rþ1

a(1)
n (R(i))a(2)

n (R(i� r)):

They showed under a number of regularity and smoothness conditions that

sup
�1,x,1

jPfTAn
< xg � PfZ < xgj ¼ O(n�1=2):

The proof of Hallin and Rifi (1997) was based upon the characteristic function methods of

van Zwet (1982) and Does (1982).

In our proof we shall follow closely in the steps of Bolthausen (1984), who developed

Stein’s method to establish a Berry–Esseen theorem for linear rank statistics. Essential for

Bolthausen’s proof is a randomization step using a combinatorial argument. His approach

has since been applied to other rank-type statistics by Bolthausen and Götze (1993), Loh

(1996), and Zhao et al. (1997). Bolthausen’s (1984) construction also inspired Mason and

Turova (2000) to come up with a randomization for the serial rank statistics when r ¼ 1.
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This is where the statistics’ underlying graph structure comes vitally into play. As in the

paper by Bolthausen (1984), it relies on the specific features of the r ¼ 1 case, which

roughly speaking means a ‘one-node boundary’ in terms of graphs, and allows one to use

relatively easy combinatorics in the proof. Therefore, one of our major tasks here is to

construct an appropriate coupling for the case r > 1.

Next we state our central limit theorem.

Theorem 1.2. For any fixed r . 0, let An ¼ fan(I) : I 2 N rg, n . r þ 1, be a sequence of

arrays of numbers satisfying (1.8), (1.10) and (1.11) uniformly in n . 2r þ 1. Also assume

the Lindeberg condition that, for all � . 0,

lim
n!1

n

jN rj
X

jan( I)j.�

a2
n(I) ¼ 0:

Then WAn
!d Z as n ! 1.

Theorem 1.2 is proved using Stein’s method along lines similar to those followed by

Schneller (1998) to obtain a central limit theorem for linear rank statistics. It is an

extension of the central limit theorem for WAn
obtained by Mason and Turova (2000) for

the special case r ¼ 1. After the necessary coupling is constructed, as detailed in Section 4,

the proof remains much the same as in the case r ¼ 1.

Here is a useful sufficient condition for both the Lindeberg condition and (1.10) to hold.

Assume that, for all I 2 N r and n . r þ 1,

ja(I)j < n�1=2 g((nþ 1)�1 I),

where g is a non-negative measurable function defined on (0, 1)rþ1, such that, as n ! 1,

n�r�1
X
I2N r

g2((nþ 1)�1 I) !
ð

(0,1) rþ1

g2(u)du , 1:

Then it is easy to verify that the Lindeberg condition is satisfied, as well as (1.10) (uniformly

in n . r þ 1) for some K . 0. If, in addition, we assume that, as n ! 1,

n�r�1
X
I2N r

g3((nþ 1)�1 I) !
ð

(0,1) rþ1

g3(u)du :¼ C , 1,

then we obtain that �A=n(r) < C=
ffiffiffi
n

p
.

It will be shown in the course of the proof of Theorem 1.1 that under its assumptions

one always has, for all n . 2r þ 1,

�A

n(r)
>

1

(1 þ 2r)3=2
ffiffiffi
n

p :

This says that O(n�1=2) is the best rate achievable by Theorem 1.1.
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2. The graph structure

2.1. The statistics WA via graphs

The statistics we introduce above can be written in an alternative way using a graph

representation. Let us now introduce some notions from graph theory that we need for our

approach.

A directed graph H is defined by a set of vertices V � N :¼ f1, . . . , ng and by a set of

ordered pairs f(ik , jk) : k ¼ 1, . . . , Ng � N 1, N > 1, where ik , jk 2 V and ik 6¼ jk for

each k ¼ 1, . . . , N . The pair (ik , jk) represents the arc from the vertex ik to the vertex jk .

Thus the positive integer N denotes the number of arcs in the directed graph. Any set of

k > 1 connected arcs in the form f(i0, i1), (i1, i2), (i2, i3), . . . , (ik�1, ik)g, with im 6¼ i j for

any m 6¼ j, we call a k-path, or a path, from i0 to ik . We say that two vertices are

connected in a graph if and only if there is a path in this graph between them. Any set of

k > 3 connected arcs in the form f(i0, i1), (i1, i2), (i2, i3), . . . , (ik�2, ik�1), (ik�1, i0)g, with

im 6¼ i j for any m 6¼ j, we call a directed cycle on k vertices.

A directed graph whose edges form one directed cycle which passes through every vertex

of V is called a (directed) Hamiltonian cycle. For any n > 3 and V � N , let H(V ) be the

set of all Hamiltonian cycles on V . Thus any graph H in H(V ) is defined simply by the set

of its arcs, and we shall write

H ¼ f(i1, i2), (i2, i3), . . . , (ijV j, i1)g, (2:1)

where fi1, i2, . . . , ijV jg ¼ V . In particular, when V ¼ N we shall use the notation

H(N ) ¼ Hn.

For any r > 1 and any ˆ � N 1, let Lr(ˆ) � N r denote the set of all vectors associated

with the connected r-paths in ˆ, that is,

Lr(ˆ) :¼ f( j0, . . . , jr) : f( j0, j1), ( j1, j2), . . . , ( jr�1, jr)g � ˆg: (2:2)

In particular, for r ¼ 1, we have L1(ˆ) ¼ ˆ for any ˆ � N 1. Clearly, for any H 2 Hn there

are exactly n different r-paths in H for any 1 < r , n, and each path is defined uniquely by

the first vertex; for example, if H ¼ f(i1, i2), (i2, i3), . . . , (in, i1)g then, for any 1 , r , n,

Lr(H) ¼ f(i1, . . . , irþ1), . . . , (in, i1, . . . , ir)g.

Now it is easy to show, using the same idea as in the proof of Mason and Turova (2000),

that also in the general case r . 1 the following representation also occurs:

WA ¼d WA(H) :¼
X

I2Lr(H)

a(I), (2:3)

where H is uniformly distributed on Hn, and the sum runs over all r-paths in H . Formula

(2.3) reduces the proof of Proposition 1.1 to straightforward computations.
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2.2. Coupling

The key ingredient in the proof of a combinatorial central limit theorem or Berry–Esseen

theorem is the construction of the following coupling.

Lemma 2.1. Let n . 2r(r þ 2) . 0 be fixed arbitrarily, and let a random cycle H be

uniformly distributed on Hn. Assume that (I0, I1, . . . , I r) and (I0, J1, . . . , J r) are random

vectors distributed independent of H and uniformly on N r, so that, conditionally on

I0 ¼ i0 2 N , the vectors (I1, . . . , I r) and (J1, . . . , J r) are also independent. Then there exist

random cycles H1 and H2 such that

(i) H ¼d H1 ¼d H2;

(ii) (I0, I1, . . . , I r) 2 Lr(H1), (I0, J1, . . . , J r) 2 Lr(H2);

(iii) Lr(H1)nLr(H2) and H are independent;

(iv) (I0, J1, . . . , J r) and H1 are independent;

(v) jH1nH2j , C and jHnH1j , C for some constant C ¼ C(r) independent of n.

Here n denotes a symmetric difference of two sets.

We postpone the proof of this lemma to Section 4. As an immediate corollary of formula

(2.3) and properties (i)–(iii) from Lemma 2.1 we obtain the following useful result (for the

proof of a similar result, see Mason and Turova 2000).

Corollary 2.1. Let n . 2r(r þ 2) . 0 be fixed arbitrarily, and let array A satisfy condition

(1.8). Further, set

W ¼ WA(H), W1 ¼ WA(H1), W2 ¼ WA(H2): (2:4)

Then

W ¼d W1 ¼d W2 (2:5)

and, for any measurable function g,

EWg(W ) ¼ nEa(I0, I1, . . . , I r)g(W1) ¼ nEa(I0, J1, . . . , J r)g(W2): (2:6)

2.3. Conditional expectation

Here we shall derive the results necessary for the induction argument in the proof of our

Berry–Esseen theorem. Throughout this section we assume n . (2r þ 2)C ¼: k, with the

constant C as in Lemma 2.1.

In what follows we shall denote vectors by letters without indices (e.g. u), or with

superscript indices (e.g. uk). Letters with subscript indices (e.g. uq or uk
q), will be reserved

for the one-dimensional values only. If u ¼ (u1, . . . , ui, uiþ1, . . . , uk) and v ¼ (v1, . . . , vl)

are two vectors, then we shall use a shorthand notation (u1, . . . , ui, v, uiþ1, . . . , uk) for the

vector (u1, . . . , ui, v1, . . . , vl, uiþ1, . . . , uk). We shall use bold face to denote the ordered
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sets of vectors (e.g. u ¼ (u1, . . . , uk)). Let fug denote, for any set of vectors u, the set of

all the components of the vectors of this set.

Now let v ¼ (v0, . . . , v t), t > 0, be an ordered set of t þ 1 vectors vq ¼
(v

q
0, . . . , vq

pq
), pq > 1, 0 < q < t, fixed arbitrarily but in such a way that v

q
l 6¼ v

q9

l9 unless

q ¼ q9 and l ¼ l9, fvg � N , and

jfvgj , k: (2:7)

With any vector i ¼ (i0, . . . , ik) 2 N k where 1 < k < n� 1, we shall associate a k-path

ˆ(i) :¼ f(i0, i1), (i1, i2), . . . , (ik�1, ik)g � N 1: (2:8)

Define also

ˆ(v) ¼
[t
i¼0

ˆ(vi) (2:9)

to be a (non-ordered) set of the paths associated with the vectors of the set v.

Let H be a random cycle uniformly distributed on Hn. Consider the distribution of H

conditionally on the event

fˆ(v) � H , (vipi , v
j
0) 62 H , 0 < i, j < tg, (2:10)

which says that the cycle H passes through every path of the set ˆ(v), and moreover, the

paths of ˆ(v) are not connected in the cycle H . Let us denote

~NN ¼ Nnfvg ¼ Nnfvq0, . . . , vqpq , 0 < q < tg,

and

~NN t :¼ f( j0, . . . , j t) 2 ~NN tþ1 : jk 6¼ jm for any k 6¼ mg:

For any given cycle ~HH 2 H( ~NN ) and vector x ¼ (x0, . . . , xt) 2 ~NN t, construct a new cycle
~HHx,v 2 H(N ) by inserting the path ˆ(vq) into the cycle ~HH after the node xq for each

q ¼ 0, . . . , t. To define ~HHx,v in formal terms, let us introduce for any cycle H the following

function determined by the edges of H :

EH (i) ¼ j if and only if (i, j) 2 H , for all i 2 N : (2:11)

In this notation, we set

~HHx,v ¼ ~HHnf(xq, E ~HH (xq)), q ¼ 0, . . . , tg [ ˆ(v) [ f(xq, v
q
0), (vqpq , E ~HH (xq)), q ¼ 0, . . . , tg:

(2:12)

Now let X ¼ (X0, . . . , X t) be a random vector and ~HH be a random cycle distributed

independently and uniformly on ~NN t and H( ~NN ), respectively. Then it is easy to see, in the

notation of (2.12), that

H jfˆ(v)�H ,(vipi
,v

j

0
) 62H ,0<i, j< tg ¼

d ~HHX ,v, (2:13)
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where ~HHX ,vjX¼x ¼
d ~HHx,v. Observe that if v9 ¼ (v�(0), . . . , v�( t)), where � is a permutation of

the set f0, . . . , tg, then, according to our construction,

ˆ(v9) ¼ ˆ(v) (2:14)

and

~HHX ,v9 ¼
d ~HHX ,v: (2:15)

We shall now obtain a useful representation for WA(H) (see (2.3)) conditionally on the

event (2.10). First we define, for any vectors x 2 ~NN t and j ¼ ( j0, . . . , jr) 2 ~NN r, a path ˆj,x,v

as follows:

(i) if f j0, . . . , jr�1g \ fxg ¼ ˘ set, using definition (2.8),

ˆj,x,v ¼ ˆ( j);

(ii) otherwise, if f j0, . . . , jr�1g \ fxg ¼ f jk0
¼ xk90 , . . . , jk s ¼ xk9sg for some 0 < k0

, . . . , ks , r with 0 < s , r, insert the path ˆ(vk9q) into ˆ( j) after the node

xk9q , for every q ¼ 0, . . . , s, that is, set

ˆj,x,v ¼ ˆ( j0, . . . , jk0
, vk90 , jk0þ1, . . . , jk1

, vk91 , . . . , jk s , v
k9s , jk sþ1, . . . , js): (2:16)

Next, for any array A as in (1.2), we introduce a random array of constants

~AAX ,v :¼ f~aaX ,v( j) : j 2 ~NN rg

such that, for any x 2 ~NN t,

~AAX ,vjX¼x ¼ ~AAx,v :¼ f~aax,v( j) : j 2 ~NN rg (2:17)

is a non-random array of constants

~aax,v( j) :¼

X
i¼(i0,...,i r)2Lr(ˆj,x,v):i02f j0,v

q

0
,...,vq

pqg
a(i), if f j0g \ fxg ¼ xq,

X
i¼(i0,...,i r)2Lr(ˆj,x,v):i0¼ j0

a(i), if f j0g \ fxg ¼ ˘:

8>>>><>>>>: (2:18)

(The last sum contains just one term.) Notice that ~aax,v( j) ¼ a( j) unless f j0, . . . ,

jr�1g \ fxg 6¼ ˘, and in either case the number of terms in the sums in (2.18) is, according

to assumption (2.7), at most finite and independent of n, which implies in particular the

following uniform bound

j~aax,v(i)j < k1 max
j2N r

ja( j)j (2:19)

for some constant k1.

Clearly, according to (2.13) we have

WA(H)jfˆ(v)�H ,(vi
pi

,v
j

0
) 62H ,0<i, j< tg ¼

d
WA( ~HHX ,v): (2:20)
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Hence taking into account (2.17)–(2.18) we obtain the following representation which will

play a key role in the induction argument in the proof of Theorem 1.1:

W (H)jfˆ(v)�H ,(vi
pi

,v
j

0
) 62H ,0<i, j< tg ¼

d
X

J2Lr( ~HH)

~aaX ,v(J ) ¼ W ~AAX ,v
( ~HH): (2:21)

Lemma 2.2. Let v be fixed arbitrarily to satisfy (2.7), and also let x 2 ~NN t be fixed arbitrarily.

Set ~AA ¼ ~AAx,v, W ¼ WA(H) and W ~AA ¼ W ~AA( ~HH). Under assumptions (1.8) and (1.10), there

exists a constant M r . 0 such that, uniformly in v, x and n,

jEW ~AA � EW j < Mr max
J2N r

ja(J )j, (2:22)

and

jEW 2
~AA
� EW 2j < Mr max

J2N r

ja2(J )j þ max
J2N r

ja(J )j
� �

: (2:23)

Proof. Notice that j ~NN rj ¼ j ~NN j . . . ðj ~NN j � rÞ, where

n� k , j ~NN j , n (2:24)

by (2.7). We readily see then that, for all r < m < 2r,

njN mn ~NN mj
j ~NN mj

< D, (2:25)

where D is some positive constant depending on r only.

Now consider W ~AA. According to (2.18), we have

W ~AA ¼
X

J2Lr( ~HH):fJ0,...,J r�1g\fxg¼˘

a(J ) þ
X

J2Lr( ~HH):fJ0,...,J r�1g\fxg6¼˘

~aax,v(J): (2:26)

Obviously,

#fJ 2 Lr( ~HH) : fJ0, . . . , J r�1g \ fxg 6¼ ˘g < k2 (2:27)

for some k2 ¼ k2(r) independent of n, v and x. Hence, from here, (2.26) and (2.19) we

obtain: �����W ~AA �
X

J2Lr( ~HH)

a(J )

����� < C1 max
J2N r

ja(J )j (2:28)

for some positive constant C1 ¼ C1(r), which implies that

jEW ~AA � EW j < E
X

J2Lr( ~HH)

a(J )

0@ 1A� EW

������
������þ C1 max

J2N r

ja(J )j: (2:29)
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Using formula (1.5) together with condition (1.8), we obtain

E
X

J2Lr( ~HH)

a(J )

0@ 1A� EW

������
������ ¼

����� j ~NN j
j ~NN rj

X
J2 ~NN r

a(J )

����� < n

j ~NN rj

����� X
J2N rn ~NN r

a(J )

�����: (2:30)

Employing (2.25), we now readily derive from (2.30) that�����E X
J2Lr( ~HH)

a(J )

����� ¼
�����E X

J2Lr( ~HH)

a(J ) � EW

����� < C2 max
J2N r

ja(J )j (2:31)

for some positive constant C2 ¼ C2(r) uniformly in n. Substituting the last bound into (2.29),

we obtain (2.22).

To prove (2.23), consider

jE W ~AA

� �2�EW 2j < E W ~AA

� �2�E
X

J2Lr( ~HH)

a(J )

0@ 1A2������
������þ E

X
J2Lr( ~HH)

a(J )

0@ 1A2

�EW 2

������
������: (2:32)

Set Y ¼
P

J2Lr( ~HH)a(J ), where jLr( ~HH)j ¼ jeNN j. We see that

E W ~AA

� �2� E
X

J2Lr( ~HH)

a(J )

0@ 1A2������
������ < E(W ~AA � Y )2 þ 2E(jW ~AA � Y j jY j): (2:33)

Now by (2.28),

jW ~AA � Y j < C1 max
J2N r

ja(J )j, (2:34)

and by the Cauchy–Schwarz inequality,

EjY j <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var(Y ) þ (EY )2

p
<

ffiffiffiffiffiffiffiffiffiffiffiffiffi
var(Y )

p
þ jEY j:

Notice that (1.6), in combination with the inequality jabj < (a2 þ b2)=2, implies, for all

n . 2r þ 1,

EW 2
A < (2r þ 1)

n

jN rj
X
I2N r

a2(I): (2:35)

Using inequality (2.35), we now obtain

ffiffiffiffiffiffiffiffiffiffiffiffiffi
var(Y )

p
< (2r þ 1)

n

j ~NN rj

X
I2 ~NN r

a(I) � EY

j eNN j

 !2
0@ 1A1=2

,

which by assumption (1.10) and (2.31) is clearly bounded from above by some constant

C3 ¼ C3(r) uniformly in n.
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Gathering together our bounds and recalling (2.31), we now obtain from (2.33) that����E W ~AA

� �2 �EY 2

���� < C1 max
J2N r

ja(J )j fC1 þ 2C2g max
J2N r

ja(J )j þ 2C3

� 	
: (2:36)

Consider now the second summand in (2.32). First, we observe that for any array (1.2) (even

without condition (1.8)) and all n . 2r þ 1,

EW 2
A ¼ n

jN rj
� n(n� (2r þ 1))

jN 2rþ1j

� � X
I2N r

a2(I) (2:37)

þ 2
Xr
k¼1

n

jN rþk j
� n(n� (2r þ 1))

jN 2rþ1j

� � X
I¼(i0,...,i rþ k )2N rþ k

a(i0, . . . , ir)a(ik , . . . , irþk)

þ n(n� (2r þ 1))

jN 2rþ1j
X
I2N r

a(I)

 !2

:

For further reference we derive from (2.37) a useful representation:

EW 2
A ¼ � 2

A þ (EWA)2 n(n� (2r þ 1))

jN 2rþ1j
jN rj
n

� �2

: (2:38)

Using formula (2.37) for both of the second moments in the last term of (2.32), we obtain

E
X

J2Lr( ~HH)

a(J )

0@ 1A2

�EW 2

������
������ < n

j ~NN rj

X
I2 ~NN r

a2(I) � n

jN rj
X
I2N r

a2(I)

������
������ (2:39)

þ 2
Xr
k¼1

n

j ~NN rþk j

X
I¼(i0,...,i rþ k )2 ~NN rþ k

a(i0, . . ., ir)a(ik , . . . , irþk)

������
� n

jN rþk j
X

I¼(i0,... , i rþ k )2N rþ k

a(i0, . . . , ir)a(ik , . . . , irþk)

������þ d max
J2N r

ja(J )j2

for some positive constant d. Taking into account the bound (2.25), we can apply a similar

argument as in (2.30) to every term on the left-hand side of (2.39), except for the last, to

obtain:

E
X

J2Lr( ~HH)

a(J )

0@ 1A2

� EW 2

������
������ < d1 max

J2N r

ja(J )j2

for some positive constant d1. This, combined with (2.36) and (2.32), proves (2.23), which

finishes the proof of the lemma. h
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Next we derive some properties of the statistic W ~AA. Under the assumptions of Lemma

2.2, let

�~aa~aa ¼ EW ~AA=j ~NN j ¼ 1

j ~NN rj

X
I2 ~NN r

a(I):

Proposition 2.1. In addition to the assumptions of Lemma 2.2 and (1.11), assume that

max
J2N r

ja(J )j < �,

where � . 0 satisfies

M r(�
2 þ �) þ M2

r�
2 < 1=2: (2:40)

Then

var(W ~AA) > 1=2, (2:41)

and there exists a positive constant c, depending only on r, such that

� ~AA :¼
X
J2 ~NN r

~aa(J ) � �~aa~aaffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var(W ~AA)

p�����
�����
3

< c�A (2:42)

and

K ~AA :¼ j ~NN j
j ~NN rj

X
J2 ~NN r

~aa(J ) � �~aa~aaffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var(W ~AA)

p !2

< cKA, (2:43)

uniformly in v and x.

The proof of this proposition is based on Lemma 2.2 and a standard application of

Jensen’s inequality, and therefore we omit it for the sake of brevity.

3. Proof of Theorem 1.1

For any array of real numbers

B ¼ fb(I), I 2 N rg, (3:1)

define statistics WB analogously to (1.3). Further, under the condition

var WB . 0, (3:2)

define the numbers

b̂b(I) ¼ b(I) � EWB=nffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var WB

p , I 2 N r, (3:3)
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�B :¼
X
I2N r

jb̂b(I)j3, KB :¼ n

jN rj
X
I2N r

b̂b(I)2,

and a normalized statistic

WB̂B(H) ¼
X

I2Lr(H)

b̂b(I), (3:4)

where H 2 Hn and B̂B ¼ fb̂b(I), I 2 N rg.

Without loss of generality we assume that K > 1. Here we closely follow the basic steps

of Bolthausen (1984). For any n . r, ª . 0, and 0 , � , 1 fixed arbitrarily, but to be

chosen later on, let Bn(ª, K, �) be the set of all arrays (3.1) such that the numbers b̂b(I)

satisfy the following conditions:

jb̂b(I)j < � (3:5)

uniformly in I 2 N r,

�B < ª (3:6)

and

KB < K: (3:7)

Further, as in Bolthausen (1984), define

hz,º(x) ¼ 1 þ z� x

º


 �
^ 1


 �
_ 0,

hz,0(x) ¼ 1(�1,z](x),

and let

�(º, ª, K, �, n) ¼ supfjEhz,º(WB̂B) ��(hz,º)j : z 2 R, B 2 Bn(ª, K, �)g, (3:8)

where

�(h) ¼ Eh(Z),

with Z being a standard normal random variable. We shall also use the notation

�(ª, K, �, n) ¼ �(0, ª, K, �, n):

For further reference we record the inequality

�(ª, K, �, n) < �(º, ª, K, �, n) þ ºffiffiffiffiffiffi
2�

p : (3:9)

Set

f z,º(x) ¼ ex
2=2

ðx
�1

(hz,º(y) ��(hz,º))e
� y2=2 dy, (3:10)

which satisfies the equation

f 9z,º(x) � xf z,º(x) ¼ hz,º(x) ��(hz,º): (3:11)
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Observe that

j f z,º(x)j < 1, jxf z,º(x)j < 1, and j f 9z,º(x)j < 2, (3:12)

for all x 2 R uniformly in z, º. Moreover, using (3.11) and (3.12), one obtains

j f 9z,º(xþ y) � f 9z,º(x)j < jyj 1 þ 2jxj þ 1

º

ð1

0

1[z,zþº](xþ sy)ds

� �
: (3:13)

For the facts (3.9), (3.11), (3.12) and (3.13) refer to Bolthausen (1984).

Notice that both parts of Theorem 1.1 clearly hold whenever, for some fixed �0 . 0,

�A . �0n(r): (3:14)

Next we shall prove the following result.

Proposition 3.1. For any 0 , � , 1=2, there exist �0 ¼ �0(�) . 0, and positive constants a1

and a2 independent of �, such that, for any array A satisfying (1.8), (1.10), (1.11), and

�A < �0n(r), we have, for all n . 2r þ 1,

sup
�1,x,1

jPfWA < xg � PfZ < xgj < �(a1�A, 8K, �, n) þ a2�
�3�A=n(r): (3:15)

Proof. The proof will be inferred from the following lemma. Let 0 , � < 1=2 be fixed

arbitrarily. Set

a9(I) ¼ a(I), if ja(I)j < �,

0, otherwise,

�
(3:16)

and let A9 ¼ fa9(I), I 2 N rg. Denote further �A9 ¼ EWA9.

Lemma 3.1. Under the assumptions of Proposition 3.1 we have

PfWA 6¼ WA9g <
��3�A

n(r)
, (3:17)

j�A9j <
��2�A

n(r)
, (3:18)

�2
A9 <

��1�A

n(r)
, (3:19)

j� 2
A � var WA9j < ��2 Cr�A

n(r)
, (3:20)

for some positive Cr.

Proof. Define

Q ¼ fI : I 2 N r, ja(I)j . �g,

for which clearly
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jQj < ��3�A: (3:21)

Now

PfWA 6¼ WA9g < nPfI 2 Qg,

where I is sampled from N r with probability 1=jN rj. Thus, by (3.21),

PfWA 6¼ WA9g <
njQj
jN rj

<
��3�A

n(r)
,

which proves (3.17). Clearly,

j�A9j ¼ n(r)�1
X
I2Q

a(I)

�����
����� < ��2�A

n(r)
, (3:22)

from which we derive, for any 0 , �0 , �3, that j�A9j < �. These bounds yield (3.18) and

(3.19).

To finish the proof of Lemma 3.1 we introduce some notation. Let �(I), I 2 N r, be an

indexed class of subsets of N r, and for I9 2 N r set

�9(I9) ¼ fI 2 N r : I9 2 �(I)g:

Further, let

�� ¼ max
I2N r

j�(I)j, ��� ¼ max
I92N r

j�9(I9)j, � ¼ maxf��, ���g:

Claim. With the above notation,X
I2Q

a(I)
X

I92�( I)

a(I9)

�����
����� < ��2�A�: (3:23)

Proof. Notice that

X
I2Q

a(I)
X

I 92�( I)

a(I9)

�����
����� < X

I2Q
a(I)

X
I 92�( I), I9=2Q

a(I9)

������
������þ

X
I2Q

a(I)
X

I 92�( I), I92Q
a(I9)

�����
����� ¼: S1 þ S2:

By (3.22),

S1 < ���X
I2Q

ja(I)j < ��1���A,

and, using the trivial inequality x2 þ y2 > 2jxyj, we obtain

S2 <
1

2

X
I , I 92Q, I 92�( I)

a2(I) þ 1

2

X
I , I92Q, I92�( I)

a2(I9) <
1

2
(�� þ���)

X
I 92Q

a2(I9) < ��1��A:

These bounds prove our claim. h
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For each 1 < k < r and I ¼ (I0, . . . , I r) 2 N r, set

�k(I) ¼ fI9 2 N r : I9 ¼ (I90, . . . , I9r) ¼ (I90, . . . , I9k�1, I k , . . . , I r)g:

Elementary combinatorics show that, for all I , I9 2 N r and 1 < k < r,

j�k(I)j < nk , j�9k(I9)j < nk :

We see then that, by (2.37) and (2.38),

jEW 2
A � EW 2

A9j <
n

jN rj
� n(n� (2r þ 1))

jN 2rþ1j

� �X
I2Q

a2(I)

þ 2
Xr
k¼1

n

jN rþk j
� n(n� (2r þ 1))

jN 2rþ1j

� � X
I2Q

a(I)
X

I92� k ( I)

a(I9)

�����
�����

þ (EWA9)
2 n(n� (2r þ 1))

jN 2rþ1j
jN rj
n

� �2

,

which by r applications of the above claim and by (3.19) is

<
k r��A

n(r)
þ 2��2�A

n(r)

Xr
k¼1

nk

(n� r � 1) . . . (n� r � k)
< ��2Dr

�A

n(r)
, (3:24)

where k r and Dr are finite positive constants independent of n. Now, by (3.19) and (3.24), we

obtain that

j� 2
A � var WA9j < jEW 2

A � EW 2
A9j þ �2

A9 < ��2Dr

�A

n(r)
þ ��1 �A

n(r)
< Cr�

�2 �A

n(r)
,

for some Cr . 0, which completes the proof of Lemma 3.1. h

Returning to the proof of Proposition 3.1, fix 0 , � , 1=2 in Lemma 3.1 arbitrarily. By

(3.20),

j1 � var WA9j < ��2Cr

�A

n(r)
< ��2Cr�0:

Thus if �0 , �2=(4Cr), we have var WA9 . 1=4. This, together with (3.18), gives, for all

I 2 N r, ���� a9(I) � �A9=nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var WA9

p
���� < 2(ja9(I)j þ j�A9j=n) < 2(�þ ��2�0):

It is easy to check now, using Jensen’s inequality, that if �0 , �3 minf1=(4Cr), 1g then

A9 2 Bn(64�A, 8K, 4�): (3:25)
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Clearly, now

sup
�1,x,1

jPfWA < xg � PfZ < xgj < sup
�1,x,1

jPfWA9 < xg � PfZ < xgj þ PfWA 6¼ WA9g

< sup
�1,x,1

jPfWA9 < xg � PfZ < xgj þ ��3�A=n(r)

(3:26)

by (3.17). Next note that

sup
�1,x,1

jPfWA9 < xg � PfZ < xgj

< sup
�1,x,1

����P WA9 � �A9ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var WA9

p <
x� �A9ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var WA9

p
� �

� P Z <
x� �A9ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var WA9

p
� �����

þ sup
�1,x,1

jPfZ < (x� �A9)=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var WA9

p
g � PfZ < xgj

< �(64�A, 8K, 4�, n) þ sup
�1,x,1

jPfZ < (x� �A9)=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var WA9

p
g � PfZ < xgj (3:27)

by (3.25). Obviously,

sup
�1,x,1

jPfZ < (x� �A9)=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var WA9

p
g � PfZ < xgj < C1(j�A9j þ j1 � var WA9j),

for some absolute constant C1, which by (3.18) and (3.20), is readily seen to be

< D
��2�A

n(r)
, (3:28)

for some constant D. Combining inequalities (3.26), (3.27) and (3.28), we obtain (3.15) after

an obvious adjustment of the constants. h

In order to complete the proof of Theorem 1.1 it will now be enough to show that, at

least for some 0 , � , 1=2 and c0 . 0,

�(a1�A, 8K, �, n) < c0�A=n(r) (3:29)

whenever �A < �0n(r).

From now on we set K9 ¼ 8K and

ª ¼ a1�A < a1�0n(r): (3:30)

Let B0
n(ª, K9, �) denote the subset of Bn(ª, K9, �) of the arrays B such thatX

I2N r

b(I) ¼ 0 and � 2
B ¼ 1,

in which case b̂b(I) ¼ b(I), implying WB ¼ WB̂B,

EWB ¼ 0, var WB ¼ � 2
B ¼ 1, (3:31)
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X
I2N r

jb(I)j3 ¼ �B < ª and
n

jN rj
X
I2N r

b2(I) ¼ KB < K9: (3:32)

To prove (3.29), assume that B 2 B0
n(ª, K9, �), and consider

WB,i ¼ WB(Hi), i ¼ 1, 2, (3:33)

where H1 and H2 are defined by Lemma 2.1 above. Recalling (2.5), we obtain

WB(H)¼d WB,1 ¼
d
WB,2: (3:34)

Furthermore, by (2.6)

E[WB(H) f z,º(WB(H))] (3:35)

¼ nE[b(I0, J1, . . . , J r) f z,º(WB,2)]

¼ nE[b(I0, J1, . . . , J r) f z,º(WB,1)] þ nE[b(I0, J1, . . . , J r)(WB,2 � WB,1) f 9z,º(WB)]

þ nE

�
b(I0, J1, . . . , J r)(WB,2 � WB,1)

3

ð1

0

( f 9z,º(WB þ (WB,1 � WB) þ t(WB,2 � WB,1)) � f 9z,º(WB))dt

	
:

By property (iv) from Lemma 2.1 the vector (I0, J1, . . . , J r) is independent of WB,1,

therefore by (2.6) and (3.31), together with (3.34), we have

nE[b(I0, J1, . . . , J r) f z,º(WB,1)] ¼ EWB,1E f z,º(WB,1) ¼ 0:

Observe that WB,2 � WB,1 is a function of Lr(H1)nLr(H2), which, by property (iii) of our

coupling, is independent of WB. Hence, by (2.5), (3.31), (3.34), and property (iv),

nE[b(I0, J1, . . . , J r)(WB,2 � WB,1) f 9z,º(WB)] ¼ nE[b(I0, J1, . . . , J r)WB,2]E f 9z,º(WB)

¼ var(WB)E f 9(WB) ¼ E f 9z,º(WB):

Putting everything together now and using (3.11), we obtain

jEhz,º(WB) ��(hz,º)j ¼ nE

�����b(I0, J1, . . . , J r)(WB,2 � WB,1) (3:36)

3

ð1

0

( f 9z,º(WB þ (WB,1 � WB) þ t(WB,2 � WB,1)) � f 9z,º(WB))dt

�����,

238 T. Turova



which in turn, by (3.13), is

< nE[jb(I0, J1, . . . , J r)(WB,2 � WB,1)j(jWB,1 � WBj þ jWB,2 � WB,1j)] (3:37)

þ 2nEjb(I0, J1, . . . , J r)(WB,1 � WB,2)(jWB,1 � WBj þ jWB,2 � WB,1j)WBj

þ nE

�
jb(I0, J1, . . . , J r)(WB,2 � WB,1)j(jWB,1 � WBj þ jWB,2 � WB,1j):

3
1

º

ð1

0

ð1

0

1[z,zþº](WB þ s(WB,1 � WB) þ ts(WB,2 � WB,1))ds dt

	
¼: ˜1 þ ˜2 þ ˜3:

Notice that

˜1 < nEb(I0, J1, . . . , J r)
X

jb(I1)b(I2)j,

where the sum runs over I1 2 Lr(H1)nLr(H) [ Lr(H1)nLr(H2) and I2 2 Lr(H1)nLr(H2),

therefore by property (v) from Lemma 2.1 this sum contains at most a finite number of terms.

It is not difficult to derive from here under assumption (3.32) that, for some positive constant

c1 independent of n,

˜1 < nc1

X
I2N r

jb(I)j3
jN rj

<
c1ª

n(r)
: (3:38)

To bound the remaining two terms in (3.37) we shall use conditioning. Consider

˜2 ¼ 2nEEfjb(I0, J1, . . . , J r)(WB,1 � WB,2)WBj (3:39)

3 (jWB,1 � WBj þ jWB,2 � WB,1j)jLr(H1)nLr(H), Lr(H1)nLr(H2), (I0, J1, . . . , J r)g:

Notice that the difference WB,1 � WB,2 is a function of Lr(H1)nLr(H2), while WB � WB,1 is

a function of Lr(H1)nLr(H). Hence, properties (iv) and (v) allow us to derive from (3.39)

that

˜2 ¼ 2nEfjb(I0, J1, . . . , J r)(WB,1 � WB,2)j(jWB,1 � WBj þ jWB,2 � WB,1j) (3:40)

3 EfjWBj jLr(H)nLr(H1), Lr(H1)nLr(H2), (I0, J1, . . . , J r)gg:

Consider the last conditional expectation. Assume that an event

A ¼ fLr(H)nLr(H1) ¼ U1, Lr(H1)nLr(H) ¼ U91,

Lr(H1)nLr(H2) ¼ U2, Lr(H2)nLr(H1) ¼ U92, (I0, J1, . . . , J r) ¼ (i0, j1, . . . , jr)g

has a positive probability. Since all the cycles H , H1 and H2 are defined on the same set of

vertices, and also (I0, J1, . . . , J r) 2 H2, then for any event A there is a unique non-empty

set of vectors, say fv0, . . . , v tg, with vi ¼ (vi0, . . . , vi
pi

) and pi > r for any 0 < i < t, such

that
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EfjWB(H)j jAg ¼ E jWB(H)j j
[t
q¼0

ˆ(vq) � H , (vipi , v
j
0) 62 H , 0 < i, j < t

( )
: (3:41)

Notice also that the condition PfAg . 0 implies jfv0
0, . . . , v t

pt
gj , (2r þ 2)C ¼ k according

to property (v) of our coupling.

Now we can use the results of Lemma 2.2, taking into account that 0 , � , 1 in (3.5), in

order to obtain the bound

EfjWBj jAg < M ,

where the constant M . 0 is independent of n and A. This, together with (3.40) and the

definition of A, gives us

˜2 < 2M˜1 <
2Mc1ª

n(r)
: (3:42)

Finally, we shall find an upper bound for ˜3. Set

Æ(º, ª, K9, �, n)

¼ sup P WB(H) 2 [z, zþ º]

���� [t
q¼0

ˆ(vq) � H , (vi
pi

, v
j
0) 62 H , 0 < i, j < t

( )
:

(
r , jfv0

0, . . . , v t
pt
gj , k, z 2 R, B 2 B0

n(ª, K9, �)g:

Analogously to (3.40)–(3.42) we obtain

˜3 <
1

º
˜1Æ(º, ª, K9, �, n): (3:43)

Let us fix 0 , � , 1=2 in (3.5) such that condition (2.40) is satisfied. Hence, from now

on � is a positive constant depending on r only. Then using (2.21) and the results of

Proposition 2.1, we obtain the bound

Æ(º, ª, K9, �, n) < supfPfWBn�m
2 [z, zþ º]g : z 2 R, B 2 B9n�m, r þ 1 < m < kg,

(3:44)

where B9n�m denotes the set of all arrays of real numbers

Bn�m ¼ fb(I), I ¼ (I0, . . . , I r), I i 2 f1, . . . , n� mg, I i 6¼ I j for any i 6¼ jg,

such that

�Bn�m
¼ 0, var(WBn�m

) > 1=2, �Bn�m
< cª, KBn�m

< cK9: (3:45)

Notice that, for any Bn�m 2 B9n�m,

sup
z

PfWBn�m
2 [z, zþ º]g < sup

z

PfWB̂Bn�m
2 [z, zþ 2º]g, (3:46)

where we use the notation B̂B as in (3.4). Assuming now that �0 is chosen sufficiently small,

we can again use (3.15), taking into account (3.45) and (3.30), to infer that the last term in

(3.46) is
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< 2�(a9cª, 8cK9, �, n� m) þ 2a92��3cª

(n� m)(r)
þ 2ºp

2�
, (3:47)

where � is the same as fixed above, a9 and a92 are some positive constants, and

(n� m)(r) :¼ (n� m� 1) . . . (n� m� r). Combining (3.44), (3.46), and (3.47), we now

obtain

Æ(º, ª, K9, �, n) < 2 max
1<m<k

�(a9cª, 8cK9, �, n� m) þ a3

ª

n(r)
þ 2ºffiffiffiffiffiffi

2�
p

for some a3 . 0. Substituting the last bound and (3.38) into (3.43), we obtain

˜3 < c3

ª

n(r)
1 þ ª

ºn(r)
þ 1

º
max

1<m<k
�(a9cª, 8cK9, �, n� m)

� �
(3:48)

for some constant c3 . 0. Combining (3.48), (3.38), (3.42) with (3.37) and (3.36), and taking

into account (3.8) and (3.9), we obtain the inequality

�(ª, K9, �, n) < c4

ª

n(r)
1 þ ª

ºn(r)
þ 1

º
max

1<m<k
�(a9cª, 8cK9, �, n� m)

� �
þ ºffiffiffiffiffiffi

2�
p (3:49)

for some constant c4 . 0.

Without loss of generality we can assume from now on that c . 1 and a9 . 1. Choosing

º ¼ 24a9c2c4ª

n(r)
,

we derive from (3.49) that for some constant c5 independent of n, and for all K9 > 1,

�(ª, K9, �, n) < c5

ªK9

n(r)
þ 1

24c2a9
max

1<m<k
�(a9cª, 8cK9, �, n� m):

Next observe that (2.35), in combination with the Cauchy–Schwarz inequality, shows that

(�A)2=3jN rj1=3 >
X
I2N r

ja(I)j2 > n(r)� 2
A=(2r þ 1) ¼ n(r)=(2r þ 1), (3:50)

which says that for all n > n0, for some n0, we have ª ¼ a9�A > 1. Further, for all n > n1,

for some n1,

max
1<m<k

n(r)

(n� m)(r)
<

3

2
:

This implies, for all n . 2k _n0 _ n1,

n(r)�(ª, K9, �, n)

ªK9
< c5 þ

1

2
max

1<m<k

(n� m)(r)�(a9cª, 8cK9, �, n� m)

a9cª8cK9
,

which, in turn, implies, since c . 1, 1 < ª < a1�0n(r) and K9 > 1, that for all n sufficiently

large,
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sup
ª>1,K>1

n(r)�(ª, K, �, n)

ªK
< c5 þ

1

2
max

1<m<k
sup

ª>1,K>1

(n� m)(r)�(ª, K, �, n� m)

ªK
:

This last inequality readily implies (3.29), which by (3.15) finishes the proof of Theorem 1.1

for WA. h

4. Proof of Lemma 2.1

4.1. Main graph construction

Throughout this section we assume that n . 2r(r þ 2).

Given a cycle H and vectors (I0, I1, . . . , I r) and (I0, J1, . . . , J r), let us construct cycles

H1 and H2. First of all, notice that each of the latter cycles should be some modification of

the cycle H which preserves all but a finite (in n) number of the edges of the cycle H in

order to possess property (v). Obviously, in order to have property (ii) the cycle H1 should

pass through the path (I0, I1, . . . , I r), while H2 should incorporate the path

(I0, J1, . . . , J r). That would be a fairly easy task to accomplish, namely to change a

finite number of the edges of the cycle H in order to pass through a given r-path. However,

the problem becomes much more complicated when we try to achieve property (iii) as well.

To see where the difficulty comes from, let us assume that we have two cycles H1 and H2

satisfying (ii) and (v), which means that H1nH ¼ B1 and H2nH ¼ B2, where B1 and B2

are finite (i.e. bounded uniformly in n) non-empty sets of edges. Hence, the set

Lr(H1)nLr(H2) might contain those r-paths of H which have at least one vertex in

common with the vertices in B1 or B2. This clearly violates property (iii), which states that

Lr(H1)nLr(H2) and H are independent. Our way to overcome this obstacle is to introduce

auxiliary random elements (denoted by V below) which will take care of the r-boundaries

of the set fI , Jg :¼ fI0, I1, . . . , I rg [ fJ1, . . . , J rg in the graphs H1 and H2. An

r-boundary of a vertex v in a cycle is called the set of all the vertices of this cycle

reachable from v along a connected path of at most r (non-directed) edges. We call an

r-boundary of a set the union of the r-boundaries of the vertices in this set without the

vertices of the set itself. Our aim now is to construct cycles H1 and H2 so that the

r-boundaries of the set fI , Jg in either of these cycles are independent of H .

Let us outline our strategy. First we define, independently of H , a new random element

V ¼ V (I , J ) to represent an r-boundary of fI , Jg in the cycle H1. Further, we determine a

set U of paths through which cycle H1 should pass in order to have the given boundary of

the set fI , Jg. Finally, we will introduce an algorithm to modify a cycle H as little as

possible, in order to obtain a new cycle G(H , U) which passes through a given collection

of paths. We will conclude by proving that this algorithm produces random cycles with

required properties (i)–(v).

For any m > 1 and any vector u ¼ (u1, . . . , um), we shall denote by fug ¼ fu1, . . . , umg
the set of values of its coordinates. Also, for any array of vectors U ¼ fu1, . . . , umg we

denote fUg ¼ [m
i¼0fuig.
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Let fI ¼ (I0, . . . , I r) and J ¼ (J1, . . . , J r) be any fixed realizations of the correspond-

ing random vectors, and let h be a cycle passing through ˆ(I). Write

h ¼ f(I0, I1), . . . , (I r, hrþ1), . . . , (hn�1, I0)g: (4:1)

Consider the r-boundary of the set fI , Jg in this cycle. Define

k(I , J ) :¼ jfJgnfIgj (4:2)

to be the number of components of J which are not in the set fIg.

In the simplest situation when k(I , J ) ¼ 0, that is, when fJg � fIg, the r-boundary of

fI , Jg in a cycle (4.1) is clearly fhn�r, . . . , hn�1, hrþ1, . . . , h2rg. Observe that the location

of this r-boundary, that is, the indices fn� r, . . . , n� 1, r þ 1, . . . , 2rg, is determined

uniquely and independent of this particular cycle passing through I . Thus in the case

k(I , J ) ¼ 0 we define V ¼ V (I , J ) to be a random vector with 2r components indexed as

the vertices of the r-boundary of fI , Jg,

V ¼ V 0 ¼ (V 0
rþ1, . . . , V 0

2r, V
0
n�r, . . . , V 0

n�1), (4:3)

and distributed uniformly over the set f(x1, . . . , x2r) : xi 2 NnfIg, xi 6¼ xjg.

In the case k(I , J ) ¼ k > 1 we first introduce a random vector (�1, . . . , �k) uniformly

distributed on the array

�k :¼ f(u1, . . . , uk) : r þ 1 < u1 , . . . , uk < n� 1, ui 6¼ u jg, (4:4)

to specify later on the locations of the values of fJgnfIg in a cycle H1. More exactly, write

fJgnfIg ¼ fJs1
, . . . , Jskg, with s1 , . . . , sk : (4:5)

Then in a cycle H1 written as (4.1), we shall have

h� l
¼ Js l (4:6)

for any 1 < l < k.

Now we are ready to define V (I , J ) in the general case. Conditionally on I , J such that

k(I , J ) ¼ k > 0, define a random vector

V jk( I ,J)¼k ¼ (V 0, . . . , V k), (4:7)

so that, conditionally on � ¼ (�0, �1, . . . , �k , �kþ1) with

�0 � r, �kþ1 � n� 1, and (�1, . . . , �k) 2 �k if k > 1,

one has, for all 0 < l < k,

V l ¼
(V l

� lþ1, . . . , V l
� lþr, V

l
� lþ1�r, . . . , V l

� lþ1�1), if � lþ1 � � l . 2r,

(V l
� lþ1, . . . , V l

� lþ1�1), if 1 , � lþ1 � � l < 2r,

˘, if � lþ1 � � l ¼ 1

8><>:
(assuming ˘ makes no contribution to (4.7)), and the distribution of vector V is uniform on

V(m) :¼ f(u1, . . . , um) 2 (NnfI , Jg)m : ui 6¼ u j for any i 6¼ jg (4:8)
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with

m ¼
Xk
l¼0

((� lþ1 � � l � 1) ^ 2r): (4:9)

Notice that the indices of all V l will correspond to a location of the r-boundary of the set

fI , Jg in the cycle H1, that is, if H1 is written in the form (4.1) we shall have

V l
i ¼ hi (4:10)

for all possible i and l.

Let us now gather the random variables I , J and V into one vector (recall also (4.5))

(I0, I1, . . . , I r, V
0, Js1

, V 1, Js2
, . . . , V k�1, Jsk , V

k), if k ¼ k(I , J) . 0,

(I0, I1, . . . , I r, V
0), otherwise:

(4:11)

Since by our construction the indices of the components of vector (4.11) will represent the

location of the set fI , Jg and its r-boundary in the cycle H1, we can also determine the

corresponding connected paths as follows. In the simplest case k(I , J ) ¼ 0 after a cyclic

permutation of (4.11) we obtain, taking into account (4.3), a vector

U ¼ U 0 ¼ (V 0
n�r, . . . , V 0

n�1, I0, I1, . . . , I r, V
0
rþ1, . . . , V 0

2r), (4:12)

which by its definition (recall (4.10)) will correspond to the directed 3r-path in the cycle H1

written as (4.1).

In the general case when k(I , J ) . 0 we see that the only consecutive vertices in the

vector (4.11) which might not be neighbours in the cycle H1 (recall (4.6) and (4.10)), are

the vertices V l
� lþr and V l

� lþ1�r if � lþ1 � r . � l þ r. Observe that, for any n . 2r(r þ 2),

the set

fl0, . . . , lMg ¼ f0 < l < k : � lþ1 � � l � 1 > 2rg (4:13)

is non-empty, and we can assume 0 < l0 , . . . , lM < k, where 0 < M < k. Now let

vector U be a cyclic permutation of the vector (4.11), call it

U ¼ U(I , J , �, V ) ¼ (U 0, . . . , U M )

with U i ¼ (U i
0, . . . , U i

pi
), i ¼ 0, . . . , M , such that

U i
0 ¼ V l

� lþ1�r for l ¼ li, i ¼ 0, . . . , M :

According to this definition U 2 N rþkþm, and its components U 0, . . . , U M will

correspond to the connected components of the set fI , Jg together with a given boundary

V (I , J , �) in the cycle H1. Clearly, vector p ¼ ( p0, . . . , pM ) is a deterministic function of

I , J and �. We shall write

p ¼ p(I , J , �), M ¼ M(I , J , �) (4:14)

for further reference. Notice that by their definition pi > 1 for all 0 < i < M , and
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jfUgj ¼ M þ
XM
i¼0

pi ¼ r þ k þ m < 2r(r þ 2): (4:15)

Now for any array

u ¼ (u0, . . . , uM ), with uq ¼ (u
q
0, . . . , uqpq), 0 < q < M , (4:16)

such that fPfU ¼ ug . 0, we shall define a transformation

G(u, �) : Hn ! Hn (4:17)

as follows. Let H 2 Hn be fixed arbitrarily.

(i) If ˆ(u) � H , that is, if H passes through every path of ˆ(u) (see definition (2.9)),

set

G(u, H) ¼ H :

(ii) Otherwise we construct the cycle G(u, H) iteratively, by adding new edges to the

path ˆ(u0). (The reader might find it helpful to draw a picture.) We shall denote by

Gk , k < n, the current k-path. We start with

Gp0
¼ ˆ(u0): (4:18)

Then from the last vertex of this path, which is u0
p0

, we draw a new edge to the first

vertex of H which we missed starting at u0
0. To be precise, we choose this vertex

according to the following procedure. First we define recursively, using definition

(2.11),

E1
H (i) ¼ EH (i), Ek

H (i) ¼ E1
H (Ek�1

H (i)), k . 1, (4:19)

for all i 2 f1, . . . , ng, so that Ek
H (i) is the end vertex of the k-path from vertex i

along the cycle H . Now, for any w 2 N , we can define a number

�(w) ¼ �(w, H , u) :¼ min m > 1 : Em
H (w) 62

[M
q¼0

(fuqgnfuq0g)

8<:
9=;, (4:20)

which is the length of the shortest path in H from vertex w to the vertex outside the

set [M
q¼0(fuqgnfuq0g). Now we choose

u9p0þ1
:¼ E

�(u0
0
)

H (u0
0) (4:21)

and then set

Gp0þ1 :¼ Gp0
[ f(u0

p0
, u9p0þ1)g:

Algorithm. Assume that we have constructed a k-path

Gk :¼ f(u90, u91), (u91, u92), . . . , (u9k�1, u9k)g,

for some p0 þ 1 < k , n. Then there are two following cases.

Case A. If the last vertex of the current path coincides with the first vertex of one of
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the paths in ˆ(u), we add the corresponding path to our current path. More

precisely, if u9k ¼ ul
0 for some 1 < l < M then we set

Gkþ plþ1(u, H) :¼ Gk(u, H) [ ˆ(u l) [ ul
pl

, E
�(u l

0
)

H (ul
0)


 �n o
, (4:22)

and proceed again from the beginning of the algorithm.

Case B. Otherwise, if u9k 62 [M
q¼0fu

q
0g, choose

u9kþ1 :¼ E
�(u9k )
H (u9k) (4:23)

and set

Gkþ1 :¼ Gk [ (u9k , u9kþ1)f g:
Then proceed again from the beginning of the algorithm.

Due to the fact that H is a cycle, this procedure leads to a construction of a unique cycle

Gn ¼ Gn�1 [ f(u9n�1, u9n)g where u9n ¼ u0
0. Finally, set G(u, H) :¼ Gn.

Now let H be a random cycle uniformly distributed on Hn and independent of the

random vectors I , J , �, V defined above. Also let

U ¼ U(I , J , �, V ) � U((I0, I1, . . . , I r), (J1, . . . , J r), �, V ), (4:24)

U9 ¼ U((I0, J1, . . . , J r), (I1, . . . , I r), �, V ),

and define

H1 ¼ G(U, H), H2 ¼ G(U9, H): (4:25)

It follows obviously that

U¼d U9, (4:26)

which implies

H1 ¼
d
H2: (4:27)

4.2. Properties of the transformation G(u, �)

We begin with Property (ii). It follows immediately from (4.18) and (4.22) that, for any set

u as in (4.16) and for any H 2 Hn,

G(u, H) 2 H(u) :¼ fH 2 Hn : ˆ(u) 2 Hg: (4:28)

Since the set of paths U contains a path ˆ(I0, I1, . . . , I r) while U9, contains a path

ˆ(I0, J1, . . . , J r) property (ii) follows by the definition (4.25) and equality (4.28).

Properties (iii) and (v) also follow immediately by construction.

Turning now to property (i), let H0 2 Hn be fixed arbitrarily. Consider the probability

function
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PfG(U, H) ¼ H0g ¼
X
u

PfG(u, H) ¼ H0gPfU ¼ ug (4:29)

¼
X

M , p¼( p0,..., pM )

X
u¼(u0,...,uM )

#fh 2 Hn : G(u, h) ¼ H0g
jHnj

3 PfU ¼ ujM(I , J , �) ¼ M , p(I , J , �) ¼ pgPfM(I , J , �) ¼ M , p(I , J , �) ¼ pg,

with functions M(I , J , �) and p(I , J , �) defined in (4.14). Let M and p be fixed arbitrarily

but so that PfM(I , J , �) ¼ M , p(I , J , �) ¼ pg . 0. It is obvious that, conditionally on

M(I , J , �) ¼ M and p(I , J , �) ¼ p, the vector of the components of the array U is

uniformly distributed on N q with q ¼ M þ
PM

i¼0 pi (see (4.15)), which implies

PfU ¼ ujM(I , J , D) ¼ M , p(I , J , D) ¼ pg ¼ 1

n(n� 1) . . . (n� q)
: (4:30)

Let us define the following set of arrays of M þ 1 vectors of given cardinalities:

N (M , p)
q ¼ fu ¼ (u0, . . . , uM ) : ui ¼ (ui0, . . . , uipi), (u0

0, . . . , uM
pM

) 2 N qg:

Observe that, due to symmetry, the number jH(u)j for any u 2 N (M , p)
q depends only on the

values of M and p but not on a particular choice of u. Also due to symmetry we have, for

any fixed H0 2 H(u),

#fh 2 Hn : G(u, h) ¼ H0g ¼ jHnj
jH(u)j , (4:31)

which impliesX
u2N (M , p)

q

#fh 2 Hn : G(u, h) ¼ H0g ¼ #fv 2 N (M , p)
q : ˆ(v) 2 H0g

jHnj
jH(u)j : (4:32)

We shall use the following relation:

jH(u)j ¼ (n� (qþ 1))!#fv 2 N (M , p)
q : ˆ(v) 2 H0g=n: (4:33)

This holds due to the simple observation that, for any fixed position of M þ 1 different pl-

paths with a total number of qþ 1 vertices in a cycle, there are (n� (qþ 1))! ways to place

the remaining n� (qþ 1) vertices. The factor 1=n refers to n cyclic permutations.

Combining (4.33) and (4.32) with (4.30), we can now reduce (4.29) to

PfG(U, H) ¼ H0g ¼ 1

jHnj
X
M , p

PfM(I , J , D) ¼ M , p(I , J , D) ¼ pg ¼ 1

jHnj
: (4:34)

This proves

H ¼d G(U, H) � H1, (4:35)

which, together with (4.27), implies property (i).
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Finally, we consider property (iv). Let (i0, j1, . . . , jr) 2 N r and H0 2 Hn be fixed

arbitrarily. Using definitions (4.25) and (4.24), consider

PfH1 � G(U, H) ¼ H0jI0 ¼ i0, J ¼ j ¼ ( j1, . . . , jr)g (4:36)

¼ PfG(U(I , j, �, V ), H) ¼ H0jI0 ¼ i0, J ¼ jg:

By (4.28) we have

PfG(u, H) ¼ H0g ¼ 0,

unless u is such that ˆ(u) � H0. Hence it is easy to see that

PfG(U(I , j, �, V ), H) ¼ H0jI0 ¼ i0, J ¼ jg ¼ 0,

unless I is an r-path in H0 from the vertex i0, that is, I ¼ I :¼ (i0, E1
H0

(i0), . . . , Er
H0

(i0)).

Write

H0 ¼ f(i0, E1
H0

(i0)), . . . , (Er
H0

(i0), xrþ1), . . . , (xn�2, xn�1), (xn�1, i0)g:

Observe that the values H0, I and j determine � and V uniquely such that

ˆ(U(I , j, �, V )) � H0 if and only if � ¼ � and V ¼ V . Indeed, following the definition of

U, we obtain � ¼ (�0, �1, . . . , �k , �kþ1) with k ¼ jf jgnfIgj, such that �0 ¼ r, �kþ1 ¼ n� 1,

and in the case k . 0 we have �1 , . . . , �k with f�g ¼ fl : xl 2 f jgnfIgg. Also, we see

that V is simply the r-boundary of the set f j, Ig in the cycle H0. Hence, setting

u ¼ U(i, j, �, V ), by (4.36) we have

PfG(U(I , j, �, V ), H) ¼ H0jI0 ¼ i0, J ¼ jg (4:37)

¼ PfG(u, H) ¼ H0gPf(I1, . . . , I r) ¼ (E1
H0

(i0), . . . , Er
H0

(i0))jI0 ¼ i0g

3 Pf� ¼ �, V ¼ V jI ¼ I , J ¼ jg:

Recall that the distribution of I is uniform on N r. Hence,

Pf(I1, . . . , I r) ¼ (E1
H0

(i0), . . . , Er
H0

(i0))jI0 ¼ i0g ¼ 1

(n� 1) . . . (n� r)
: (4:38)

Taking into account (4.31), as well as the fact that given I ¼ I and J ¼ j with

k(I , j) ¼ k . 0 the distribution of � is uniform on �k , and conditionally on � ¼ � the

vector V is uniformly distributed on V(m) (see (4.4) and (4.8)), we derive from (4.37) and

(4.38) that

PfG(U(I , j, �, V ), H) ¼ H0jI0 ¼ i0g ¼ 1

jH(u)j j�k j jV(m)j
1

(n� 1) . . . (n� r)
: (4:39)

Also, setting j�0j � 1, it is easy to see that the same formula holds in the case k ¼ 0 as

well. Observe now that for H(I) :¼ fH 2 Hn : ˆ(I) 2 Hg we have

jH(I)j ¼ jH(u)j j�k j jV(m)j, (4:40)
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which follows from the following facts:

1.

ˆ(I) � ˆ(u);

2. j�k j equals the number of possible ways to label the nodes of the set f jgnfIg,

choosing labels from NnfIg;

3. jV(m)j is the number of all possible ways to label the nodes of the r-boundary of the

set f jg [ fIg choosing labels from Nn(f jg [ fIg).

Substituting (4.40) into (4.39), we obtain

PfG(U(I , j, �, V ), H) ¼ H0jI0 ¼ i0g ¼ 1

jH(I)j
1

(n� 1) . . . (n� r)
: (4:41)

It is easy to compute, for any i 2 N r, that jH(i)j ¼ (n� r � 1)!, which, together with (4.41),

implies

PfG(U(I , j, �, V ), H) ¼ H0jI0 ¼ i0g ¼ 1

(n� 1)!
¼ 1

jHnj
¼ PfH1 ¼ H0g, (4:42)

where the last equality is due to (4.34). This, when substituted into (4.36), yields property

(iv). This completes the proof of Lemma 2.1.
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