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We address the problem of non-parametric density estimation under the additional constraint that only
privatised data are allowed to be published and available for inference. For this purpose, we adopt a recent
generalisation of classical minimax theory to the framework of local α-differential privacy and provide a
lower bound on the rate of convergence over Besov spaces Bs

pq under mean integrated L
r -risk. This lower

bound is deteriorated compared to the standard setup without privacy, and reveals a twofold elbow effect.
In order to fulfill the privacy requirement, we suggest adding suitably scaled Laplace noise to empirical
wavelet coefficients. Upper bounds within (at most) a logarithmic factor are derived under the assumption
that α stays bounded as n increases: A linear but non-adaptive wavelet estimator is shown to attain the
lower bound whenever p ≥ r but provides a slower rate of convergence otherwise. An adaptive non-linear
wavelet estimator with appropriately chosen smoothing parameters and thresholding is shown to attain the
lower bound within a logarithmic factor for all cases.

Keywords: adaptive estimation; Besov classes of functions; density estimation; local differential privacy;
lower bounds; minimax rates; wavelet thresholding

1. Introduction

Problem statement

In the modern information age, increasingly more institutions are collecting and storing data.
Provided that a certain amount of privacy is guaranteed, some of these institutions might be will-
ing to provide access to selected data sets. Examples of such data may include information about
participants in a medical study, clients of a web service, or persons interviewed in a scientific
survey. In this framework, the following questions arise naturally: How can data be sufficiently
anonymised, given a rigorous definition of privacy, and what are the consequences for subsequent
data analyses resulting from the chosen anonymisation procedure? The answer to these questions
depends on several interacting parameters, namely the privacy definition at hand, the potential
extent of collaboration of the involved data holding entities, and the kind of data mining tasks
that should be feasible based on the private data.
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In this paper, we consider the problem of non-parametric density estimation under local differ-
ential privacy as a special instance of the general problem sketched in the previous paragraph: For
i = 1, . . . , n, the ith data holder observes a real-valued random variable Xi distributed according
to a probability density function f . The aim is that every data holder releases an anonymised
view Zi of Xi such that the privacy notion of local differential privacy, that is introduced next,
is satisfied and that the density f can be estimated from the data Z1, . . . ,Zn in an optimal way.

Local differential private estimation

The notion of local differential privacy aggregates two different concepts, namely local privacy
and differential privacy, that we explain in the sequel.

The qualitative notion of local privacy characterises how the different entities holding the
data X1, . . . ,Xn might interact to generate a private release Z. It is opposed to the concept of
global privacy where the respective data holders share confidence in a common curator who has
access to the ensemble of non-masked data X1, . . . ,Xn and generates the releasable data from
this complete information. In the local setup, such an authority that is trusted by all the parties,
does not exist. However, some amount of interaction between the different parties is still allowed.
The releasable data Z1, . . . ,Zn are obtained by successively applying suitable Markov kernels.
Given Xi = xi and Z1 = z1, . . . ,Zi−1 = zi−1, the i-th dataholder draws

Zi ∼ Qi(· | Xi = xi,Z1 = z1, . . . ,Zi−1 = zi−1)

for some Markov kernel Qi : Z × X × Z i−1 → [0,1] where the measure spaces of the non-
private and private data are denoted with (X ,X ) and (Z,Z ), respectively. An important special
case is that of non-interactive local privacy where the random value of Zi depends on Xi only
and must not depend on preceding values of Z. More precisely, in the non-interactive case we
have

Zi ∼ Q(· | Xi = xi)

for some Markov kernel Q that does no longer depend on the index i. The non-interactive sce-
nario comes along with some advantages in practice since it is balanced in the sense that the
data holders play a symmetric role in the privatisation process, that can also be parallelized in
this case. One should notice however that a restriction to non-interactive scenarios might result
in slower rates of convergence for statistical inference. But as will be presented below, this is
not the case in our density estimation framework, where rates are already optimal for estimators
based on non-interactively privatised data.

From a mathematical point of view, however, allowing also interactive procedures does not
lead to more technical proofs. Thus, we potentially allow non-interactive methods in our minimax
analysis, although the anonymisation techniques proposed in this paper are exclusively non-
interactive. Let us mention that for some tasks, however, interactive mechanisms provide natural
and attractive alternatives (for instance, for private estimation in generalized linear models; see
[6], Section 5.2.1).

The notion of differential privacy is a quantitative one and introduces a condition that makes
the problem at hand mathematically tractable. We provide its definition for the locally private
case only and refer the reader to [14] for a definition in the global case.
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Definition 1.1. A sequence of Markov kernels Qi : Z × X × Z i−1 → [0,1] provides α-
differential privacy if

sup
A∈Z

Qi(A | Xi = x,Z1 = z1, . . . ,Zi−1 = zi−1)

Qi(A | Xi = x′,Z1 = z1, . . . ,Zi−1 = zi−1)
≤ exp(α) for all x, x′ ∈X .

In the non-interactive case, this condition is replaced with

sup
A∈Z

Q(A | Xi = x)

Q(A | Xi = x′)
≤ exp(α) for all x, x′ ∈ X .

We denote with Qα the set of all local α-differential private Markov kernels.

Thus, the parameter α quantifies the amount of privacy that is guaranteed: setting α = 0 en-
sures perfect privacy whereas letting α tend to infinity softens the privacy restriction. In the non-
interactive case, the defining property of α-differential privacy above ensures that all the proba-
bility measures Q(dz|Xi = x), x ∈ X are equivalent. Hence, they admit densities q(· | Xi = x)
with respect to a dominating measure (that can be chosen to be equal to Q(dz|Xi = x∗), for any
x∗ ∈X ). In case of existence of such densities, we say that the property of α-differential privacy
is satisfied if

sup
z∈Z

q(z | Xi = x)

q(z | Xi = x′)
≤ exp(α) for all x, x′ ∈ X . (1.1)

A consequence from the definition of α-differential privacy is plausible deniability of the
data in the following sense: Given the private view Zi only, the power of any test of the null
hypothesis H0 : Xi = x against the alternative H1 : Xi = x′ with prescribed first error probability
γ has power bounded from above by γ exp(α) (see [14], Theorem 2.4).

Rate optimal density estimation over Besov ellipsoids

Let us briefly review some well-known results on non-parametric density estimation in the non-
private setup where X1, . . . ,Xn can be observed. This classical model provides a natural bench-
mark for the model where additional privacy restrictions are imposed, and having in mind the
results for this benchmark model turns out to be useful for understanding the ones for the model
with privacy.

Density estimation from a sample X1, . . . ,Xn of observations is one of the paradigmatic prob-
lems in non-parametric statistics. A popular framework is that of minimax optimal estimation:
Given a loss function � (that is, a function mapping a pair of density functions (f, g) to some
non-negative real number) and any class F of candidate density functions, the quantity of interest
is the minimax risk

Rn(�,F) = inf
f̃

sup
f ∈F

E
[
�(f̃ , f )

]
, (1.2)
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where the infimum is taken over all estimators (that is, σ(X1, . . . ,Xn)-measurable functions). In
this setup, an estimator f̂ is called rate optimal if

sup
f ∈F

E
[
�(f̂ , f )

]≤ C(�,F)Rn(�,F).

Several function classes, loss functions and types of estimators have been intensively studied
for the density estimation problem (see [13] and [7] for comprehensive overviews of the topic).
Throughout this paper, we consider the integrated risk associated to L

r -loss defined by �(f,g) =
‖f − g‖r

r for r ≥ 1. For the Besov spaces to be considered in the sequel, wavelet methods have
turned out particularly convenient. Given a father wavelet ϕ and a mother wavelet ψ associated
to it, verifying some sufficient conditions (see conditions (5.10)–(5.12) in [9]), and an integer
j0 ∈ Z, a wavelet basis of L2(R) is given by{

ϕj0k = 2j0/2ϕ
(
2j0(·) − k

) : k ∈ Z
}∪ {

ψjk = 2j/2ψ
(
2j (·) − k

) : j ≥ j0, k ∈ Z
}
. (1.3)

Given such a basis, the probability density f admits the following formal expansion (in L
2

sense):

f =
∑
k∈Z

αj0kϕj0k +
∑
j≥j0

∑
k∈Z

βjkψjk, (1.4)

where the wavelet coefficients are defined as

αj0k =
∫
R

f (x)ϕj0k(x)dx and βjk =
∫
R

f (x)ψjk(x)dx.

An attractive property of wavelet expansions as (1.4) is that the membership of Besov spaces can
be characterised in terms of its wavelet coefficients with respect to a well chosen wavelet basis.
In the sequel, we will work under the following assumption on the father wavelet ϕ.

Assumption 1.2. Following [9], we assume that the father wavelet function ϕ generates a mul-
tiresolution analysis of L2(R), that it is N + 1 times weakly differentiable for some integer N ,
and that its derivative satisfies supx

∑
k|ϕ(N+1)(x − k)| < ∞ a.e. Moreover, we assume that

there exists a bounded, non-increasing function 	 on R+ such that |ϕ(u)| ≤ 	(|u|) and that both∫
	(|u|)du < ∞ and

∫
	(|u|)|u|N du < ∞.

Note that no assumption is needed on the mother wavelet ψ since it is defined using the
father wavelet. If the father wavelet function ϕ verifies Assumption 1.2 then, given parameters
0 < s < N + 1 and 1 ≤ p,q ≤ ∞, the fact that f belongs to the Besov space Bs

pq is equivalent
to Jspq(f ) < ∞ where

Jspq(f ) := ‖α0·‖p +
(∑

j≥0

(
2j (s+1/2−1/p)‖βj ·‖p

)q)1/q
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for 1 ≤ q < ∞ and the usual modification if q = ∞. Fixing such a wavelet basis, we consider
Besov ellipsoids defined as

Bs
pq(L) = {

f :R→ R : Jspq(f ) ≤ L
}
.

Since our interest is in density estimation, a quite natural class to consider is

Ds
pq =Ds

pq(L,T ) =
{
f : f ∈ Bs

pq(L),f ≥ 0,

∫
R

f (x)dx = 1 and supp(f ) ⊆ [−T ,T ]
}
,

where supp(f ) denotes the support of the function f . Note that we consider here the Besov
smoothness of f as a function defined on the whole real line, or, equivalently, that f belongs to
a periodic Besov class. It would equally be possible to define Besov smoothness over the support
[−T ,T ]. Then the wavelet basis has to be boundary corrected so that it detects the smoothness
on this interval only and not the potential lack of smoothness of f at its boundary. We refer the
reader to [7] for boundary corrected wavelets, that also dispose of all the properties that we need
in the sequel.

It is well known [2,7,9] that

Rn

(‖·‖r
r ,Ds

pq

)
� rn,

where rn =

⎧⎪⎨⎪⎩
n− rs

2s+1 if p >
r

2s + 1
,

(n/ logn)
− r(s−1/p+1/r)

2(s−1/p)+1 if p ≤ r

2s + 1
and s ≥ 1

p
,

(1.5)

and these rates are optimal or suboptimal by a logarithmic factor only (see [9] for an extensive
discussion). The structural change of the rate between dense zone (where p > r/(2s + 1)) and
sparse zone (where p ≤ r/(2s + 1)) is sometimes called an elbow effect.

Moreover, in the dense case, we can distinguish the homogeneous zone when p ≥ r and the
non-homogeneous zone where r/(2s + 1) < p < r . In the homogeneous case, linear wavelet
estimators of the form ∑

k∈Z
α′

j0k
ϕj0k(x) +

j1∑
j=j0

∑
k∈Z

β ′
jkψjk(x)

with α′
j0k

= 1
n

∑n
i=1 ϕj0k(Xi), β ′

jk = 1
n

∑n
i=1 ψjk(Xi), and appropriately chosen j0, j1 are rate

optimal whereas linear procedures are necessarily sub-optimal in the non-homogeneous case
(see [9] and references therein). In this latter scenario as well as in the sparse case, non-linear
estimators based on wavelet thresholding turn out to be optimal at least up to logarithmic fac-
tors.

Minimax framework under privacy constraints

Let us now describe how to extend the classical minimax setup in order to encompass the frame-
work of local differential privacy. Since not only the estimation procedure but also the Markov
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kernels guaranteeing local α-differential privacy can freely be chosen, it is natural to replace (1.2)
with the local α-differential minimax risk defined as

R∗
n,α(�,F) = inf

f̃
Q∈Qα

sup
f ∈F

Ef,Q

[
�(f, f̃ )

]
.

Here the infimum is taken both over all (Z,Z )-measurable estimators of f and all Markov ker-
nels guaranteeing local α-differential privacy. A tuple (Q̂, f̂ ) consisting of a privacy mechanism
and an estimator f̂ is rate optimal (with respect to the local α-differential private risk) if

sup
f ∈F

Ef,Q̂

[
�(f, f̂ )

]≤ C(�,F)R∗
n,α(�,F).

The quantity R∗
n,α(�,F) as well as the construction of optimal privacy mechanism and estimators

represent the principal interest of the rest of the paper.

Related work

Research on statistical estimation under privacy constraints is rather recent. A landmark paper
is [14] where research on the subject has been initiated and density estimation via histograms
and orthogonal series in the global privacy setup have been discussed. In the same global frame-
work, the article [8] considers anonymisation of functional data and discusses kernel density
estimators as the main example. Local α-differential privacy was intensively studied in [5] and
the companion article [6]. In [5] the authors show that the well-known technique of randomized
response from survey statistics can be interpreted under the umbrella of local α-differential pri-
vacy. In the context of density estimation, [5] established minimax rates of convergence for the
mean integrated squared error over Sobolev classes with arbitrary smoothness parameter β ≥ 1.
They establish the minimax rate of order n−β/(β+1) for the mean integrated squared error over
Sobolev classes with β = 1 and show that this optimal rate can be attained by Laplace perturba-
tion of empirical histogram coefficients. The papers [5,6] provide also results for Sobolev classes
with higher degrees of smoothness (β > 1) but in this case a mere perturbation of the empiri-
cal Fourier coefficients does not lead to a rate optimal method (see [5], Observation 1 for the
non-optimality of this approach). By means of a more sophisticated sampling technique (see [5],
p. 11 or [6], Section 5.2.2), however, the authors derive the minimax rate of convergence that is
(nα2)−β/(β+1) also in the general case. Furthermore, [5] provides private versions of classical
information-theoretical bounds that allow to apply standard lower bound techniques also in the
private setup. In [12], the estimation of linear functionals in the framework of local privacy is
considered and a characterisation of the rates of convergence in terms of moduli of continuity
is obtained which is in parallel to well-known results for the non-private setup [3]. This gen-
eral analysis contains the private estimation of a probability density at a fixed point under mean
squared error as a special case.
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Main results

In Section 2, in addition and in formal analogy to (1.5), we derive the following lower bound on
the private minimax risk:

R∗
n,α

(‖·‖r
r ,Ds

pq

)
� r∗n,α,

where r∗n,α =

⎧⎪⎪⎨⎪⎪⎩
(
n
(
eα − 1

)2)− rs
2s+2 if p >

r

s + 1
,(

n(eα − 1)2

log(n(eα − 1)2)

)− r(s−1/p+1/r)
2(s−1/p)+2

if p ≤ r

s + 1
and s ≥ 1

p
.

(1.6)

This lower bound is complemented by corresponding upper bound results: The anonymisation
technique used to create the private views of the non-releasable data X1, . . . ,Xn consists in an
appropriately scaled version of the classical Laplace mechanism applied on the empirical wavelet
functions (Section 3). The wavelet estimators considered in Sections 4 and 5 are based on the
availability of the privatised data Z1, . . . ,Zn only. As in the non-private case, a linear wavelet
estimator attains the given rate in the homogeneous case, that is, whenever p ≥ r (Section 4). In
Section 5, we study non-linear estimators and show that an estimator using hard thresholding can
nearly attain the lower bounds both in the dense and in the sparse zone.

Notational conventions

For real numbers a, b we write �a, b� = [a, b] ∩ Z. We denote with C a generic constant that
might change with every appearance. For two sequences {an}n, {bn}n, we denote by an � bn that
there exist some constant C > 0 and a fixed integer number N such that an ≤ Cbn, for all n ≥ N .
We say that an � bn, if both an � bn and bn � an. If bn > 0, we denote by an � bn the fact
that an/bn → 1 as n → ∞. We recall that a centred Laplace distribution with parameter λ > 0
has the probability density function pλ(x) = 1

2λ
exp(−|x|

λ
), for all real number x. In particular, if

X ∼ pλ, then E|X|k = k!λk for all k ∈N.

2. Lower bounds

The purpose of this section is to derive (1.6) and hence providing an analogue of (1.5) under local
α-differential privacy. To this purpose, we proceed in two steps. The first lower bound, given in
Proposition 2.1, is stronger in the private dense zone (p > r/(s + 1)), whereas the second one,
given in Proposition 2.2, dominates in the private sparse zone where p ≤ r/(s + 1). An essential
tool for both proofs is a strong information theoretical inequality (our Lemma A.1) proved in [6],
which states a bound for the Kullback–Leibler divergence between any distributions that have
been processed through an arbitrary channel guaranteeing local α-differential privacy. We begin
with the lower bound that is dominating in the dense zone.
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Proposition 2.1. Let α ∈ (0,∞) and let L,T > 0. Then,

inf
f̃

Q∈Qα

sup
f ∈Ds

pq (L,T )

Ef,Q‖f̃ − f ‖r
r �

(
n
(
eα − 1

)2)− rs
2s+2 ,

where the infimum is taken over all estimators f̃ based on the private views Z1, . . . ,Zn and all
Markov kernels Q ∈ Qα guaranteeing local α-differential privacy.

The proof of Proposition 2.1 is based on a reduction of the class Ds
pq to a finite number of hy-

potheses indexed by the vertices of a hypercube of suitable dimension. It is given in Section A.1
in the Appendix.

The following proposition complements Proposition 2.1 in stating a lower bound that is
stronger in the private sparse zone.

Proposition 2.2. Let α ∈ (0,∞). Let p ≥ 1, s ≥ 1/p and let L,T > 0. Then,

inf
f̃

Q∈Qα

sup
f ∈Ds

pq (L,T )

Ef,Q‖f̃ − f ‖r
r �

(
log(n(eα − 1)2)

n(eα − 1)2

)r· s−1/p+1/r
2(s−1/p)+2

,

where the infimum is taken over all estimators f̃ based on the private views Z1, . . . ,Zn and all
channels Q ∈ Qα providing local α-differential privacy.

The proof of Proposition 2.2 is given in Section A.2 in the Appendix.
Taking the maximum of the lower bounds obtained in Propositions 2.1 and 2.2 yields (1.6).

In addition to our novel lower bounds, the known bounds (1.5) from the non-private framework
still hold true under local α-differential privacy since processing the original data X1, . . . ,Xn

through a privacy mechanism can be interpreted equivalently as imposing a restriction on the set
of admissible estimators in (1.2). More precisely, the constraint of local α-differential privacy
confines the set of potential estimators to those of the form f̃ = f ◦ Q where Q ∈ Qα and f is
any measurable function. Thus,

R∗
n,α ≥Rn ∨ r∗n,α ≥ rn ∨ r∗n,α,

where the quantityrn is defined in (1.5). Hence, the following corollary holds.

Corollary 2.3. Let the assumptions of Propositions 2.1 and 2.2 hold true. Then,

R∗
n,α

(‖·‖r
r ,Ds

pq

)
�

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

n− rs
2s+1 ∨ (

n
(
eα − 1

)2)− rs
2s+2 if p >

r

s + 1
,

n− rs
2s+1 ∨

(
n(eα − 1)2

log(n(eα − 1)2)

)− r(s−1/p+1/r)
2(s−1/p)+2

if
r

2s + 1
< p ≤ r

s + 1
,(

n

logn

)− r(s−1/p+1/r)
2(s−1/p)+1 ∨

(
n(eα − 1)2

log(n(eα − 1)2)

)− r(s−1/p+1/r)
2(s−1/p)+2

if p ≤ r

2s + 1
.
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Note that the frontier between the dense and the sparse zone in the private framework is dif-
ferent from the one in the non-private framework leading to a partition into three regimes for the
lower bound and a twofold elbow effect. Note that these lower bounds match the upper bounds
derived in Sections 4 and 5 at most up to logarithmic factors whenever α stays bounded as n

increases. In addition, the bounds from the non-private setup dominate provided that α increases
sufficiently fast in terms of n.

3. Privacy mechanisms

Let us denote with X1, . . . ,Xn the real-valued random variables that represent the non-private
observations held by the different data holders. We assume that X1, . . . ,Xn ∼ f for f ∈ Ds

pq . In
particular, the support of the density f is contained in the interval [−T ,T ]. In this section, we
introduce a non-interactive privacy mechanism creating a private release Z1, . . . ,Zn based on the
non-private sample that satisfies the defining property of α-differential privacy. For this purpose,
we consider a wavelet basis as in (1.3). We assume in the sequel that the following condition on
the parent wavelets is satisfied:

ϕ and ψ are compactly supported on an interval [−A,A]. (W1)

The idea of the proposed anonymisation technique is to mask the empirical wavelet coefficients
α′

j0k
and β ′

jk for certain values of j . A consequence of (W1) and the compact support of f is that
for any j0 ∈ Z and any fixed resolution level j ∈ Z, the corresponding αj0k and βjk can a priori
be non-zero for a finite number of k only. We denote the set of k with potentially non-zero αj0k

by Nj0−1. Analogously, for j ≥ j0, the set of k with potentially non-zero βjk is denoted with
Nj .

Let us now define two privacy mechanisms that will turn out to be convenient for the purposes
of this paper. It will be sufficient to consider j0, j1 ∈ N from now on. Note that since the wavelets
coefficients α′

j0k
and β ′

jk are in any case zero for k /∈ Nj0−1 and k /∈ Nj , respectively, we do not
have to consider any privatisation of these quantities.

First privacy mechanism

For i ∈ �1, n�, j ∈ �j0 − 1, j1 �, define

Zijk =
{

ϕj0k(Xi) + σj0−1Wi,j0−1,k if j = j0 − 1, k ∈ Nj0−1,

ψjk(Xi) + σ̃jWijk if j ∈ �j0, j1 �, k ∈Nj ,
(3.1)

where Wijk are independent Laplace distributed random variables with parameter 1,

σj0−1 = 4cA‖ϕ‖∞
α

· 2j0/2 and σ̃j = 4cA‖ψ‖∞
α

·
√

2√
2 − 1

· 2j1/2

for j ∈ �j0, j1 � with cA = 2�A� + 1.
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Second privacy mechanism

For i ∈ �1, n�, j ∈ �j0 − 1, j1 �, define

Zijk =
{

ϕj0k(Xi) + σj0−1Wi,j0−1,k if j = j0 − 1, k ∈Nj0−1,

ψjk(Xi) + σjWijk if j ∈ �j0, j1 �, k ∈ Nj ,
(3.2)

where Wijk are independent Laplace distributed random variables with parameter 1,

σj0−1 = 4cA‖ϕ‖∞
α

· 2j0/2 and σj = 4cA‖ψ‖∞
α

· 2ν − 1

ν − 1
· (j ∨ 1)ν · 2j/2

for j ∈ �j0, j1 � with cA = 2�A� + 1 and some ν > 1.
Note that both privacy mechanisms in (3.1) and (3.2) are non-interactive because Zijk does

only depend on Xi and not on Zi′jk for i′ �= i. The use of the Laplace distribution is convenient
to provide α-differential privacy whereas the Gaussian distribution is suitable for weaker notions
of privacy like approximate differential privacy and KL-divergence differential privacy [4]. The
following proposition shows that both privacy mechanisms, Zi = (Zijk)j∈�j0−1,j1 �,k∈Nj

satisfy
the condition of α-differential privacy.

Proposition 3.1. The privacy mechanisms given in (3.1) and (3.2) are local α-differential pri-
vate.

Proof. By definition of the privacy mechanism in (3.1), the conditional density of Zi given
Xi = xi can be written as

qZi |Xi=xi (zi) =
∏

k∈Nj0−1

1

2σj0−1
exp

(
−|zi,j0−1,k − ϕj0k(xi)|

σj0−1

)

·
j1∏

j=j0

∏
k∈Nj

1

2σ̃j

exp

(
−|zijk − ψjk(xi)|

σ̃j

)
.

Thus, by the reverse and the ordinary triangle inequality,

qZi |Xi=xi (zi)

qZi |Xi=x′
i (zi)

=
∏

k∈Nj0−1

exp

( |zi,j0−1,k − ϕj0k(x
′
i )| − |zi,j0−1,k − ϕj0k(xi)|
σj0−1

)

·
j1∏

j=j0

∏
k∈Nj

exp

( |zijk − ψjk(x
′
i )| − |zijk − ψjk(xi)|

σ̃j

)

≤ exp

( ∑
k∈Nj0−1

|ϕj0k(xi)| + |ϕj0k(x
′
i )|

σj0−1

)
· exp

(
j1∑

j=j0

∑
k∈Nj

|ψjk(xi)| + |ψjk(x
′
i )|

σ̃j

)
.
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Note that for any fixed xi and arbitrary j , ψjk(xi) �= 0 holds only for at most cA = 2�A� + 1
different k, and the same argument is valid for ϕj0k(xi). Thus,

qZi |Xi=xi (zi)

qZi |Xi=x′
i (zi)

≤ exp

(
2 · 2j0/2cA‖ϕ‖∞

σj0−1

)
· exp

(
2‖ψ‖∞cA ·

j1∑
j=j0

2j/2

σ̃j

)

≤ exp

(
α

2
+ α(

√
2 − 1)

2
√

2

j1∑
j=j0

2j/2

2j1/2

)
≤ exp(α).

For the privacy mechanism (3.2), analogous calculations yield for the conditional density of Zi

given Xi = xi that

qZi |Xi=xi (zi)

qZi |Xi=x′
i (zi)

≤ exp

(
2 · 2j0/2cA‖ϕ‖∞

σj0−1

)
· exp

(
2‖ψ‖∞cA ·

j1∑
j=j0

2j/2

σj

)

≤ exp

(
α

2
+ α

2
· ν − 1

2ν − 1

(
2 +

∞∑
j=2

j−ν

))
≤ exp(α),

where we used that
∑j1

j=j0
(j ∨ 1)−ν ≤∑∞

j=0(j ∨ 1)−ν and
∑∞

j=2 j−ν ≤ (ν − 1)−1. �

4. Upper bound for linear wavelet estimators

The expansion (1.4) suggests to consider estimators of the form

f̂ (x) =
∑

k∈Nj0−1

α̂j0kϕj0k(x) +
j1∑

j=j0

∑
k∈Nj

β̂jkψjk(x)

with appropriate estimators α̂j0k and β̂jk of αj0k and βjk , respectively. Note that in the local
private framework, estimators of the wavelet coefficients are allowed to depend on the private
views Zijk only but not on the hidden Xi . For the results concerning the linear estimator in this
section, it suffices to consider the case j0 = 0. In this case, we put ψ−1,k = ϕ0,k , β̂−1,k = α̂0k and
define a linear wavelet estimator through

f̂lin(x) =
j1∑

j=−1

∑
k∈Nj

β̂jkψjk(x) with β̂jk = 1

n

n∑
i=1

Zijk.

Since EWijk = 0, the definition of β̂jk is natural and provides an unbiased estimate of the true
wavelet coefficient βjk .

Note that in the global differential privacy setting, a curator has access to the ensemble of
original data and can release a privatised version of the estimator f̂lin where α̂j0k and β̂jk are
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allowed to depend on the whole non-masked sample X1, . . . ,Xn. However, in the local setting,
privatisation of data must precede estimation. Therefore, in this later setup, we may only release
for any i = 1, . . . , n the vector containing Zijk for all j ∈ �j0, j1 � and k in Nj . These vectors may
be calculated by n distinct entities and neither the corresponding averages α̂j0k, β̂jk nor the final
private estimator f̂lin can be directly released by any of these entities alone. We also underline
the fact that the statistician needs to know the wavelet basis used during privatisation and that
(s)he can only reconstruct the wavelet estimator by using the given privatised sample. However,
this additional information does not diminish the privacy as defined in this context.

The following proposition provides an upper bound for the estimatorf̂lin in the so-called
matched case when r = p. Its proof is given in Appendix B.

Proposition 4.1. Assume that the father wavelet ϕ satisfies Assumption 1.2. Let 1 ≤ p < ∞ and
Zijk defined as in (3.1). Then

sup
f ∈Ds

pq

E‖f̂lin − f ‖p
p � 2−j1ps +

(
22j1

nα2

)p/2

+
(

2j1

n

)p/2

. (4.1)

In particular, choosing j1 = j1(n,α) such that

2j1 � (
nα2) 1

2s+2 ∧ n
1

2s+1 , (4.2)

we obtain

sup
f ∈Ds

pq

E‖f̂lin − f ‖p
p �

(
nα2)− ps

2s+2 ∨ n− ps
2s+1 . (4.3)

The upper bound (4.3) suggests the following interpretation: As long as α2 ≥ n1/(2s+1), the
estimator f̂lin attains the rate n−ps/(2s+1) known to be optimal when the sample X1, . . . ,Xn is
available. However, as soon as α2 < n1/(2s+1), this standard rate is deteriorated and the slower
rate (nα2)−ps/(2s+2) is attained. As in [6], the alteration of the rate in comparison to the non-
private framework concerns both the effective sample size (that changes from n to nα2) and the
exponent appearing in the rate. We emphasize that the privacy mechanism (3.1) consists in a
mere additive perturbation of the values ϕj0k(Xi) and ψjk(Xi) by Laplace noise. This proce-
dure is in notable contrast to the privacy mechanism suggested in [6] where a more complicated
two-step procedure is used to release privatised coefficients in a Fourier series framework. In this
Fourier series framework, the authors of [6] show that rate optimal estimation can be achieved by
their two-step procedure whereas an additive perturbation of the Fourier coefficients by Laplace
noise necessarily leads to non-optimal rates (see [6], Section 5.2.2). In our case, however, Propo-
sition 4.1 together with Proposition 2.1 shows that rate optimal estimation can be achieved by
means of additive Laplace perturbation only.

Although the risk bound of Proposition 4.1 is valid only in the matched case, it can be extended
to the case r �= p by means of the following proposition. Its proof is given in Appendix B.
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Corollary 4.2. Assume that the father wavelet ϕ satisfies Assumption 1.2. Let 1 ≤ p, r < ∞ and
Zijk defined as in (3.1), and put by s′ = s − (1/p − 1/r)+. Then, choosing j1 as in (4.2) yields

sup
f ∈Ds

pq

E‖f̂lin − f ‖r
r �

(
nα2)− rs′

2s′+2 ∨ n
− rs′

2s′+1 .

Corollary 4.2 together with Proposition 2.1 shows that the estimator f̂lin is of optimal order
in the dense homogeneous zone where p ≥ r (which is equivalent to s = s′) and for α bounded
from above. In analogy to [2], it would be possible to suggest a non-linear estimation procedure
depending on s that is optimal (up to logarithmic factors in some cases) in the non-homogeneous
dense case and in the sparse case as well. However, in Section 5, we directly propose a non-linear
estimator that is adaptive to the smoothness s of the underlying density (as well as to the other
parameters p and q of the Besov space).

5. Upper bounds for the non-linear adaptive estimator

In this section, the privacy mechanism is given by (3.2) in Section 3. We study the theoretical
properties of the non-linear wavelet estimators of the form

f̃n(x) =
∑

k

α̂j0kϕj0k(x) +
j1∑

j=j0

∑
k

β̃jkψjk(x), (5.1)

where

α̂j0k = 1

n

n∑
i=1

Zi,j0−1,k and β̃jk = β̂jk · 1{|β̂jk |≥Kt},

and β̂jk = 1
n

∑n
i=1 Zijk as in Section 4 (the choice of t and the value of the numerical constant

K are specified in Theorem 5.1 and its proof below). Thus, non-linearity enters only with respect
to the estimation of the detail coefficients βjk .

Theorem 5.1. Let the father wavelet ϕ satisfy Assumption 1.2 for some integer N > 0. Let the
private views Z1, . . . ,Zn of the sample X1, . . . ,Xn be generated with the privacy mechanism
in (3.2). Consider the estimator f̃n defined in (5.1) with

• j0 ∈N such that 2j0 � (nα2)
1

2(N+1)+2 ∧ n
1

2(N+1)+1 ,
• j1 = j ′

1 ∧ j ′′
1 where j ′

1, j ′′
1 ∈N are such that

2j ′
1 � n

logn
and 22j ′′

1 � nα2

log(nα2)
,

• K = 4(L+σ) for some L > 0 and σ = 4cA‖ψ‖∞ · 2ν−1
ν−1 with ν introduced in the definition

of the second privacy mechanism,
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• t = tj,n,α = γ · jν+1/2√
n

· (1 ∨ 2j/2

α
) for j ∈ �j0, j1 � and some sufficiently large constant γ (for

instance, γ ≥ r(N + 1) works).

Then, the risk bound

sup
(s,p,q,L)∈�

sup
f ∈Ds

pq (L,T )

E‖f̃n − f ‖r
r � (logn)C ·R


n,α,

where

R

n,α =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

n− rs
2s+1 ∨ (

nα2)− rs
2s+2 if p >

r

s + 1
,

n− rs
2s+1 ∨

(
nα2

log(nα2)

)− r(s−1/p+1/r)
2(s−1/p)+2

if
r

2s + 1
< p ≤ r

s + 1
,(

n

logn

)− r(s−1/p+1/r)
2(s−1/p)+1 ∨

(
nα2

log(nα2)

)− r(s−1/p+1/r)
2(s−1/p)+2

if p ≤ r

2s + 1
,

and where

� = (1/p,N + 1) × [1,∞) × [1,∞) × [L,L]
for some 0 < L ≤ L < ∞.

The proof of the Theorem is given in Appendix C. Note that both the privacy mechanism and
the estimator in Theorem 5.1 are independent of the quantities s, p, q , and L (only an upper
bound L on L and an arbitrary value of ν > 1 that should be chosen close to 1 are needed in
order to specify the value of the constant K). Hence, the proposed procedure is adaptive over
the collection of Besov spaces parametrized by the set �. Proposition C.2 and Remark C.3 show
that the value L in the definition of K can be replaced with an upper bound on ‖f ‖∞. If such an
a priori bound of ‖f ‖∞ is not available, it might be replaced by some estimator of this quantity.
The proposal of an appropriate estimator and its detailed analysis are outside the scope of our
presentation and might be investigated in future work. The actual choice of the parameter ν is of
secondary importance for our analysis: it should be larger than 1 in order to ensure convergence
of the series

∑∞
j=2 j−ν in the proof of Proposition 3.1; however, it should not be too large since

it appears in the final rates in the exponents of the additional logarithmic factors. We emphasize
that neither the necessity nor the optimal expression of these logarithmic factors is not yet known
in the framework of differential privacy.

6. Discussion

In this article, we have suggested refined methods for density estimation under the constraint of
local α-differential privacy. By the use of estimators based on wavelet expansions, we have been
able to obtain adaptive procedures that obtain the minimax rate of convergence up to an additional
logarithmic factor only. To the best of our knowledge, adaptation to smoothness has not been
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considered in the framework of private estimation so far. Moreover, in allowing for general Lr -
risk and Besov ellipsoids we have widened the range of results in the privacy framework that has
merely focused on L

2-risk and Sobolev ellipsoids until now. We emphasize that in our minimax
approach a careful coupling of a privacy mechanism associated with a corresponding estimator
is provided. In the same spirit, one may produce alternative couplings and we think it would be
useful to further compare the various privacy mechanisms from different perspectives.

A significant difference between our approach and the one suggested in Section 5.2.2 of [6]
concerns the privacy mechanism: Whereas the procedure in [6] is built on a rather sophisti-
cated sampling strategy aiming at the perturbation of empirical Fourier coefficients, our privacy
mechanism consists in a simple Laplace perturbation of empirical wavelet coefficients. In [6]
it has been observed (see the last paragraph of Section 5.2.2 in that paper) that such an ap-
proach is not feasible for the Fourier basis since it would lead to a suboptimal rate (under L2-
risk) of order (nα2)−2s/(2s+3) over Sobolev ellipsoids of smoothness s instead of the optimal
rate (nα2)−s/(s+1). A heuristic explanation for the easier accessibility of the problem by means
of wavelet bases is given by their well-known localisation properties in contrast to the global
Fourier basis.

Note that wavelet methods in the non-private framework do not necessarily suffer from a log-
arithmic loss in the rate (see, for instance, [2] where an additional logarithmic loss only appears
in the dense zone). The fact that we encounter this type of loss in our private scenario is caused
by the term jν in the definition of the privacy mechanism (3.2).The problem whether and if so,
how such logarithmic losses might be circumvented remains open and provides an interesting
direction for future research.

Finally, let us sketch the connection between local private estimation in the non-interactive
setup and statistical inverse problems, in particular, density deconvolution: On the one hand, in
density deconvolution, the statistician is given a noisy sample Z1, . . . ,Zn where Zi = Xi +εi for
Xi ∼ f and εi ∼ q . Here, the density f is the quantity of interest and q an error density which
is (at least in the overwhelming part of the literature) supposed to be known. In this setup, the Zi

are distributed according to the density g where

g(·) = (Kqf )(·) :=
∫

q(· − x)f (x)dx (6.1)

is the convolution of f with the error density q . It is well known that the difficulty of recon-
structing f from the sample Z1, . . . ,Zn is linked with the degree of ill-posedness of the inverse
problem g = Kqf . The latter can be described either in terms of the sequence (λ2

k) of eigenval-
ues of K∗

q Kq (K∗
q denotes the adjoint operator of the linear operator Kq ) or in terms of the decay

of the Fourier transform of the error density q . General inverse problems of the form Kf = g

have been thoroughly investigated in [10] in the framework of a Gaussian white noise model. For
Besov smooth signals f and |λk| � k−ρ for some ρ > 0, [10] derived adaptive rates of estimation
of f proportional to⎧⎪⎪⎨⎪⎪⎩

(logn)Cn
− rs

2(s+ρ)+1 if s >

(
ρ + 1

2

)(
r

p
− 1

)
,

(logn)Cn
− r(s−1/p+1/r)

2(s−1/p+ρ)+1 if s ≤
(

ρ + 1

2

)(
r

p
− 1

)
and s ≥ 1

p
.
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On the other hand, the statistician who is given the non-interactive privatised sample
Z1, . . . ,Zn is confronted with the problem of recovering f from a sample from the mixture
density

g(·) = (Kf )(·) :=
∫

qZ|X=x(·)f (x)dx,

which is a special instance of an inverse problem and strongly resembles (6.1). In contrast to
(6.1), however, the operator K is now not a priori given as a component of the problem but
constitutes rather a part of its solution. In the local differential privacy framework, the statistician
should select the operator K , corresponding to the choice of a privacy mechanism, subject to the
two following constraints. First, the condition (1.1) concerning α-differential privacy must hold.
Second, the least possible amount of information should be smoothed out by the operator K .
More precisely, denoting with ρ the degree of ill-posedness as above, the proofs of the lower
bounds suggest that the least admissible value for ρ is 1/2. Our privacy mechanisms, that is, our
choices of K satisfy both constraints by leading to an overall estimation procedure that is nearly
minimax.

We emphasize that the above interpretation of the locally differential private estimation prob-
lem does not rule out privacy mechanisms that add noise directly to the random variables
X1, . . . ,Xn in principle. In this case, the probability density function q in (6.1) should satisfy
the local α-differential privacy condition and have smoothness equal to 1/2. An explicit den-
sity q satisfying (1.1) and having smoothness ρ = 1/2 does not seem trivial to find. As already
mentioned, [6] have noted that adding Laplace noise directly to the observations cannot lead to
an optimal procedure. Indeed, the convolution operator in this case has degree of ill-posedness
corresponding to ρ = 2 which yields a suboptimal rate.

Appendix A: Proofs of Section 2

We distinguish in the sequel the dense case and the sparse case that require different explicit
constructions. However, for both proofs of the lower bounds we need the existence of a function
f0 with the following properties (see [9]):

• f0 is a probability density,
• Jspq(f0) ≤ L/2,
• supp(f0) ⊆ [−T ,T ],
• f0 ≡ c0 > 0 on some interval [a, b].

In particular, f0 ∈Ds
pq(L/2, T ).

The main tool in the proof of the lower bounds is adapted from [6]. It allows to reduce the
problem to the study of the likelihoods of the non-privatised data and quantifies the loss of infor-
mation in the process.

Suppose that we are given a finite indexed family of distributions {Pν, ν ∈ V}. Let V denote a
random variable that is uniformly distributed over V . Conditionally on V = ν, suppose we sample
a random vector (X1, . . . ,Xn) according to the product measure P ⊗n

ν = Pν ⊗ · · · ⊗ Pν . Suppose
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that we draw an α-locally private sample Z1, . . . ,Zn according to a channel Q. Conditioned on
V = ν, (Z1, . . . ,Zn) is distributed according to the measure Mn

ν given by

Mn
ν (S) :=

∫
Qn(S | x1, . . . , xn)dP ⊗n

ν (x1, . . . , xn) for S ∈ σ
(
Zn

)
,

where Qn(· | x1, . . . , xn) denotes the joint distribution on Zn of the private sample Z1:n condi-
tioned on X1:n = x1:n. In this setup, we have the following inequality.

Lemma A.1 (Based on [6], Theorem 1). Let α ≥ 0. For any α-locally differentially private
conditional distribution Q and any ν, ν′ ∈ V , ν �= ν′, we have in the above setting

KL
(
Mn

ν ,Mn
ν′
)+ KL

(
Mn

ν′ ,Mn
ν

)≤ 4n
(
eα − 1

)2TV2(Pν,Pν′).

Lemma A.1 quantifies the property that α-differential privacy acts as a contraction on the space
of probability measures.

A.1. Proof of Proposition 2.1

It is sufficient to prove the lower bound for n sufficiently large (the remaining finitely many
n might merely further reduce the value of the numerical constant C). Let f0 be the function
introduced above. For fixed j (the choice of which will be specified later) define Ij as a maximal
subset of Z such that supp(ψjk) ⊂ [a, b] and supp(ψjk) ∩ supp(ψjk′) = ∅ if k, k′ ∈ Ij with
k �= k′. Note that Nj := |Ij | � 2j . Define

F =
{
fθ : fθ = f0 + γ

∑
k∈Ij

θkψjk and θ = (θk) ∈ � := {0,1}Nj

}
,

where γ = c(n(eα − 1)2)
− 2s+1

2(2s+2) for c sufficiently small and 2j � (n(eα − 1)2)
1

2s+2 . For c suf-
ficiently small, it holds γ 2j/2‖ψ‖∞ ≤ c0, which ensures that fθ is non-negative for all θ ∈ �.
One can easily check that

∫
fθ = 1 and supp(fθ ) ⊆ [−T ,T ] for all θ ∈ �. Moreover, by the

definition of γ , the choice of j and the equivalence of norms, we have

‖fθ‖spq ≤ ‖f0‖spq + c1γ 2j (s+1/2−1/p)

(∑
k∈Ij

|θk|p
)1/p

≤ L

2
+ c1γ 2j (s+1/2) ≤ L

2
+ Ccc1 ≤ L,

where the last inequality holds for c sufficiently small. Hence, F ⊂Ds
pq(L,T ) and

sup
f ∈Ds

pq (L,T )

Ef ‖f̃ − f ‖r
r ≥ sup

f ∈F
Ef ‖f̃ − f ‖r

r = max
θ∈�

Eθ‖f̃ − fθ‖r
r .
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Denoting by �jk the support of ψjk , it holds for any estimator f̃ of f that

Eθ‖f̃ − fθ‖r
r = Eθ

∫ ∣∣f̃ (x) − fθ (x)
∣∣r dx

≥
∑
k∈Ij

Eθ

∫
�jk

∣∣f̃ (x) − fθ (x)
∣∣r dx

=
∑
k∈Ij

Eθ

∫
�jk

∣∣f̃ (x) − f0(x) − γ θkψjk(x)
∣∣r dx

since fθ ≡ gθk
:= f0 + γ θkψjk on �jk . Set

‖f̃ − gθk
‖r
r,�jk

=
∫

�jk

∣∣f̃ (x) − gθk
(x)

∣∣r dx =
∫

�jk

∣∣f̃ (x) − f0(x) − γ θkψjk(x)
∣∣r dx,

and θ̌k = argminθ∈{0,1} ‖f̃ − gθ‖r,�jk
. It follows from the triangle inequality that

2‖f̃ − gθk
‖r,�jk

≥ ‖f̃ − gθk
‖r,�jk

+ ‖f̃ − g
θ̌k

‖r,�jk

≥ ‖gθk
− g

θ̌k
‖r,�jk

= γ |θk − θ̌k|‖ψjk‖r .

Thus,

Eθ‖f̃ − fθ‖r
r ≥ γ r

2r

∑
k∈Ij

Eθ

[|θ̌k − θk|r
]‖ψjk‖r

r

= γ r

2r
‖ψj1‖r

r ·Eθ

[
dH (θ̌, θ)

]
,

where dH denotes the Hamming distance. Therefore,

sup
f ∈Ds

pq (L,T )

Ef ‖f̃ − f ‖r
r ≥ max

θ∈�
Eθ‖f̃ − fθ‖r

r ≥ γ r

2r
‖ψj1‖r

r · inf
θ̃

max
θ∈�

Eθ

[
dH (θ̃, θ)

]
.

In order to apply Lemma A.2, we need to bound the Kullback–Leibler divergence between two
different distributions Mn

θ and Mn
θ ′ of the private sample (Z1, . . . ,Zn) resulting from the sample

X1, . . . ,Xn if, for all i ∈ �1, n�, Xi is distributed according to fθ , fθ ′ with dH (θ, θ ′) = 1. We
write Xi ∼ Pθ if Xi has density fθ . Using Lemma A.1 we obtain for any channel providing local
α-differential privacy that

KL
(
Mn

θ ,Mn
θ ′
)≤ 4

(
eα − 1

)2
nTV2(Pθ ,Pθ ′).
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Now, since dH (θ, θ ′) = 1 and θ, θ ′ ∈ �, there exists k0 ∈ Ij such that

TV(Pθ ,Pθ ′) = 1

2

∫ ∣∣fθ (x) − fθ ′(x)
∣∣dx = 1

2

∫ ∣∣∣∣γ ∑
k∈Ij

(
θk − θ ′

k

)
ψjk(x)

∣∣∣∣dx

= γ

2

∫ ∣∣ψjk0(x)
∣∣dx = 1

2
2−j/2γ ‖ψ‖1,

which implies that

KL
(
Mn

θ ,Mn
θ ′
)≤ (

eα − 1
)2‖ψ‖2

1n2−j γ 2 ≤ c2‖ψ‖2
1C < ∞.

Applying Lemma A.2 from the appendix with N = Nj � 2j implies

sup
f ∈Ds

pq (L,T )

Ef ‖f̃ − f ‖r
r � γ r

2r
2j (r/2−1)‖ψ‖r

r · 2j

�
(
n
(
eα − 1

)2)− rs
2s+2 .

This implies the statement of the proposition since f̃ and the channel distribution were arbitrary.

A.2. Proof of Proposition 2.2

We consider f0,ψ,Ij and Nj as in the proof of Proposition 2.1, but consider now the set

F = {fk = f0 + γ · ψjk, k ∈ Ij } ∪ {f0},

where j is chosen such that 2j � (
n(eα−1)2

log(n(eα−1)2)
)

1
2(s+1−1/p) and γ = c2−j (s+1/2−1/p) for c suffi-

ciently small. Let us first check that this choice of j and γ guarantees that F ⊂Ds
pq(L,T ). First,

we have f0 ∈ Ds
pq(L,T ) and one can easily check that

∫
fk = 1 and supp(fk) ⊆ [−T ,T ] for all

k ∈ Ij . Then, for any k ∈ Ij , we have on [a, b] that

fk ≥ c0 − γ ‖ψjk‖∞ ≥ c0 − c2−j (s+1/2−1/p)2j/2‖ψ‖∞ ≥ c0 − c‖ψ‖∞ ≥ 0

for c sufficiently small, and outside of [a, b] it holds fk = f0 ≥ 0. Furthermore, for any k ∈ Ij ,

‖fk‖spq ≤ ‖f0‖spq + γ ‖ψjk‖spq ≤ L/2 + c2−j (s+1/2−1/p)‖ψjk‖spq ≤ L/2 + cc1 ≤ L

for c sufficiently small. Hence, F ⊂Ds
pq(L,T ) and

sup
f ∈Ds

pq (L,T )

Ef ‖f̃ − f ‖r
r ≥ sup

f ∈F
Ef ‖f̃ − f ‖r

r .
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Now, we show that for k, k′ ∈ Ij , k �= k′, the hypotheses fk and fk′ , as well as the hypotheses fk

and f0, are sufficiently separated in the sense of Lemma A.3. For such k, k′ we have:

‖fk − fk′‖r
r ≥ ‖fk − f0‖r

r = γ r2rj (1/2−1/r) · ‖ψ‖r
r = cr2−rj (s+1/2−1/p)2rj (1/2−1/r) · ‖ψ‖r

r

= cr‖ψ‖r
r2−jr(s−1/p+1/r)

≥ C

(
log(n(eα − 1)2)

n(eα − 1)2

)r· s−1/p+1/r
2(s+1−1/p)

.

For k ∈ {0} ∪ Ij , let Mn
k be the distribution of the private sample (Z1, . . . ,Zn) resulting from

the sample X1, . . . ,Xn if for all i ∈ �1, n� Xi is distributed according to fk . For all k ∈ Ij we
have Mn

k � Mn
0 . It remains to bound the quantity 1

Nj

∑
k∈Ij

KL(Mn
k ,Mn

0 ). We write Xi ∼ Pk if
Xi has density fk , k ∈ {0} ∪ Ij . First consider the total variation distance between Pk and P0 for
k ∈ Ij :

TV(Pk,P0) = 1

2

∫
|fk − f0| = γ

2

∫
|ψjk| = γ

2
2−j/2‖ψ‖1

= c

2
‖ψ‖12−j (s−1/p+1),

and thus

TV2(Pk,P0) ≤ c2

4
‖ψ‖2

1C · log(n(eα − 1)2)

n(eα − 1)2
.

Applying Lemma A.1 gives

1

Nj

∑
k∈Ij

KL
(
Mn

k ,Mn
0

)≤ c2‖ψ‖2
1C · log

(
n
(
eα − 1

)2)
. (A.1)

Now, log(Nj ) ≥ log(C2j ) and

log
(
C2j

)
>

log(n(eα − 1)2)

2(s − 1/p + 1)

(
1 + o(1)

)≥ 1

2

log(n(eα − 1)2)

2(s − 1/p + 1)

for n sufficiently large, say n ≥ n0. Putting this estimate into (A.1) yields

1

Nj

∑
k∈Ij

KL
(
Mn

k ,Mn
0

)≤ C log(Nj )

for n ≥ n0 and C < 1/8 for c sufficiently small. We can then apply Lemma A.3, which yields for
n ≥ n0 that

sup
f ∈Ds

pq

Ef ‖f̃ − f ‖r
r ≥ C

(
log(n(eα − 1)2)

n(eα − 1)2

)r· s−1/p+1/r
2(s−1/p)+2

.
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The statement of the proposition follows since both the estimator f̃ and the privacy mechanism
considered were arbitrary.

A.3. Further auxiliary results for the lower bound proofs

The following lemma is a Kullback–Leibler version of Assouad’s lemma. As above, we denote
by dH the Hamming distance, that is, dH (θ, θ ′) =∑d

i=1 1{θi �=θ ′
i } for θ, θ ′ ∈R

d .

Lemma A.2 ([13], p. 118, Theorem 2.12). Denote with � = {0,1}N the set of all binary se-
quences of length N . Let {Pθ : θ ∈ �} be a set of 2N probability measures on some measurable
space (X ,A ) and let the corresponding expectations be denoted by Eθ . Then

inf
θ̃

max
θ∈�

Eθ

[
dH (θ, θ̃)

]≥ N

2
max

{
exp(−β)/2,1 −√

β/2
}

provided that KL(Pθ ,Pθ ′) ≤ β < ∞ for all θ, θ ′ ∈ � with dH (θ, θ ′) = 1.

For the lower bound in the sparse case we need the following lemma taken from [13].

Lemma A.3 ([13], p. 101, Theorem 2.7). Assume that M ≥ 1 and suppose that � contains
elements θ0, θ1, . . . , θM such that:

(i) d(θj , θk) ≥ 2� > 0, for all 0 ≤ j < k ≤ M ,
(ii) Pj � P0, for all j = 1, . . . ,M , and

1

M

M∑
j=1

KL(Pj ,P0) ≤ β logM

with 0 < β < 1/8 and Pj = Pθj
, j = 0,1, . . . ,M . Then

inf
θ̃

sup
θ∈�

Eθ

(
dr(θ̃ , θ)

)≥ c(β)�r .

Appendix B: Proofs of Section 4

B.1. Proof of Proposition 4.1

We give the proof for p > 2 only, which is based on Statement (ii) from Lemma B.1. The proof
for 1 ≤ p ≤ 2 follows similarly using (i) instead. We decompose the risk of the estimator f̂lin

into approximation and stochastic error:

E‖f̂lin − f ‖p
p ≤ 2p−1{

E
∥∥f̂lin −E[f̂lin]

∥∥p

p
+ ∥∥E[f̂lin] − f

∥∥p

p

}
.
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The approximation term can be dealt with exactly as in the case of non-private data (see [9],
p. 130), ∥∥E[f̂lin] − f

∥∥p

p
≤ C2−spj1,

and it remains to consider the stochastic term. Putting β ′−1,k = 1
n

∑n
i=1 ϕ(Xi − k) and β ′

jk =
1
n

∑n
i=1 ψjk(Xi), we have

f̂lin −E[f̂lin] =
j1∑

j=−1

∑
k∈Nj

β ′
jkψjk(x) −

j1∑
j=−1

∑
k∈Nj

βjkψjk(x)

+
∑

k∈N−1

(
1

n

n∑
i=1

σ−1Wi,−1,k

)
ψ−1,k(x) +

j1∑
j=0

∑
k∈Nj

(
1

n

n∑
i=1

σ̃jWijk

)
ψjk(x),

which can be rewritten as

f̂lin −E[f̂lin] = 1

n

n∑
i=1

Kj1+1(x,Xi) −E
[
Kj1+1(x,X1)

]

+
∑

k∈N−1

(
1

n

n∑
i=1

σ−1Wi,−1,k

)
ψ−1,k(x) +

j1∑
j=0

∑
k∈Nj

(
1

n

n∑
i=1

σ̃jWijk

)
ψjk(x),

where Kj(x, y) = 2j
∑

k ϕ(2j x − k)ϕ̄(2j y − k). We further decompose

E
∥∥f̂lin −E[f̂lin]

∥∥p

p

≤ 2p−1
E

∥∥∥∥∥1

n

n∑
i=1

Kj1+1(·,Xi) −E
(
Kj1+1(·,X1)

)∥∥∥∥∥
p

p

+ 2p−1
E

∥∥∥∥∥ ∑
k∈N−1

(
1

n

n∑
i=1

σ−1Wi,−1,k

)
ψ−1,k +

j1∑
j=0

∑
k∈Nj

(
1

n

n∑
i=1

σjWijk

)
ψjk

∥∥∥∥∥
p

p

.

The first term on the right-hand side is analysed as in the non-private setup (see [9], p. 130)
leading to the bound

E

∥∥∥∥∥1

n

n∑
i=1

Kj1+1(·,Xi) −E
[
Kj1+1(·,X1)

]∥∥∥∥∥
p

p

≤ C

(
2j1

n

)p/2

. (B.1)
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For the remaining term, we have by Tonelli’s theorem

E

∫ ∣∣∣∣∣ ∑
k∈N−1

(
1

n

n∑
i=1

σ−1Wi,−1,k

)
ψ−1,k(x) +

j1∑
j=0

∑
k∈Nj

(
1

n

n∑
i=1

σ̃jWijk

)
ψjk(x)

∣∣∣∣∣
p

dx

= 1

np

∫
�

E

∣∣∣∣∣ ∑
k∈N−1

(
n∑

i=1

σ−1Wi,−1,k

)
ψ−1,k(x) +

j1∑
j=0

∑
k∈Nj

(
n∑

i=1

σ̃jWijk

)
ψjk(x)

∣∣∣∣∣
p

dx,

where � is some compact set the length of which depends on A and T only. The expectation in-
side the integral is bounded from above by Rosenthal’s inequality (statement (ii) of Lemma B.1):

E

∣∣∣∣∣ ∑
k∈N−1

(
n∑

i=1

σ−1Wi,−1,k

)
ψ−1,k(x) +

j1∑
j=0

∑
k∈Nj

(
n∑

i=1

σ̃jWijk

)
ψjk(x)

∣∣∣∣∣
p

�
∑

k∈N−1

n∑
i=1

E
∣∣σ−1Wi,−1,kψ−1,k(x)

∣∣p +
j1∑

j=0

∑
k∈Nj

n∑
i=1

E
∣∣̃σjWijkψjk(x)

∣∣p

+
( ∑

k∈N−1

n∑
i=1

E
∣∣σ−1Wi,−1,kψ−1,k(x)

∣∣2 +
j1∑

j=0

∑
k∈Nj

n∑
i=1

E
∣∣̃σjWijkψjk(x)

∣∣2)p/2

= n
∑

k∈N−1

σ
p

−1

∣∣ψ−1,k(x)
∣∣pE|W1,−1,k|p + n

j1∑
j=0

∑
k∈Nj

σ̃
p
j

∣∣ψjk(x)
∣∣pE|W1jk|p

+ np/2

( ∑
k∈N−1

σ 2−1

∣∣ψ−1,k(x)
∣∣2E|W1,−1,k|2 +

j1∑
j=0

σ̃ 2
j

∑
k∈Nj

∣∣ψjk(x)
∣∣2E|W1jk|2

)p/2

� n
∑

k∈N−1

σ
p

−1

∣∣ψ−1,k(x)
∣∣p + n

j1∑
j=0

∑
k∈Nj

σ̃
p
j

∣∣ψjk(x)
∣∣p

+ np/2

( ∑
k∈N−1

σ 2−1

∣∣ψ−1,k(x)
∣∣2 +

j1∑
j=0

σ̃ 2
j

∑
k∈Nj

∣∣ψjk(x)
∣∣2)p/2

� n
∑

k∈N−1

∣∣ψ−1,k(x)
∣∣p 1

αp
+ n

j1∑
j=0

∑
k∈Nj

2j1p/2
∣∣ψjk(x)

∣∣p 1

αp

+ np/2

( ∑
k∈N−1

∣∣ψ−1,k(x)
∣∣2 1

α2
+

j1∑
j=0

2j1
∑

k∈Nj

∣∣ψjk(x)
∣∣2 1

α2

)p/2

.
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Recall the definition of ψjk and noting that due to the boundedness of the support of the wavelet
parents ϕ and ψ we have for any x and fixed j that ψjk(x) �= 0 only for a finite number of k that
is independent of j . Thus, using the last expression we bound from above as follows

∫
�

E

∣∣∣∣∣ ∑
k∈N−1

(
n∑

i=1

σ−1Wi,−1,k

)
ψ−1,k(x) +

j1∑
j=0

∑
k∈Nj

(
n∑

i=1

σ̃jWijk

)
ψjk(x)

∣∣∣∣∣
p

dx

≤ C

(
n

αp
+ n2j1p/2

j1∑
j=0

2jp/2

αp
+ np/2

(
1

α2
+ 2j1

j1∑
j=0

2j

α2

)p/2)

� n

αp
+ n · 2pj1

αp
+ np/2

αp
+ np/2 · 2pj1

αp
.

Thus,

E

∫
�

∣∣∣∣∣ ∑
k∈N−1

(
1

n

n∑
i=1

σ−1Wi,−1,k

)
ψ−1,k(x) +

j1∑
j=0

∑
k∈Nj

(
1

n

n∑
i=1

σ̃jWijk

)
ψjk(x)

∣∣∣∣∣
p

dx

� 2pj1

αpnp−1
+
(

22j1

nα2

)p/2

. (B.2)

Combining (B.1) and (B.2) yields

E
∥∥f̂lin −E[f̂lin]

∥∥p

p
�
(

22j1

nα2

)p/2

+
(

2j1

n

)p/2

,

which proves (4.1). Choosing j1 = j1(n,α) as in (4.2) immediately implies (4.3).

B.2. Proof of Corollary 4.2

We distinguish between the cases p ≥ r and p < r .
1. Case: p > r . In this case, s′ = s. Let us consider the estimator f̂lin with j1 chosen as in

Proposition 4.1. First note that there exists a constant C̄ > 0 such that the Lebesgue measure of
supp(f̂lin − f )) is bounded from above by a constant C̄ > 0. Then, applying Hölder’s inequality
and Proposition 4.1 yields

E‖f̂lin − f ‖r
r ≤ C̄1−r/p

(
E‖f̂lin − f ‖p

p

)r/p �
(
nα2)− rs

2s+2 ∨ n− rs
2s+1 .

2. Case: p ≤ r . In this case, s′ = s − 1/p + 1/r . Thanks to the Besov embedding it holds
Bs

pq ⊂ Bs′
rq , which implies Ds

pq ⊂ Ds′
rq . Thus, again using the upper bound for the matched case
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from Proposition 4.1,

sup
f ∈Ds

pq

E‖f̂lin − f ‖r
r ≤ sup

f ∈Ds′
rq

E‖f̂lin − f ‖r
r

�
(
nα2)− rs′

2s′+2 ∨ n
− rs′

2s′+2 ,

which is the desired bound for the case p ≤ r .

B.3. Inequalities for moments of sums of independent random variables

Lemma B.1. Let X1, . . . ,Xn be independent centred random variables with E[|Xi |r ] < ∞.

(i) If 0 < r ≤ 2, then

E

(∣∣∣∣∣
n∑

i=1

Xi

∣∣∣∣∣
r)

≤
(

n∑
i=1

E
(
X2

i

))r/2

.

(ii) If r > 2, then there exists a constant C = C(r) such that

E

(∣∣∣∣∣
n∑

i=1

Xi

∣∣∣∣∣
r)

≤ C

{
n∑

i=1

E
(|Xi |r

)+
(

n∑
i=1

E
(
X2

i

))r/2}
.

Inequality (i) follows directly from Jensen’s inequality and concavity of x �→ xr/2 for 0 <

r ≤ 2. For a proof of inequality (ii) we refer to [11], p. 59, Theorem 2.9.

Appendix C: Proof of Theorem 5.1

This section is devoted to the proof of Theorem 5.1. The main reasoning is given in Section C.1
but some tedious calculations for this proof are deferred to Section C.2. Sections C.3 and C.4
contain auxiliary results used in Section C.2.

C.1. Proof of Theorem 5.1

As in the proof of the Corollary 4.2, we note that it is sufficient to prove the result for p ≤ r and
one can deduce the result for p > r as in the proof of this corollary.

We consider the upper bound E‖f̃n − f ‖r
r ≤ 3r−1(E‖A‖r

r +E‖B‖r
r + ‖C‖r

r ) where

A =
∑
k∈Z

(̂αj0k − αj0k)ϕj0k, B =
j1∑

j=j0

∑
k∈Z

(β̃jk − βjk)ψjk
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and

C =
∑
k∈Z

αj1kϕj1k − f.

We consider the risk bounds for E‖A‖r
r , E‖B‖r

r , and ‖C‖r
r separately.

Upper bound for the term E‖A‖r
r : Putting α′

j0k
= 1

n

∑n
i=1 ϕj0k(Xi) it holds

E‖A‖r
r ≤ 2r−1

E

∥∥∥∥∑
k∈Z

(
α′

j0k
− αj0k

)
ϕj0k

∥∥∥∥r

r

+ 2r−1
E

∥∥∥∥∥∑
k

(
σj0−1

n

n∑
i=1

Wi,j0−1,k

)
ϕj0k

∥∥∥∥∥
r

r

.

The first term on the right-hand side is bounded by the compact support assumption on ϕ and
using Lemma 1 from [2] as in the non-private case (see [2], p. 522):

2r−1
E

∥∥∥∥∑
k∈Z

(
α′

j0k
− αj0k

)
ϕj0k

∥∥∥∥r

r

≤ C(r)2j0(r/2−1)
∑

k

E
∣∣α′

j0k
− αj0k

∣∣r ≤ C(r)

(
2j0

n

)r/2

.

Concerning the second term, first, by Fubini’s theorem

E

∥∥∥∥∥∑
k

(
σj0−1

n

n∑
i=1

Wi,j0−1,k

)
ϕj0k

∥∥∥∥∥
r

r

=
∫

E

∣∣∣∣∣∑
k

(
σj0−1

n

n∑
i=1

Wi,j0−1,k

)
ϕj0k(x)

∣∣∣∣∣
r

dx,

and the integrand on the right-hand side can be bounded as follows: for r > 2,

E

∣∣∣∣∣∑
k

(
σj0−1

n

n∑
i=1

Wi,j0−1,k

)
ϕj0k(x)

∣∣∣∣∣
r

≤ C(r)

nr

[
σ r

j0−1

∑
k

∣∣ϕj0k(x)
∣∣r n∑

i=1

E|Wi,j0−1,k|r

+
(

σ 2
j0−1

∑
k

∣∣ϕj0k(x)
∣∣2 n∑

i=1

E|Wi,j0−1,k|2
)r/2]

= C(r)

nr

[
σ r

j0−1

∑
k

∣∣ϕj0k(x)
∣∣rnr! +

(
2nσ 2

j0−1

∑
k

∣∣ϕj0k(x)
∣∣2)r/2]

� 1

nr

[
2rj0 · n

αr
+ (

22j0nα−2)r/2
]

= 2rj0

nr−1αr
+
(

22j0

nα2

)r/2

,
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whereas for r ≤ 2,

E

∣∣∣∣∣∑
k

(
σj0−1

n

n∑
i=1

Wi,j0−1,k

)
ϕj0k(x)

∣∣∣∣∣
r

�
(

22j0

nα2

)r/2

.

Thus, altogether,

E‖A‖r
r �

(
2j0

n

)r/2

+
(

22j0

nα2

)r/2

.

Hence, for our choice of j0 and grant to s < N + 1 from Assumption 1.2, we obtain

E‖A‖r
r �

(
n

1
2(N+1)+1

n

)r/2

+
(

(nα2)
2

2(N+1)+2

nα2

)r/2

= n
− r(N+1)

2(N+1)+1 + (
nα2)− r(N+1)

2(N+1)+2

≤ n− rs
2s+1 + (

nα2)− rs
2s+2

� n− rs
2s+1 ∨ (

nα2)− rs
2s+2 ∨

(
n

logn

)− r(s−1/p+1/r)
2(s−1/p)+1 ∨

(
nα2

log(nα2)

)− r(s−1/p+1/r)
2(s−1/p)+2

,

and the bound on the right-hand side is the claimed rate.
Upper bound for the term E‖B‖r

r : We consider the sets

B̂j = {
k : |β̂jk| > Ktj,n,α

}
, Ŝj = B̂�

j ,

Bj = {
k : |βjk| > (K/2)tj,n,α

}
, Sj = B�

j ,

B ′
j = {

k : |βjk| > 2Ktj,n,α

}
, S′

j = (
B ′

j

)�
,

and the decomposition

B =
j1∑

j=j0

∑
k

(β̂jk − βjk)ψjk

[
1B̂j ∩Sj

(k) + 1B̂j ∩Bj
(k)

]

−
j1∑

j=j0

∑
k

βjkψjk

[
1Ŝj ∩B ′

j
(k) + 1Ŝj ∩S′

j
(k)

]
=: (ebs + ebb) − (esb + ess).

Appropriate bounds for the four terms ebs, ebb, esb, ess are derived in Appendix C.2.
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Upper bound for the term ‖C‖r
r : In the case we consider, p ≤ r , we use the embedding Bs

pq ⊂
Bs′

r∞, where we recall that s′ = s − 1
p

+ 1
r
. Then, it holds∥∥∥∥∑

k∈Z
αj1kϕj1k − f

∥∥∥∥r

r

≤ C‖f ‖r
spq · 2−j1s

′r .

Moreover, with our choice of j1,

2−j1s
′r ≤ 2−j ′

1s
′r + 2−j ′′

1 s′r

�
(

n

logn

)− rs′
2(s−1/p)+1 +

(
nα2

log(nα2)

)− rs′
2(s−1/p)+2

,

and the sum on the right-hand side is bounded from above by the claimed rate.

C.2. Bounds for the terms ebs , ebb, esb, and ess

Consider the event Ajk defined via Ajk = {|β̂jk − βjk| > K/2 · tj,n,α}. The concentration in-
equality (C.5) for this event as well as the bound (C.6) will be used frequently in the sequel
without further reference. In the following, we bound the terms E‖ebs‖r

r , E‖ebb‖r
r , E‖esb‖r

r , and
E‖ess‖r

r separately.

C.2.1. Bound for ebs

By the Cauchy–Schwarz inequality and the fact that B̂j ∩ Sj ⊂ Ajk ,

E‖ebs‖r
r �

j1∑
j=j0

2j (r/2−1)
∑

k∈Nj

E
[|β̂jk − βjk|r1B̂j ∩Sj

(k)
]

≤
j1∑

j=j0

2j (r/2−1)
∑

k∈Nj

(
E
[|β̂jk − βjk|2r

])1/2 · P(|β̂jk − βjk| ≥ K/2 · tj,n,α

)1/2

≤
j1∑

j=j0

2j (r/2−1)
∑

k∈Nj

(
n−r/2 ∨ jνr/22jr/2(nα2)−r/2) · 2−γj/2

≤
j1∑

j=j0

2jr/22−γj/2(n−r/2 ∨ jνr/22jr/2(nα2)−r/2)

≤ n−r/2
j1∑

j=j0

2jr/22−γj/2 + (
nα2)−r/2

j
νr/2
1

j1∑
j=j0

2jr2−γj/2

and this term is bounded from above by the claimed rate provided that γ ≥ 2r .
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C.2.2. Bound for esb

Using the relation Ŝj ∩ B ′
j ⊂ Ajk , we obtain

E‖esb‖r
r �

j1∑
j=j0

2j (r/2−1)
∑

k

|βjk|r ·E[1Ŝj ∩B ′
j
(k)

]

�
j1∑

j=j0

2j (r/2−1)
∑

k∈Nj

|βjk|r · P(|β̂jk − βjk| ≥ K · tj,n,α

)

�
j1∑

j=j0

2j ( r
2 −1−γ )‖βj ·‖r

r .

In the considered case p ≤ r , we exploit the embedding Bs
pq ⊆ Bs′

rq with s′ = s − 1
p

+ 1
r

to get
the bound

‖βj ·‖r � 2−j (s′+ 1
2 − 1

r
).

Hence,

E‖esb‖r
r �

j1∑
j=j0

2j ( r
2 −1−γ )2−jr(s′+ 1

2 − 1
r
) =

j1∑
j=j0

2−j (γ+rs′) � 2−j0(γ+rs′)

by the definition of j0. Noting that

2−j0(γ+rs′) �
(
nα2)− γ+rs′

2(N+1)+2 ∨ n
− γ+rs′

2(N+1)+1

≤ (
nα2)− rs

2s+2 ∨ n− rs
2s+1

provided that γ is large enough (γ ≥ r(N + 1) is sufficient), shows that E‖esb‖r
r is at most of the

same order as the claimed rate.

C.2.3. Bound for ebb

Put t ′j,n,α = γjν+1/2n−1/2 and t ′′j,n,α = γjν+1/2(nα2)−1/22j/2. Note that tj,n,α = t ′j,n,α ∨ t ′′j,n,α .
For any ρ ≥ 0, it holds

E‖ebb‖r
r �

j1∑
j=j0

2j (r/2−1)
∑

k

E
[|β̂jk − βjk|r1B̂j ∩Bj

(k)
]

�
j1∑

j=j0

2j (r/2−1)
∑

k

(
n−r/2 ∨ jνr/22jr/2(nα2)−r/2)

1Bj
(k)
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�
j1∑

j=j0

2j (r/2−1)
∑

k

n−r/21Bj
(k)

+
j1∑

j=j0

2j (r/2−1)
∑

k

jνr/22jr/2 · (nα2)−r/2
1Bj

(k)

�
j1∑

j=j0

2j (r/2−1)
(
t ′j,n,α

)r ·
∑

k

|βjk|ρ
(
t ′j,n,α

)−ρ

+
j1∑

j=j0

2j (r/2−1)
(
t ′′j,n,α

)r ∑
k

|βjk|ρ
(
t ′′j,n,α

)−ρ

�
j1∑

j=j0

2j (r/2−1)
(
t ′j,n,α

)r−ρ
∑

k

|βjk|ρ︸ ︷︷ ︸
=:S1

+
j1∑

j=j0

2j (r/2−1)
(
t ′′j,n,α

)r−ρ ·
∑

k

|βjk|ρ︸ ︷︷ ︸
=:S2

. (C.1)

As this argument shows, one can even choose distinct values of ρ for different j , which will be
used in the following calculations. Note that∑

k

|βjk|p � 2−jp(s+1/2−1/p),

and, if ρ ≤ p, by Hölder’s inequality

∑
k

|βjk|ρ ≤ 2j (1−ρ/p)

(∑
k

|βjk|p
)ρ/p

≤ 2j (1−ρ/p)2−jρ(s+1/2−1/p) = 2−jρ(s+1/2−1/ρ).

In the sequel, we consider three different cases corresponding to the three regimes in the state-
ment of Theorem 5.1.

1. Case: p > r/(s + 1).

• Bound for S1: Set q1 = r/(2s + 1) and define κ1 ∈N such that

2κ1(r/2−p/2−sp) � n− p−q1
2 .

Choosing ρ < q1 ≤ p for the indices j ∈ �j0, κ�, we obtain (note that s + 1/2 = r/(2q1))

κ1∑
j=j0

2j (r/2−1)
(
t ′j,n,α

)r−ρ
∑

k

|βjk|ρ � j
(r−ρ)(ν+1/2)

1 n−(r−ρ)/2
κ1∑

j=j0

2j (r/2−1)
∑

k

|βjk|ρ

� j
(r−ρ)(ν+1/2)

1 n−(r−ρ)/2
κ1∑

j=j0

2j (r/2−ρ(s+1/2))
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� (logn)Cn−(r−ρ)/22
κ1(r/2− rρ

2q1
)

� (logn)Cn(q1−r)/2

= (logn)Cn− rs
2s+1 .

Choosing ρ = p for indices j ∈ �κ1 + 1, j1 �, we obtain

j1∑
j=κ1+1

2j (r/2−1)
(
t ′j,n,α

)r−ρ
∑

k

|βjk|ρ � j
(r−p)(ν+1/2)

1 n−(r−p)/2
j1∑

j=κ1+1

2j (r/2−sp−p/2)

� j
(r−p)(ν+1/2)

1 n−(r−p)/22κ1(r/2−sp−p/2)

� j
(r−p)(ν+1/2)

1 n−(r−q1)/2

� (logn)C · n− rs
2s+1 .

• Bound for S2: Set q2 = r/(s + 1) and define κ2 ∈N such that

2κ2(r−p−sp) � (
nα2)− p−q2

2 .

Choosing ρ < q2 ≤ p for the indices j ∈ �j0, κ2 �, we obtain (note that s + 1 = r/q2)

κ2∑
j=j0

2j (r/2−1)
(
t ′′j,n,α

)r−ρ ·
∑

k

|βjk|ρ � j
(r−ρ)(ν+1/2)

1

(
nα2)−(r−ρ)/2

κ2∑
j=j0

2j (r−ρ(s+1))

� (logn)C
(
nα2)−(r−ρ)/22

κ2(r− rρ
q2

)

� (logn)C
(
nα2)(q2−r)/2

= (logn)C
(
nα2)− rs

2s+2 .

Choosing ρ = p for indices j ∈ �κ2 + 1, j1 �, we obtain

j1∑
j=κ2+1

2j (r/2−1)
(
t ′′j,n,α

)r−ρ
∑

k

|βjk|ρ � j
(r−p)(ν+1/2)

1

(
nα2)−(r−p)/2

j1∑
j=κ2+1

2j (r−sp−p)

� j
(r−p)(ν+1/2)

1

(
nα2)−(r−p)/22κ2(r−sp−p)

� (logn)C · (nα2)(q2−r)/2

= (logn)C · (nα2)− rs
2s+2 .



1758 Butucea, Dubois, Kroll and Saumard

2. Case: p ∈ (r/(2s + 1), r/(s + 1)].
• Bound for S1: The sum S1 can be dealt with as in the first case, since the choices of q1 and

κ1 from that case are still legitimated for p ∈ (r/(2s + 1), r/(s + 1)].
• Bound for S2: In order to bound S2 in the second case, define q2 and κ2 via the relations

q2 = r · 1 − 1/r

s − 1/p + 1
and 2κ2 � (

nα2) q2
2(r−1) .

To deal with the sum over j ∈ �j0, κ2 �, we take ρ = p and obtain

κ2∑
j=j0

2j (r/2−1)
(
t ′′j,n,α

)r−ρ
∑

k

|βjk|ρ � j
(ν+1/2)(r−p)

1

(
nα2)(r−p)/2

κ2∑
j=j0

2j (r−sp−p)

� (logn)C
(
nα2)−(r−p)/2

κ2∑
j=j0

2j (r−1)(1−p/q2)

� (logn)C
(
nα2)−(r−p)/22κ2(r−1)(1−p/q2)

� (logn)C
(
nα2)(q2−r)/2

= (logn)C
(
nα2)− rs′

2(s−1/p)+2 .

For the sum over indices j ∈ �κ2 +1, j1 �, we choose ρ > q2 > p, and obtain by monotony
of �ω-norms in ω, and putting s′′ = s + 1/2 − 1/p that

j1∑
j=κ2+1

2j (r/2−1)
(
t ′′j,n,α

)r−ρ
∑

k

|βjk|ρ � j
(ν+1/2)(r−ρ)

1

(
nα2)− r−ρ

2

j1∑
j=κ2+1

2j (r−ρ/2−1−ρs′′)

� (logn)C
(
nα2)− r−ρ

2

j1∑
j=κ2+1

2j (r−1−ρ/2−ρs′′)

= (logn)C
(
nα2)− r−ρ

2

j1∑
j=κ2+1

2j (r−1)(1−ρ/q2)

� (logn)C
(
nα2)− r−ρ

2 2κ2(r−1)(1−ρ/q2)

� (logn)C
(
nα2) q2−r

2

= (logn)C
(
nα2)− rs′

2(s−1/p)+2 .
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3. Case: p ≤ r/(2s + 1).

• Bound for S1: Put

q1 = r · 1/2 − 1/r

s + 1/2 − 1/p
,

and choose κ1 ∈N such that

2κ1 � n
1
2

q1
r/2−1 .

Then, taking ρ = p for the indices j ∈ �j0, κ1 � in the first sum in (C.1), we obtain

κ1∑
j=j0

2j (r/2−1)
(
t ′j,n,α

)r−ρ
∑

k

|βjk|ρ ≤ j
(ν+1/2)(r−p)

1 n−(r−p)/2
κ1∑

j=j0

2j (r/2−sp−p/2)

� (logn)Cn−(r−p)/2
κ1∑

j=j0

2j (r/2−1)(1−p/q1)

� (logn)Cn−(r−p)/22κ1(r/2−1)(1−p/q1)

= (logn)Cn
q1−r

2

= (logn)Cn
− rs′

2(s−1/p)+1 .

For the sum over indices j ∈ �κ1 + 1, j1 �, we choose ρ > q1 > p, and obtain by monotony
of �ω-norms in ω and putting s′′ = s + 1/2 − 1/p that

j1∑
j=κ1+1

2j (r/2−1)
(
t ′j,n,α

)r−ρ
∑

k

|βjk|ρ � j
(ν+1/2)(r−ρ)

1 n− r−ρ
2

j1∑
j=κ1+1

2j (r/2−1−ρs′′)

� (logn)Cn− r−ρ
2

j1∑
j=κ1+1

2j (r/2−1−ρs′′)

= (logn)Cn− r−ρ
2

j1∑
j=κ1+1

2j (r/2−1)(1−ρ/q1)

� (logn)Cn− r−ρ
2 2κ1(r/2−1)(1−ρ/q1)

� (logn)Cn
q1−r

2

= (logn)Cn
− rs′

2(s−1/p)+1 .

• Bound for S2: S2 can be dealt with exactly as in the second case.
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C.2.4. Bound for ess

For any 0 ≤ ρ ≤ r

E‖ess‖r
r �

j1∑
j=j0

2j ( r
2 −1)

∑
k

|βjk|rE
[
1Ŝj ∩S′

j
(k)

]

�
j1∑

j=j0

2j ( r
2 −1)

((
t ′j,n,α

)r−ρ ∨ (
t ′′j,n,α

)r−ρ)∑
k

|βjk|ρ.

This term can be bounded from above by the right-hand side of (C.1), and we conclude in the
same way as for the term ebb .

C.3. A concentration inequality for the ̂βjk

For our proof, we need concentration inequalities for the events

Ajk :=
{
|β̂jk − βjk| ≥ (K/2)

jν+1/2

√
n

(
1 ∨ 2j/2

α

)}
for K > 0, where j ∈ �j0, j1 � and k ∈Nj . Let recall the two-sided Bernstein’s inequality (cf. [1]
Theorem 2.10).

Theorem C.1. Let Y1, . . . , Yn be independent real valued random variables. Assume that there
exist some positive numbers v and c such that

n∑
i=1

E
[
Y 2

i

]≤ v, (C.2)

and for all integers m ≥ 3
n∑

i=1

E
[|Yi |m

]≤ m!
2

vcm−2. (C.3)

Let S =∑n
i=1(Yi −E[Yi]), then for every positive x

P
[|S| ≥ √

2vx + cx
]≤ 2 exp(−x). (C.4)

Using this inequality, we can prove the following result.

Proposition C.2. For all j ∈ �j0, j1 � satisfying j ≤ n, for all k ∈Nj , and for all γ ≥ 1 we have

P

(
|β̂jk − βjk| ≥ 4(c̄ + σ)γ

jν+1/2

√
n

(
1 ∨ 2j/2

α

))
≤ 2−γj , (C.5)
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where c̄ is an upper bound for supf ∈Ds
pq (L,T ) ‖f ‖∞ and σ = 4cA‖ψ‖∞(2ν −1)/(ν −1) appears

in the privacy mechanism (3.2).

Remark C.3. By Equation (15) in [2], the choice c̄ = L is admissible for f ∈ Ds
pq(L,T ).

Proof of Proposition C.2. We will apply Bernstein’s inequality to the random variables
{Zijk}i=1,...,n. Using that ψjk(Xi) and Wijk are independent and that E[Wijk] = 0, we get for
all i ∈ �1, n�

E
[
Z2

ijk

]= E
[
ψjk(Xi)

2]+ σ 2
j E

[
W 2

ijk

]+ 2σjE
[
ψjk(Xi)Wijk

]
= E

[
ψjk(Xi)

2]+ σ 2
j E

[
W 2

ijk

]+ 2σjE
[
ψjk(Xi)

]
E[Wijk]

= E
[
ψjk(Xi)

2]+ σ 2
j E

[
W 2

ijk

]
≤ c̄ + 2σ 2

j

≤ 2(c̄ + σj )
2,

where c̄ > 0 depends on L is such that ‖f ‖∞ ≤ c̄ for all f in Bs
pq(L) with s > 1

p
. Let m ≥ 3 be

an integer. Using again that ψjk(Xi) and Wijk are independent we get for all i ∈ �1, n�

E
[|Zijk|m

]≤ E
[(∣∣ψjk(Xi)

∣∣+ σj |Wijk|
)m]

= E

[
m∑

l=0

(
m

l

)
σ l

j |Wijk|l
∣∣ψjk(Xi)

∣∣m−l

]

=
m∑

l=0

(
m

l

)
σ l

jE
[|Wijk|l

]
E
[∣∣ψjk(Xi)

∣∣m−l]
=

m∑
l=0

(
m

l

)
σ l

jE
[∣∣ψjk(Xi)

∣∣m−l]
l!

≤ m!
m∑

l=0

(
m

l

)
σ l

j (c̄)
m−l

= m!(c̄ + σj )
m.

Conditions (C.2) and (C.3) are thus satisfied with v = 2n(c̄+σj )
2 and c = c̄+σj , and according

to Bernstein’s inequality (C.4) we have for all x > 0

P

(
|β̂jk − βjk| ≥ (c̄ + σj )

(
2

√
x

n
+ x

n

))
≤ 2 exp(−x).
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Note that we have for all j ∈ �j0, j1 �,

c̄ + σj = c̄ + σjν 2j/2

α
≤ (c̄ + σ)jν

(
1 ∨ 2j/2

α

)
,

where σ = 4cA‖ψ‖∞(2ν − 1)/(ν − 1) appears in the definition of σj in (3.2). Take x = Cj ,
C > 0 and note that 2

√
Cj/n + Cj/n ≤ (2

√
C + C)

√
j/n if j ≤ n. Consequently, we get for all

C > 0, for all j ∈ �j0, j1 � satisfying j ≤ n and for all k ∈Nj ,

P

(
|β̂jk − βjk| ≥ (c̄ + σ)(C + 2

√
C)

jν+1/2

√
n

(
1 ∨ 2j/2

α

))
≤ 2 exp(−Cj).

Then, it suffices to take C = 2 ln(2)γ to obtain (C.5). �

C.4. Moment bounds and norm inequalities

Consider an arbitrary random function

ĝ =
j1∑

j=j0

∑
k

ĝjkψjk.

Putting

S(ι) =
j1∑

j=j0

2j ι ≤
{

cγ 2max(j1ι,j0ι) if ι �= 0,

j1 − j0 if ι = 0,

it has been shown in [2] that for arbitrary v ∈R and u = r/(r − 2) it holds

E‖ĝ‖r
r ≤

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Cr

j1∑
j=j0

2j (r/2−1)
∑

k

E|̂gjk|r if 1 ≤ r ≤ 2,

CrS(uv)(r/2−1)+
j1∑

j=j0

2j (r/2−1−vr/2)
∑
k∈Z

E|̂gjk|r if r > 2.

As in [2], adopting the formal convention S0 = 1, it suffices to consider the second inequality for
all r ≥ 1 (setting v = 0 for the case r ≤ 2). Thus, for any r ≥ 1,

E‖ĝ‖r
r �

j1∑
j=j0

2j (r/2−1)
∑

k

E|̂gjk|r . (C.6)

Consider again the decomposition β̂jk = β ′
jk + σj

n

∑n
i=1 Wijk . We have, for any m ≥ 1,

E|β̂jk − βjk|m ≤ 2m−1
E
∣∣β ′

jk − βjk

∣∣m + 2m−1
E

∣∣∣∣∣σj

n

n∑
i=1

Wijk

∣∣∣∣∣
m

.
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In [2], p. 520, Equation (16) it is shown that

E
∣∣β ′

jk − βjk

∣∣m ≤ cn−m/2 (C.7)

provided that 2j ≤ n with a constant c depending only on s, p, q , L, ‖ψ‖m and m. In addition,
by Rosenthal’s inequality, it can be shown for any m ≥ 1 that

E

∣∣∣∣∣σj

n

n∑
i=1

Wijk

∣∣∣∣∣
m

� jνm/22jm/2(nα2)−m/2
. (C.8)

Combining (C.7) and (C.8) yields

E|β̂jk − βjk|m � n−m/2 ∨ jνm/22jm/2(nα2)−m/2
. (C.9)
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