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Langevin diffusion processes and their discretizations are often used for sampling from a target density. The
most convenient framework for assessing the quality of such a sampling scheme corresponds to smooth and
strongly log-concave densities defined on R

p . The present work focuses on this framework and studies the
behavior of the Monte Carlo algorithm based on discretizations of the kinetic Langevin diffusion. We first
prove the geometric mixing property of the kinetic Langevin diffusion with a mixing rate that is optimal in
terms of its dependence on the condition number. We then use this result for obtaining improved guarantees
of sampling using the kinetic Langevin Monte Carlo method, when the quality of sampling is measured by
the Wasserstein distance. We also consider the situation where the Hessian of the log-density of the target
distribution is Lipschitz-continuous. In this case, we introduce a new discretization of the kinetic Langevin
diffusion and prove that this leads to a substantial improvement of the upper bound on the sampling error
measured in Wasserstein distance.

Keywords: Hamiltonian Monte Carlo; kinetic Langevin; Langevin algorithm; Markov Chain Monte Carlo;
mixing rate

1. Introduction

Markov processes and, more particularly, diffusion processes are often used in order to solve
the problem of sampling from a given density π . This problem can be formulated as follows.
Assume that we are able to generate an arbitrary number of independent standard Gaussian ran-
dom variables ξ1, . . . , ξK . For a given precision level ε > 0 and a given metric d on the space
of probability measures, the goal is to devise a function Fε such that the distribution νK of the
random variable ϑK = Fε(ξ1, . . . , ξK) satisfies d(νK,π) ≤ ε. For solving this task, it is often
assumed that we can have access to the evaluations of the probability density function of π as
well as its derivatives. Among different functions Fε having the aforementioned property, the
most interesting are those that require the smallest number of computations.

Markov Chain Monte Carlo methods hinge on random variables ϑK and associated functions
Fε defined by recursion ϑk = Gε(ϑk−1, ξk), k = 1, . . . ,K , where Gε is some function of two
arguments. For a given target distribution π , if one succeeds to design a function Gε such that the
Markov process {ϑk; k ∈ N} is ergodic with invariant density π then, for large K , the distribution
of ϑK will be close to π . Therefore, if the evaluation of Gε involves only simple operations,
we get a solution of the task of approximate sampling from π . Of course, it is important to
address the problem of the choice of the number of iterations K ensuring that the sampling error
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is smaller than ε. However, it is even more important to be able to design functions Gε , often
referred to as the update rule, with desired properties presented above.

Discretization of continuous-time Markov processes is a successful generic method for defin-
ing update rules. The idea is to start by specifying a continuous-time Markov process, {Lt :
t ≥ 0}, which is provably positive recurrent and has the target π as invariant distribution.1 The
second step is to set-up a suitable time-discretization of the continuous-time process. More pre-
cisely, since {Lt } is a Markov process, for any step-size h > 0, there is a mapping G such that

Lkh
D= G(L(k−1)h, ξk), k = 1, . . . ,K , where ξk is a standard Gaussian random variable indepen-

dent of L(k−1)h. This mapping G might not be available in a closed form. Therefore, the last step
is to approximate G by a tractable mapping Gε . Langevin diffusions are a class of continuous-
time Markov processes for which the invariant density is available in closed form. For this reason,
they are suitable candidates for applying the generic approach of the previous paragraph.

Let m and M be two positive constants such that m ≤ M . Throughout this work, we will as-
sume that the target distribution π has a density with respect to the Lebesgue measure on R

p ,
which is of the form π(θ) = Ce−f (θ) for a function f that is m-strongly convex and with a
M-Lipschitz gradient. The (highly overdamped) Langevin diffusion having π as invariant distri-
bution is defined as a strong solution to the stochastic differential equation

dLt = −∇f (Lt ) dt + √
2dW t , t ≥ 0, (1)

where W is a p-dimensional standard Brownian motion. The update rule associated to this pro-
cess, obtained by using the Euler discretization, is given by the equation Gε(L(k−1)h, ξ k) =
−h∇f (L(k−1)h) + √

2h ξ k with ξ k
D= h−1/2(W kh − W (k−1)h) being a p-dimension standard

Gaussian vector. The resulting approximate sampling method is often called the Langevin Monte
Carlo (LMC) or Unadjusted Langevin Algorithm (ULA). Its update rule follows from (1) by re-
placing the function t �→ ∇f (Lt ) by its piecewise constant approximation. Therefore, the behav-
ior of the LMC is governed by the following two characteristics of the continuous-time process:
the mixing rate and the smoothness of the sample paths. A quantitative bound on the mixing
rate allows us to choose a time horizon T such that the distribution of the random vector LT is
within a distance ε/2 of the target distribution, whereas the smoothness of sample paths helps us
to design a step-size h so that the distribution of the discretized process at K = T/h is within
a distance ε/2 of the distribution of LT . For the LMC, we know that the Langevin diffusion
mixes exponentially fast with the precise rate e−mt . In addition, almost all sample paths of L
are Hölder continuous of degree α, for every α < 1/2. Combining these properties, it has been
shown that it suffices Kε = O((p/ε2) log(p/ε2)) iterations for the LMC algorithm to achieve
an error smaller than ε (both in total-variation and Wasserstein distances); see (Dalalyan [15])
for the first nonasymptotic result of this type and (Dalalyan and Karagulyan [16], Durmus and
Moulines [22,23]) for improved versions of it.

Under the same assumptions on the log-target f , one can consider the kinetic Langevin diffu-
sion, also known as the second-order Langevin process, defined by

d

[
V t

Lt

]
=

[−(
γV t + u∇f (Lt )

)
V t

]
dt + √

2γ u

[
Ip

0p×p

]
dW t , t ≥ 0, (2)

1More generally, one can consider a Markov process having an invariant distribution that is close to π .
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where γ > 0 is the friction coefficient and u > 0 is the inverse mass. As proved in (Nelson
[32], Theorem 10.1), the highly overdamped Langevin diffusion (1) is obtained as a limit of the
rescaled kinetic diffusion L̄t = Lγ t , where L is defined as in (2) with u = 1, when the friction
coefficient γ tends to infinity.

The continuous-time Markov process (Lt ,V t ) is positive recurrent and its invariant distribu-
tion is absolutely continuous with respect to the Lebesgue measure on R

2p . The corresponding
invariant density is given by

p∗(θ ,v) ∝ exp

{
−f (θ) − 1

2u
‖v‖2

2

}
, θ ∈R

p,v ∈R
p.

This means that under the invariant distribution, the components L and V are independent, L is
distributed according to the target π , whereas V /

√
u is a standard Gaussian vector. Therefore,

one can use this process for solving the problem of sampling from π . As discussed above, the
quality of the resulting sampler will depend on two key properties of the process: rate of mixing
and smoothness of sample paths. The rate of mixing of kinetic diffusions has been recently
studied by Eberle et al. [25] under conditions that are more general than strong convexity of
f . In strongly convex case, a more tractable result has been obtained by Cheng et al. [12]. It
establishes that for γ = 2 and u = 1/M , the mixing rate in the Wasserstein distance is e−(m/2M)t ;
see Theorem 5 in (Cheng et al. [12]). On the other hand, sample paths of the process {L} defined
in (2) are smooth of order 1 +α, for every α ∈ [0,1/2[. Combining these two properties, (Cheng
et al. [12]) prove that a suitable discretization of (2) leads to a sampler that achieves an error
smaller than ε in a number of iterations K satisfying K = O((p/ε2)1/2 log(p/ε)).

It follows from the discussion of previous paragraphs that the kinetic LMC based on (2) con-
verges faster than the standard LMC based on (1). Furthermore, this improved rate of conver-
gence is mainly due to the higher smoothness of sample paths of the underlying Markov process.
The main purpose of the present work is to pursue the investigation of the kinetic Langevin
Monte Carlo (KLMC) initiated in (Cheng et al. [12]) by addressing the following questions:

Q1. What is the rate of mixing of the continuous-time kinetic Langevin diffusion for general
values of the parameters u and γ ?

Q2. Is it possible to improve the rate of convergence of the KLMC by optimizing it over the
choice of u, γ and the step-size?

Q3. If the function f happens to have a Lipschitz-continuous Hessian, is it possible to devise
a discretization that takes advantage of this additional smoothness and leads to improved
rates of convergence?

The rest of the paper is devoted to answering these questions. The rate of mixing for
the continuous-time process is discussed in Section 2. In a nutshell, we show that if γ ≥√

(M + m)u, then the rate of mixing is at least of order e−(um/γ )t . Nonasymptotic guarantees
for the KLMC algorithm are stated and discussed in Section 3. They are in the same spirit as
those established in (Cheng et al. [12]), but have an improved dependence on the condition num-
ber, the ratio of the Lipschitz constant M and the strong convexity constant m. Our result has
also improved constants and is much less sensitive to the choice of the initial distribution. These
improvements are achieved thanks to a more careful analysis of the discretization error of the
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Langevin process. Finally, we present in Section 4 a new discretization, termed second-order
KLMC, of the kinetic Langevin diffusion that exploits the knowledge of the Hessian of f . Its
error, measured in the Wasserstein distance W2 is shown to be bounded by ε for a number of iter-
ations that scales as (p/ε)1/2. Thus, we get an improvement of order (1/ε)1/2 over the first-order
KLMC algorithm.

2. Mixing rate of the kinetic Langevin diffusion

Let us denote by PL
t the transition probability at time t of the kinetic diffusion L defined by (2).

This means that PL
t is a Markov kernel given by PL

t ((x,v),B) = P(Lt ∈ B|V 0 = v,L0 = x),
for every v,x ∈ R

p and any Borel set B ⊂ R
p . For any probability distribution μ on R

p × R
p ,

we denote μPL
t the (unconditional) distribution of the random variable Lt when the starting

distribution of the process (V ,L) is μ (i.e., when (V ,L0) ∼ μ).
Since the process (V ,L) is ergodic, whatever the initial distribution, for large values of t the

distribution of Lt is close to the invariant distribution. We want to quantify how fast does this
convergence occur. Furthermore, we are interested in a nonasymptotic result in the Wasserstein–
Kantorovich distance W2, valid for a large set of possible values (γ,u).

A first observation is that, without loss of generality, we can focus our attention to the case
u = 1. This is made formal in the next lemma.

Lemma 1. Let (V ,L) be the kinetic Langevin diffusion defined by (2). The modified process
(V̄ t , L̄t ) = (u−1/2V t/

√
u,Lt/

√
u) is an kinetic Langevin diffusion as well with associated param-

eters γ̄ = γ /
√

u and ū = 1.

The proof of this result is straightforward and, therefore, is omitted. Note that it shows that the
parameter u merely represents a time scale (the speed of running over the path of the process L).
Therefore, in the rest of this paper, we will consider the parameter u to be equal to 1.

Theorem 1. Assume that the function f is twice differentiable with a Hessian matrix ∇2f satis-
fying mIp � ∇2f (x) � MIp for every x ∈ R

p . Let μ1, μ2 and μ′
2 be three probability measures

on R
p . Let us define the product measures μ = μ1 ⊗ μ2 and μ′ = μ1 ⊗ μ′

2. For every γ, t > 0,
there exist numbers α ≤ √

2/γ and β ≥ {m ∧ (γ 2 − M)}/γ such that

W2
(
μPL

t ,μ′PL
t

) ≤ αe−βtW2
(
μ,μ′). (3)

More precisely, for every v ∈ [0, γ /2[, we have2

W2
(
μPL

t ,μ′PL
t

) ≤
√

2((γ − v)2 + v2)

γ − 2v
exp

{
(v2 − m) ∨ (M − (γ − v)2)

γ − 2v
t

}
W2

(
μ,μ′). (4)

2One can observe that (3) can be deduced from (4) by taking v = 0.
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Table 1. Lower bounds on the rates of contraction of the distribution of the kinetic Langevin diffusion Lt

for u = 1 and varying γ . The reported values are obtained by optimizing the bound in Theorem 1 with
respect to v. In the overdamped case γ 2 ≥ 3m + M , the obtained rates coincide with those that can be
directly computed for quadratic functions f and, therefore, are optimal

γ 2 ∈ ]0,M] ]M,m + M] [m + M,3m + M[ [3m + M,+∞[

Rate of contraction, β NA γ 2−M
γ

γ
2 − M−m

2
√

2(m+M)−γ 2

γ−√
γ 2−4m
2

Obtained by Theorem 1 with – v = 0 v = γ−√
2(m+M)−γ 2

2 v = γ−√
γ 2−4m
2

The proof of this result is postponed to Section 7. Here, we will discuss some consequences
of it and present the main ingredient of the proof. First of all, note that this result implies that for
γ 2 > 2 ∨ M , the operator PL

t is a contraction. The rate of this contraction is characterized by the
parameter β . If we optimize the exponent in (4) with respect to v, we get the lower bounds on
the rates of contraction reported in Table 1.

If we consider the case γ = 2
√

Mu = 2
√

M previously studied in (Cheng et al. [12]), then the
best lower bound on the contraction rate provided by (4) corresponds to v = √

M − √
M − m,

and the upper bound of Theorem 1 reads as

W2
(
μPL

t ,μ′PL
t

) ≤
(

2M − m

M − m

)1/2

exp
{−(

√
M − √

M − m)t
}
W2

(
μ,μ′). (5)

One can check that the constant
√

M −√
M − m that we obtain within the exponential is optimal,

in the sense that one gets exactly this constant in the case where f is the bivariate quadratic
function f (x1, x2) = (m/2)x2

1 + (M/2)x2
2 . This constant is slightly better than the one obtained

in (Cheng et al. [12], Lemma 8) for the particular choice of the time scale u = 1/M . Indeed, if we
rewrite the two results in the common time-scale u = 1, (Cheng et al. [12], Lemma 8) provides
the contraction rate β = m/(2

√
M), which is smaller than (but asymptotically equivalent to)√

M − √
M − m.

Another relevant consequence is obtained by instantiating (3) to the case γ ≥ √
M + m. This

leads to the bound

γ ≥ √
M + m =⇒ W2

(
μPL

t ,μ′PL
t

) ≤ √
2 exp

{−(m/γ )t
}
W2

(
μ,μ′).

An appealing feature of this result is that we can optimize the argument of the exponent with
respect to γ for fixed t . The corresponding optimized constant is m/

√
M + m, which improves

on the constant obtained in (5) for γ = 2
√

M . When M/m becomes large, the improvement
factor gets close to 2.

We now describe the main steps of the proof of Theorem 1. The main idea is to consider along
with the process (V ,L), another process (V ′,L′) that satisfies the same SDE (2) as (V ,L), with
the same Brownian motion but with different initial conditions. One easily checks that

d

[
V t − V ′

t

Lt − L′
t

]
=

[−(
γ
(
V t − V ′

t

) + ∇f (Lt ) − ∇f
(
L′

t

))
V t − V ′

t

]
dt, t ≥ 0. (6)
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Using the mean value theorem, we infer that for a suitable symmetric matrix Ht , we have
∇f (Lt ) − ∇f (L′

t ) = Ht (Lt − L′
t ). Furthermore, Ht being the Hessian of a strongly convex

function satisfies Ht � mIp . Then (6) can be rewritten as

d

dt

[
V t − V ′

t

Lt − L′
t

]
=

[−γ Ip −Ht

Ip 0p×p

][
V t − V ′

t

Lt − L′
t

]
, t ≥ 0. (7)

In a small neighborhood of any fixed time instance t0, (7) is close to a linear differential equation
with the associated matrix

M(t0) =
[−γ Ip −Ht0

Ip 0p×p

]
.

It is well known that the solution of such a differential equation will tend to zero if and only if
the real parts of all the eigenvalues of M(t0) are negative. The matrix M(t0) is not symmetric; it
is in most cases diagonalizable but its eigenvectors generally depend on t0. To circumvent this
difficulty, we determine the transformations diagonalizing the surrogate matrix

M =
[−γ Ip −v2Ip

Ip 0p×p

]
, for some v ∈ [0, γ /2[.

This yields an invertible matrix P such that P−1MP is diagonal. We can thus rewrite (7) in the
form

d

dt
P−1

[
V t − V ′

t

Lt − L′
t

]
= {

P−1M(t)P
}
P−1

[
V t − V ′

t

Lt − L′
t

]
, t ≥ 0.

Interestingly, we prove that the quadratic form associated with the matrix P−1M(t)P is negative
definite and this provides the desired result. Furthermore, we use this same matrix P (correspond-
ing to v = 0) for analyzing the discretized version of the kinetic Langevin diffusion and proving
the main result of the next section.

3. Error bound for the KLMC in Wasserstein distance

Let us start this section by recalling the KLMC algorithm, the sampler derived from a suitable
time-discretization of the kinetic diffusion, introduced by Cheng et al. [12]. Let us define the
sequence of functions ψk by ψ0(t) = e−γ t and ψk+1(t) = ∫ t

0 ψk(s) ds. Recall that f is assumed
twice differentiable and, without loss of generality, the parameter u is assumed to be equal to
one. The discretization involves a step-size h > 0 and is defined by the following recursion:[

vk+1

ϑk+1

]
=

[
ψ0(h)vk − ψ1(h)∇f (ϑk)

ϑk + ψ1(h)vk − ψ2(h)∇f (ϑk)

]
+ √

2γ

[
ξ k+1

ξ ′
k+1

]
, (8)

where (ξ k+1, ξ
′
k+1) is a 2p-dimensional centered Gaussian vector satisfying the following con-

ditions:
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• (ξ j , ξ
′
j )’s are iid and independent of the initial condition (v0,ϑ0),

• for any fixed j , the random vectors ((ξ j )1, (ξ
′
j )1), ((ξ j )2, (ξ

′
j )2), . . ., ((ξ j )p, (ξ ′

j )p) are iid
with the covariance matrix

C =
∫ h

0

[
ψ0(t)ψ1(t)

]�[
ψ0(t)ψ1(t)

]
dt.

This recursion may appear surprising, but one can check that it is obtained by first replacing
in (2), on each time interval t ∈ [kh, (k + 1)h], the gradient ∇f (Lt ) by ∇f (Lkh), by renaming
(V kh,Lkh) into (vk,ϑk) and by explicitly solving the obtained linear SDE (which leads to an
Ornstein–Uhlenbeck process). To the best of our knowledge, the algorithm (8), that we will
refer to as KLMC, has been first proposed by Cheng et al. [12]. The next result characterizes its
approximation properties.

Theorem 2. Assume that the function f is twice differentiable with a Hessian matrix ∇2f satis-
fying mIp � ∇2f (x) � MIp for every x ∈R

p . In addition, let the initial condition of the KLMC
algorithm be drawn from the product distribution μ = N (0p, Ip) ⊗ ν0. For every γ ≥ √

m + M

and h ≤ m/(4γM), the distribution νk of the kth iterate ϑk of the KLMC algorithm (8) satisfies

W2(νk,π) ≤ √
2

(
1 − 0.75mh

γ

)k

W2(ν0,π) + Mh
√

2p

m
.

The proof of this theorem, postponed to Section 8, is inspired by the proof in (Cheng et al.
[12]), but with a better control of the discretization error. This allows us to achieve the following
improvements as compared to aforementioned paper:

• The second term in the upper bound provided by Theorem 2 scales linearly as a function
of the condition number κ � M/m, whereas the corresponding term in (Cheng et al. [12])
scales as κ3/2.

• The impact of the initial distribution ν0 on the overall error of sampling appears only in
the first term, which is multiplied by a sequence that has an exponential decay in k. As
a consequence, if we denote by K the number of iterations sufficient for the error to be
smaller than a prescribed level ε, our result leads to an expression of K in which W2(ν0,π)

is within a logarithm. Recall that the expression of K in (Cheng et al. [12], Theorem 1)
scales linearly in W2(ν0,π).

• The numerical constants of Theorem 2 are much smaller than those of the corresponding
result in (Cheng et al. [12]).

In order to ease the comparison of our result to (Cheng et al. [12], Theorem 1), let us apply
Theorem 2 to

h = m

4M
√

m + M
∧ 0.94ε

κ
√

2p
(9)

and γ = √
m + M , which corresponds to the tightest upper bound furnished by our theorem.

Note that in (Cheng et al. [12]) it is implicitly assumed that p/ε2 is large enough so that the
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second term in the minimum appearing in (9) is smaller than the first term. From (9), we obtain
that3

KKLMC ≥
√

m + M

0.75m

(
4M

√
m + M

m
∨ κ

√
2p

0.94ε

)
log

(
24W2(ν0,π)

ε

)
(10)

iterations are sufficient for having W2(νK,π) ≤ ε. After some simplifications, we get

KKLMC ≥ 3κ3/2
{
(16κ) ∨ p

mε2

}1/2

log

(
24W2(ν0,π)

ε

)
. (11)

Remind that the corresponding result in (Cheng et al. [12]) requires K to satisfy4

K ≥ 52κ2
{

p

mε2

}1/2

log

(
24W2(ν0,π)

ε

)
.

Thus, the improvement in terms of the number of iterations we obtain is at least by a factor
17

√
κ, whenever κ ≤ p/(16mε2).

It is also helpful to compare the obtained result (11) to the analogous result for the highly over-
damped Langevin diffusion (Durmus and Moulines [23]). Using (Durmus et al. [21], equation
(22)), one can check that this is enough to choose an integer

KLMC ≥ 2κ

{
1 ∨ 2.18p

mε2

}
log

(
24W2(ν0,π)

ε

)
, (12)

such that KLMC iterations of the LMC algorithm are sufficient to arrive at an error bounded by
ε. Comparing (11) and (12), we see that the KLMC achieves a smaller error bound than LMC
when p/(mε2) is large as compared to the condition number κ. This is typically the case when
the dimension is high or a high precision approximation is required. The order of preference
is reversed when the condition number κ is large as compared to p/(mε2). Such a situation
corresponds to settings where the target log-density has a gradient that may increase very fast
(M is much larger than p/ε2). It is important to temper any comparison between the efficiency
of the two samplers since there were no lower bounds proven so far for LMC or KLMC. As an
important conclusion, we can note that none of these two methods is yet proven to be superior to
the other in full generality. The plot in Figure 1 illustrates this fact by showing in gray the regions
where the known bounds on LMC are better than those of KLMC.

4. Second-order KLMC and a bound on its error

In this section, we propose another discretization of the kinetic Langevin process, which is ap-
plicable when the function f is twice differentiable. We show below that this new discretization

3This value of K is obtained by choosing h and K so that the second term in the upper bound of Theorem 2 is equal to

(1 − √
2/24)ε whereas the first term is smaller than (

√
2/24)ε.

4This lower bound on K is obtained by replacing D2 � ‖θ0 − θ∗‖2 by 0 in (Cheng et al. [12], Theorem 1).
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Figure 1. This plot represents in the plane defined by coordinates (
√

p/mε2,κ) the regions where the best
known bound on LMC leads to a smaller error than the bound (11) established for KLMC (in gray). Please
note that the axes are in logarithmic scale.

leads to a provably better sampling error bound under the condition that the Hessian matrix of
f is Lipschitz-continuous with respect to the spectral norm. At any iteration k ∈ N, we define
Hk = ∇2f (ϑk) and[

vk+1
ϑk+1

]
=

[
ψ0(h)vk − ψ1(h)∇f (ϑk) − ϕ2(h)Hkvk

ϑk + ψ1(h)vk − ψ2(h)∇f (ϑk) − ϕ3(h)Hkvk

]

+ √
2γ

[
ξ

(1)
k+1 −Hkξ

(3)
k+1

ξ
(2)
k+1 −Hkξ

(4)
k+1

]
, (13)

where

• ψ0, ψ1, ψ2 are defined as in the beginning of the previous section,
• ϕk+1(t) = ∫ t

0 e−γ (t−s)ψk(s) ds for every t > 0,

• the 4p dimensional random vectors (ξ
(1)
k+1, ξ

(2)
k+1, ξ

(3)
k+1, ξ

(4)
k+1) are iid Gaussian with zero

mean,
• for any fixed j , the 4-dimensional random vectors ([(ξ (1)

j )1, (ξ
(2)
j )1, (ξ

(3)
j )1, (ξ

(4)
j )1], . . . ,

[(ξ (1)
j )p, (ξ

(2)
j )p, (ξ

(3)
j )p, (ξ

(4)
j )p]) are iid with the covariance matrix

C̄ =
∫ h

0

[
ψ0(t);ψ1(t);ϕ2(t);ϕ3(t)

]�[
ψ0(t);ψ1(t);ϕ2(t);ϕ3(t)

]
dt.

This definition is somewhat complicated, but it follows from an application of the second-order
Taylor approximation to the drift term of the kinetic Langevin diffusion.5 At this stage, one can
note that if the Hessian Hk is zero, then the update rule (13) boils down to the update rule of

5For more detailed explanations, see Section 9.1.
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the KLMC algorithm in (8). Iterating the update rule (13), we get a random variable that will be
henceforth called KLMC2 or second-order kinetic Langevin Monte-Carlo algorithm.

Theorem 3. Assume that, for some constants m,M,M2 > 0, the function f is m-strongly con-
vex, its gradient is M-Lipschitz and its Hessian is M2-Lipschitz for the spectral norm. In addi-
tion, let the initial condition of the second-order KLMC algorithm be drawn from the product
distribution μ0 =N (0p, Ip) ⊗ ν0. For every

γ ≥ √
m + M and h ≤ m

5γM
∧ m

4
√

5pM2
,

the distribution νk of the kth iterate ϑk of the second-order KLMC algorithm (13) satisfies

W2(νk,π) ≤ √
2

(
1 − mh

4γ

)k

W2(ν0,π) + 2h2M2p

m
+ h2M

√
2Mp

m
+ 8M

m
he

− m2

160M2
2 h2

.

Several important consequences can be drawn from this result. First, the value of the parameter
γ minimizing the right-hand side is its smallest possible value γ = √

m + M . Second, one can
note that the last term of the obtained upper bound is independent of dimension p and decreases
exponentially fast in 1/h. This term is in most cases negligible with respect to the other terms
involved in the upper bound. In particular, we deduce from this result that if the Lipschitz con-
stants M and M2 are bounded and the strong convexity constant m is bounded away from zero,
then the KLMC2 algorithm achieves the precision level ε after Kε iterations, with Kε being of
order

√
p/ε, up to a logarithmic factor. Finally, if we neglect the last term in the upper bound

of Theorem 3, and choose the parameters h and k so that the other terms are equal to ε/
√

4m,
we get that the number of iteration Kε to achieve an error ε/

√
m scales, up to a logarithmic

factor, as
√

M/(mhε) = √
pκ2

2 + √
p/εκ

5/4
2 , where κ2 = (M

2/3
2 + Mp−1/3)/m is a version of

the condition number taking into account the Hessian–Lipschitz assumption.
It is interesting to compare this result to the convergence result for the LMCO algorithm es-

tablished in (Dalalyan and Karagulyan [16]). We can note that the number of iterations that are
sufficient for the KLMC2 to achieve the error ε is much smaller than the corresponding number
for the LMCO:

√
p/ε versus p/ε. In addition, the KLMC2 algorithm does not need to compute

matrix exponentials neither to do matrix inversion. The most costly operations are that of com-
puting the products of the p × p Hessian and the vectors vk , ξ3

k+1 and ξ3
k+1. In most cases, the

complexity of these computations scales linearly in p. In addition, the computational complexity
of the Hessian-vector product is provably of the same order as that of evaluating the gradient; see
(Griewank [26]).

As a conclusion, to the best of our knowledge, the second-order KLMC algorithm provides
the best known upper bound on the 2-Wasserstein mixing time, in terms of its scaling

√
p/ε with

respect to the dimension p and the precision level ε, for a target density π having a log-density
that is concave and Hessian–Lipschitz.
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5. Related work

The idea of using the Langevin diffusion (see (Pavliotis [33]) for an introduction to this topic)
for approximating a random variable drawn from its invariant distribution is quite old and can be
traced back at least to (Roberts and Tweedie [38]). Since then, many papers focused on analyzing
the asymptotic behavior of the Langevin-based methods under various assumptions, see (Bou-
Rabee and Hairer [4], Douc et al. [20], Lamberton and Pagès [28,29], Pillai et al. [34], Roberts
and Rosenthal [36], Roberts and Stramer [37], Stramer and Tweedie [39,40], Xifara et al. [41])
and the references therein. Convergence to the invariant distribution for Langevin processes is
studied in (Desvillettes and Villani [17], Dolbeault et al. [19], Helffer and Nier [27]).

The coupling approach for obtaining rates of convergence to equilibrium for kinetic Langevin
diffusions was initiated by (Bolley et al. [3]). Nonasymptotic and computable bounds for this
convergence have been recently obtained in (Cheng et al. [11,12], Eberle et al. [25]). While
(Cheng et al. [12]) considers only the convex case, (Cheng et al. [11], Eberle et al. [25]) deal also
with nonconvexity. On the one hand, (Cheng et al. [11]) provide results only for a fixed value
of parameters (γ,u) = (2,1/M). On the other hand, if we instantiate results of (Eberle et al.
[25]) to the case of convex functions f , convergence to the invariant density is proved under the
condition γ 2 ≥ 30Mu. This is to be compared to the conditions of Theorem 1 that establishes
exponential convergence as soon as γ 2 > Mu.

Nonasymptotic bounds on the precision of the Langevin Monte Carlo under strong convex-
ity have been established in (Dalalyan [15]) and then extended and refined in a series of papers
(Bernton [2], Brosse et al. [6], Bubeck et al. [7], Cheng and Bartlett [10], Dalalyan [14], Dur-
mus et al. [21], Durmus and Moulines [22,23], Luu et al. [30]). Very recently, it was proved in
(Dwivedi et al. [24]) that applying a Metropolis–Hastings correction to the LMC leads to im-
proved dependence on the target precision ε of the number of gradient evaluations. The fact that
the discretized version of the kinetic Langevin diffusion may outperform its highly overdamped
counterpart was observed and quantified in (Cheng et al. [12]).

Previous work has also studied the precision of Langevin algorithms in the case when the gra-
dient evaluations are contaminated by some noise (Baker et al. [1], Chatterji et al. [8], Cheng
et al. [12], Dalalyan [14], Dalalyan and Karagulyan [16]) and the relation with stochastic op-
timization (Dieuleveut et al. [18], Raginsky et al. [35], Xu et al. [42], Zhang et al. [43]). The
kinetic Langevin Monte Carlo method has some similarities with the Hamiltonian Monte Carlo,
for which convergence to equilibrium has been recently studied by Bou-Rabee and Sanz-Serna
[5], Chen, and Vempala [9] and Mangoubi and Smith [31]. There are certainly many other papers
related to the present work that are not mentioned in this section. There is a vast literature on this
topic and it will be impossible to quote all the papers. We believe that the papers cited here and
the references therein provide a good overview of the state of the art.

6. Conclusion

In order to summarize the content of the previous sections, let us return, on by one, to the ques-
tions raised in the Introduction. First, concerning the mixing properties of the kinetic Langevin
diffusion for general values of u and γ , we have established that as soon as γ 2 > Mu, the process
mixes exponentially fast with a rate at least equal to {mu ∧ (γ 2 − Mu)}/γ . Therefore, for fixed
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Table 2. The order of magnitude of the known upper bounds on the number of steps of Langevin related
algorithms in the strongly convex case

1st-order LMC 1st-order KLMC 2nd-order KLMC

(Durmus and Moulines [23]) (Cheng et al. [12]) Theorem 3
(Dalalyan and Karagulyan [16]) and Theorem 2
p/ε

√
p/ε

√
p/ε

values of m, M and u, the nearly fastest rate of mixing is obtained for γ 2 = (m + M)u and is
equal to m/

√
m + M .

To answer the second question, we have seen that optimization with respect to γ and u leads to
improved constants but does not improve the rate. Indeed, the values of γ and u used in (Cheng
et al. [12]) (i.e., γ = 2 and u = 1/M , which in view of Lemma 1 are equivalent to γ = 2

√
M

and u = 1) lead to a bound on the number of iterates sufficient to achieve a precision ε that is
of the same order as the optimized one given in (10). Interestingly, our analysis revealed that not
only the numerical constants of the result in (Cheng et al. [12]) can be improved, but also the
dependence on the condition number κ = M/m can be made better. Indeed, we have managed
to replace the factor κ2 by κ

3/2. Such an improvement might have important consequences in
generalizing the results to the case of a convex function which is not strongly convex. This line
of research will be explored in a future work. Our bound exhibits also a better dependence on the
error of the first step: it is logarithmic in our result while it was linear in (Cheng et al. [12]).

Finally, we have given an affirmative answer to the third question. We have shown that lever-
aging second-order information may reduce the number of steps of the algorithm by a factor
proportional to 1/

√
ε, where ε is the target precision. In order to better situate this improvement

in the context of prior work, Table 2 reports the order of magnitude of the number of steps6 of
Langevin related algorithms in the strongly convex case.

7. Proof of the mixing rate

This section is devoted to proofs of the results stated in Section 2. Let L0, L′
0 and V 0 be three

p-dimensional random vectors defined on the same probability space such that

• V 0 is independent of (L0,L
′
0),• V 0 ∼ μ1, whereas L0 ∼ μ2 and L′

0 ∼ μ′
2,

• W 2
2 (μ2,μ

′
2) = E[‖L0 − L′

0‖2
2].

Let W be a Brownian motion on the same probability space. We define (V ,L) and (V ′,L′)
as kinetic Langevin diffusion processes driven by the same Brownian motion W and satisfying
the initial condition V ′

0 = V 0. From the definition of the Wasserstein distance, it follows that

W 2
2

(
μPL

t ,μ′PL
t

) ≤ E
[∥∥Lt − L′

t

∥∥2
2

]
.

6To ease the comparison, we consider κ as a fixed constant and do not report the dependence on κ in this table.



1968 A.S. Dalalyan and L. Riou-Durand

In view of this inequality, it suffices to find an appropriate upper bound on the right-hand side
of the last display, in order to prove Theorem 1. This upper bound is provided below in Proposi-
tion 1.

Proposition 1. Let V 0, L0 and L′
0 be random vectors in R

p . Let (V t ,Lt ) and (V ′
t ,L

′
t ) be

kinetic Langevin diffusions driven by the same Brownian motion and starting from (V 0,L0) and
(V 0,L

′
0), respectively. Let v be an arbitrary real number from [0, γ /2). We have for every t ≥ 0

∥∥Lt − L′
t

∥∥
2 ≤

√
2((γ − v)2 + v2)

γ − 2v
exp

{
(v2 − m) ∨ (M − (γ − v)2)

γ − 2v
t

}∥∥L0 − L′
0

∥∥
2.

Remark 1. As a consequence, we can see that for γ 2 ≥ 2(M + m) by setting

v = γ − √
γ 2 − 4m

2
≥ m

γ

we arrive at ∥∥Lt − L′
t

∥∥
2 ≤

(
2γ 2 − 4m

γ 2 − 4m

)1/2

e−vt
∥∥L0 − L′

0

∥∥
2, ∀t ≥ 0.

Proof. We will use the following short hand notation yt � (V t + aLt ) − (V ′
t + aL′

t ) and zt �
(−V t − bLt ) + V ′

t + bL′
t , where a and b are two positive numbers such that a + b = γ and

a > b. First, note that using Taylor’s theorem with the remainder term in integral form, we get

∇f (Lt ) − ∇f
(
L′

t

) = Ht

(
Lt − L′

t

)
with Ht �

∫ 1
0 ∇2f (Lt − x(Lt − L′

t )) dx. In view of this formula and the fact that (V ,L) and
(V ′,L′) satisfy the SDE (2), we obtain

d

dt
yt = −γ

(
V t − V ′

t

) − (∇f (Lt ) − ∇f
(
L′

t

)) + a
(
V t − V ′

t

)
= (a − γ )(byt + azt )

b − a
− Ht (yt + zt )

a − b

= (b2Ip − Ht )yt + (baIp − Ht )zt

a − b
.

In the above inequalities, we have used that a − γ = −b. Similar computations yield

d

dt
zt = γ

(
V t − V ′

t

) + (∇f (Lt ) − ∇f
(
L′

t

)) − b
(
V t − V ′

t

)
= (γ − b)(byt + azt )

b − a
+ Ht (yt + zt )

a − b

= (Ht − baIp)yt + (Ht − a2Ip)zt

a − b
.
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From these equations, we deduce that

d

dt

∥∥∥∥[
yt

zt

]∥∥∥∥2

2
= 2y�

t

dyt

dt
+ 2z�

t

dzt

dt

= 2

a − b

{
y�
t

(
b2Ip − Ht

)
yt + z�

t

(
Ht − a2Ip

)
zt

}
≤ 2

a − b

{(
b2 − m

)‖yt‖2
2 + (

M − a2)‖zt‖2
2

}
≤ 2{(b2 − m) ∨ (M − a2)}

a − b

∥∥∥∥[
yt

zt

]∥∥∥∥2

2
.

An application of Gronwall’s inequality yields∥∥∥∥[
yt

zt

]∥∥∥∥
2
≤ exp

{
(b2 − m) ∨ (M − a2)

a − b
t

}∥∥∥∥[
y0
z0

]∥∥∥∥
2
, ∀t ≥ 0.

Since V 0 = V ′
0 and Lt − L′

t = (yt + zt )/(a − b), we get

∥∥Lt − L′
t

∥∥
2 ≤

√
2

a − b

∥∥∥∥[
yt

zt

]∥∥∥∥
2

≤
√

2(a2 + b2)

a − b
exp

{
(b2 − m) ∨ (M − a2)

a − b
t

}∥∥L0 − L′
0

∥∥
2, ∀t ≥ 0,

and the claim of the proposition follows. �

8. Proof of the convergence of the first-order KLMC

This section contains the complete proof of Theorem 2. We first write

W2(νk,π) = W2
(
νk,μ

∗PL
kh

)
,

where μ∗ = N (0p, Ip) ⊗ π and μ∗PL
kh is the distribution7 of the kinetic Langevin process L at

time instant kh when the initial condition of this process is drawn from μ∗. In order to upper
bound the term in the right-hand side of the last display, we introduce the discretized version
of the kinetic Langevin diffusion: (Ṽ 0, L̃0) ∼ μ∗ and for every j = 0,1, . . . , k and for every
t ∈]jh, (j + 1)h],

Ṽ t = Ṽ jhe
−γ (t−jh) −

∫ t

jh

e−γ (t−s) ds∇f (L̃jh) + √
2γ

∫ t

jh

e−γ (t−s) dW jh+s ,

7In other words, μ∗PL
kh

is the first marginal of the distribution μ∗P(L,V )
kh

, the last notation being standard in the theory
of Markov processes.
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L̃t = L̃jh +
∫ t

jh

Ṽ jh+s ds.

We stress that W in the above formula is the same Brownian motion as the one used for defining
the process (V ,L). Furthermore, we choose Ṽ 0 = V 0 and (L0, L̃0) so that

W 2
2 (ν0,π) = E

[‖L0 − L̃0‖2
2

]
.

It is important to note that the process (Ṽ , L̃) realizes the synchronous coupling between the two
sequences {(vj ,ϑj ); j = 0, . . . , k} and {(V jh,Ljh); j = 0, . . . , k}. Indeed, one easily checks by
mathematical induction that (Ṽ jh, L̃jh) has exactly the same distribution as the vector (vj ,ϑj ).
Therefore, we have

W2
(
νk,μ

∗PL
kh

) ≤ (
E

[‖L̃kh − Lkh‖2
2

])1/2 � ‖L̃kh − Lkh‖L2 .

Let P be the matrix used in the proof of the contraction in continuous time for v = 0, that is,

P = 1

γ

[
0p×p −γ Ip

Ip Ip

]
, P−1 =

[
Ip γ Ip

−Ip 0p×p

]
.

We will now evaluate the sequence

Ak �
∥∥∥∥P−1

[
Ṽ kh − V kh

L̃kh − Lkh

]∥∥∥∥
L2

.

The rest of the proof, devoted to upper bounding the last L2-norm, is done by mathematical in-
duction. On each time interval [jh, (j + 1)h], we introduce an auxiliary continuous-time kinetic
Langevin process (V ′,L′) such that (V ′

jh,L
′
jh) = (Ṽ jh, L̃jh) and

d

[
V ′

t

L′
t

]
=

[−(
γV ′

t + ∇f
(
L′

t

))
V ′

t

]
dt + √

2γ u

[
Ip

0p×p

]
dW t , t ∈ [

jh, (j + 1)h
]
.

By the triangle inequality, we have

Aj+1 ≤
∥∥∥∥P−1

[
Ṽ (j+1)h − V ′

(j+1)h

L̃(j+1)h − L′
(j+1)h

]∥∥∥∥
L2

+
∥∥∥∥P−1

[
V ′

(j+1)h − V (j+1)h

L′
(j+1)h − L(j+1)h

]∥∥∥∥
L2

≤
∥∥∥∥P−1

[
Ṽ (j+1)h − V ′

(j+1)h

L̃(j+1)h − L′
(j+1)h

]∥∥∥∥
L2

+ e−mh/γ Aj , (14)

where in the last inequality we have used the contraction established in continuous time. For the
first norm in the right-hand side of the last display, we use the fact that the considered processes
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(V ′,L′) and (Ṽ , L̃) have the same value at the time instant jh. Therefore,∥∥Ṽ t − V ′
t

∥∥
L2

=
∥∥∥∥∫ t

jh

e−γ (t−s)
(∇f

(
L′

s

) − ∇f
(
L′

jh

))
ds

∥∥∥∥
L2

≤
∫ t

jh

∥∥∇f
(
L′

s

) − ∇f
(
L′

jh

)∥∥
L2

ds

≤ M

∫ t

jh

∥∥L′
s − L′

jh

∥∥
L2

ds

≤ M

∫ t

jh

∫ s

jh

∥∥V ′
u

∥∥
L2

duds

= M

∫ t

jh

(t − u)
∥∥V ′

u

∥∥
L2

du

≤ M

∫ t

jh

(t − u)du max
u∈[jh,(j+1)h]

∥∥V ′
u

∥∥
L2

= M(t − jh)2

2
max

u∈[jh,(j+1)h]
∥∥V ′

u

∥∥
L2

and ∥∥L̃(j+1)h − L′
(j+1)h

∥∥
L2

=
∥∥∥∥∫ (j+1)h

jh

(
Ṽ t − V ′

t

)
dt

∥∥∥∥
L2

≤
∫ (j+1)h

jh

∥∥Ṽ t − V ′
t

∥∥
L2

dt

≤ M

2

∫ (j+1)h

jh

(t − jh)2 dt max
u∈[jh,(j+1)h]

∥∥V ′
u

∥∥
L2

≤ Mh3

6
max

u∈[jh,(j+1)h]
∥∥V ′

u

∥∥
L2

.

Lemma 2. For every u ∈ [jh, (j + 1)h], we have∥∥V ′
u

∥∥
L2

≤ √
p + Aj .

Proof. We have∥∥V ′
u

∥∥
L2

= ‖V u‖L2 + ∥∥V ′
u − V u

∥∥
L2

= √
p + ∥∥[Ip, 0p]PP−1[(V ′

u − V u

)�
,
(
L′

u − Lu

)�]∥∥
L2

≤ √
p + ∥∥[Ip, 0p]P∥∥ × ∥∥P−1[(V ′

u − V u

)�
,
(
L′

u − Lu

)�]∥∥
L2
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≤ √
p + ∥∥[Ip, 0p]P∥∥ × ∥∥P−1[(V ′

jh − V jh

)�
,
(
L′

jh − Ljh

)�]∥∥
L2

= √
p + ∥∥[Ip, 0p]P∥∥ × Aj .

Recall that

P = 1

γ

[
0p×p −γ Ip

Ip Ip

]
,

which implies that ‖[Ip,0p]P‖ = 1. This completes the proof of the lemma. �

From this lemma and previous inequalities, we infer that∥∥∥∥P−1
[
Ṽ (j+1)h − V ′

(j+1)h

L̃(j+1)h − L′
(j+1)h

]∥∥∥∥
L2

≤ {(∥∥Ṽ (j+1)h − V ′
(j+1)h

∥∥
L2

+ γ
∥∥L̃(j+1)h − L′

(j+1)h

∥∥
L2

)2

+ ∥∥Ṽ (j+1)h − V ′
(j+1)h

∥∥2
L2

}1/2

≤
{(

1 + γ h

3

)2

+ 1

}1/2
Mh2

2
(
√

p + Aj).

Choosing h ≤ 1/(4γ ), we arrive at∥∥∥∥P−1
[
Ṽ (j+1)h − V ′

(j+1)h

L̃(j+1)h − L′
(j+1)h

]∥∥∥∥
L2

≤ 0.75Mh2(
√

p + Aj).

Combining this inequality and (14), for every h ≤ m/(4γM), we get

Aj+1 ≤ 0.75Mh2(
√

p + Aj) + e−hm/γ Aj

= 0.75Mh2√p + (
e−hm/γ + 0.75Mh2)Aj . (15)

Using the inequality e−x ≤ 1 − x + 1
2x2, we can derive from (15) that

Aj+1 ≤ 0.75Mh2√p +
(

1 − hm

γ
+ h2m2

2γ 2
+ 0.75Mh2

)
Aj

≤ 0.75Mh2√p +
(

1 − 0.75mh

γ

)
Aj .

Unfolding this recursive inequality, we arrive at

Ak ≤ Mhγ
√

p

m
+

(
1 − 0.75mh

γ

)k

A0.
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Finally, one easily checks that A0 = γW2(ν0,π) and

‖L̃kh − Lkh‖L2 ≤ ∥∥[0p×p Ip]P∥∥Ak = γ −1
√

2Ak.

Putting all these pieces together, we arrive at

W2(νk,π) ≤ ‖L̃kh − Lkh‖L2

≤ γ −1
√

2Ak

≤ Mh
√

2p

m
+ √

2

(
1 − 0.75mh

γ

)k

(A0/γ )

= Mh
√

2p

m
+ √

2

(
1 − 0.75mh

γ

)k

W2(ν0,π),

and the claim of Theorem 2 follows.

9. Proofs for the second-order discretization of the kinetic
Langevin diffusion

We start this section by providing some explanations on the origin of the KLMC2 algorithm. We
turn then to the proof of Theorem 3. In the computations of this section, we make repeated use
of the maps ψk and ϕk introduced in Section 3 and Section 4. We recall their definitions here, for
a fixed value of the friction parameter γ . For every t > 0 and every k ∈N, we have:

ψ0(t) = e−γ t , ψk+1(t) =
∫ t

0
ψk(s) ds, ϕk+1(t) =

∫ t

0
e−γ (t−s)ψk(s) ds. (16)

These short-hand notation are convenient in the following proofs. The notation indicates that for
small values of t > 0 both ψk(t) and ϕk(t) behave like k-degrees polynoms.

9.1. Heuristics on the origin of the KLMC2 algorithm

Recall that the kinetic diffusion is given by the equation

d

[
V t

Lt

]
=

[−(
γV t + ∇f (Lt )

)
V t

]
dt + √

2γ

[
Ip

0p×p

]
dW t . (17)

From (17), by integration by parts, we can deduce that

eγ tV t = V 0 +
∫ t

0
eγ s dV s + γ

∫ t

0
eγ sV s ds

= V 0 −
∫ t

0
eγ s∇f (Ls) ds + √

2γ

∫ t

0
eγ s dW s .
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Therefore, we have

V t = e−γ tV 0 −
∫ t

0
e−γ (t−s)∇f (Ls) ds + √

2γ

∫ t

0
e−γ (t−s) dW s ,

Lt = L0 +
∫ t

0
V s ds.

(18)

If the function f is twice continuously differentiable, then, for small values of s, the value
∇f (Ls) appearing in (18) can be approximated by an affine function of Ls :

∇f (Ls) ≈ ∇f (L0) + ∇2f (L0)(Ls − L0)

= ∇f (L0) + ∇2f (L0)

∫ s

0
V w dw

≈ ∇f (L0) + ψ1(s)∇2f (L0)V 0 + √
2γ∇2f (L0)

∫ s

0
ψ1(s − w)dWw.

From the above approximation, we can infer that∫ t

0
e−γ (t−s)∇f (Ls) ds ≈ ψ1(t)∇f (L0) + ϕ2(t)∇2f (L0)V 0

+ √
2γ∇2f (L0)

∫ t

0
e−γ (t−s)

∫ s

0
ψ1(s − w)dWw ds. (19)

Lemma 3. For every γ > 0 and t > 0, we have for any k, j ∈ N,

ϕk+1(t) =
∫ t

0
ϕk(s) ds, ϕk+j+1(t) =

∫ t

0
ψk(s)ψj (t − s) ds.

Proof. Fubini’s theorem and a change of variables yield∫ t

0
ϕk(s) ds =

∫ t

0

∫ s

0
e−γ (s−r)ψk−1(r) dr ds

=
∫ t

0

∫ t−r

0
e−γ sψk−1(r) ds dr

=
∫ t

0

∫ t−s

0
e−γ sψk−1(r) dr ds

=
∫ t

0
e−γ sψk(t − s) ds = ϕk+1(t).

This is the first claim of the lemma.
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The second claim of the lemma is true for j = 0 and any k ∈ N by definition. By induction,
we get ∫ t

0
ψk(s)ψj (t − s) ds =

∫ t

0
ψk(s)

∫ t−s

0
ψj−1(r) dr ds

=
∫ t

0

∫ t−r

0
ψk(s)ψj−1(r) ds dr

=
∫ t

0
ψk+1(t − r)ψj−1(r) dr

=
∫ t

0
ψk+j (r)ψ0(t − r) dr = ϕk+j+1(t).

This completes the proof of the lemma. �

Applied to the double integral in (19), Lemma 3 yields∫ t

0
e−γ (t−s)

∫ s

0
ψ1(s − w)dWw ds =

∫ t

0

∫ t

w

e−γ (t−s)ψ1(s − w)ds dWw

=
∫ t

0

∫ t−w

0
e−γ (t−w−u)ψ1(u) dudWw

=
∫ t

0
ϕ2(t − w)dWw.

Therefore, (19) becomes∫ t

0
e−γ (t−s)∇f (Ls) ds ≈ ψ1(t)∇f (L0) + ϕ2(t)∇2f (L0)V 0

+ √
2γ∇2f (L0)

∫ t

0
ϕ2(t − w)dWw.

Combining the approximation above and the diffusion equation (18), we get for small values of
t > 0:

V t ≈ e−γ tV 0 − ψ1(t)∇f (L0) − ϕ2(t)∇2f (L0)V 0

− √
2γ∇2f (L0)

∫ t

0
ϕ2(t − s) dW s + √

2γ

∫ t

0
e−γ (t−s) dW s .

This approximation will be used for defining the discretized version of the process V . In order
to define the discretized version of L, we will simply use the plug-in approximation of V , and
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then integrate. This leads to

Lt = L0 +
∫ t

0
V s ds

≈ L0 + ψ1(t)V 0 − ψ2(t)∇f (L0) − ϕ3(t)∇2f (L0)V 0

− √
2γ∇2f (L0)

∫ t

0
ϕ3(t − w)dWw + √

2γ

∫ t

0
ψ1(t − w)dWw.

9.2. Proof of Theorem 3

We now turn to the proof of Theorem 3. Similar to the proof of Theorem 2, we first write

W2(νk,π) = W2
(
νk,μ

∗PL
kh

)
,

where μ∗ = N (0p, Ip) ⊗ π and μ∗PL
kh is the distribution of the kinetic Langevin process L

at time instant kh when the initial condition of this process is drawn from μ∗. To provide an
upper bound on the right-hand side, we introduce the second-order discretization of the kinetic
Langevin diffusion: (Ṽ 0, L̃0) ∼ μ∗ and for every j = 0,1, . . . , k and for every t ∈]jh, (j +1)h],

Ṽ t = Ṽ jhe
−γ (t−jh) − (

ψ1(t − jh)∇f (L̃0) + ϕ2(t − jh)∇2f (L̃jh)Ṽ jh

)
+ √

2γ

(∫ t

jh

e−γ (t−s) dW jh+s − ∇2f (L̃jh)

∫ t

jh

ϕ2(t − s) dW jh+s

)
(20)

and

L̃t = L̃jh + ψ1(t − jh)Ṽ jh − (
ψ2(t − jh)∇f (L̃jh) + ϕ3(t − jh)∇2f (L̃jh)Ṽ jh

)
+ √

2γ

(∫ t

jh

ψ1(t − s) dW jh+s − ∇2f (L̃jh)

∫ t

jh

ϕ3(t − s) dW jh+s

)
. (21)

The origin of those processes is explained in Section 9.1. Similar to the proof of Theorem 2, the
Brownian motion W in the above formula is the same as the one used for defining the process
(V ,L). Furthermore, we also choose Ṽ 0 = V 0 and (L0, L̃0) so that

W 2
2 (ν0,π) = E

[‖L0 − L̃0‖2
2

]
.

In what follows, we will use the following matrices to perform a linear transformation of the
space R

2p:

P = γ −1
[

0p×p −γ Ip

Ip Ip

]
, P−1 =

[
Ip γ Ip

−Ip 0p×p

]
. (22)

On each time interval [jh, (j + 1)h], we introduce an auxiliary discretized process (V̂ , L̂) that
evolves according to exactly the same dynamics as (Ṽ , L̃) defined in (20) and (21), but is such
that (V̂ jh, L̂jh) = (V jh,Ljh).



Sampling log-concave density by kinetic Langevin 1977

The proof of Theorem 3 is divided into three propositions. For the purposes of notation, in
both proofs of Propositions 2 and 3 we control the error of one single iteration of the KLMC2
algorithm. It should be understood that this analysis actually holds for every iteration of the
KLMC2 algorithm. In the proof of Theorem 3, we combine the results of Propositions 2 and 3 to
unfold the induction and complete the proof of the theorem.

Proposition 2. Assume that, for some constants m,M,M2 > 0, the function f is m-strongly
convex, its gradient is M-Lipschitz and its Hessian is M2-Lipschitz for the spectral norm. If the
parameter γ and the step size h of the KLMC2 algorithm are such that

h ≤ 1

5γ
,

then, for the (2p) × (2p) matrix P defined in (22), and for every t ∈ [0, h] we have∥∥∥∥P−1
[
V t − V̂ t

Lt − L̂t

]∥∥∥∥
L2

≤ 0.25 × t3(M2

√
p2 + 2p + M3/2√p

)
.

Proof. From the definition of P−1 introduced in (22), we compute∥∥∥∥P−1
[
V t − V̂ t

Lt − L̂t

]∥∥∥∥
L2

= {∥∥V t − V̂ t + γ (Lt − L̂t )
∥∥2
L2

+ ‖V t − V̂ t‖2
L2

}1/2

≤ {(‖V t − V̂ t‖L2 + γ ‖Lt − L̂t‖L2

)2 + ‖V t − V̂ t‖2
L2

}1/2
,

where the upper bound follows from Minkowski’s inequality. We now give upper bounds for the
L2-norm of processes V − V̂ and L − L̂.

Lemma 4. For every t ∈ [0, h], we have

‖V̂ t − V t‖L2 ≤ t3(M2
√

p2 + 2p + M3/2√p)

6
,

‖L̂t − Lt‖L2 ≤ t4(M2
√

p2 + 2p + M3/2√p)

24
.

Proof. Recall that ψ1(t) = ∫ t

0 e−γ (t−s) ds, ψ2(t) = ∫ t

0 se−γ (t−s) ds and

V t = e−γ tV 0 −
∫ t

0
e−γ (t−s)∇f (Ls) ds + √

2γ

∫ t

0
e−γ (t−s) dW s .

We compute

V̂ t − V t =
∫ t

0
e−γ (t−s)

(∇f (Ls) − ∇f (L0)
)
ds − ϕ2(t)∇2f (L0)V 0

− √
2γ∇2f (L0)

∫ t

0
ϕ2(t − s) dW s .
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By Taylor’s theorem, we have for every s > 0

∇f (Ls) − ∇f (L0) = H̄s(Ls − L0),

H̄s �
∫ 1

0
∇2f

(
Ls + x(L0 − Ls)

)
dx.

This yields the following rewriting of the first integral:∫ t

0
e−γ (t−s)

(∇f (Ls) − ∇f (L0)
)
ds

=
∫ t

0
e−γ (t−s)

(
H̄s − ∇2f (L0)

)
(Ls − L0) ds︸ ︷︷ ︸

�At

+ ∇2f (L0)

∫ t

0

∫ s

0
e−γ (t−s)V r dr ds︸ ︷︷ ︸

�Ct

.

Now, we replace V r by its explicit expression

V r = e−γ rV 0 −
∫ r

0
e−γ (r−w)∇f (Lw)dw + √

2γ

∫ r

0
e−γ (r−w) dWw.

By integrating twice, we compute

Ct = ϕ2(t)∇2f (L0)V 0 + √
2γ∇2f (L0)

∫ t

0
ϕ2(t − s) dW s

− ∇2f (L0)

∫ t

0

∫ s

0

∫ r

0
e−γ (t−s)e−γ (r−w)∇f (Lw)dw dr ds︸ ︷︷ ︸

�B t

.

Summing the two expressions allows some terms to cancel out leading to

V̂ t − V t = At − B t ,

where

At =
∫ t

0

∫ 1

0
e−γ (t−s)

(∇2f
(
Ls + h(L0 − Ls)

) − ∇2f (L0)
)
(Ls − L0) dhds,

B t = ∇2f (L0)

∫ t

0

∫ s

0

∫ r

0
e−γ (t−s)e−γ (r−w)∇f (Lw)dw dr ds.
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We now control L2-norm of processes At and B t . Bounding e−γ (t−s) by one, Minkowski’s
inequality in its integral version and the Lipschitz assumption on the Hessian yield

‖At‖L2 ≤
∫ t

0

∫ 1

0
E

[∥∥(∇2f
(
Ls + h(L0 − Ls)

) − ∇2f (L0)
)
(Ls − L0)

∥∥2
2

]1/2
dhds

≤ M2

∫ t

0

∫ 1

0
E

[
(1 − h)2‖Ls − L0‖4

2

]1/2
dhds

= M2

2

∫ t

0

{
E

[∥∥∥∥∫ s

0
V r dr

∥∥∥∥4

2

]1/4}2

ds

≤ M2

2

∫ t

0

{∫ s

0
E

[‖V r‖4
2

]1/4
dr

}2

ds

= M2

2

∫ t

0

{∫ s

0
E

[‖V 0‖4
2

]1/4
dr

}2

ds

= M2t
3

6
E

[‖V 0‖4
2

]1/2
,

where we have used the stationarity of the process V r . Since V 0 is standard Gaussian, we get
E[‖V 0‖4

2] = p2 + 2p.
In the same way, Minkowski’s inequality in its integral version yields

‖B t‖L2 ≤
∫ t

0

∫ s

0

∫ r

0

∥∥∇2f (L0)∇f (Lw)
∥∥
L2

dwdr ds

≤
∫ t

0

∫ s

0

∫ r

0
M

∥∥∇f (Lw)
∥∥
L2

dw dr ds

= M
∥∥∇f (L0)

∥∥
L2

∫ t

0

∫ s

0

∫ r

0
dw dr ds = t3M

6

∥∥∇f (L0)
∥∥
L2

,

where last equalities follow from the stationarity of Lw . Since L0 ∼ π (Dalalyan [14], Lemma
2) ensures that ‖∇f (L0)‖L2 ≤ √

Mp, and the first claim of the lemma follows.
The bound for process L − L̂ follows from Minkowski’s inequality combined with the bound

just proven:

‖L̂t − Lt‖L2 ≤
∫ t

0
‖V̂ s − V s‖L2 ds

≤
∫ t

0

(
t3(M2

√
p2 + 2p + M3/2√p)

6

)
ds

= t4(M2
√

p2 + 2p + M3/2√p)

24
.

This completes the proof of the lemma. �
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The claim of the proposition follows from the assumption γ t ≤ 1/5 and that√(
1

6
+ 1

5 × 24

)2

+
(

1

6

)2

≤ 0.25. �

The next, perhaps the most important, step of the proof is to assess the distance between the
random vectors (V̂ t , L̂t ) and (Ṽ t , L̃t ).

Proposition 3. Assume that, for some constants m,M,M2 > 0, the function f is m-strongly
convex, its gradient is M-Lipschitz and its Hessian is M2-Lipschitz for the spectral norm. If the
parameter γ and the step size h of the KLMC2 algorithm satisfy the inequalities

γ 2 ≥ m + M, h ≤ 1

5γκ
,

then, for the (2p) × (2p) matrix P defined in (22), and for every a ≥ 5p and t ∈ [0, h], it holds∥∥∥∥P−1
[
V̂ t − Ṽ t

L̂t − L̃t

]∥∥∥∥
L2

≤
(

1 − mt

2γ
+ M2

√
at2

γ

)∥∥∥∥P−1
[
V 0 − Ṽ 0

L0 − L̃0

]∥∥∥∥
L2

+ √
2t2(M − m)e−(a−p)/8.

Proof. Step 1: We first introduce some shorthand notation, convenient for writing the processes
into their matrix form. Define

H0 �
∫ 1

0
∇2f

(
L0 − x(L0 − L̃0)

)
dx,

such that Taylor’s expansion yields

∇f (L0) − ∇f (L̃0) = H0(L0 − L̃0).

We also introduce the following 2p × 2p matrices:

R0 �
[
γ Ip H0
−Ip 0p×p

]
, E0(t) �

[
ϕ2(t)∇2f (L̃0) 0p×p

ϕ3(t)∇2f (L̃0) −ψ2(t)H0

]
. (23)

From the definitions (20) and (21), we write the process (V − Ṽ ,L − L̃) in matrix form:[
V̂ t − Ṽ t

L̂t − L̃t

]
= {

I2p − ψ1(t)R0 − E0(t)
}[

V 0 − Ṽ 0

L0 − L̃0

]
+

[
ϕ2(t)

(∇2f (L0) − ∇2f (L̃0)
)
V 0

ϕ3(t)
(∇2f (L0) − ∇2f (L̃0)

)
V 0

]
.

We now multiply the process (V − Ṽ ,L − L̃) by P−1 introduced in (22). To this end, we first
introduce the matrices

Q0 � P−1R0P, N0(t) � P−1E0(t)P.
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After change of basis, the process rewrites

P−1
[
V̂ t − Ṽ t

L̂t − L̃t

]
= {

I2p − ψ1(t)Q0 − N0(t)
}
P−1

[
V 0 − Ṽ 0

L0 − L̃0

]
+ P−1

[
ϕ2(t)

(∇2f (L0) − ∇2f (L̃0)
)
V 0

ϕ3(t)
(∇2f (L0) − ∇2f (L̃0)

)
V 0

]
,

therefore, Minkowski’s inequality yields∥∥∥∥P−1
[
V̂ t − Ṽ t

L̂t − L̃t

]∥∥∥∥
L2

≤
∥∥∥∥{

I2p − ψ1(t)Q0 − N0(t)
}
P−1

[
V 0 − Ṽ 0

L0 − L̃0

]∥∥∥∥
L2

+
∥∥∥∥P−1

[
ϕ2(t)

(∇2f (L0) − ∇2f (L̃0)
)
V 0

ϕ3(t)
(∇2f (L0) − ∇2f (L̃0)

)
V 0

]∥∥∥∥
L2

. (24)

In this last expression, the right-hand side of the inequality is a sum of two terms. Step 2 is
devoted to the control of the first term while Step 3 focuses on the second one.

Step 2: To control the first term of the right-hand side of (24), our main task boils down to
providing an upper bound for spectral norm of I2p − ψ1(t)Q0 − N0(t).

The triangle inequality yields∥∥I2p − ψ1(t)Q0 − N0(t)
∥∥ ≤ ∥∥I2p − ψ1(t)Q0

∥∥ + ∥∥N0(t)
∥∥.

Define α � max(1 − M/γ 2,3M/γ 2 − 1). We first prove that∥∥I2p − ψ1(t)Q0
∥∥ ≤ 1 − ψ1(t)(m/γ ) + 0.5ψ1(t)

2M
(
α + m2/

(
Mγ 2)).

To this end, we control the eigenvalues of

(
I2p − ψ1(t)Q0

)(
I2p − ψ1(t)Q0

)� = I2p − 2ψ1(t)

(
Q0 + Q�

0

2

)
+ ψ1(t)

2Q0Q�
0 . (25)

For the purpose of notation, we introduce the following matrices:

�0 � γ −1H0, S0 �
Q0 + Q�

0

2
.

Recall that Q0 = P−1R0P where P is defined in (22) and R0 is defined in (23). Direct matrix
computations yield

Q0 =
[

�0 �0
−�0 γ Ip − �0

]
, S0 =

[
�0 0p×p

0p×p γ Ip − �0

]
,

Q0Q�
0 =

[
2�2

0 γ�0 − 2�2
0

γ�0 − 2�2
0 (γ Ip − �0)

2 + �2
0

]
.
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We also introduce the symmetric matrix

U0 �
[

�2
0 H0 − 2�2

0
H0 − 2�2

0 �2
0

]
,

such that the following equality holds:

Q0Q�
0 = S2

0 + U0.

Combining this last equality with (25), we regroup the quadratic form as follows:(
I2p − ψ1(t)Q0

)(
I2p − ψ1(t)Q0

)� = (
I2p − ψ1(t)S0

)2 + ψ1(t)
2U0. (26)

Lemma 5. Assume that γ 2 ≥ m + M , then the following holds:

(m/γ )I2p � S0 � (γ − m/γ )I2p, ‖U0‖ ≤ Mα.

Proof. The condition γ 2 ≥ m + M implies that (m/γ )Ip � �0 � (γ − m/γ )Ip . The first claim
of the lemma follows directly.

Now, let us compute the eigenvalues of the symmetric matrix U0. We diagonalize H0 and note
(λ

H0
j )j=1,...,p its eigenvalues. By solving det(U0 − λI2p) = 0 we get p equations, i.e. for every

j = 1, . . . , p we need to solve:

λ2 − 2ajλ + a2
j − b2

j = 0, aj = (
γ −1λ

H0
j

)2
, bj = λ

H0
j − 2aj .

The solutions are λj = aj ± |bj |. For every j = 1, . . . , p, we get

|λj | ≤ max
(
λ

H0
j − (

γ −1λ
H0
j

)2
,3

(
γ −1λ

H0
j

)2 − λ
H0
j

)
.

The function x �→ max(x − (x/γ )2,3(x/γ )2 − x) is increasing on R+. Since λ
H0
j is upper

bounded by M , the second claim of the lemma follows. �

Now, we apply Lemma 5 to control the norm of (26). Since S0 and U0 are symmetric, we have∥∥I2p − ψ1(t)Q0
∥∥2 ≤ ∥∥(

I2p − ψ1(t)S0
)2∥∥ + ψ1(t)

2‖U0‖
≤ (

1 − ψ1(t)(m/γ )
)2 + ψ1(t)

2Mα

= 1 − 2ψ1(t)(m/γ ) + ψ1(t)
2M

(
α + m2/

(
Mγ 2)).

For any x ≤ 1, it holds that
√

1 − x ≤ (1 − x/2). Applying this inequality yields∥∥I2p − ψ1(t)Q0
∥∥ ≤ 1 − ψ1(t)(m/γ ) + 0.5ψ1(t)

2M
(
α + m2/

(
Mγ 2)). (27)
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We now control the spectral norm of N0(t). Recall that N0(t) = P−1E0(t)P, where P is defined
in (22), and E0(t) is defined in (23). Direct matrix computation yields

N0(t) = γ −1
[

Ip γ Ip

−Ip 0p×p

][
ϕ2(t)∇2f (L̃0) 0p×p

ϕ3(t)∇2f (L̃0) −ψ2(t)H0

][
0p×p −γ Ip

Ip Ip

]

= γ −1
[
(ϕ2 + γ ϕ3)∇2f (L̃0) 0

−ϕ2∇2f (L̃0) 0

][
0 −γ Ip

Ip Ip

]
− ψ2(t)γ

−1
[

0 γ H0
0 0

][
0 −γ Ip

Ip Ip

]

=
[

0p×p −(
ϕ2(t) + γ ϕ3(t)

)∇2f (L̃0)

0p×p ϕ2(t)∇2f (L̃0)

]
− ψ2(t)

[
H0 H0

0p×p 0p×p

]
.

From definition (16), we know that for every t > 0, ψ2(t) ≤ ϕ2(t) ≤ t2/2. Moreover,

ϕ2(t) + γ ϕ3(t) =
∫ t

0
e−γ (t−s)

(
ψ1(s) + γψ2(s)

)
ds

= 1

γ

∫ t

0
e−γ (t−s)

(
1 − e−γ s + sγ − 1 + e−γ s

)
ds ≤ t2/2. (28)

Combining these inequalities with the fact that ∇2f (L̃0) and H0 both have eigenvalues bounded
by M , we get ∥∥N0(t)

∥∥ ≤ √
2Mt2. (29)

Summing the two upper bounds (27) and (29) yield

∥∥I2p − ψ1(t)Q0 − N0(t)
∥∥ ≤ ρt �

{
1 − ψ1(t)m

γ
+ ψ1(t)

2M

2

(
α + m2

Mγ 2

)
+ M

√
2t2

}
.

From the definition (16), we know that t − γ t2/2 ≤ ψ1(t) ≤ t , therefore,

ρt ≤ 1 − mt

γ
+ Mt2

2

(
α + m2

Mγ 2
+ m

M
+ 2

√
2

)
︸ ︷︷ ︸

≤2+2
√

2≤5

.

Finally, we use the condition t ≤ 1/(5γκ) to bound ρt by 1 − mt/(2γ ). This yields∥∥∥∥{
I2p − ψ1(t)Q0 − N0(t)

}
P−1

[
V 0 − Ṽ 0

L0 − L̃0

]∥∥∥∥
L2

≤
(

1 − mt

2γ

)∥∥∥∥P−1
[
V 0 − Ṽ 0

L0 − L̃0

]∥∥∥∥
L2

. (30)

Step 3: We now control the second term of the right-hand side of (24). Define

ζ2(t) �
√(

ϕ2(t) + γ ϕ3(t)
)2 + ϕ2(t)2.
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From the definition of P−1 introduced in (22), direct computations yield∥∥∥∥P−1
[
ϕ2(t)

(∇2f (L0) − ∇2f (L̃0)
)
V 0

ϕ3(t)
(∇2f (L0) − ∇2f (L̃0)

)
V 0

]∥∥∥∥
L2

≤ ξ2(t)
∥∥(∇2f (L0) − ∇2f (L̃0)

)
V 0

∥∥
L2

.

Moreover, using inequality (28) in the definition of ζ2(t), we get the following bound:

ζ2(t) ≤ t2/
√

2. (31)

Our remaining task boils down to control the L2-norm of (∇2f (L0) − ∇2f (L̃0))V 0.
By assumption, for every x ∈ R

p , we have mIp � ∇2f (x) � MIp , and the Hessian ∇2f is
M2-Lipschitz, therefore,∥∥(∇2f (L0) − ∇2f (L̃0)

)
V 0

∥∥
2 ≤ min

(
M − m,M2‖L0 − L̃0‖2

)‖V 0‖2.

Using the inequality ‖V 0‖2
2 ≤ a + (‖V 0‖2

2 − a)+, for every a > 0, this implies that∥∥(∇2f (L0) − ∇2f (L̃0)
)
V 0

∥∥2
L2

≤ E
[
min

(
(M − m)2,M2

2‖L0 − L̃0‖2
2

)‖V 0‖2
2

]
≤ M2

2aE
[‖L0 − L̃0‖2

2

] + (M − m)2E
[(‖V 0‖2

2 − a
)
+
]

≤ M2
2a‖L0 − L̃0‖2

L2
+ 4(M − m)2e−(a−p)/4, (32)

where the last inequality is valid for every a ≥ 5p according to well-known bounds on the χ2

distribution; see, for instance, (Collier and Dalalyan [13], Lemmas 5–6). Finally, recall that by
the definition of P−1 in (22), we have

‖L0 − L̃0‖L2 ≤ γ −1
√

2

∥∥∥∥P−1
[
V 0 − Ṽ 0

L0 − L̃0

]∥∥∥∥
L2

.

Using this last inequality in (32) and taking square roots yields the following bound:

∥∥(∇2f (L0) − ∇2f (L̃0)
)
V 0

∥∥
L2

≤ M2γ
−1

√
2a

∥∥∥∥P−1
[
V 0 − Ṽ 0

L0 − L̃0

]∥∥∥∥
L2

+ 2(M − m)e−(a−p)/8. (33)

The claim of the proposition follows from combining the bound (30) from Step 2 with the bounds
(31) and (33) from Step 3 into (24). �

The last piece of the proof of the theorem is the following proposition. It is obtained by com-
bining the results of Propositions 2 and 3 to unfold the induction, and control the sampling error
after k iterates.

Proposition 4. Assume that, for some constants m,M,M2 > 0, the function f is m-strongly
convex, its gradient is M-Lipschitz and its Hessian is M2-Lipschitz for the spectral norm. If the
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parameter γ and the step size h of the KLMC2 algorithm satisfy the inequalities

γ 2 ≥ m + M, h ≤ 1

5γκ
∧ m

4
√

5pM2
,

then ∥∥∥∥P−1
[
V kh − Ṽ kh

Lkh − L̃kh

]∥∥∥∥
L2

≤
(

1 − mh

4γ

)k ∥∥∥∥P−1
[
V 0 − Ṽ 0

L0 − L̃0

]∥∥∥∥
L2

+ 4
√

2(M − m)

m
γhe

− m2

160M2
2 h2

+ γ h2
(

M2

m

√
p2 + 2p + M3/2

m

√
p

)
.

Proof. Minkowski’s inequality yields∥∥∥∥P−1
[
V kh − Ṽ kh

Lkh − L̃kh

]∥∥∥∥
L2

≤
∥∥∥∥P−1

[
V̂ kh − Ṽ kh

L̂kh − L̃kh

]∥∥∥∥
L2

+
∥∥∥∥P−1

[
V kh − V̂ kh

Lkh − L̂kh

]∥∥∥∥
L2

.

For k ≥ 0, define

xk =
∥∥∥∥P−1

[
V kh − Ṽ kh

Lkh − L̃kh

]∥∥∥∥
L2

.

By Proposition 2 and Proposition 3, we thus have

xk+1 ≤
(

1 − mh

2γ
+ M2

√
ah2

γ

)
xk + √

2h2(M − m)e−(a−p)/8

+ 0.25h3(M2

√
p2 + 2p + M3/2√p

)
.

Assuming that
√

a = m/(4M2h) ≥ √
5p and unfolding the last recursion, we get

xk+1 ≤
(

1 − mh

4γ

)k+1

x0 + 4
√

2(M − m)

m
γhe−(a−p)/8

+ γ h2
(

M2

m

√
p2 + 2p + M3/2

m

√
p

)
.

Easy algebra shows that

a − p

8
= a

10
+ a − 5p

40
≥ a

10
= m2

160M2
2h2

.

This is exactly the claim of the proposition. �
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To complete the proof of Theorem 3, we need to do some simple algebra. First of all, using
the relations

W2(νk,π) ≤ γ −1
√

2

∥∥∥∥P−1
[
V kh − Ṽ kh

Lkh − L̃kh

]∥∥∥∥
L2

, W2(ν0,π) = γ −1
∥∥∥∥P−1

[
V 0 − Ṽ 0

L0 − L̃0

]∥∥∥∥
L2

as well as the inequality p2 + 2p ≤ 2p2 (since p ≥ 2), we arrive at

W2(νk,π) ≤ √
2

(
1 − mh

4γ

)k

W2(ν0,π)

+ 8(M − m)

m
he

− m2

160M2
2 h2 + √

2h2
(

M2p

m

√
2 + M3/2

m

√
p

)
.

This leads to the claim of the theorem.
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