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We present a perfect sampling algorithm for Gibbs point processes, based on the partial rejection sampling
of Guo, Jerrum and Liu (In STOC’ 17 — Proceedings of the 49th Annual ACM SIGACT Symposium on Theory
of Computing (2017) 342-355 ACM). Our particular focus is on pairwise interaction processes, penetrable
spheres mixture models and area-interaction processes, with a finite interaction range. For an interaction
range 2r of the target process, the proposed algorithm can generate a perfect sample with O (log(1/r))
expected running time complexity, provided that the intensity of the points is not too high and ©(1/ rd)
parallel processor units are available.
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1. Introduction

Various phenomena in physics, chemistry and biology are modelled by Gibbs point processes.
A Gibbs point process — or simply, Gibbs process — is a spatial point process whose distribu-
tion is absolutely continuous with respect to that of a Poisson point process (PPP). Pairwise
interaction point (PIP) processes and penetrable spheres mixture (PSM) models are two widely
studied examples of Gibbs processes; see, for example, Mgller and Waagepetersen [23], Huber
[16], Kendall and Mgller [19], Baddeley and Nair [1], Baddeley and Turner [2]. The PIP family
includes hard-core processes and Strauss processes.

Perfect sampling for Gibbs processes is an active area of research. A sampling algorithm for
a given distribution is called perfect if it generates an exact sample from this distribution within
a finite time. We refer to Kendall [18], Fill [10], Kendall and Mgller [19], Garcia [12], Fer-
rari, Ferndndez and Garcia [9], Huber [15], Moka, Juneja and Mandjes [20], Guo and Jerrum
[13] for some of the existing perfect sampling algorithms for Gibbs processes. The methods in
Moka, Juneja and Mandjes [20] and Guo and Jerrum [13] generate perfect samples of hard-core
processes. The other methods in the references above are applicable to more general Gibbs pro-
cesses, including PIP processes and PSM models. Among these methods, the dominated coupling
from the past (dACFTP) methods by Kendall [18], Kendall and Mgller [19] and Huber [15] are
shown to be efficient when the density of the points is small; see, for example, Huber [16]. As we
show in this paper, for an interaction range 2r of the target Gibbs process and dimension d of the
points, the expected running time complexity of any dCFTP method is at least of order rid log(})
even when the density of the reference PPP is very small. However, dCFTP algorithms are se-
quential, and thus they do not take advantage of parallel computing. In this paper, we propose
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a method for generating perfect samples of PIP processes and PSM models using the partial
rejection sampling (PRS) method of Guo, Jerrum and Liu [14] and show how one can obtain,
using parallel computing, an expected running time complexity of O(log(1/r)), provided that
the density of the reference PPP is not too high.

The PRS method provides a general methodology for generating perfect samples from a prod-
uct distribution, conditioned on none of a number of bad events occurring. Such problems are in
general NP-hard; see, for example, Bezdkova et al. [5] and Guo, Jerrum and Liu [14]. However,
for certain types of parametric product distributions, the PRS algorithm is efficient and termi-
nates within O(logn) iterations on average, where n is the number of bad events. Unlike the
naive rejection method where samples from the product distribution are generated independently
until there is no bad event, in each iteration of the PRS method, depending on the bad events
seen, some of the randomness from the iteration is retained for the next iteration. This idea of
retaining a partial randomness is rooted in the method called Randomness Recycler, which was
first appeared in Fill and Huber [11] and later refined in Huber [16].

An additional feature of the PRS algorithm is that it is distributive, in the sense that it al-
lows parallel computation within each iteration. As a consequence, the PRS algorithm can be
implemented with O (logn) expected running time complexity using n processors in parallel. By
exploiting the distributive property of the PRS, we use the PRS algorithm for generating per-
fect samples of Gibbs processes on a Euclidean subset S. Our algorithm is useful for methods
where it is efficient to generate quickly but few perfect samples of a Gibbs process. For example,
in each iteration of Bayesian inference using the Metropolis—Hastings algorithm proposed by
Mgiller et al. [22], only one perfect sample of a Gibbs process is required for a vector of proposed
parameters; also see Berthelsen and Mgller [4]. A brief description of our contributions is as
follows:

e We partition S into a finite number of cells and define a product measure by ignoring the
cross interactions between the cells. Further by defining appropriate bad events that depend
on the cross interactions, we express the distribution of the target Gibbs process as the
product distribution conditioned on none of the bad events occurring. This construction
allows generation of perfect samples using PRS.

e To analyze the running time complexity of the proposed algorithm, we take S = [0, 1]¢

and the intensity of the reference PPP as k = v:gd for some constant kg, where 2r is the

interaction range of the Gibbs process and vy is the volume of a d-dimensional sphere of
unit radius. We consider the regime where «y is fixed and r goes to zero, and prove that if
the volume of each cell is of order rd, there exists a constant & > O such that for all kg < k,
the expected running time complexity of the algorithm is O (log(1/r)) as a function of r,
provided that the number of parallel processor units available is @ (1/r%).

e To illustrate the application of the proposed algorithm, we consider a d-dimensional hy-
percube grid partitioning of S = [0, 1]¢ and conduct extensive simulations to estimate the
expected number of iterations of the algorithm for different values of «( and the interaction
range 2r.

To the best of our knowledge, there are very few perfect sampling algorithms for Gibbs processes
that exploit parallel computation to obtain O (log(1/r)) running time complexity; see, for exam-
ple, Guo and Jerrum [13] and Huber et al. [17]. Specifically, the method of Guo and Jerrum [13]
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is a continuous version of the PRS algorithm and it has the same order of expected running time
complexity as our algorithm, but restricted to hard-core processes. Our simulation results also
provide a comparison between the expected number of iterations of the proposed method and the
method of Guo and Jerrum [13] for a hard-core process.

The remaining paper is organized as follows: In Section 2, we introduce some notation. Sec-
tion 3 provides definitions of the spatial point processes of interest. In Section 4, the PRS method
is presented and we illustrate its application with an example. In Section 5, we propose our new
perfect sampling method for Gibbs processes using PRS, and in Section 6 we analyze the run-
ning time complexities of the proposed method, naive rejection sampling, and dCFTP methods.
Simulation results for a Strauss process and a PSM model are presented in Section 7. The paper
is concluded in Section 8.

2. Notation

First, some notation. R is the set of nonnegative real numbers and Z is the set of non-negative
integers. R? denotes the d-dimensional Euclidean space with the corresponding Euclidean norm
| - |I. The distance between any two sets C, D € R is defined by

Dist(C, D) =inf{|lx — y|| : x € C and y € D},

with Dist(&, C) = oo, where @ denotes the empty set. We use e to denote exp(l). For any
x € Ry, |x] is the largest n € Z such that n < x. For any two probability measures (11 and (i
that are defined on the same measurable space, we write | < (3 to denote that 11 is absolutely
continuous with respect uo. We write X ~ ] to indicate that the distribution of a random object
X is p1. The distributions of a Bernoulli random variable with success probability p, a uniform
random variable over (0, 1) and a Poisson random variable with mean X are denoted, respectively,
by Bern(p), Unif(0, 1) and Poi()). For any event A, I(A) is equal to 1 if the event holds, otherwise
it is equal to 0. The underlying probability space is denoted by (§2, F, P).

3. Spatial point processes

Consider a finite measure v on a Euclidean subset S € R? that is absolutely continuous with
respect to the Lebesgue measure. Let § be the set of all finite sets on S, defined by

G :={x={x1,x2,....x4}:n€Zyandx; € S, Vi <n},

where n = 0 corresponds to the empty set. We assume that the elements of § are simple, that is,
they do not have multipoints. For any x € §, |[x4| denotes the cardinality of x4 :=x N A. A point
process is a random element X : Q2 — §.

Poisson point process (PPP): A point process X is called Poisson on S with intensity
measure v if it satisfies the following two properties:

(1) 1X4a|~ Poi(v(A)) for any measurable A C S and
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(i1) |Xa,l,...,|X4,| are independent if Ay, ..., A, are measurable disjoint subsets of S.
A PPP is called k-homogeneous if the intensity v(dx) = x dx for some constant ¥ > 0.

In several scenarios, it is important to associate an independent mark with each point in a
PPP to characterize the shape or type of the object at that point. A marked PPP on S is a PPP
such that each point has a (random) mark independent of all other points. The mark associated
with a point can depend on the point. For example, a mark at a point denotes the radius of a
circle centered at that point. A typical realization of a marked PPP with n points is of the form
x = {(z1,m1), (z2,m2), ..., (zn, mp)}, Where {21, 22, ...,2,} € § and m; is the mark associated
with z; fori =1, ..., n. For such a marked configuration, we define x4 = {(z;, m;) € X:z; € A}
for any A C S. If the mark space is M, then it is easy to see that the marked PPP is a PPP on
Sx M.

It is common approach in statistical physics to wrap S on a torus (i.e., S has periodic boundary)
when large interacting particle systems are considered. In that case, throughout the paper, the
Euclidean distance is replaced by geodesic distance.

Gibbs point process: Suppose that p is the distribution of a (marked) PPP. A point pro-
cess with distribution u < p is called a Gibbs point process (or simply, Gibbs process) if the
associated Radon—-Nikodym derivative is of the form

du | exp(-U(x)

; 3.1
d,o Z (3.1

for every possible realization x under p, where U/ is a nonnegative real-valued potential function
that is nondegenerate (i.e., U({x}) < c0), and hereditary (i.e., U(x) <UX') for all x C x’). The
normalizing constant Z is equal to [E,[exp(—U/ (X))].

Pairwise interaction point (PIP) processes: A pairwise interaction point (PIP) process
is a Gibbs point process for which the potential function is of the form

U= Y flxy), x€§, (3.2)

{x.y}ex

where f : RY x RY — R4 U {00} is called the pairwise interaction function; see, for example,
Chiu et al. [6]. We say that a PIP has finite range interaction if there exists a < oo such that
f(x,y) =0 for all x,y € S for which ||x — y|| > a; that is, the interaction between any two
points is zero if they are separated by a distance of at least a. The smallest such ¢ is called the
interaction range of the PIP. Some important PIP processes are considered below.

Hard-core process: A hard-core process with hard-core distance 2r > 0 (i.e., the hard-
core radius is r) has

oo, if|lx —yl| <2r,
0, otherwise.

f(x,y)={

In a hard-core process, no two points are within a distance of 2r. Note that the interaction range
here is 2r. One generalization of the hard-core process is hard-sphere model with random radii,
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where the centers of spheres with independent and identically distributed (i.i.d.) radii constitute
a PPP on S conditioned on the event that no two spheres overlap.

Strauss process: Another well-studied PIP process is the Strauss process with parameters
y € [0, 1] and r > 0. Here, the interaction function is defined by

—logy, if|x—yl| <2r,
fap=1"%

0, otherwise.

The interaction range of this PIP process is r. This process becomes a hard-core process if y =0
with the convention that 00 = 1.

Strauss-hard core process: This PIP process is a hybrid of the Strauss and hard-core
processes, and has interaction function

00, if [|x —yll <r1,
f,y)=1—-logy, ifri<|x—yll<r,
0, otherwise,

for some y € [0, 1] and 0 < r; < r». Here, ry is called hard-core distance. Clearly, the interaction
range for this process is 3.

Penetrable spheres mixture (PSM) model: This model was introduced by Widom
and Rowlinson [24] to study liquid-vapor phase transitions. Let p is the distribution of «-
homogeneous marked PPP, where each point is independently marked as type-1 with probability
K1/ (k1 + K2), otherwise, as type-2 (with probability 2/ (k1 + k2)), for some constants k1, k2 > 0.
A realization of a PSM model can be viewed as a realization of X ~ p conditioned on the event
that no two points from different types are within a distance 2r from each other. The correspond-
ing potential function is given by (3.2) with

oo, if ||lx — y|| <2r and x, y have different marks,
fx,y)= .
0, otherwise.

Area-interaction process: This process was first studied by Baddeley and van Lieshout
[3] (see, also, Kendall and Mgller [19], Ferrari, Ferndndez and Garcia [9] and Mgller [21]). For
any A C R4, let Vol(A) be the volume of A and Ball(x, a) be the d-dimensional sphere centered
at x with radius a. The distribution of an area-interaction process on S is absolutely continuous
with respect to that of a A-homogeneous PPP for some A > 0, with the potential function given
by

UX) = ,3V0I<U Ball(x, 2r)>, X€g, (3.3)

XEX

where the constant 8 > 0 is called inverse temperature; see Figure 1(a). The definition of area-
interaction process given in Baddeley and van Lieshout [3] is more general, as it allows 8 < 0.
However, in this paper, we focus only on the case 8 > 0.
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Figure 1. A realization X = {x{,..., x5} of an area-interaction process on a unit square S = [0, 1]2,
where each x; is the center of a circle with radius 2r. The dark regions in Panel (a) and Panel (b) are
U,ex Ball(x,7) and S N (U, ¢ Ball(x, 2r)), respectively.

There is an interesting connection between area-interaction processes and PSM models (Bad-
deley and van Lieshout [3]). To see this, instead of (3.3), if we suppose that the potential function
is

UX) = ,svm(s N (U Ball(x, 2r))>, xeg, (3.4)

XEX

then the distribution of this modified area-interaction process is identical to the distribution of
type-1 points of the PSM model with k = A + 8, k1 = A and k2 = B; see Figure 1(b). This is
because from the property (i) in the definition of PPPs, for any x € §, the probability that none
of the points of a realization of a f-homogeneous PPP falls within the set S N (|, o, Ball(x, 2r))
is equal to exp(—pBVol(S N (UXEX Ball(x, 2r)))). A Further fact is that if S is periodic, both (3.3)
and (3.4) are the same. Hence, under the periodic assumption, an area-interaction process can be
viewed as a realization of one type of points of a PSM model, and vice versa. This is the reason
why area-interaction processes are sometimes referred as PSM models.

In the definition of PSM models, type-1 and type-2 points are independent PPPs on § with
intensities k1 and x7, respectively. Instead, if we assume that the type-2 points constitute a k»-
homogeneous PPP on a bigger set S(r) such that

|JBali(x. 2r) € S(r)

xes

(when § =[O0, 1]d, S(r) canbe [—2r, 1 + 2r]d) then, with the choice of k| = A and x» = 8, the
distribution of type-1 points of this modified PSM model is identical to the distribution of the
area-interaction process.
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4. Partial rejection sampling

In this section, we briefly discuss the partial rejection sampling (PRS) method proposed in Guo,
Jerrum and Liu [14], Section 4. This method generates perfect samples from a product distribu-
tion, conditioned on none of a number of bad events happening.

To be precise, let Y = {Y1, Y», ..., Y, } be a set of easy to simulate independent random objects
taking values on ). Suppose that u® is the distribution of Y. Clearly, 1® is a product distribution.
Without loss of generality, we assume that ) is the support of u®. Let {B, € F : v € V} be a set
of bad events indexed by elements of a finite set V. Each bad event B, depends on a subset of
Y. Let Z(v) € {1,2,...,n} be the largest set such that B, is dependent on Y; for all i € Z(v);
that is, Z(v) is the smallest set such that the set of variables {Y; : i € Z(v)} imply whether the
event B, occurs or not; see Figure 2 for an illustration. By definition, B, does not depend on
{Y; :i e{l,...,n}\Z(v)}. The goal of PRS is to generate perfect samples from %, conditioned
on the event that none of the bad events {B, : v € V} occur.

We can generate the desired samples using the naive rejection sampling algorithm: repeatedly
generate a sample from u® until none of the bad events occur. The last sample has the desired
distribution. In each iteration of this naive method, a fresh copy of the entire set Y is generated.
Whereas, as we see below, in each iteration of the PRS method, only a subset of Y is resampled
based on which bad events occurred in the previous iteration. This helps to significantly reduce
the running time complexity compared with naive rejection sampling.

Indices of Indices of
the bad events the random objects

Figure 2. An illustration of the relationship between the bad events {B, € F : v € V} and the random ob-
jects Y ={Yy, Y3, ..., ¥,}. The mapping shows that Z(v{) = {1, 2, 5}, Z(vp) = {1, 3} and Z(v}y|) = {4, n}.
That is, the bad event By, depends only on the random objects Y7, Y5, Y5, the bad event By, depends only
on Y1, Y3, and the bad event B|y| depends only on Yy, ¥,,. Consequently, {vy, vz} € E, {vi, vy |} ¢ E and
{v2, vy |} ¢ E. Furthermore, if W = {vy, vp} then Z(W) = {1, 2, 3, 5}.
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For any u,v € V, we write u <> v if Z(u) N Z(v) # &. Define the dependency graph G =
(V, E) to be the graph, with the vertex set V and edge set E given by

E={u,v}:u,veV,u#vandu < v}.

That is, there is an edge between two nodes in V if the bad events associated with the nodes
depend on at least one common random object. In Example 4.1 and Section 5, G is a line graph
(also known as edge-to-vertex dual graph) as the node set V consists of edges on a lattice. For
w € $2, let

Bad(Y(w)) ={veV:we By}.
For any subset W C V, let 9W be the boundary of the set W defined by

oW ={veV:v¢WandJu € W such that u <> v}.

Also define Z(W) = UMGWI(M), and for any assignmenty ={y; :i =1,...,n} € Y of Y, let
ylw :={y; : i € Z(W)} denote the partial assignment of y restricted to Z(W). For instance, in
Figure 2, we have Z({vy, v2}) = {1, 2, 3, 5}, and hence Y|y, v,} = {¥1, Y2, Y3, Y5}. For any two
assignments y,y' € YV of Y, if y|w =y'|w then y’ is called an extension of y|w, and vice versa.
Furthermore, an event B is said to be disjoint from y|w if either Z(v) N Z(W) = & or B cannot
occur for any extension of y|w.

Algorithm 1 generates a perfect sample Y ~ u®, conditioned on the event that none of the bad
events B, occurs. In each iteration of Algorithm 1, the inner while-loop constructs the resampling
set Res C V. It starts with Res = Bad(Y) where the initial assignment of random objects is Y,
and recursively adds to Res the set of all the boundary vertices that are not disjoint from Res,
until there are no more boundary vertices to add. The final Res is the resampling set, and all the
random objects with indices in |, cpes Z (1) are resampled. This construction is deterministic, in
the sense that the final resampling set is a deterministic function of Y.

Algorithm 1: Partial rejection sampling algorithm

Simulate Y1, Y2, ..., Y, independently
Y <« {Y1,Ys,...,Y,}

while Bad(Y) # @ do

Res < Bad(Y) and N < &

while dRes \ N # & do
Let D ={v € dRes \ N : B, is disjoint from Y|ges}
N« NUD
Res <— Res U (0Res \ N)

end

Resample only the objects in {Y; : i € Z(Res)}

end
Output Y
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We refer to Guo, Jerrum and Liu [14] for a proof of correctness of the algorithm. We must note
that in Guo, Jerrum and Liu [14], each Y; is a real-valued random variable, whereas in this paper,
we allow a more general setting by treating each Y; as a random object. However, the correctness
proof still holds true for this general case as well.

Example 4.1 (Hard-core model on a lattice). To illustrate the PRS algorithm, consider the
following hard-core model defined on a square lattice. Each node i of the lattice is associated
with an independent Bernoulli random variable ¥; ~ Bern( 1-);_/\) for some A > 0. The node i is
said to be occupied if ¥; = 1. Associated with each edge {i, j}, there is a bad event B; ; which
holds if both the endpoints i and j are occupied; see Figure 3. If we let u® be the distribution
of Y;’s, then using the PRS algorithm we can generate a sample Y ~ 1® conditioned on none of
the bad events occurring.

The corresponding dependency graph G = (V, E) consists of V, the set of all the edges in the
lattice, and

E ={{v,u}: v #u,v and u are connected by a common node}.

Clearly, if v={i, j} € V, we have Z(v) = {i, j}. As shown in Section 6.2 of Guo, Jerrum and
Liu [14], for this hard-core model, it is easy to find the resampling set for any given set of bad
events. Suppose at an iteration of the algorithm, if Bad is the set of bad edges of the lattice, then
the resampling set Res is the union of Bad and dBad, where one endpoint of each edge in dBad
is not occupied and the other endpoint is shared with one of the edges in Bad; see Figure 3.

As mentioned earlier, in general, generating a sample from «® conditioned on none of the bad
events happening is NP-hard. However, under some additional conditions, Algorithm 1 can be
efficient in the sense that the expected number of iterations of the algorithm can be O (log|V]);
see Guo, Jerrum and Liu [14]. Lemma 4.1 deals with one such case. Refer to Guo, Jerrum and
Liu [14], Section 5, for a proof. Let A, , be the event that the partial assignment on Z(v) N Z(u)

| M| R ENUERE
L T R

(a) (b) ()

Figure 3. Hard-core model on a square lattice. Panel (a): A typical realization of the hard-core model,
where the occupied nodes are denoted by dark circles. Panel (b): The red coloured edges denote the bad
events. Panel (c): The red and blue colored edges together are the final resampling set; all the red and blue
nodes will be resampled.
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can be extended to make B, occur; that is,
Aup = {w € 2:30 € By such that Y(@)|u.v) = Y (') [, }-

In particular, if {u, v} € E then u <> v implies that Z(u) N Z(v) # &, and hence A, , is the set of
o for which B, is not disjoint from Y (@) |y, v)-

Define p = maxyey P, (By) and ¢ = maxy, vjeg Py (Ay,.0). Let Bad; and Res; be, respec-
tively, the set of bad vertices and the resampling set at iteration ¢ > 0 of Algorithm 1. Further, let
A be the maximum degree of the dependency graph G.

Lemma 4.1 (Lemma 5.4 of Guo, Jerrum and Liu [14]). For any A > 2, if 6epA2 <1 and
3eqA <1, then forall t > 0,

E[IRes;+1 | [Reso, ..., Res;| < (I — p)|Res;|.

Note that Bad; C Res; for all > 0. From Lemma 4.1 and the fact that |Bady| = |Resg| = |V/|
(since the algorithm starts with a fresh copy of all the random elements),

E[|Bad,|] <E[|Res,|] < (1 — p)'|VI, @.1)

for all ¢ > 0, under the hypothesis of the lemma. These observations are useful for the running
time complexity analysis in Section 6.

5. Perfect sampling for Gibbs point processes

In this section, we propose a methodology to use the PRS algorithm for generating perfect sam-
ples of the Gibbs processes defined in Section 3. For this, we first partition the underlying space
S. Then, using this partition, we identify certain bad events such that the target distribution can
be expressed as a product distribution conditioned on none of these bad events occurring. For
the case where S = [0, 1]¢, we consider a hypercube grid partitioning and specialize the PRS
algorithm.

Recall the definition of Gibbs process with distribution p, given in Section 3. Assume that the
corresponding potential function I/ has a finite interaction range 2r and

U= Y flxy), xe€§, (5.1)

{x.y}ex

for a function f: S x § — Ry U {oo} such that f(x,y) = f(y,x). Recall that u < p, with p
being the distribution of a (marked) PPP. Clearly, both PIP process or PSM model (defined in
Section 3) can be seen as special cases of the above description.

Suppose {C1, Ca, ..., C,} is a partition of S (i.e., the C;’s are mutually disjoint and | J;_, C; =
S). Let V. ={v={i, j} : Dist(C;, Cj) < 2r and i # j} be the set of unordered pairs {i, j} such
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that points that fall in C; can interact with points in C; and vice versa. As a consequence of (5.1),
foranyx e g,

Ux) = Zu<xC)+ > D fw.

{i,jleV x&x¢;
YeXc;

Hence,

Il
=

B[]

ol [Te7#X 1] exp(— > f(m))}

Li=1 {i,jleVv xeXCVyech

:Ep He_u(XC,') 1_[ H{U,-,jfexp<— Z f(x,y))}:|,

Li=1 {i,jlev xeXcﬂyech

where {U; ; : {i, j} € V} is a set of i.i.d. Unif(0, 1) random variables, independent of everything
else.

For each i, let p; be the distribution of the reference (marked) PPP restricted to the cell C;,
that is, if X ~ p then p; is the distribution of Xc;, and X¢; and X¢; are independent when
i # j (see the property (ii) in the definition of PPPs). Now let p; be the distribution of a Gibbs
process on C; such that u; < p; with the interaction range 2r and the potential function U (x) =
» {x,y)ex f(x,y) for all finite subsets x C C;. This means that y; is the distribution of the target
Gibbs process restricted to C;. Furthermore, define bad events

B,»,,:{wesz:ui,j(wpexp(— > f(x,y))}, {i,j}eV.

xeXc; (w),yGch (w)

Let p=p1 X - X pp and u® := 1 X w2 X - -+ X [,. From the definition of u, u < 1® and

d
d—'l;(x):% H exp( Z Z f(x,y)>, X € §.

{i,jleV {1/erem;yexc

Equivalently, u is equal to the distribution 4® conditioned on none of the bad events B; ; hap-
pening. Here, the normalizing constant is

zzpw( N Bﬁj)zEu@»[{H exp<_ ) f(x,y>)]

{i.j}eV i.j}ev xeXc;.yeXc;

Since u® is a product measure, if it is possible to generate samples from f;’s, we can use
the PRS, Algorithm 1, to generate samples from w. The corresponding dependency graph is
G = (V, E), where, from the definition, £ = {{u, v} : u,v € V and u < v} with By; j, = B; ;.
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To complete the argument, we need to spell out how to identify the resampling subset
Res(Y(w)) of V for every w € §2, where

Y:={X¢,i=1,...,n, and U; j, {i, jle V}.

This depends on knowing the condition for B; ; being disjoint from Y(w)|w for all W € V and
all {i, j} € 9W. Lemma 5.1 establishes this condition.

To simplify the notion, we can take Z({i, j}) = {i, j} for all {i, j} € V. That means, at any
iteration of PRS, if {i, j} € Res then X¢,, Xc]. and U; ; will be resampled independently from
their respective distributions.

Lemma 5.1. Let W CV and {j, k} € OW with j € Z(W). Then for any w € 2, Bj y is disjoint
Jfrom the partial assignment Y (w)|w if and only if Dist(X¢, (), Cx) = 2r.

Proof. Observe that k ¢ Z(W), because j € Z(W) and {j, k} € 0W. Hence Z({j, k}) N Z(W) =
{/}. This implies that if Dist(Xc,(w), Cx) > 2r then B;j cannot occur for any extension of
{Xc_/. (w)}, because no matter what is the configuration on Cy, it never interacts with the points of
Xc¢; (®). On the other hand, if Dist(X¢, (w), Cx) < 2r, we can find a ' € Q such that X, () =
Xc; (@) and o’ € Bj x (i.e., the points of X, (') interact with points of Xc; () to result in
occurrence of B y). O

5.1. Hypercube grid partitioning

Consider the PIP processes and PSM models defined in Section 3. Suppose that S = [0, 1]¢ is
equipped with a hypercube grid of cell edge length 2r. The area-interaction case is discussed at
the end of this section.

So, the cells are d-dimensional hypercubes with volume (2r)¢, except some of the boundary
cells that can be rectangular in shape with each edge is of length at most 2r. Let n(r) be the
total number of cells. Note that when 2r = 1/K for some integer K, every cell is a cube. We
say that cells C; and C; are adjacent if Dist(C;, C;) = 0. From this construction, it is evident
that {7, j} € V if and only if C; and C; are adjacent. Furthermore, there is no cross interaction
between point configurations on two non-adjacent cells, that is,

UXc; (@) UX¢; (@) =U(Xc; (@) +U(Xc; (@),

for all w € Q if C; and C; are not adjacent to each other; see Figure 4.

Recall from Lemma 5.1 that the implementation of the PRS algorithm for Gibbs processes
depends on deciding whether Dist(Xc;, C;) < 2r, or not, for a given {i, j} € V and a point
configuration Xc,; on the i th cell. The interesting aspect of this hypercube grid partitioning is
that for any {i, j} € V, Dist(Xc;, C;) < 2r if and only if the point configuration X¢, = &. To
verify this claim, notice that the ‘if’ part trivially follows from the definition of Dist, and the
‘only if” part follows from the observation that each cell has edges of length at most 2r and when
Xc; # 9, we can select a point configuration on C; and a value for U; ; so that the bad event
B, ;j occur, making it not disjoint from Xc,. As a consequence, observe that for any realization
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Cy | Cy

1

Figure 4. For a Gibbs process with interaction range 2r = 0.13, the partition of the unit cube S = [0, 12
using a square grid of size 8 x 8 with the cell edge length 0.13. Since 7 x 0.13 < 1 < 8 x 0.13, some of the
boundary cells are smaller in size than the other cells. Clearly, for any i and j, {i, j} € V if and only if C;
and Cj are adjacent (i.e., Dist(C;, Cj) =0).

of Y in an iteration of the PRS algorithm, Res is the minimal subset of V such that Bad C Res
and

Xc, =9, forall {i, j} € 0Res with i € Z(Res).

Under this setup, we now restate the PRS algorithm for Gibbs processes; see Algorithm 2. We
remind the reader that for each i, samples X, from ; are generated using any existing method
such as dCFTP.

To generate perfect samples of an area-interaction process on S = [0, 1] with inverse temper-
ature B and the intensity of the reference PPP is A, we use Algorithm 2 to generate samples of
the modified PSM model on S(r) = [—2r, 1 4+ 2r]¢ where the reference PPP consists of type-1
and type-2 points, with type-1 points being A-homogeneous PPP on § and type-2 points being
B-homogeneous PPP on S(r). Type-1 points in the output of the algorithm is a sample of the
target area-interaction process. Refer to Section 3 for the connection between area-interaction
processes and PSM models. In Algorithm 2, instead of S, we equip S(r) with a hypercube grid
partitioning. On each cell C;, u; is the distribution of a modified PSM model where the refer-
ence PPP consists of type-1 and type-2 points, with type-1 points being A-homogeneous PPP on
C; N S and type-2 points being f-homogeneous PPP on C; \ S.
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Algorithm 2: PRS using hypercube grid partitioning

Simulate X¢, ~ i, i =1,...,n(r), and U; ; ~ Unif(0, 1), {i, j} € V, independently
Y~ {X¢,,i=1,...,n(), and U; j, {i, j} € V}
while Bad(Y) # @ do
Res < Bad(Y)
repeat
Let W ={{i, j} € 0Res :i € Z(Res) and X, # I}
Res < ResU W
until W = &;
Resample X¢; ~ u;, i € Z(Res), and U; ; ~ Unif(0, 1), {i, j} € Res, independently
end
Output Y

6. Running time analysis

In this section, we assume that S = [0, 1]¢ and the target Gibbs distribution u < p, with potential
function given by (5.1) and interaction range 2r < 1. We further assume that p is the distribution
of a k-homogeneous (marked) PPP on § with x = kp/ (vdrd ) for some xp > 0. We analyze the
running time complexity of the partitioning based PRS (described in Section 5) as r — 0. We
further compare this method with two well-known existing methods by establishing trivial lower
bounds on the running time complexities of the existing methods.

Suppose that {Cy, Cy, ..., Cy(} is a hypercube grid partitioning of S (as shown in Figure 4)
such that samples from p; can be simulated using any of the existing perfect sampling algorithms,
such as the dCFTP (see Section 5 for the definition of w;). For each i =1,2,...,n(r), let N;
be the number of cells C;, j # i, such that Dist(C;, C;) < 2r; these N; cells are referred as
neighboring cells of the cell C;. Theorem 6.1 below establishes that if the volume of each cell is
chosen to be of order r and the N;’s are uniformly bounded for all r, then there exist a constant
i such that for all ko < i, the expected number of iterations the PRS algorithm takes to generate
a perfect sample is O (log(1/7)). Observe that for the hypercube grid partition of Section 5.1,
N; is bounded by a constant uniformly and % <24 for all r and i. Hence the conditions in
Theorem 6.1 hold.

As mentioned in Guo, Jerrum and Liu [14], an interesting feature of the PRS algorithm is that
it is distributive. In particular, if we assume that each cell i is associated with a processor that
can generate samples from p; and can communicate with all the N; neighboring cells within
a constant time, then with the help of another processor as a top-node that can communicate
with all the n(r) cell processors, the expected running time complexity of each iteration of the
algorithm can be reduced to O(1); see the proof of Theorem 6.1. In that case, the expected
running time complexity of the PRS algorithm is simply of the order of the expected number of
iterations, which is O (log(1/r)). See, for example, Feng and Yin [8], Feng, Sun and Yin [7] for
recent works on distributed sampling.
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Theorem 6.1. Suppose that there exists constants a,b > 0 such that for all i = 1,...,n(r),
N; <a and
Vol(C;
°(d D b forallr. 6.1)
’

Then there exists k > 0 such that for all ky < k, we have:

(1) the expected number of iterations of the PRS algorithm using hypercube grid is
O (log(1/r)),
(i) the expected running time complexity of the algorithm is O(rid log(1/r)), and
(iii) if the implementation of the algorithm is distributive then the expected running time com-
plexity is O(log(1/r)).

Proof. The expected number of points generated under p within cell i is «Vol(C;), which can
be upper bounded by (kgb) /vy, under the assumption (6.1). Since the bound is independent of r,
for any given «, the running time complexity of generating a sample from u; is O(1), for all i,
using any standard perfect sampling algorithm; see Chapter 7 of Huber [16]. We first show that
both p and g go to zero as k¢ goes to zero, and then we prove (i) — (iii) as a consequence of
4.1).

Since N; < a for all r and i, the total number of nodes | V| of the dependency graph is of
order n(r) and the maximum degree A is uniformly bounded for all 7. The lower bound in (6.1)
implies that n(r) is of order 1/r¢. For any {i, j} € V, occurrence of the event B;, ;j implies that
both the cells i and j have nonempty configurations. Since u; < p;, from the definition of Gibbs
process, the probability of cell i has an empty configuration is

P,o(Xc, = @) = exp(—kVol(C)))/ Zi,

where Z- = E,[exp(-U(X(;))] = E, [exp(—U(X))]. Observe that for any w € €, if either
X¢, =@ orXc; = thenw e Bﬁf Hence,

p < {_m_?exv Pye(Xc, # < and X¢; # 9)
L]

= max [Pye(Xc; # 2)Pue(Xc, # 9)]

(i.jlev
= {m?xv[(l — exp(—«Vol(C))/Z;) (1 — exp(—«Vol(C)))/ Z;)]
i,j}e
< {_m_?xv[(l — exp(—«Vol(C}))) (1 — exp(—«Vol(C))))]. (6.2)
i,j}€

where the last inequality holds because Z; <1foralli. Using (6.1), we write that

(=el=2))
p=|\l—exp{——]) -
Vd

Therefore, p goes to zero as kg goes to zero.



Fartial rejection sampling for Gibbs point processes 2097

Recall from the definition that the event A, , holds true if the partial assignment on Z (1) NZ(v)
can be extended to make B, true. Also recall that if {u, v} € E, there exists i, j and k such that
u ={i, k} and v = {j, k}, and thus, Z(«) N Z(v) = {k}. This implies that the event A, , can not
occur if the common cell k is empty. Thus,

PLo(Avu) < (1 —exp(—Vol(Cy))/ Zx)
< (1 — exp(—«Vol(Cp)))

b
<1 —exp(—"vL) (6.3)
d

As a consequence g <1 — exp(—%), which goes to zero as kp goes to zero.

Since the maximum degree A of the dependency graph does not change with the value of kg,
there exists a constant « such that 6epA2 < 1and3eqA <1 forall kg < «.From (4.1), within an
order of log | V| iterations the expected number of bad events is less than 1. Since |V | is O(1/r%),
the expected number of iterations of the PRS algorithm is O (log(1/7)). This proves (i).

Furthermore, since the number of random objects resampled at iteration ¢ of the algorithm is
|Res; |, the expected running time of the algorithm is of order ), |Res;|, which is less than
[V|/p, by (4.1). Hence (ii) is established.

To prove (iii), recall that for parallel computation, each cell C; is associated with a processor
unit that can communicate with all the N; neighboring cells and there is another processor acting
as a top-node to communicate in parallel with all n(r) processors associated with the cells. At
the beginning of the algorithm, with the help of the top-node, all the cell processors can run
in parallel to generate a fresh copy of initial state {X¢,,i =1,...,n(r), and U; ;, {i, j} € V},
where X¢;, ~ u;, i =1,...,n(r), and U; ; ~ Unif(0, 1), {i, j} € V. Then the bad events can
be identified by making the cell processors interact in parallel with their respective neighbors.
Hence the expected running time complexity of the initialization of the algorithm is O(1). In each
iteration of the algorithm the top-node can run a breadth-first search algorithm starting from bad
events to identify the resampling cells Z(Res). The top-node executes the breadth-first search
algorithm in a sequence of steps where each step has O (1) expected running time complexity.
In the first step, in parallel all the cells correspond to the bad events and their neighboring cells
are labelled as resampling cells. In every step after that, labeling of all the unlabeled neighboring
cells of the resampling cells can be done in parallel. This labeling continues until no new cells
are labeled as resampling.

Now we show that the expected number of steps in the breadth-first search is maximum for the
first iteration of the algorithm. To see this, let Xgl) be the point configuration on the cell C;, i =

1,...,n(r)} at the beginning of the ¢ jteration and RC,_1 be the set of cells labelled as resam-
pling cells at the end of the (¢t — 1)”’ iteration. Further, let RC,_; ={1,...,n(r)} \ RC;_1. Then
it is easy to see that {X(é) :i € RC;_1} is a fresh sample from the product measure HieRcH Wis
and on the other hand, {X(Ctl) :i € RC,_1} is a realization of the desired Gibbs process restricted to
the cells C; 17 € {1,.....n(r)} \ RC;_;. Hence the distribution of {X{ :i € RG,_y} is absolutely
continuous with respect to the product measure [ |, cRC,_, Mi- Therefore, from the definition of

Gibbs process, we can argue that there exists a point process {X¢; :i = 1,...,n(r)} ~ u® such



2098 S.B. Moka and D.P. Kroese

that X(Cl',) - )NKC,. for each i = 1,...,n(r). Using this observation, as a consequence of the fact
that the initial configuration {Xg) :i=1,...,n(r)}is distributed as 1 ®, the expected number of

steps in the breadth-first search is higher for the first iteration.

Now we show that the expected number of steps in the breadth-first search for the first iteration
is O(1). Note that X(Ol), cees Xg)n)(r) are i.i.d. and the probability of X(Col_) # & is upper bounded
by ¢ := 1 — exp(—«xob/vy), as shown earlier in this proof. Note that for each cell, the number
of neighboring cells is at most a. At any step of the breadth-first search, for each resampling
cell, on average at most ga neighboring cells are added to the resampling set. Because of the
parallel computation, if we show that for each resampling cell added in the first step, if the
expected number of cells that will be eventually labeled as resampling cells is bounded by a
constant independent of », then we can conclude that the expected running time of each iteration
is O(1). This is true when ga < 1, because for each resampling cell at the first step of breadth-

first search, the expected number of cells that will be eventually labeled as resampling cells is
bounded by

a[l+ga[l +gall+---1]].

We complete the proof by stating that there exists & > 0 such that g < 1/a for all ko < . ]

6.1. Comparison with well-known existing methods

In this subsection, we consider two well-known methods, namely, the naive rejection sampling
and the dCFTP methods, and establish lower bounds on their expected running time complexi-
ties.

Naive rejection method: For a Gibbs process of the form (3.1), the naive rejection sam-
pling method repeatedly simulates a sample X from p until it is accepted. The last sample has
the target distribution . The acceptance probability at each iteration is Z = E,[exp(—U (X))],
and thus the expected number of iterations is 1/Z. Since the expected number of points gener-
ated in each iteration is « (because p is k-homogeneous), the expected running time of the naive
algorithm is proportional to x /Z. Below, we use a standard argument to show that «/Z increases
faster than an exponential function as r decreases to 0.

Consider the hypercube grid partitioning of Section 5.1. Note that each cell is at most as big
as a cube with the edge length 2r and the number of cells n(r) is at least [1/2r]. Therefore,
by ignoring the cross correlations between the cells and using the fact that there are at least
(n(r) —2)4 hypercube cells, we obtain

(n(r)—2)¢

7 < l_[ E,[exp(-U(Xc,))]

i=1

L4 yd

= (B fexp(-UXe))) 7

1—4r\d
= g(Tr) s
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where C =[0,2r]¢, e = E,lexp(—=U(Xc))], and the inequalities hold because n(r) > 1/2r and
e <l.

Since for any fixed ko > 0, the value of ¢ is strictly less than 1 and does not depend on r
(because ¢ is the same if C = [0, 1]‘1, p is the distribution of (2d ko/Va)-homogeneous PPP on
C, and the interaction range of the potential function / is 1). By using the value of « and the
upper bound on Z, we obtain a lower bound on the expected running time complexity «/Z, given
by

1—4r\d
K - KQ 1\
Z ~ \vyrd e ’

which increases faster than an exponential function, as r goes to 0.

Dominated CFTP: In order to establish a lower bound on the expected running time of
a dominated CFTP method, we first briefly state the general description of the method (for a de-
tailed description, we refer the reader to, e.g., Kendall and Mgller [19]). Let D = {D(¢) : t € R} be
the (free) birth-and-death process on S = [0, 1] with birth rate «, where each birth is a (marked)
point uniformly and independently selected on S and alive for a random time exponentially dis-
tributed with mean one. It is not difficult to show that the steady-state distribution of D is p.
Since the target Gibbs distribution u < p, using coupling, it is possible to construct a process
Z = {Z(t) : t € R} such that Z(t) C D(¢) for all € R and the steady-state distribution of Z is
. Any dCFTP method consists of two steps: (i) constructing the dominating spatial birth-and-
death process {D(¢) : —s <t < 0} backward in time, for some s > 0, starting at time zero with
D(0) ~ p, and (ii) use thinning on the dominating process to obtain an upper bounding process
{Us(?) : t = —s} with Ug(—s) = D(—s) and a lower bounding process {L(¢) : t > —s} with
L;(—s) = @, forward in time such that the condition

Ls(1) CZ(1) S Us (1) D)

is guarantee to hold for all r > —s. If Uy and Ly coalescence at time 0, that is, Us(0) = L (0),
then U, (0) is a perfect sample from the target distribution w. If there is no coalescence, then in
the next iteration, increase s and extend the dominating process further backward to time —s and
repeat the same procedure.

The criteria for thinning depends on the definition of the target distribution. However, the
dominating process depends only on p. Let T be the backward coalescence time given by

T :=min{s > 0:L,(0) = U5 (0)}.

The running time complexity of a dCFTP method is at least of order of the number of computa-
tions needed to construct the dominating process {D(¢) : —7 <t <0}. Let

Ty = {t > 0: none of the points in D(—s) are alive at —s + .
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Since the dominating process D is time-reversible and D(0) ~ p, we have D(—s) ~ p for all
s > 0. Hence, the distribution of 7y does not depend on s.

Since Ug(—s) = D(—s) and L;(—s) = &, if a point of D(—s) is alive at time 0, then U (0) #

L;(0). Therefore, Ty > s implies that T > s, and thus s is at least 7 for the coalescence to
happen. As a consequence, the expected running time complexity of any dCFTP algorithm is
at least of order of the expected number of births in D that are generated during an interval of
length E[T;], which is «E[T] because the births in the dominating process are Poisson with
rate k.

Further, recall that each birth is alive for a random time independently and exponentially dis-
tributed with mean one. Conditioned on |D(—s)| = m, Ty is the maximum of m i.i.d. mean one
exponential random variables. Since |D(—s)| ~ Poi(k) for all s, we have

m

T]_Ze_" E[T; | [D(~s)| =m]

> 3 e ; E[Ty | |D(—s)| =m]

m=>k/2

o0 Km
> e —H(m),
m!

m>k/2

where H(m) =)_7" 1 1 is the m™ harmonic number. Using the fact that H (m) > logm for all
m>1,

E[Ty] = log(k/2)P(|D(~$)| = k/2).

From Chernoff bound on the tail probabilities of Poisson distribution, there exists a constant a >
0 such that P(ID(—s)| > x/2) = 1 — exp(—ax), for all values of k. In conclusion, the expected
running time complexity of any dCFTP algorithm is at least of order of « log x, which is of order
of ,Ld log(%) for any «y.

7. Simulations

In this section, we take S = [0, 1]* and apply Algorithm 2 to generate perfect samples of PSM
model, hard-core process and Strauss process. We ignore the case of area-interaction process
as the implementation is similar to that of PSM model and expected to have same order of
complexity.

We estimate the expected number of iterations of the algorithm for different values of the
model parameters. As long as the samples on each cell are perfect, the reported results are the
same for any choice of existing method to generate samples from w;’s. The following simulation
results are obtained using Python programming, and the corresponding codes are available at
https://github.com/saratmoka/PRS_with_ DCFTP
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Figure 5. Expected number of iterations of Algorithm 2 for PSM model as functions of K (panel (a)) and
log(K) (panel (b)).

PSM model: Consider the PSM model with the interaction range 2r = 1/K for some
K > 1. We take the intensities of type-1 and type-2 points to be K(()l) /(r?) and Ké2) /(r?),
respectively. Figure 5 plots the estimated expected number of iterations of the algorithm as a
function of K. Perfect samples from p; on each cell i are generated using the dCFTP method
by Kendall [18]. Observe that, the expected number of iterations of the algorithm seems to be
O(log(1/7)) as shown in Theorem 6.1 for small values of ko = Kél) + /céz); see Figure 5(b).

Hard-core and Strauss processes: Consider the Strauss process. Suppose that the inten-
sity of the reference PPP is k = «p/ (vgr?). Recall that the Strauss process is a hard-core process
if y = 0. The panels (a), (b) and (c) in Figure 6 correspond to kq is equal to 0.1, 0.2 and 0.25, re-
spectively. Each panel has two curves correspond to y = 0 (i.e., hard-core process) and y = 0.5.
Each curve denotes the estimated expected number of iterations of the algorithm as a function of
K, when the interaction range 2r = 1/K. Perfect samples from p; on each cell i are generated
using the dCFTP method by Huber [15]. Again observe that, the expected number of iterations
of the algorithm seems to be O(log(1/r)); see Figures 6(d) and 6(e). These results suggest that
i in Theorem 6.1 can be at least 0.25.

Figure 6(f) corresponds a hard-core process with the interaction range 2r = 0.01, and it com-
pares the expected number of iterations of the new algorithm with that of the method proposed
by Guo and Jerrum [13], for different values of x¢. The complexity of Algorithm 2 is slightly
higher than that of Guo and Jerrum [13]. However, as mentioned earlier, the algorithm of Guo
and Jerrum [13] is restricted to hard-core processes, whereas the new algorithm can be applied
to more general Gibbs processes.
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Figure 6. For panels (a)—(c) (respectively, (d)—(e)), the expected number of iterations of Algorithm 2 is
plotted as a function of K (resp., as a function of log(K)) for the Strauss process with the interaction range
2r = 1/K. Panel (f) compares the expected number of iterations of Algorithm 2 with that of the algorithm
of Guo and Jerrum [13] for a hard-core model with the interaction range 2r = 0.01.
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8. Conclusion

In this paper, we considered the problem of perfect sampling for Gibbs point processes with a
finite interaction range 2r, defined on § € R?. We proposed a new perfect sampling algorithm by
combining the existing perfect sampling methods and the partial rejection sampling proposed by
Guo, Jerrum and Liu [14]. For pairwise interaction processes, penetrable spheres mixture models
and area-interaction processes that are absolutely continuous with respect to a x-homogeneous
Poisson point process on S = [0, 1]¢, we showed that if k = k¢/(v4r?), the proposed algorithm
can be implemented with the expected running time complexity of O (log(1/r)) as r goes to 0O,
for sufficiently small values of . We illustrated our findings using several simulation results.
From these simulations, we notice that the value of ¢ can be at least 0.25 for Strauss processes.
However, at this stage, we do not have a theoretical justification to support this claim, and we
would like to address this in future research.
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