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Sparse linear discriminant analysis via penalized optimal scoring is a successful tool for classification in
high-dimensional settings. While the variable selection consistency of sparse optimal scoring has been
established, the corresponding prediction and estimation consistency results have been lacking. We bridge
this gap by providing probabilistic bounds on out-of-sample prediction error and estimation error of multi-
class penalized optimal scoring allowing for diverging number of classes.
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1. Introduction

Sparse linear discriminant analysis has been proven to be a successful tool for classification in
high-dimensional settings [6,8,23,38]. While multiple formulations have been proposed, exploit-
ing the connection between the linear discriminant analysis and optimal scoring problem [15,16]
leads to a particularly attractive regularization due to the least squares loss function.

Let (xi ,zi ), i = 1, . . . , n, be independent pairs, where xi ∈ R
p is a vector of features, and

zi ∈ {0,1}K is a vector indicating class membership, zik = 1 if ith sample belongs to class k ∈
{1, . . . ,K} and zik = 0 otherwise. Let X ∈ R

n×p be a column-centered data matrix, Z ∈ R
n×K

be the corresponding class indicator matrix and nk be the number of samples in class k. Let
1 ∈ {1}K be a vector of ones. The unpenalized optimal scoring problem [16] is formulated as

minimize
�,B

‖Z� − XB‖2
F

subject to n−1��Z�Z� = IK−1, ��Z�Z1 = 0,

where B = [β1 . . .βK−1] ∈ R
p×(K−1) is the matrix of feature coefficients, and � ∈ R

K×(K−1)

is the matrix of scores. It is shown in [16] that linear discriminant analysis can be carried out by
solving unpenalized optimal scoring problem.

In the special case of two classes, K = 2, the solution for the vector of scores is θ̂ =
(
√

n2/n1,−√
n1/n2)

� up to a sign. Defining Y = Zθ̂ , the optimal scoring problem reduces
to the linear regression problem. Given the success of lasso [34] in high-dimensional linear re-
gression, [23] consider the penalized optimal scoring problem

β̂ = argmin
β

{
(2n)−1‖Y − Xβ‖2

2 + λ‖β‖1
}
. (1)
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Further generalizations to the copula models [14], tensor data [30] as well as the multi-class case
[8,10,26,39] have been considered.

While the prediction and estimation consistency of lasso estimator in linear regression has been
well-studied, see, for example, [1,5,9,13,32,41] and references therein, the theoretical analysis
of (1) and related extensions have been primarily focused on variable selection consistency [10,
11,14,19,23,30]. The latter requires the use of irrepresentable condition [42], which significantly
limits the amount of correlations allowed in X, and is more restrictive than conditions needed
for the prediction consistency [35].

There are several reasons for the gap between theoretical understanding of sparse optimal
scoring and lasso. First, the theory for lasso relies on the linear model assumption

yi = x�
i β + εi, εi ∼N

(
0, σ 2)

, εi independent from xi , (2)

that is for each sample i, the continuous response yi is generated conditionally on the covariates
xi . Model (2) does not hold for optimal scoring. In particular, the covariates xi are generated
conditionally on the class membership encoded by discrete yi . Secondly, since the covariates are
random, it is of interest to investigate the expected out-of-sample prediction risk rather than in-
sample prediction risk typically considered in linear regression literature [1,9,17]. Specifically,
let x ∈ R

p be a new vector of covariates with the same distribution as xi , and for K = 2 let β∗ be
the population matrix of coefficients, then the expected out-of-sample prediction risk is defined
as

R(β̂) = Ex

{∥∥x�(
β̂ − β∗)∥∥2

2

} = (
β̂ − β∗)�

E
(
xx�)(

β̂ − β∗)
,

whereas the in-sample prediction risk is defined as ‖X(β̂ − β∗)‖2
2. Finally, defining the residual

terms as ε := Y − Xβ∗, the residuals in ε and the covariates in X are not independent, again in
contrast to linear model (2). These challenges prevent direct application of lasso results to (1).

In this work, we address these challenges and bridge the existing gap in theoretical under-
standing of sparse optimal scoring. Specifically, our work makes the following contributions:

– Compared to existing research specific to K = 2 case [21], we consider a multi-class frame-
work, and show that the matrix of optimal scores �̂ can be expressed in a closed form up to
an orthogonal transformation (Lemma 2). This allows us to formulate a coordinate-sparse
multi-class optimal scoring problem as the penalized multiple response linear regression
problem, thus enabling the subsequent theoretical analysis. We believe this result is of in-
dependent interest.

– We derive the concentration bound for the maximal row �2 norm of n−1X�E (Theorem 3),
where E := Y − XB∗ is the matrix of residuals. The key difficulties in deriving this bound
is the non-Gaussianity of X and E, and the lack of independence between X and E. The
corresponding proof is the key theoretical contribution of this work.

– We derive out-of-sample prediction and estimation bounds for sparse multi-class optimal
scoring problem which allow both the number of features p and the number of classes K to
grow with the sample size n. The corresponding results for the estimator in (1) follow as a
special case when K = 2. We derive bounds of two types, that are typically called slow-rate
bounds and fast-rate bounds in the literature, we refer to [2,9] for the discussion. Slow-
rate bounds make no assumptions on the correlation structure of X or the sparsity of the
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population matrix of coefficients B∗, whereas fast-rate bounds lead to faster convergence
rates, but rely on exact sparsity of B∗ and restricted eigenvalue condition [1].

– We prove that out-of-sample prediction consistency implies classification consistency, and
derive finite-sample bounds on misclassification error rate of multi-class penalized optimal
scoring problem in terms of corresponding error rate of population Fisher’s linear discrimi-
nant analysis rule.

1.1. Relations to existing literature

The variable selection consistency of estimator in (1) has been established in [19,23], whereas the
variable selection consistency for the estimator in the multi-class case has been established in [10,
11]. While the estimation consistency can be established under the same conditions, the proofs
rely on irrepresentability condition. To our knowledge the results on prediction and estimation
consistency of (1) without irrepresentability condition are lacking, with the exception of a recent
work by Li and Jia [21].

In [21], Li and Jia establish �2 estimation consistency of penalized optimal scoring when
K = 2. Our results and analysis differ in several ways. Most importantly, we consider the multi-
class case, and allow the number of classes K to grow with the sample size. This generalization
is far from trivial, and requires establishing score invariance (Lemma 1), derivation of the explicit
form of the scores (Lemma 2) as well as a new proof of the concentration bound for n−1X�E

term (Theorem 3). Theorem 3 applies to the two-class case as well, but our proof allows to
explicitly characterize the dependence of constants on model parameters and is significantly
reduced compared to the proof in [21]. Secondly, in addition to �2 consistency, we establish the
bounds on expected out-of-sample prediction error, where expectation is taken with respect to a
new vector of features x ∈ R

p . Similar distinction is made in [7], where the difference between
mean squared prediction error and estimated mean squared prediction error is discussed. The out-
of-sample prediction bounds are not present in [21], largely due to the latter focus on fast-rate
bounds. In contrast, we derive both fast-rate and slow-rate bounds. The main advantage of the
slow-rate bounds is that they do not require either sparsity assumption or the restricted eigenvalue
condition, we refer to [2,9] for the discussion of the two types of bounds. As part of the slow-
rate bound derivation, we demonstrate that the norm of B̂ can always be bounded by a constant
times the norm of B∗. While the proof is rather simple, we found that this fact was not explicitly
stated in the literature, and therefore could be of independent interest. Finally, the �2 estimation
consistency in [21] is established explicitly under the restricted eigenvalue condition on X. While
the authors state that “a few class of matrices have been proved to satisfy the restricted eigenvalue
condition with high probability” and refer to [31] for corresponding results for Gaussian designs,
these results are neither incorporated into the analysis nor is X Gaussian in optimal scoring.
We show that the entries of X are marginally sub-Gaussian with explicit characterization of
sub-Gaussian constant (Lemma 3), and correspondingly rely on results of [33,43] to establish
restricted eigenvalue condition with high probability. We also incorporate these bounds within
the analysis.
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1.2. Notation

For two scalars a, b ∈ R, we let a ∨ b = max(a, b). For a vector v ∈ R
p , we define �1-norm

as ‖v‖1 = ∑p

i=1 |vi |, �2-norm as ‖v‖2 = (
∑p

i=1 v2
i )

1/2 and �∞ norm as ‖v‖∞ = maxi |vi |. We
use 1 ∈ R

p to denote a vector of ones, 0 ∈ R
p to denote a vector of zeros, and ej ∈ R

p to
denote a unit-norm vector with j th coordinate equal to one. For scalar a ∈ R, we write {a}l
to denote a row-vector of length l with each element equal to a. For a matrix A ∈ R

n×p ,
we let ‖A‖∞,2 = maxi (

∑p

j=1 a2
ij )

1/2, ‖A‖1,2 = ∑n
i=1(

∑p

j=1 a2
ij )

1/2, ‖A‖1 = ∑n
i=1

∑p

j=1 |aij |,
‖A‖2 = supx:‖x‖2=1 ‖Ax‖2, ‖A‖F = (

∑n
i=1

∑p

j=1 a2
ij )

1/2 and ‖A‖∞ = maxi,j |aij |. We use I

to denote the identity matrix. For vectors a,b ∈ R
p , we use 〈a,b〉 = a�b to define vector in-

ner product, and for matrices A,B ∈ R
n×p we use 〈A,B〉 = Tr(A�B) to define matrix inner

product. For a sequence of scalars b1, . . . , bn, . . . , we use bn = o(an) if limn→∞(bn/an) = 0
and bn = O(an) if limn→∞(bn/an) = C for some finite constant C. For a sequence of random
variables x1, . . . , xn, . . . , we use xn = Op(an) if for any ε > 0 P(|xn|/an < ε) → 0 as n → ∞,
and xn = Op(an) if for any ε > 0 there exists Mε such that P(|xn|/an > Mε) < ε for all n.
For random variable t , we use ‖t‖ψ2 = supp≥1 p−1/2(E|t |p)1/p for sub-Gaussian norm of t , and
‖t‖ψ1 = supp≥1 p−1(E|t |p)1/p for sub-exponential norm of t .

1.3. Paper organization

The rest of the manuscript is organized as follows. In Section 2, we consider penalized opti-
mal scoring for the multi-class case, and demonstrate that coordinate-sparse multi-class optimal
scoring problem can be formulated as a multiple response penalized linear regression problem.
In Section 3, we derive deterministic bounds for expected out-of sample prediction error and
�2 estimation error of sparse optimal scoring. In Section 4, we derive concentration bound for
the maximal row �2 norm of n−1X�E, which subsequently allows us to derive probabilistic
slow-rate and fast-rate bounds. In Section 5, we prove classification consistency by deriving
finite-sample bounds on misclassification error rate. In Section 6, we conclude with discussion.
All the proofs are deferred to Appendix.

2. Multi-class penalized optimal scoring

We consider multi-class penalized optimal scoring problem

minimize
�,B

{
(2n)−1‖Z� − XB‖2

F + λPen(B)
}

subject to ��Z�Z� = nIK−1, ��Z�Z1 = 0,

(3)

where Pen(B) : Rp×(K−1) → [0,∞) is a penalty function. For example, [16] uses Pen(B) =
Tr(B�AB) for some positive definite matrix A, [8] use Pen(B) = ‖B‖1, and for K = 2 [23] use
Pen(β) = ‖β‖1. We first show that if the penalty function is invariant with respect to orthogonal
transformation, then any matrix of scores within the constraint set will lead to global solution
of (3).
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Lemma 1. Let Pen(B) = Pen(BR) hold for any B ∈ R
p×(K−1) and any orthogonal matrix

R ∈ R
(K−1)×(K−1). Let �̃ ∈ R

K×(K−1) be such that �̃
�
Z�Z�̃ = nIK−1, �̃

�
Z�Z1 = 0, and

let

B�̃ = argmin
B

{
(2n)−1‖Z�̃ − XB‖2

F + λPen(B)
}
. (4)

Then the pair (�̃,B�̃) attains global minimum of (3).

Since any matrix �̃ that satisfies the constraints leads to the pair (�̃,B�̃) that minimizes the
objective function, we next show that such a matrix can be constructed explicitly based on the
sample sizes nk .

Lemma 2. Let �̃ ∈ R
K×(K−1) have columns �̃l ∈R

K , l = 1, . . . ,K − 1, defined as

�̃l =
({√

nnl+1∑l
i=1 ni

∑l+1
i=1 ni

}
l

,−
√√√√ n

∑l
i=1 ni

nl+1
∑l+1

i=1 ni

, {0}K−1−l

)�
.

Then �̃
�
Z�Z�̃ = nIK−1 and �̃

�
Z�Z1 = 0.

Lemmas 1 and 2 show that to solve a penalized optimal scoring problem with orthogonally in-
variant penalty function, it is sufficient to fix the scores according to Lemma 2, and only consider
problem (4), which has the same form as a penalized multiple response linear regression prob-
lem. The condition on the penalty function is satisfied by many commonly-used penalties, for
example, by Pen(B) = Tr(B�AB) for any K and by Pen(β) = ‖β‖1 for K = 2. When K > 2,
the element-wise sparsity penalty Pen(B) = ‖B‖1 does not satisfy the condition, however the
coordinate-wise sparsity penalty Pen(B) = ‖B‖1,2 does. While the difference between element-
wise and coordinate-wise sparsity may seem minor, we argue that coordinate-wise sparsity is
preferable in the discriminant analysis context. Similar argument is made in [3] for the prin-
cipal component analysis. When Pen(B) = ‖B‖1, each column of B�̃ is sparse, however the
rows are not necessarily sparse which means both that the individual features are not completely
eliminated from the classification rule, and that the sparsity is not preserved under orthogonal
transformation. In contrast, when Pen(B) = ‖B‖1,2, all columns of B�̃ share the same sparsity
pattern leading to sparse rows, and consequently feature elimination. Therefore, we let Y = Z�̃

and define the solution to sparse multi-class penalized optimal scoring as

B̂ = argmin
B

{
(2n)−1‖Y − XB‖2

F + λ‖B‖1,2
}
. (5)

When K = 2, (5) reduces to (1). When K > 2, (5) can be rewritten in a form equivalent to sparse
linear discriminant analysis proposal of [10], although the latter does not draw connections to
optimal scoring. In the rest of the paper, we derive bounds on expected out-of-sample prediction
risk and estimation error of estimator in (5).
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3. Deterministic bounds

In this section, we derive out-of-sample prediction and �2 estimation bounds for (5) that hold
deterministically under certain conditions on X and λ. We first review the explicit form of the
matrix of population discriminant vectors B∗.

Let xi ∈ Ck denote that sample i belongs to class k ∈ {1, . . . ,K}, and let πk = pr(xi ∈ Ck),
μk = E(xi |xi ∈ Ck), �W = Cov(xi |xi ∈ Ck). Let �T be the marginal covariance matrix such
that Cov(xi ) = �T . [10] show that the population matrix of canonical vectors can be expressed
as �−1

T �R, where � ∈R
K×(K−1) is the matrix of orthogonal mean contrasts between K classes

with r th column defined as

�r =
√

πr+1
∑r

k=1 πk(μk − μr+1)√∑r
k=1 πk

∑r+1
k=1 πk

, (6)

and R is the (K − 1) × (K − 1) orthogonal matrix of eigenvectors of ���−1
T �. Moreover,

since the classification rule is invariant to orthogonal transformations, any orthogonal ma-
trix R will lead to equivalent classification rule. The orthogonal invariance of B∗ mimics the
orthogonal invariance explored in Lemma 1, which is not by chance. Our choice of �̃ in
Lemma 2 is such that E(n−1X�Z�̃) = � + o(1) (see Lemma 4 in the Appendix), and we
fix B∗ = �−1

T � throughout the manuscript. A different choice of �̃ leads to equivalent con-
clusions by applying corresponding orthogonal transformation to B∗. In a special case of two
classes, β∗ = �−1

T �1 = √
π1π2�

−1
T (μ1 − μ2), which coincides with discriminant analysis di-

rection considered in the literature [6,23].
Let x ∈ R

p be a new vector of covariates with the same distribution as xi . Given B∗ = �−1
T �,

we aim to derive bounds on expected out-of-sample prediction error defined as

R(B̂) := Ex

∥∥x�(
B∗ − B̂

)∥∥2
F

= Tr
{(

B∗ − B̂
)�

�T

(
B∗ − B̂

)}
,

and the estimation error ‖B̂ − B∗‖2
F . Throughout, we define residual terms as E = [ε1 . . .

εK−1] := Y − XB∗, which allows direct comparison with lasso bounds. Since (5) is of the
same form as penalized multiple-response linear regression problem with group-lasso penalty,
the proofs of deterministic bounds for (5) follow the proofs of deterministic bounds for lasso with
extra triangle inequality to handle out-of-sample rather than in-sample prediction error. Because
these bounds are deterministic, we follow the terminology in [20] by differentiating penalty and
sparsity deterministic bounds. In Section 4, we use these bound to derive probabilistic slow-rate
and fast-rate bounds correspondingly.

3.1. Penalty bounds

We start by providing a deterministic bound for in-sample prediction error ‖X(B̂ −B∗)‖2
F . This

bound makes no assumption on X or on the sparsity of B∗.
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Theorem 1. If λ ≥ 1
n
‖X�E‖∞,2, then

1

n

∥∥X
(
B̂ − B∗)∥∥2

F
≤

(
λ + 1

n

∥∥X�E
∥∥∞,2

)∥∥B∗∥∥
1,2.

If, in addition, λ ≥ 2
n
‖X�E‖∞,2, then ‖B̂‖1,2 ≤ 3‖B∗‖1,2.

The first part of Theorem 1 is a well-known deterministic bound for lasso and group-lasso, see
for example [20,32]. The second part of Theorem 1 shows that the mixed �1/�2 norm of B̂ can
be bounded by the �1/�2 norm of B∗ up to a constant. The latter, in particular, allows to bound
expected out-of-sample prediction error following the proof similar to [7] for the constrained
lasso case. In the constrained formulation, the bound on the norm of B̂ is immediate by choosing
a constraint parameter that is as large as ‖B∗‖1,2. We show that by choosing the tuning parameter
λ large enough, similar bound holds for penalized formulation. Combining the norm bound with
the in-sample prediction error bound leads to the deterministic bound on expected out-of-sample
prediction error. The bound on estimation error follows by assuming positive definiteness of
population marginal covariance matrix �T .

Corollary 1. Let λ ≥ 2
n
‖X�E‖∞,2. Then

Tr
{(

B̂ − B∗)�
�T

(
B̂ − B∗)} ≤ 3

2
λ

∥∥B∗∥∥
1,2 + 16

∥∥B∗∥∥2
1,2

∥∥∥∥ 1

n
X�X − �T

∥∥∥∥∞
.

If, in addition, λmin(�T ) > 0, then

∥∥B̂ − B∗∥∥2
F

≤ 3

2λmin(�T )
λ

∥∥B∗∥∥
1,2 + 16

λmin(�T )

∥∥B∗∥∥2
1,2

∥∥∥∥ 1

n
X�X − �T

∥∥∥∥∞
.

The bounds of Corollary 1 are deterministic, and therefore depend on X via ‖n−1X�X −
�T ‖∞. In Section 4.2, Theorem 4, we provide the corresponding probabilistic bounds which
rely on concentration inequality for n−1‖X�E‖∞,2 (Theorem 3) and concentration inequality
for ‖n−1X�X − �T ‖∞ (Lemma 7).

3.2. Sparsity bounds

To derive the sparsity bound, we make additional assumption on B∗.

Assumption 1 (Sparsity). B∗ is row-sparse with the support S = {j : ‖e�
j B∗‖2 �= 0} with s =

card(S).

As in lasso, we also use restricted eigenvalue condition on the design matrix [1].

Definition 1 (Restricted eigenvalue condition). A q × p matrix Q satisfies restricted eigen-
value condition RE(s, c) with parameter γQ = γ (s, c,Q) if for all sets S ⊂ {1, . . . , p} with
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card(S) ≤ s, and for all a ∈ C(S, c) = {a ∈ R
p : ‖aSc‖1 ≤ c‖aS‖1} it holds that

‖Qa‖2
2 ≥ ‖aS‖2

2

γQ
.

In the group-lasso case, this condition is generalized to allow for the mixed �1/�2 norms, see,
for example, [22]. In penalized optimal scoring, the generalization is needed when the number
of classes K > 2.

Definition 2 (Group restricted eigenvalue condition). A q × p matrix Q satisfies re-
stricted eigenvalue condition RE(s, c,K) with parameter γQ = γ (s, c,K,Q) if for all sets
S ⊂ {1, . . . , p} with card(S) ≤ s, and for all A ∈ C(S, c,K) = {A ∈ R

p×(K−1) : ‖ASc‖1,2 ≤
c‖AS‖1,2} it holds that

‖QA‖2
F ≥ ‖AS‖2

F

γQ
.

When K = 2, Definitions 1 and 2 coincide. We next state deterministic sparsity bounds that
hold whenever X satisfies restricted eigenvalue condition.

Theorem 2. Under Assumption 1, if λ ≥ 2
n
‖X�E‖∞,2 and n−1/2X satisfies RE(s,3,K) with

parameter γX = γ (s,3,K,n−1/2X), then

1

n

∥∥X
(
B∗ − B̂

)∥∥2
F

≤ 9

4
γXsλ2; ∥∥B̂ − B∗∥∥

F
≤ 15

2
γX

√
sλ and

∥∥B̂ − B∗∥∥
1,2 ≤ 6γXsλ.

The bounds of Theorem 2 are well known for lasso and group-lasso, see, for example, [1,17,
27]. Compared to these results, our interest is in expected out-of-sample prediction error, and we
provide corresponding bound in Corollary 2. This bound can be obtained in two ways. On the
one hand, we can use triangle inequality as in Corollary 1. On the other hand, since restricted
eigenvalue condition allows to directly bound estimation error, we can use that bound through
the maximal eigenvalue of �T . If the maximal eigenvalue of �T can be treated as constant, the
second approach leads to tighter probabilistic bounds.

Corollary 2. Under Assumption 1, if λ ≥ 2
n
‖X�E‖∞,2 and n−1/2X satisfies RE(s,3,K) with

parameter γX = γ (s,3,K,n−1/2X), then

Tr
{(

B̂ − B∗)�
�T

(
B̂ − B∗)}

≤ min

{
9

4
γXsλ2 + 36γ 2

Xs2λ2
∥∥∥∥ 1

n
X�X − �T

∥∥∥∥∞
, λmax(�T )57γ 2

Xsλ2
}
.

4. Probabilistic bounds

Both Corollary 1 and 2 rely on the deterministic condition for λ, that is λ ≥ 1
n
‖X�E‖∞,2. There-

fore, to derive corresponding probabilistic bounds, we need to derive a concentration bound for
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1
n
‖X�E‖∞,2. This bound is provided in Section 4.1 and is the central result of the paper. The

corresponding probabilistic slow-rate and fast-rate bounds are stated in Sections 4.2 and 4.3.

4.1. Concentration bound for n−1‖X�E‖∞,2

There are several difficulties in deriving the concentration bound for n−1‖X�E‖∞,2 in the con-
text of penalized optimal scoring. First, both Y and X are random, and the linear model (2) for
Y doesn’t hold. Secondly, X and E are not independent. These challenges prevent application of
lasso results, and therefore require new derivations. For this, we make the following assumptions.

Assumption 2 (Class probabilities). pr(xi ∈ Ck) = πk for k = 1, . . . ,K with 0 < πmin ≤ πk ≤
πmax < 1.

Assumption 3 (Normality). xi |xi ∈ Ck ∼ N (μk,�W) for all k = 1, . . . ,K with μ =∑K
k=1 πkμk = 0.

Assumption 4 (Sample size). logp = o(n).

Assumption 2 requires prior group probabilities to be of the same order so that nk grows with
n for each k. Assumption 3 is typical in linear discriminant analysis, however it can be relaxed
to sub-Gaussianity without affecting the rates. The normality allows to express the constants in
the rates through the variance terms rather than sub-Gaussian parameters, which we find easier
to interpret. Without loss of generality, we assume that the overall mean μ is zero. In practice,
we always column-center data matrix X. Assumption 4 is a typical scaling for n and p in high-
dimensional statistics.

Throughout, we use σ 2
j to denote the diagonal elements of within-class covariance matrix �W ,

and define

τ := max
j=1,...,p

√
σ 2

j + max
k

μ2
kj .

Theorem 3. Let λ0 = Cτ

√
(K−1) log(pη−1)

n
for some η ∈ (0,1) and constant C > 0. Under As-

sumptions 2–4

pr

(
1

n

∥∥X�E
∥∥∞,2 ≤ λ0

)
≥ 1 − η.

Theorem 3 provides a scaling of tuning parameter with respect to the number of classes K ,
the sample size n and the number of variables p. While X is random, and X and E are not inde-
pendent, the scaling is the same up to constants as in lasso with fixed design, see, for example,
[4,17] and references therein.
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We provide the sketch of the proof here to emphasize the new ideas. Since the linear model (2)
for Y does not hold, we explicitly take E = Y −XB∗ = Y −X�−1

T � and use triangle inequality:

1

n

∥∥X�E
∥∥∞,2 =

∥∥∥∥ 1

n
X�Y − 1

n
X�X�−1

T �

∥∥∥∥∞,2

≤
∥∥∥∥ 1

n
X�Y − �

∥∥∥∥∞,2
+

∥∥∥∥� − 1

n
X�X�−1

T �

∥∥∥∥∞,2
.

For the first term, we take advantage of the exact form of the optimal scores derived in Lemma 2
as well as tail inequality for quadratic forms of Gaussian random vectors [18]. For the second
term, we prove that under Assumption 2–3, the elements of X are marginally sub-Gaussian with
parameter at most τ (Lemma 3) and derive element-wise concentration bound for the covariance
matrix of random vector with sub-Gaussian elements (Lemma 7). A particular feature of the
bound in Theorem 3 is that the constant C > 0 is not dependent on the model parameters �W ,
μk or πk . The bound depends on the model parameters only through τ , the dimension p and
the number of classes K . This is in contrast with the results of [21] for K = 2 case, where the
constant implicitly depends on the model parameters and λmax(�W) in particular. To derive the
explicit dependence through τ , we exploit the matrix decomposition of total covariance matrix
�T from [10], the Woodbury matrix identity, and the bound on ‖�1/2

T ‖∞ through ‖�T ‖∞ based
on concavity arguments. The full proof of Theorem 3 is in the Appendix.

4.2. Slow rate bound

In this section, we derive the slow rate bounds for out-of-sample prediction and �2 estimation
consistency of (5) by combining the penalty bounds of Section 3.1 with concentration bound of
Theorem 3.

Theorem 4. If λ ≥ Cτ

√
(K−1) log(p)

n
for some constant C > 0, then under Assumptions 2–4

Tr
{(

B̂ − B∗)�
�T

(
B̂ − B∗)} = Op

[{
1 ∨ τ

∥∥B∗∥∥
1,2

}
τ

∥∥B∗∥∥
1,2

√
(K − 1) logp

n

]
.

If, in addition, λmin(�T ) > 0, then

∥∥B̂ − B∗∥∥2
F

= Op

[{
1 ∨ τ

∥∥B∗∥∥
1,2

} τ‖B∗‖1,2

λmin(�T )

√
(K − 1) logp

n

]
.

When K = 2, these results mimic Theorem 1 in [7] for the constrained lasso. Here we analyze
the penalized formulation, and rely heavily on Theorem 3, which required separate derivations
for optimal scoring problem. The bound allows both the number of features p and the number
of classes K to grow with n. If ‖B∗‖1,2 is a constant, the prediction consistency is achieved
as long as n � (K − 1) logp. Otherwise, ‖B∗‖1,2 is allowed to grow at a rate no faster than
{n/(K − 1) logp}1/4. This scaling is suboptimal compared to what would be expected in lasso
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with fixed design, {n/(K − 1) logp}1/2, and this discrepancy is a result of considering out-of-
sample rather than in-sample prediction error. We refer to [7] for further discussion.

4.3. Fast rate bound

In this section, we derive the fast rate bounds for out-of-sample prediction and �2 estimation
consistency of (5) by combining the sparsity bounds of Section 3.2 with concentration bound
of Theorem 3 and restricted eigenvalue condition on the marginal covariance matrix �T . The
latter allows us to establish that restricted eigenvalue condition holds for random n−1/2X with
high probability. For clarity, we assume that λmax(�T ) is a constant so that the minimum in
Corollary 2 is achieved with the second bound.

We present the results for the case K = 2 and K > 2 separately. When K = 2, we use [33,43]
to show that RE(s, c) holds with high probability for sub-Gaussian matrices.

Theorem 5. Under Assumptions 1–4, if K = 2, λ = Cτ

√
logp

n
for some constant C > 0,

s logp = o(n), �
1/2
T satisfies RE(s,9) and γ = γ (s,3,�

1/2
T ) according to Definition 1, then

(
β̂ − β∗)�

�T

(
β̂ − β∗) = Op

{
λmax(�T )τ 2γ 2 s logp

n

}
;

∥∥β̂ − β∗∥∥2
2 = Op

(
τ 2γ 2 s logp

n

)
.

When K > 2, we need to consider a more general condition RE(s, c,K). We conjecture that
the results of [33,43] can be generalized to this condition, however the explicit proof is outside
of the scope of this paper. For technical clarity, we instead bound γ (s, c,K,n−1/2X) through
the element-wise maximum ‖n−1X�X − �‖∞ as in [35]. This approach, however, leads to sub-
optimal scaling of s (s2 logp = o(n)) compared to the K = 2 case (s logp = o(n)). This scaling
is not present directly in the bounds, but rather is needed to ensure that γX can be bounded by γ .

Theorem 6. Under Assumptions 1–4, if λ = Cτ

√
(K−1) logp

n
for some constant C > 0, s2 logp =

o(n), �
1/2
T satisfies RE(s,3,K) and γ = γ (s,3,K,�

1/2
T ) according to Definition 2, then

Tr
{(

B̂ − B∗)�
�T

(
B̂ − B∗)} = Op

{
λmax(�T )τ 2γ 2 (K − 1)s logp

n

}
;

∥∥B̂ − B∗∥∥2
F

= Op

(
τ 2γ 2 (K − 1)s logp

n

)
.

Comparing Theorem 4 with Theorem 5 reveals that the key differences are in the use ‖B∗‖1,2
instead of cardinality s, and slower rate

√
logp/n compared to logp/n thus justifying commonly

used slow-rate and fast-rate bounds terminology. The main advantage of Theorem 4 is the lack of
sparsity assumption and restricted eigenvalue condition. For more discussion on the advantages
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and disadvantages of these two bounds, we refer to [2,9]. Our main goal here is to show that
penalized multi-class optimal scoring achieves the same consistency guarantees as lasso despite
the lack of linear model (2) for Y and dependency between X and residuals E, and this is
demonstrated via statements of Theorems 4 and 6. As with Theorem 4, Theorem 6 allows the
number of classes K to grow with n.

5. Classification consistency

In this section, we prove classification consistency of multi-class penalized optimal scoring. In
Fisher’s linear discriminant analysis, the population classification rule assigns a new observation
x ∈R

p according to

h(x) = argmin
k

{
(x − μk)

�B∗(
B∗��WB∗)−1

B∗�
(x − μk) − 2 logπk

}
. (7)

Given the estimated B̂ from (5), the multi-class penalized optimal scoring assigns x ∈ R
p ac-

cording to

ĥ(x) = argmin
k

{
(x − x̄k)

�B̂
(
B̂

�
�̂W B̂

)−1
B̂

�
(x − x̄k) − 2 lognk/n

}
, (8)

where x̄k is the sample mean for class k, and �̂W is the pooled sample covariance matrix. We
further establish the consistency of ĥ(x) with respect to h(x).

We first provide a projection-based interpretation of the population rule h(x). Let x ∈ R
p

follow Assumption 3, and let z = B∗�x ∈ R
K−1. Then z has normal distribution conditionally

on the class membership, the rule h(x) depends on x only through z

h(x) = argmin
k

{(
z − μ�

k B∗)(
B∗��WB∗)−1(

z� − B∗�μk

) − 2 logπk

} := g(z),

and g(z) is the Bayes rule for z. When K = 2, the population rule (7) is Bayes for x under nor-
mality Assumption 3 since x → B∗�x preserves all the discriminatory information between the
classes. That is, the Bayes rule based on distribution of x and the Bayes rule based on distribu-
tion of z coincide. When K > 2, the Fisher’s population rule (7) is Bayes when the population
means are colinear [24], p. 330, but is not Bayes in general. That is, when K > 2, the Bayes
rule based on distribution of x and the Bayes rule based on distribution of z do not generally
coincide. Fisher’s LDA is designed to seek projections of high-dimensional data onto the most
discriminative low-dimensional subspace rather than projections that minimize the error rates.
The former goal can be viewed as an approximation to the latter, with direct equivalence when
K = 2. We refer the reader to [25], Chapter 3.9, for further discussion on the difference between
likelihood-based discriminant analysis and Fisher’s discriminant analysis for the case K > 2.
Since in this work we consider an optimal scoring problem which corresponds to Fisher’s formu-
lation of linear discriminant analysis, we focus on establishing consistency of ĥ(x) with respect
to Fisher’s population rule (7).
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Consider the estimated rule ĥ(x), which is the sample plug-in Bayes rule after the transfor-

mation x → B̂
�
x is applied. The out-of-sample prediction error R(B̂) = Ex‖x�B∗ − x�B̂‖2

F

thus coincides with the average distance between intended transformation x�B∗ and estimated
transformation x�B̂ across x. Section 4 establishes that x�B∗ and x�B̂ coincide with high
probability, which intuitively is a stronger statement than the agreement of corresponding classi-
fication rules. Further, we formally show that the convergence of R(B̂) to zero in probability is
indeed sufficient for convergence of the corresponding misclassification error rates.

Consider the misclassification error probability associated with the rule (7)

eh = pr
(
h(x) �= Cx

) =
K∑

k=1

pr
(
h(x) �= k|x ∈ Ck

)
pr(x ∈ Ck)

=
K∑

k=1

πk pr
(
h(x) �= k|x ∈ Ck

) :=
K∑

k=1

πkehk,

where ehk is conditional misclassification error rate for class k. Similarly, for rule (8)

êh = pr
(̂
h(x) �= Cx

) =
K∑

k=1

πk pr
(̂
h(x) �= k|x ∈ Ck

) :=
K∑

k=1

πkêhk.

We further show that R(B̂) →p 0 implies êh → eh. For clarity, we additionally assume

Assumption 5 (Class separation). c ≤ λmin(�
��W�) ≤ λmax(�

��W�) ≤ C for some
c,C > 0.

We now provide intuition for Assumption 5. Let δkl = μk − μl be the difference in means
between classes k and l. Due to the form of � and equality of eigenvalues between ���W� and
R����W�R for any orthogonal matrix R, Assumption 5 implies that (i) matrix B∗��WB∗ is
full rank; (ii) δ�

kl�W δkl are constants for all class pairs k, l, which leads to fixed misclassification
error probability eh. Our proof can be adapted to the case of growing eh, however the dependence
of constants on eigenvalues of ���W� is non-trivial. Assumption 5 thus allows us to present a
simplified bound, however in the proofs we do not invoke the assumption until the end.

Theorem 7. Under conditions of Theorem 4 and Assumption 5, if K = o(p), then

êh ≤ eh + O

{
τ 1/2

∥∥B∗∥∥1/2
1,2

(
1 ∨ τ 1/2

∥∥B∗∥∥1/2
1,2

)(
(K − 1) logp

n

)1/4}
.

Theorem 8. Under conditions of Theorem 6 and Assumption 5, if K = o(p), then

êh ≤ eh + O

{
τγ

∥∥�
1/2
W

∥∥
2

(
(K − 1)s logp

n

)1/2}
.
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The achieved classification consistency rates are square root of the prediction rates of The-
orems 4 and 6, which is consistent with existing literature for binary case [21]. The assump-
tion K = o(p) is very mild, especially for high-dimensional settings, but it allows to explic-
itly state O{log(pK)} = O{log(p)} in the proofs. The extra log(K) term that appears in the
proofs is likely an artifact of using the different proof technique compared to Theorems 4
and 6. The appearance of ‖�1/2

W ‖2 in Theorem 8 is also due to the different proof. Since

‖�1/2
W ‖2 ≤ √

λmax(�T ), the bound of Theorem 8 is sharper.

6. Discussion

There has been significant progress in understanding the consistency of lasso and group-lasso es-
timators in linear regression [1,5,9,13,22,32,40,41]. These results cannot be applied to penalized
optimal scoring problem despite the similarity between corresponding optimization problems.
The key difficulty is that linear model (2) for Y does not hold, and the dependency between the
random covariates in X and the residual terms in E. In this work we overcome these challenges
by using sub-exponential concentration bounds, and exploiting the decomposition of marginal
covariance matrix �T . While for clarity we focus on the linear optimal scoring and penalties
of group-lasso type, the underlying technique can be used as a building block for investigating
consistency of other problems, for example, tensor discriminant analysis [30] or optimal scoring
with weighted group-lasso penalty [26]. In our treatment of the fast rate bound for the multi-
class case, we rely on group restricted eigenvalue condition for the random design matrix with
sub-Gaussian entries. When K = 2, the existing results of [33,43] show the condition holds with
high probability without affecting the rates. When K > 2, the results of [33,43] do not strictly
apply due to the different form of the cone constraint in Definition 2, but we conjecture that the
same conclusions hold. It would be of interest to have a formal justification for this conjecture.

Appendix

A.1. Technical proofs

In this section, we prove the results stated in the main text. We use C,C1,C2,C3, . . . > 0 to
denote absolute constants that do not depend on model parameters. Their values may change
from line to line.

Proof of Lemma 1. Let f = f (�,B) denote the objective function in (3) and let (�∗,B∗) be
the global solution to (3), that is

f ∗ = f
(
�∗,B∗) = 1

2n

∥∥Z�∗ − XB∗∥∥2
F

+ λPen
(
B∗) ≤ f (�,B)

for all B and all � that satisfy the constraints. Since both �̃ and �∗ satisfy the constraints,
there exist orthogonal matrix R ∈R

(K−1)×(K−1) such that �∗R = �̃. Let B̃ = B∗R, then using



300 I. Gaynanova

orthogonal invariance of the penalty function

f (�̃, B̃) = 1

2n
Tr

{(
Z�∗ − XB∗)

RR�(
Z�∗ − XB∗)�} + λPen

(
B∗R

)
= 1

2n
Tr

{(
Z�∗ − XB∗)(

Z�∗ − XB∗)�} + λPen
(
B∗) = f ∗,

that is the pair (�̃, B̃) also attains global minimum. Then f ∗ = f (�̃, B̃) ≤ f (�̃,B) for all B ,
that is

B̃ = B�̃ = argmin
B

{
1

2n
‖Z�̃ − XB‖2

F + λPen(B)

}
,

and the pair (�̃,B�̃) attains global minimum of (3). �

Proof of Lemma 2. For any l, j with j > l

1

n
��

l Z�Z�l =
({√

nl+1∑l
i=1 ni

∑l+1
i=1 ni

}
l

,−
√√√√ ∑l

i=1 ni

nl+1
∑l+1

i=1 ni

, {0}K−1−l

) ⎛⎜⎜⎝
n1 0 . . . 0
0 n2 . . . 0

. . .

0 0 . . . nK

⎞⎟⎟⎠
×

({√
nl+1∑l

i=1 ni

∑l+1
i=1 ni

}
l

,−
√√√√ ∑l

i=1 ni

nl+1
∑l+1

i=1 ni

, {0}K−1−l

)�

=
(√√√√ n2

1nl+1∑l
i=1 ni

∑l+1
i=1 ni

, . . . ,

√√√√ n2
l nl+1∑l

i=1 ni

∑l+1
i=1 ni

,−
√√√√nl+1

∑l
i=1 ni∑l+1

i=1 ni

)

×
({√

nl+1∑l
i=1 ni

∑l+1
i=1 ni

}
l

,−
√√√√ ∑l

i=1 ni

nl+1
∑l+1

i=1 ni

)�

= nl+1∑l+1
i=1 ni

∑l+1
i=1 ni

l∑
i=1

ni +
∑l

i=1 ni∑l+1
i=1 ni

=
∑l+1

i=1 ni∑l+1
i=1 ni

= 1
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1

n
��

l Z�Z�j

=
({√

nl+1∑l
i=1 ni

∑l+1
i=1 ni

}
l

,−
√√√√ ∑l

i=1 ni

nl+1
∑l+1

i=1 ni

, {0}K−1−l

) ⎛⎜⎜⎝
n1 0 . . . 0
0 n2 . . . 0

. . .

0 0 . . . nK

⎞⎟⎟⎠
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×
({√

nj+1∑j

i=1 ni

∑j+1
i=1 ni

}
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i=1 ni
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=
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√√√√nl+1
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=
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−
√√√√ nl+1

∑l
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√
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Finally,
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�

Proof of Theorem 1. The first part of the proof follows the proof of the “slow-rate” bound
for lasso, see, for example, [20]. We reproduce the proof for completeness. Consider the KKT
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conditions for (1):

−1

n
X�(Y − XB̂) + λ	̂ = 0,

where 	̂ is the subgradient of ‖B‖1,2 evaluated at B̂ . It follows that

Tr

[(
B̂ − B∗)�

{
−1

n
X�(Y − XB̂) + λ	̂

}]
= 0,

and using Y = XB∗ + Y − XB∗ = XB∗ + E

1

n

∥∥X
(
B∗ − B̂

)∥∥2
F

−
〈

1

n
X�E, B̂ − B̂

∗
〉
+ λ

〈
	̂, B̂ − B∗〉 = 0.

Since 	̂ is the subgradient of the convex function ‖B‖1,2 evaluated at B̂ , it follows that

‖B̂‖1,2 ≤ ∥∥B∗∥∥
1,2 + 〈

	̂, B̂ − B∗〉
.

Combining the above two displays leads to

1

n

∥∥X
(
B∗ − B̂

)∥∥2
F

−
〈

1

n
X�E, B̂ − B̂

∗
〉
+ λ

(‖B̂‖1,2 − ∥∥B∗∥∥
1,2

) ≤ 0.

Rearranging the terms gives

1

n

∥∥X
(
B∗ − B̂

)∥∥2
F

≤
〈

1

n
X�E, B̂ − B̂

∗
〉
+ λ

∥∥B∗∥∥
1,2 − λ‖B̂‖1,2.

Using Hölder’s inequality and triangle inequality gives

1

n

∥∥X
(
B∗ − B̂

)∥∥2
F

≤ 1

n

∥∥X�E
∥∥∞,2

∥∥B̂ − B̂
∗∥∥

1,2 + λ
∥∥B∗∥∥

1 − λ‖B̂‖1,2

≤
(

1

n

∥∥X�E
∥∥∞,2 + λ

)∥∥B∗∥∥
1,2 +

(
1

n

∥∥X�E
∥∥∞,2 − λ

)
‖B̂‖1,2.

Using λ ≥ 1
n
‖X�E‖∞,2 completes the proof of the first part.

For the second part of the proof, using λ ≥ 2
n
‖X�E‖∞,2 and the above display gives

1

n

∥∥X
(
B∗ − B̂

)∥∥2
F

≤ (λ/2 + λ)
∥∥B∗∥∥

1,2 + (λ/2 − λ)‖B̂‖1,2.

Since the left-hand side is non-negative, rearranging the terms gives

λ

2
‖B̂‖1,2 ≤ 3

λ

2

∥∥B∗∥∥
1,2.

Since λ > 0, the result follows. �



Consistency of penalized optimal scoring 303

Proof of Corollary 1. By triangle and Hölder’s inequalities

Tr
{(

B̂ − B∗)�
�T

(
B̂ − B∗)} ≤ 1

n

∥∥X
(
B̂ − B∗)∥∥2

F
+ ∥∥B̂ − B∗∥∥2

1,2

∥∥∥∥ 1

n
X�X − �T

∥∥∥∥∞
.

Applying Theorem 1 leads to stated bound. �

Proof of Theorem 2. From the proof of Theorem 1

1

n

∥∥X
(
B∗ − B̂

)∥∥2
F

≤
〈

1

n
X�E, B̂ − B̂

∗
〉
+ λ

∥∥B∗∥∥
1,2 − λ‖B̂‖1,2.

Using λ ≥ 2
n
‖X�E‖∞,2, Hölder’s inequality and Assumption 1,
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S
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S

∥∥
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2
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where in the third step we use triangle inequality ‖B̂S‖1,2 ≥ ‖B∗‖1,2 − ‖B̂S − B∗
S‖1,2. Since

‖X(B∗ − B̂)‖2
F ≥ 0, it follows that λ‖B̂Sc‖1,2 ≤ 3λ‖B̂S − B∗

S‖1,2. Since λ > 0 and B∗
Sc = 0 by

Assumption 1, it follows that A := B̂ − B∗ belongs to the cone C(S,3,K) from Definition 2.
Since ‖B̂S − B∗

S‖1,2 ≤ √
s‖B̂S − B∗

S‖F , and 1
n
X�X satisfies RE(s,3,K), from the above

display

1

n

∥∥X
(
B∗ − B̂

)∥∥2
F

≤ 3λ

2

√
s
∥∥B̂S − B∗

S

∥∥
F

≤ 3λ

2

√
s
√

γX
1√
n

∥∥X
(
B∗ − B̂

)∥∥
F
.

If ‖X(B̂ − B∗)‖F = 0, the statement of the theorem holds trivially. Otherwise dividing both
sides by 1√

n
‖X(B∗ − B̂)‖F gives

1√
n

∥∥X
(
B∗ − B̂

)∥∥
F

≤ 3

2
√

γX

√
sλ,

which leads to
1

n

∥∥X
(
B∗ − B̂

)∥∥2
F

≤ 9

4
γXsλ2.

Since 1
n
X�X satisfies RE(s,3,K) and A = B̂ − B∗ belongs to the cone C(S,3,K),

‖A‖1,2 = ‖AS‖1,2 + ‖ASc‖1,2 ≤ 4‖AS‖1,2 ≤ 4
√

s‖AS‖F ≤ 4
√

s
√

γX

√
‖XA‖2

F /n ≤ 6sλγX.
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Finally, to prove the bound on ‖B̂ − B∗‖F , we follow derivations in Appendix A.2 of [43].
Let T0 correspond to the location of s largest in Euclidean norm rows of A, T1 to the location of
s largest in Euclidean norm rows of AT C

0
, and so on for T2, T3, . . . . Then card(Tj ) = s, and

‖AT c
0
‖1,2 = ‖A‖1,2 − ‖AT0‖1,2 ≤ ‖A‖1,2 − ‖AS‖1,2

= ‖ASc‖1,2 ≤ 3‖AS‖1,2 ≤ 3‖AT0‖1,2 ≤ 3
√

s‖AT0‖F .

Therefore,

‖A‖F ≤ ‖AT0‖F +
∑
j≥1

‖ATj
‖F ≤ ‖AT0‖F +

∑
j≥1

√
s‖ATj

‖∞,2

≤ ‖AT0‖F +
∑
j≥0

√
s

1

s
‖ATj

‖1,2 ≤ ‖AT0‖F + 1√
s
‖A‖1,2.

Using that 1
n
X�X satisfies RE(s,3,K) and derived bounds leads to

∥∥B̂ − B∗∥∥
F

= ‖A‖F ≤ √
γX

√
‖XA‖2

F /n + 1√
s

6sλγX ≤ 3

2
γX

√
sλ + 6γX

√
sλ

= 15

2
γX

√
sλ. �

Proof of Corollary 2. Using triangle and Hölder’s inequalities

Tr
{(

B̂ − B∗)�
�T

(
B̂ − B∗)}

= Tr

{(
B̂ − B∗)� 1

n
X�X

(
B̂ − B∗)}

+ Tr

{(
B̂ − B∗)�

(
1

n
X�X − �T

)(
B̂ − B∗)}

≤ 1

n

∥∥X
(
B̂ − B∗)∥∥2

F
+ ∥∥B̂ − B∗∥∥2

1,2

∥∥∥∥ 1

n
X�X − �T

∥∥∥∥∞
.

Applying Theorem 2 for λ ≥ 2
n
‖X�E‖∞,2 gives

Tr
{(

B̂ − B∗)�
�T

(
B̂ − B∗)} ≤ 9

4
γXsλ2 + 36γ 2

Xs2λ2
∥∥∥∥ 1

n
X�X − �T

∥∥∥∥∞
.

On the other hand, using Theorem 2 gives

Tr
{(

B̂ − B∗)�
�T

(
B̂ − B∗)} ≤ λmax(�T )

∥∥B̂ − B∗∥∥2
F

≤ λmax(�T )57γ 2
Xsλ2. �

Proof of Theorem 3. Consider

1

n

∥∥X�E
∥∥∞,2 =

∥∥∥∥ 1

n
X�Y − 1

n
X�XB∗

∥∥∥∥∞,2
≤

∥∥∥∥ 1

n
X�Y − �

∥∥∥∥∞,2︸ ︷︷ ︸
:=I1

+
∥∥∥∥� − 1

n
X�X�−1

T �

∥∥∥∥∞,2︸ ︷︷ ︸
:=I2

.
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Consider I1. From Lemma 4, with probability at least 1 − η for some constant C > 0

I1 =
∥∥∥∥ 1

n
X�Y − �

∥∥∥∥∞,2
≤ C max

j
σj

√
(K − 1) log(pη−1)

n
.

Consider I2. Using ‖ABC‖∞,2 ≤ ‖A‖∞‖B‖∞‖C‖∞,2 [29], Lemma 8, gives

I2 =
∥∥∥∥� − 1

n
X�X�−1

T �

∥∥∥∥∞,2
=

∥∥∥∥�
1/2
T

(
I − 1

n
�

−1/2
T X�X�

−1/2
T

)
�

−1/2
T �

∥∥∥∥∞,2

≤ ∥∥�
1/2
T

∥∥∞

∥∥∥∥I − 1

n
�

−1/2
T X�X�

−1/2
T

∥∥∥∥∞

∥∥�
−1/2
T �

∥∥∞,2. (9)

Consider ‖�−1/2
T �‖∞,2. Since �T = �W + ��� [10], Proposition 2, by Woodbury matrix

identity ���−1
T � = ���−1

W �(I + ���−1
W �)−1. Therefore,

∥∥�
−1/2
T �

∥∥∞,2 = max
j

∥∥e�
j �

−1/2
T �

∥∥
2 = max

j

√
e�
j �

−1/2
T ����

−1/2
T ej

≤ ∥∥�
−1/2
T ����

−1/2
T

∥∥
2 = ∥∥���−1

T �
∥∥

2

= ∥∥���−1
W �

(
I + ���−1

W �
)−1∥∥

2 ≤ 1.

Consider ‖�1/2
T ‖∞. Let �T = U
U� be the eigendecomposition of �T , then �

1/2
T =

U
1/2U� is positive definite and ‖�1/2
T ‖∞ = maxj |∑p

i=1

√
λiu

2
ji |. Since f (x) = √

x is con-

cave and
∑p

i=1 u2
ji = 1 for all j , it follows that

∥∥�
1/2
T

∥∥∞ = max
j

∣∣∣∣∣
p∑

i=1

√
λiu

2
ji

∣∣∣∣∣ ≤ max
j

√√√√ p∑
i=1

λiu
2
ji ≤ √‖�T ‖∞ ≤ max

j

√
σ 2

jj + max
k

μ2
kj = τ,

where the last inequality holds since �T = �W + ∑K
k=1 πkμkμ

�
k for μ = 0.

Finally, from Lemma 3, all elements of X�
−1/2
T are sub-Gaussian with parameter C that does

not depend on �W or μk . Therefore, from Lemma 7 with probability at least 1 − η

∥∥∥∥I − 1

n
�

−1/2
T X�X�

−1/2
T

∥∥∥∥∞
≤ C1

√
log(pη−1)

n
.

Combining the above displays with (9) gives

I2 ≤ C2τ

√
log(pη−1)

n
.
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Combining results for I1 and I2 gives∥∥∥∥ 1

n
X�(

Y − XB∗)∥∥∥∥∞,2
≤ C3τ

√
(K − 1) log(pη−1)

n

with probability at least 1 − η for some constant C3 > 0. �

Proof of Theorem 4. From Corollary 1, if λ ≥ 2
n
‖X�E‖∞,2,

Tr
{(

B̂ − B∗)�
�T

(
B̂ − B∗)} ≤ 3

2
λ

∥∥B∗∥∥
1,2 + 16

∥∥B∗∥∥2
1,2

∥∥∥∥ 1

n
X�X − �T

∥∥∥∥∞
.

Applying Theorem 3 for 1
n
‖X�E‖∞,2 and Lemmas 3 and 7 for ‖ 1

n
X�X − �T ‖∞ leads to the

desired statement. �

Proof of Theorem 5. By Lemma 5, for n ≥ Cs log(p/s), n−1/2X satisfies RE(s,3) with proba-
bility at least 1 − O(e−n) with

γX = γ
(
s,3, n−1/2X

) ≤ 2γ
(
s,3,�

1/2
T

) = 2γ.

The first bound follows by combining this with Corollary 2 and Theorem 3. The second bound
follows by combining this with the results of Theorem 2 and Theorem 3. �

Proof of Theorem 6. By Lemmas 3 and 7, with probability at least 1 − η

∥∥n−1X�X − �T

∥∥∞ ≤ Cτ 2

√
log(pη−1)

n
.

By Lemma 6, if s ≤ (32γ ‖�T − n−1X�X‖∞)−1, then γX ≤ 2γ . Therefore, using s =
o(

√
n/ logp), Corollary 2 and Theorem 3 gives that for λ ≥ Cτ

√
(K−1) logp

n

Tr
{(

B̂ − B∗)�
�T

(
B̂ − B∗)} = Op

{
λmax(�T )τ 2γ 2 (K − 1)s logp

n

}
.

The second bound follows by combining the results of Theorem 2 and Theorem 3. �

Proof of Theorem 7. Consider

êh − eh =
K∑

k=1

πk(̂ehk − ehk) ≤ max
k

(̂ehk − ehk).

We further derive bound on maxk (̂ehk − ehk). Let

hk(x) := (x − μk)
�B∗(

B∗��WB∗)−1
B∗�

(x − μk) − 2 logπk,

ĥk(x) := (x − x̄k)
�B̂

(
B̂

�
�̂W B̂

)−1
B̂

�
(x − x̄k) − 2 lognk/n.
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Then

ehk = pr
(
h(x) �= k|x ∈ Ck

) = 1 − pr
(
h(x) = k|x ∈ Ck

)
= 1 − pr

(
hk(x) < hl(x) for all l �= k|x ∈ Ck

)
= 1 − pr

(
hk(x) − hl(x) < 0 for all l �= k|x ∈ Ck

)
.

Similarly, êhk = 1−pr(̂hk(x)− ĥl(x) < 0 for all l �= k|x ∈ Ck). Consider akl(x) = hk(x)−hl(x),
and âkl(x) = ĥk(x) − ĥl(x). Then for any ε > 0

êhk = pr

(⋃
l

{̂
akl(x) > 0

}|x ∈ C1

)
= pr

(⋃
l

{
akl(x) + (̂akl(x) − akl(x))

sd{akl(x)} > 0

}
|x ∈ C1

)

≤ pr

(
max

l

{
akl(x)

sd{akl(x)} + |̂akl(x) − akl(x)|
sd{akl(x)}

}
> 0|x ∈ C1

)
≤ pr

(
max

l

akl(x)

sd{akl(x)} > 0|x ∈ C1

)
+ pr

(
−ε < max

l

akl(x)

sd{akl(x)} ≤ 0|x ∈ C1

)
+ pr

(
max

l

|̂akl(x) − akl(x)|
sd{akl(x)} ≥ ε|x ∈ C1

)
≤ ehk + pr

(
max

l

|akl(x)|
sd{akl(x)} < ε|x ∈ C1

)
+ pr

(
max

l

|̂akl(x) − akl(x)|
sd{akl(x)} ≥ ε|x ∈ C1

)
(10)

Therefore,

max
k

(̂ehk − ehk) ≤ max
k

pr

(
max

l

|akl(x)|
sd{akl(x)} < ε|x ∈ Ck

)
+ max

k
pr

(
max

l

|̂akl(x) − akl(x)|
sd{akl(x)} ≥ ε|x ∈ Ck

)
:= I1 + I2. (11)

We further provide bounds on I1 and I2.
Let δkl = μk − μl , then

akl(x) = −2δ�
klB

∗(
B∗��WB∗)−1

B∗�x + μ�
k B∗(

B∗��WB∗)−1
B∗�μk

− μ�
k B∗(

B∗��WB∗)−1
B∗�μk − 2 log(πk/πl)

= −2δ�
klB

∗(
B∗��WB∗)−1

B∗�x − δ�
klB

∗(
B∗��WB∗)−1

B∗�δkl

+ 2δ�
klB

∗(
B∗��WB∗)−1

B∗�μk − 2 log(πk/πl)
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:= ukl(x) − 2 log(πk/πl).

By Assumption 3, for fixed k, akl(x)/ sd{akl(x)}|x ∈ Ck , l �= k, are jointly normally distributed
with mean μak and the covariance matrix �ak . Then

pr

(
max

l

|akl(x)|
sd{akl(x)} < ε

∣∣x ∈ C1

)
= pr

(⋂
l �=k

{ |akl(x)|
sd{akl(x)} < ε

}∣∣x ∈ C1

)

=
∫ ε

−ε

· · ·
∫ ε

−ε

1√
(2π)K−1|�ak|

exp
[−(z − μak)

��−1
1a (z − μak)

]
dz1 · · ·dzK−1

≤ 1√
(2π)K−1|�ak|

(2ε)K−1.

By Assumption 5, |�ak| is constant for each k, therefore for small ε > 0 there exists C > 0 such
that

I1 ≤ CεK−1.

Consider next I2. Let dkl = x̄k − x̄l , then

âkl(x) = −2d�
klB̂

(
B̂

�
�̂W B̂

)−1
B̂

�
x − d�

klB̂
(
B̂

�
�̂W B̂

)−1
B̂

�
dkl

+ 2d�
klB̂

(
B̂

�
�̂W B̂

)−1
B̂

�
x̄k − 2 log(nk/nl)

= ûkl(x) − 2 log(nk/nl).

Therefore, akl(x) − âkl(x) = ukl(x) − ûkl(x) − 2 log(πk/πl) + 2 log(nk/nl). By Lemma 11,
| log(πk/πl) − log(nk/nl)| = Op(log(K − 1)n−1/2), therefore we further focus on ukl(x) −
ûkl(x). Conditionally on x ∈ Ck ,

ukl(x) − ûkl(x)

sd{akl(x)} = mkl

sd{akl(x)} +
√

vkl

sd{akl(x)}z,

where z|x ∈ Ck ∼ N (0,1). Applying Lemma 8 and Slutsky, it follows that under conditions of
Theorem 4

max
k,l

|ukl(x) − ûkl(x)|
sd{akl(x)} = Op

{
τ 1/2

∥∥B∗∥∥1/2
1,2

(
1 ∨ τ 1/2

∥∥B∗∥∥1/2
1,2

)(
(K − 1) logp

n

)1/4}
.

Setting ε = Mητ
1/2‖B∗‖1/2

1,2 (1∨ τ 1/2‖B∗‖1/2
1,2 )(

(K−1) logp
n

)1/4 in (10) and invoking the bound for
I1 completes the proof. �

Proof of Theorem 8. The proof follows the proof of Theorem 7 by substituting the appropriate
bounds from Lemma 8. �
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A.2. Additional lemmas

Lemma 3. Under Assumptions 2–3, all elements of X are sub-Gaussian, that is

Eeλxij ≤ eλ2τ 2/2 for all λ ∈R; i = 1, . . . , n; j = 1, . . . , p;

where τ = maxj=1,...,p

√
σ 2

j + maxk μ2
kj with σ 2

j being the diagonal elements of �W . Similarly,

all elements of X�
−1/2
T are sub-Gaussian with parameter C > 0 that does not depend on �W or

μk .

Proof. Since xi |xi ∈ Ck ∼ N(μk,�W),

xi =
K∑

k=1

μk 1{xi ∈ Gk} + �
1/2
W ζ i = t1i + t2i ,

where ζ i ∼N (0, I ) and t1i , t2i are independent random vectors.
Since μ = 0, t1ij is mean zero random variable with |t1ij | ≤ maxk |μkj |, hence t1ij is sub-

Gaussian with parameter at most maxk |μkj |. On the other hand, t2i is mean zero Gaussian ran-
dom vector with Cov(t2i ) = �W . Hence, Var(t2ij ) = σ 2

j for all j , and t2ij is sub-Gaussian with
parameter σj . Since t1ij and t2ij are independent,

E
(
eλxij

) = E
{
eλ(t1ij +t2ij )

} = E
(
eλt1ij

)
E

(
eλt2ij

) ≤ e
λ2{σ 2

j +maxk μ2
kj }/2

.

Therefore, xij is sub-Gaussian with parameter τj =
√

σ 2
j + maxk μ2

kj . Letting τ = maxj τj , all

elements of X are sub-Gaussian with parameter at most τ .
Similarly,

�
−1/2
T xi = �

−1/2
T

K∑
k=1

μk 1{xi ∈ Gk} + �
−1/2
T �

1/2
W ζ i = u1i + u2i .

Let M = [μ1 . . .μk] ∈R
p×k , then

‖u1i‖∞ =
∥∥∥∥∥�

−1/2
T

K∑
k=1

μk 1{xi ∈ Gk}
∥∥∥∥∥

∞
≤ ∥∥�

−1/2
T M

∥∥∞,2 ≤ ∥∥M��−1
T M

∥∥
2.

Let � = diag(π1, . . . , πK), then �T = �W + M�M�, and by Woodbury matrix identity∥∥M�−1
T M

∥∥
2 = ∥∥M��−1

W M�−1(
�−1 + M��−1

W M
)−1∥∥

2 ≤ C,

where the last inequality uses Assumption 2. It follows that all elements of u1i are bounded by
at most C, hence are sub-Gaussian with parameter at most C. On the other hand, using �T =
�W + ��� [10], Proposition 2,

Cov(u2i ) = �
−1/2
T �W�

−1/2
T = �

−1/2
T

(
�T − ���)

�
−1/2
T = I − �

−1/2
T ����

−1/2
T ,
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therefore by Assumption 3 all elements of u2i are sub-Gaussian with parameter at most one.
Since �

−1/2
T xi = u1i + u2i , it follows that all elements of �

−1/2
T xi are sub-Gaussian with pa-

rameter at most C1 independent of �W and μk . �

Lemma 4. Let D = 1
n
X�Y = 1

n
X�Z�̃, where �̃ is from Lemma 2, and let � be as in (6).

Under Assumptions 2–3, with probability at least 1 − η

‖D − �‖∞,2 ≤ C max
j

σj

√
(K − 1) log(pη−1)

n
.

Proof. Using the definition of �̃ and Z, it follows that the lth column of D has the form

Dl = 1√
n

√
nl+1

∑l
i=1 ni(x̄i − x̄l+1)√∑l

i=1 ni

∑l+1
i=1 ni

.

Using Assumptions 2–3 and Lemma 8 in [11], D has matrix-normal distribution with E(D) =
� + o(1) and Cov(D) = n−1�W + o(1). Applying the tail inequality for quadratic form of the
Gaussian random vector [18], Proposition 1.1, gives for all t > 0

pr
(∥∥e�

j D − e�
j �

∥∥2
2/σ

2
j > (K − 1) + 2

√
(K − 1)t + 2t

) ≤ e−t .

Applying union bound over all j ∈ {1, . . . , p} and taking large t gives that with probability at
least 1 − η

‖D − �‖∞,2 ≤ C max
j

σj

√
(K − 1) log(pη−1)

n
. �

Lemma 5. Under Assumptions 1–4, if �
1/2
T satisfies RE(s,9), then for n ≥ Cs log(p/s) with

probability at least 1 − O(e−n) n−1/2X satisfies RE(s,3) with parameter

0 < γ
(
s,3, n−1/2X

) ≤ 2γ
(
s,3,�

1/2
T

)
.

Proof. Under Assumptions 2–3, all elements of X are sub-Gaussian with marginal covariance
matrix �T . The result follows using the assumption on �

1/2
T and applying Theorem 6 in [33]

with δ = 1/2. �

Lemma 6. Let �
1/2
T satisfy RE(s,3,K) with γ = γ (s,3,K,�

1/2
T ). If s ≤ (32γ ‖�T −

n−1X�X‖∞)−1, then n−1/2X satisfies RE(s,3,K) with

0 < γ
(
s,3,K,n−1/2X

) ≤ 2γ
(
s,3,K,�

1/2
T

)
.
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Proof of Lemma 6. Since �
1/2
T satisfies RE(s,3,K), for all A ∈ C(S,3,K)

1

n
Tr

(
A�X�XA

) = Tr
(
A��T A

) + Tr
{
A�(

�T − n−1X�X
)
A

}
≥ 1

γ
‖AS‖2

F − ‖A‖2
1,2

∥∥�T − n−1X�X
∥∥∞.

Since A ∈ C(S,3,K), ‖A‖1,2 = ‖AS‖1,2 + ‖ASc‖1,2 ≤ 4‖AS‖1,2. Therefore,

1

n
Tr

(
A�X�XA

) ≥ 1

γ
‖AS‖2

F − 16‖AS‖2
1,2

∥∥�T − n−1X�X
∥∥∞

≥ 1

γ
‖AS‖2

F − 16s‖AS‖2
F

∥∥�T − n−1X�X
∥∥∞

≥ 1

γ
‖AS‖2

F − 1

2γ
‖AS‖2

F = 1

2γ
‖AS‖2

F ,

where we used the condition on s in the last inequality. �

Lemma 7. Let x1, . . . ,xn ∈ R
p be independent zero-mean random vectors with

maxj=1,...,p ‖xij‖ψ2 ≤ τ , Cov(xi ) = �, and let X = [x1 . . .xn]�. Under Assumption 4, for some
constant C > 0 and a fixed η ∈ (0,1)

∥∥n−1X�X − �
∥∥∞ ≤ Cτ 2

√
log(pη−1)

n

with probability at least 1 − η.

Proof. The statement is equivalent to Lemma F.2 in [28]. For completeness, we provide the full
proof. Let tikj = xikxij . Since maxj=1,...,p ‖xij‖ψ2 ≤ τ , applying Cauchy–Schwarz inequality
together with [36], Lemma 5.14, leads to

‖tikj‖ψ1 ≤
√∥∥x2

ik

∥∥
ψ1

∥∥x2
ij

∥∥
ψ1

≤
√

2‖xik‖2
ψ2

2‖xij‖2
ψ2

= 2‖xik‖ψ2‖xij‖ψ2 ≤ 2τ 2.

That is, tikj is sub-exponential with parameter 2τ 2. Moreover, ‖tikj − σkj‖ψ2 = ‖tikj −
E(tikj )‖ψ2 ≤ 2‖tkij‖ψ2 ≤ 4τ 2 is also sub-exponential with parameter 4τ 2. Applying Bernstein’s
bound [36], Corollary 5.17, together with the union bound leads to

pr
(∥∥n−1X�X − �

∥∥∞ ≥ ε
) ≤ 2p2 exp

[−C min
(
ε2/16τ 4, ε/4τ 2)

n
]

for some constant C > 0. Letting ε = C1τ
2
√

log(pη−1)
n

for fixed η ∈ (0,1) and using Assump-

tion 4 gives ‖n−1X�X − �‖∞ ≤ ε with probability at least 1 − η. �
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Lemma 8. Let δkl = μk − μl , A = B∗��WB∗ and qkl = A−1/2B∗�δkl . Let mkl and vkl be
conditional mean and variance of ukl(x)− ûkl(x) defined in the proof of Theorem 7, let Assump-
tion 5 hold and let K = o(p).

1. Under conditions of Theorem 4

max
k,l

mkl

sd{akl(x)} = Op

{(
τ

∥∥B∗∥∥
1,2

)1/2
(

(K − 1) logp

n

)1/4}
,

max
k,l

√
vkl

sd(akl(x))
= Op

{
τ 1/2

∥∥B∗∥∥1/2
1,2

(
1 ∨ τ 1/2

∥∥B∗∥∥1/2
1,2

)(
(K − 1) logp

n

)1/4}
.

2. Under conditions of Theorem 6

max
k,l

mkl

sd{akl(x)} = Op

{
τγ

(
(K − 1)s logp

n

)1/2}
,

max
k,l

√
vkl

sd{akl(x)} = Op

{
τγ

∥∥�
1/2
W

∥∥
2

(
(K − 1)s logp

n

)1/2}
.

Proof. By definition

ukl(x) − ûkl(x) = −2
{
δ�
klB

∗(
B∗��WB∗)−1

B∗� − d�
klB̂

(
B̂

�
�̂W B̂

)−1
B̂

�}
x

− δ�
klB

∗(
B∗��WB∗)−1

B∗�δkl + d�
klB̂

(
B̂

�
�̂W B̂

)−1
B̂

�
dkl

+ 2δ�
klB

∗(
B∗��WB∗)−1

B∗�μk − 2d�
klB̂

(
B̂

�
�̂W B̂

)−1
B̂

�
x̄k.

Under Assumption 3, conditionally on the training data (xi ,zi ), i = 1, . . . , n, and x ∈ Ck ,
ukl(x) − ûkl(x) is normal with mean

mkl = E
{
ukl(x) − ûkl(x)|x ∈ Ck, (xi ,zi )

}
= −δ�

klB
∗(

B∗��WB∗)−1
B∗�δkl + d�

klB̂
(
B̂

�
�̂W B̂

)−1
B̂

�
dkl

+ 2d�
klB̂

(
B̂

�
�̂W B̂

)−1
B̂

�
(μk − x̄k)

and variance

vkl = Var
{
ukl(x) − ûkl(x)|x ∈ Ck, (xi ,zi )

}
= 4δ�

klB
∗(

B∗��WB∗)−1
B∗�δkl + 4d�

klB̂
(
B̂

�
�̂W B̂

)−1
(B̂�W B̂)

(
B̂

�
�̂W B̂

)−1
B̂

�
dkl

− 8δ�
klB

∗(
B∗��WB∗)−1

B∗��W B̂
(
B̂

�
�̂W B̂

)−1
B̂

�
dkl .

Let A := B∗��WB∗, Â := B̂
�
�̂W B̂ , qkl = A−1/2B∗�δkl and q̂kl = Â

−1/2
B̂

�
dkl . Then we

can simplify the expressions for mkl and vkl as

mkl = −q�
klqkl + q̂�

kl q̂kl + 2̂q�
klÂ

−1/2
B̂

�
(μk − x̄k),
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vkl = 4q�
klqkl + 4̂q�

klÂ
−1/2

(B̂�W B̂)Â
−1/2

q̂kl − 8q�
klA

−1/2(
B∗��W B̂

)
Â

−1/2
q̂kl .

Consider the mean term

|mkl | ≤
∣∣q�

klqkl − q̂�
kl q̂kl

∣∣ + 2
∣∣̂q�

klÂ
−1/2

B̂
�
(μk − x̄k)

∣∣
≤ 2

∣∣q�
kl (̂qkl − qkl)

∣∣ + ‖q̂kl − qkl‖2
2 + 2

∥∥Â
−1/2∥∥

2‖q̂kl‖2
∥∥B̂

�
(μ1 − x̄1)

∥∥
2

≤ 2‖qkl‖2‖q̂kl − qkl‖2 + ‖q̂kl − qkl‖2
2

+ 2
∥∥Â

−1/2∥∥
2

∥∥B̂
�
(μ1 − x̄1)

∥∥
2

(‖qkl‖2 + ‖̂qkl − qkl‖2
)

≤ 2
(‖̂qkl − qkl‖2 + ∥∥Â

−1/2∥∥
2

∥∥B̂
�
(μk − x̄k)

∥∥
2

)(‖qkl‖2 + ‖̂qkl − qkl‖2
)

Since sd{akl(x)|x ∈ Ck} = 2
√

δ�
klB

∗(B∗��WB∗)−1B∗�δkl = 2
√

q�
klqkl = 2‖qkl‖2, it follows

that
mkl

sd{akl(x)} ≤ (‖̂qkl − qkl‖2 + ∥∥Â
−1/2∥∥

2

∥∥B̂
�
(μk − x̄k)

∥∥
2

)(
1 + ‖̂qkl − qkl‖2/‖qkl‖2

)
.

We first focus on bounding ‖qkl − q̂kl‖2. Let E1 := Â − A and ekl := B̂
�
dkl − B∗�δkl . Recall

that qkl = A−1/2B∗�δkl and q̂kl = Â
−1/2

B̂
�
dkl = (A + E1)

−1/2(B∗�δkl + ekl). Therefore,

‖̂qkl − qkl‖2

≤ ∥∥(A + E)−1/2B∗�δkl − A−1/2B∗�δkl

∥∥ + ∥∥(A + E1)
−1/2e2

∥∥
2

≤ ∥∥(
I + A−1/2E1A

−1/2)−1/2 − I
∥∥

2

∥∥A−1/2B∗�δkl

∥∥
2

+ ∥∥(
I + A−1/2E1A

−1/2)−1/2∥∥
2

∥∥A−1/2e2
∥∥

2.

If ‖A−1/2E1A
−1/2‖2 ≤ 1, then for some constants C1,C2 > 0

‖̂qkl − qkl‖2 ≤ C1
∥∥A−1/2E1A

−1/2
∥∥

2‖qkl‖2 + ∥∥A−1/2ekl

∥∥
2

(
1 + C2

∥∥A−1/2E1A
−1/2

∥∥
2

)
,

and

‖̂qkl − qkl‖2

‖qkl‖2
≤ C1

∥∥A−1/2E1A
−1/2

∥∥
2 + ‖A−1/2ekl‖2

‖qkl‖2

(
1 + C2

∥∥A−1/2E1A
−1/2

∥∥
2

)
.

Therefore, from Lemmas 9 and 10, under conditions of Theorem 4

max
k,l

‖̂qkl − qkl‖2 = Op

{(
1 ∨ max

k,l
‖qkl‖2

)(
τ

∥∥B∗∥∥
1,2

∥∥A−1
∥∥

2

)1/2
(

(K − 1) logp

n

)1/4}
,

and

max
k,l

‖̂qkl − qkl‖2

‖qkl‖2
= Op

{(
1 ∨ max

k,l
‖qkl‖−1

2

)(
τ

∥∥B∗∥∥
1,2

∥∥A−1
∥∥

2

)1/2
(

(K − 1) logp

n

)1/4}
.
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Similarly, consider

max
k

∥∥Â
−1/2∥∥

2

∥∥B̂
�
(μk − x̄k)

∥∥
2

≤ ∥∥A−1/2
∥∥

2

(
1 + C1

∥∥A−1/2E1A
−1/2

∥∥
2

)‖B̂‖1,2 max
k

‖μk − x̄k‖∞.

From Theorem 1, ‖B̂‖1,2 ≤ 3‖B∗‖1,2 when λ ≥ 2n−1‖X�E‖∞,2. Also, since x̄k ∼
N (μk, n

−1
k �W), applying Gaussian concentration inequality with union bound and Assump-

tion 2 leads to maxk ‖μk − x̄k‖∞ = Op(τ
√

log(Kp)/n). Combining this with the above display
and Lemma 9, under conditions of Theorem 4

max
k

∥∥Â
−1/2∥∥

2

∥∥B̂
�
(μk − x̄k)

∥∥
2 = Op

{∥∥A−1/2
∥∥

2

∥∥B∗∥∥
1,2τ

√
log(Kp)

n

}
.

Combining the above displays, under conditions of Theorem 4, and using K = o(p)

max
k,l

mkl

sd{akl(x)}

= Op

{(
max

kl
‖qkl‖2 ∨ max

kl
‖qkl‖−1

2

)(
τ

∥∥B∗∥∥
1,2

∥∥A−1
∥∥

2

)1/2
(

(K − 1) logp

n

)1/4}
.

If in addition Assumption 5 holds, then ‖A−1/2‖2 and ‖qkl‖2 are constants, therefore

max
l

mkl

sd{akl(x)} = Op

{(
τ

∥∥B∗∥∥
1,2

)1/2
(

(K − 1) logp

n

)1/4}
.

Similarly, using Lemma 4 in [12],

max
k

∥∥B∗�
(μk − x̄k)

∥∥
2 = Op

(√
(K − 1) logK

n

)
,

therefore under conditions of Theorem 6 and using K = o(p)

max
k

∥∥B̂
�
(μk − x̄k)

∥∥
2 ≤ max

k

∥∥(
B̂ − B∗)�

(μk − x̄k)
∥∥

2 + max
k

∥∥B∗�
(μk − x̄k)

∥∥
2

≤ max
k

∥∥B̂ − B∗∥∥
1,2‖μk − x̄k‖∞ + Op

(√
(K − 1) logK

n

)

≤ ∥∥B̂ − B∗∥∥
F
Op

(
τ

√
log(pK)

n

)
+ Op

(√
(K − 1) logK

n

)

= Op

(
γ τ

√
(K − 1)s logp

n

)
.
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From Lemmas 9 and 10, it follows that under conditions of Theorem 6

max
k,l

mkl

sd{akl(x)} = Op

{(
max
k,l

‖qkl‖2 ∨ max
k,l

‖qkl‖−1
2

)
τγ

∥∥A−1
∥∥

2

(
(K − 1)s logp

n

)1/2}
.

If in addition Assumption 5 holds, then ‖A−1/2‖2 and ‖qkl‖2 are constants, therefore

max
k,l

mkl

sd{akl(x)} = Op

{
τγ

(
(K − 1)s logp

n

)1/2}
.

Next, consider the standard deviation term

√
vkl = 2

∥∥�
1/2
W B∗A−1/2qkl − �

1/2
W B̂Â

−1/2
q̂kl

∥∥
2

≤ 2
∥∥�

1/2
W B∗A−1/2qkl − �

1/2
W B∗A−1/2q̂kl

∥∥
2 + ∥∥�

1/2
W B∗A−1/2q̂kl − �

1/2
W B̂Â

−1/2
q̂kl

∥∥
2

≤ ∥∥�
1/2
W B∗A−1/2

∥∥
2‖qkl − q̂kl‖2 + ∥∥�

1/2
W B∗A−1/2 − �

1/2
W B̂Â

−1/2∥∥
2‖̂qkl‖2

≤ ‖qkl − q̂kl‖2 + ∥∥�
1/2
W B∗A−1/2 − �

1/2
W B̂Â

−1/2∥∥
2

(‖qkl‖2 + ‖qkl − q̂kl‖2
)
,

and correspondingly
√

vkl

sd(akl(x))
≤ ∥∥�

1/2
W B∗A−1/2 − �

1/2
W B̂Â

−1/2∥∥
2

+ ‖qkl − q̂kl‖2

‖qkl‖2

(
1 + ∥∥�

1/2
W B∗A−1/2 − �

1/2
W B̂Â

−1/2∥∥
2

)
.

Since ∥∥�
1/2
W B∗A−1/2 − �

1/2
W B̂Â

−1/2∥∥
2

= ∥∥�
1/2
W B∗A−1/2 − �

1/2
W

(
B̂ − B∗ + B∗)

(A + E1)
1/2

∥∥
2

≤ ∥∥�
1/2
W B∗A−1/2 − �

1/2
W B∗(A + E1)

−1/2
∥∥

2 + ∥∥�
1/2
W

(
B̂ − B∗)∥∥

2

≤ C1
∥∥A−1/2E1A

−1/2
∥∥

2 + ∥∥�
1/2
W

(
B̂ − B∗)∥∥

2,

under conditions of Theorem 4 and using Lemma 9∥∥�
1/2
W B∗A−1/2 − �

1/2
W B̂Â

−1/2∥∥
2

≤ C1
∥∥A−1/2E1A

−1/2
∥∥

2 + ∥∥�
1/2
T

(
B̂ − B∗)∥∥

2

= Op

{(
τ

∥∥B∗∥∥
1,2

∥∥A−1
∥∥

2

)1/2
(

(K − 1) logp

n

)1/4}

+ Op

{(
1 ∨ τ 1/2

∥∥B∗∥∥1/2
1,2

)
τ 1/2

∥∥B∗∥∥1/2
1,2

(
(K − 1) logp

n

)1/4}
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Combining this with the above bounds on ‖qkl − q̂kl‖2, under conditions of Theorem 4, using
K = o(p) and Assumption 5

max
k,l

√
vkl

sd(akl(x))
= Op

{
τ 1/2

∥∥B∗∥∥−1/2
1,2

(
1 ∨ τ 1/2

∥∥B∗∥∥1/2
1,2

)(
(K − 1) logp

n

)1/4}
.

Similarly, under conditions of Theorem 6 and using Lemma 9∥∥�
1/2
W B∗A−1/2 − �

1/2
W B̂Â

−1/2∥∥
2

≤ C1
∥∥A−1/2E1A

−1/2
∥∥

2 + ∥∥�
1/2
W

∥∥
2

∥∥B̂ − B∗∥∥
F

≤ Op

(
τγ

∥∥A−1/2
∥∥

2

√
(K − 1)s logp

n

)
+ ∥∥�

1/2
W

∥∥
2Op

(
τγ

√
(K − 1)s logp

n

)
.

Combining with the bounds on ‖qkl − q̂kl‖2, under conditions of Theorem 6, K = o(p) and
using Assumption 5

max
k,l

√
vkl

sd(akl(x))
= Op

{
τγ

∥∥�
1/2
W

∥∥
2

√
(K − 1)s logp

n

}
. �

Lemma 9. Let A := B∗��WB∗, Â := B̂
�
�̂W B̂ and E1 = Â − A. Then under Assumption 3∥∥A−1/2E1A

−1/2
∥∥

2

≤ ‖X�(B̂ − B∗)‖2
F

n − K

∥∥A−1
∥∥

2

+ 2
‖X�(B̂ − B∗)‖F√

n − K

∥∥A−1/2
∥∥

2

{
1 + Op

(√
K − 1

n − K

)}
+ Op

(√
K − 1

n − K

)
.

Moreover,

1. Under conditions of Theorem 4,

∥∥A−1/2E1A
−1/2

∥∥
2 = Op

{(
τ

∥∥B∗∥∥
1,2

∥∥A−1
∥∥

2

)1/2
(

(K − 1) logp

n

)1/4}
.

2. Under conditions of Theorem 6,

∥∥A−1/2E1A
−1/2

∥∥
2 = Op

{
τγ

∥∥A−1/2
∥∥

2

(
(K − 1)s logp

n

)1/2}
.

Proof. By definition

E1 = Â − A = (
B̂ − B∗)�

�̂W

(
B̂ − B∗) + 2B∗��̂W

(
B̂ − B∗) + B∗��̂WB∗ − B∗��WB∗,
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therefore ∥∥A−1/2E1A
−1/2

∥∥
2 = ∥∥A−1/2(

B̂ − B∗)�
�̂W

(
B̂ − B∗)

A−1/2
∥∥

2

+ 2
∥∥A−1/2B∗��̂W

(
B̂ − B∗)

A−1/2
∥∥

2

+ ∥∥A−1/2B∗��̂WB∗A−1/2 − I
∥∥

2

=: I1 + 2I2 + I3.

Since �̂W is the pooled sample covariance matrix, n−1X�X = n−K
n

�̂W + �̂B , where �B is
between-class sample covariance matrix which is positive semi-definite. Therefore,

I1 = ∥∥A−1/2(
B̂ − B∗)�

�̂W

(
B̂ − B∗)

A−1/2
∥∥

2

≤ ∥∥A−1
∥∥

2

∥∥(
B̂ − B∗)�

(n − K)−1X�X
(
B̂ − B∗)∥∥

2

≤ ∥∥A−1
∥∥

2(n − K)−1
∥∥X�(

B̂ − B∗)∥∥2
F
.

Similarly,

I2 = ∥∥A−1/2B∗��̂W

(
B̂ − B∗)

A−1/2
∥∥

2

≤ ∥∥A−1/2B∗��̂
1/2
W

∥∥
2(n − K)−1/2

∥∥X�(
B̂ − B∗)∥∥

F

∥∥A−1/2
∥∥

2.

By Assumption 3, (n − K)�̂W has Wishart distribution, (n − K)�̂W ∼Wp(n − K,�W), hence
one can write �W = (n − K)−1 ∑n−K

i=1 ziz
�
i , where zi ∼ N (0,�W) i.i.d. Then A−1/2B∗� ×

�̂WB∗A−1/2 = (n − K)−1 ∑n−K
i=1 z̃i z̃

�
i where z̃i = A−1/2B∗�zi ∼ N (0, IK−1) i.i.d. By

Lemma 9 in [37],

I3 = ∥∥A−1/2B∗��̂WB∗A−1/2 − I
∥∥

2 = Op

(√
K − 1

n − K

)
and

∥∥A−1/2B∗��̂
1/2
W

∥∥
2 =

√∥∥A−1/2B∗��̂WB∗A−1/2
∥∥

2 ≤ 1 + Op

(√
K − 1

n − K

)
.

The first result follows by combining the bounds for I1, I2 and I3.
Using Theorem 1 and conditions of Theorem 4, n−1‖X�(B̂

∗ − B)‖2
F =

Op{τ‖B∗‖1,2(
(K−1) logp

n
)1/2}. Substituting this into bound for ‖A−1/2E1A

−1/2‖2 leads to de-
sired statement.

Similarly, using Theorem 2 and conditions of Theorem 6, n−1‖X�(B̂
∗ − B)‖2

F =
Op{τ 2γ 2 (K−1)s logp

n
}. Substituting this into bound for ‖A−1/2E1A

−1/2‖2 leads to desired state-
ment. �
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Lemma 10. Let δkl = μk − μl , dkl = x̄k − x̄l , A := B∗��WB∗, for some k, l ∈ {1, . . . ,K}.
Under Assumptions 2 and 3,

max
k,l

∥∥A−1/2(
B∗�δkl − B̂

�
dkl

)∥∥
2

≤ ∥∥A−1/2
∥∥

2n
−1

∥∥X�(
B̂ − B∗)∥∥

F

{
1 + Op

(√
log(K − 1)

n

)}

+ Op

(√
(K − 1) log(K − 1)

n

)
.

Moreover, if K = o(p), then

1. under conditions of Theorem 4,

max
k,l

∥∥A−1/2(
B∗�δkl − B̂

�
dkl

)∥∥
2 = Op

{(
τ

∥∥B∗∥∥
1,2

∥∥A−1
∥∥

2

)1/2
(

(K − 1) logp

n

)1/4}
.

2. under conditions of Theorem 6,

max
k,l

∥∥A−1/2(
B∗�δkl − B̂

�
dkl

)∥∥
2 = Op

{
τγ

∥∥A−1/2
∥∥

2

(
(K − 1)s logp

n

)1/2}
.

Proof. Let ekl = B∗�δkl − B̂
�
dkl . Then by definition∥∥A−1/2ekl

∥∥
2 ≤ ∥∥A−1/2

∥∥
2

∥∥(
B̂ − B∗)�

dkl

∥∥
2 + ∥∥A−1/2B∗�

(dkl − δkl)
∥∥

2.

By Assumption 3, conditionally on the training data class assignments,

A−1/2B∗�
(dkl − δkl) ∼N

{
0,

nk/n + nl/n

(nk/n) · (nl/n)
n−1I

}
.

Using Hoeffding’s inequality pr(|nk/n − πk| ≥ ε) ≤ C1 exp(−C2nε2), Assumption 2 and
Lemma 4 in [12] together with union bound leads to

max
k,l

∥∥A−1/2B∗�
(dkl − δkl)

∥∥
2 = Op

(√
(K − 1) log(K − 1)

n

)
.

On the other hand, since 1
n
X�X = n−K

n
�̂W +�̂B , where �̂B is sample between-class covariance

matrix, and for any k, l the decomposition

�̂B =
√

nknl

n2
dkld

�
kl + �̃B

holds for some positive semi-definite �̃B (Proposition 2 in [10]), it follows that for any k, l∥∥(
B̂ − B∗)�

dkl

∥∥
2 ≤

√
Tr

{(
B̂ − B∗)�

dkld
�
kl

(
B̂ − B∗)} ≤

√∥∥X�(
B̂ − B∗)∥∥2

F
/
√

nknl.
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Using Lemma 2 leads to

max
k,l

∥∥(
B̂ − B∗)�

dkl

∥∥
2 ≤ n−1

∥∥X�(
B̂ − B∗)∥∥

F

{
1 + Op

(√
log(K − 1)

n

)}
.

Combining the above displays leads to

max
k,l

∥∥A−1/2ekl

∥∥
2

≤ ∥∥A−1/2
∥∥

2n
−1

∥∥X�(
B̂ − B∗)∥∥

F

{
1 + Op

(√
log(K − 1)

n

)}

+ Op

(√
(K − 1) log(K − 1)

n

)
.

The final statement follow by using corresponding bounds on n−1‖X�(B̂ − B∗)‖F following
the proof of Lemma 9. �

Lemma 11. Under Assumption 2,

max
k

|nk/n − πk| = Op

{√
log(K − 1)

n

}
,

max
k,l

∣∣log(nl/nk) − log(πl/πk)
∣∣ = Op

{√
log(K − 1)

n

}
.

Proof. By Hoeffding’s inequality, pr(|nk/n − πk| ≥ ε) ≤ 2 exp(−2nε2). Using πK = 1 −∑K−1
k=1 πk , and applying the union bound gives the first result. Using the Taylor expansion for

f (nk/n) = log(nk/n) around πk , and Assumption 2 implies

pr
(∣∣log(nk/n) − log(πk)

∣∣ ≥ ε
) ≤ C1 exp

(−C2nε2)
.

Using πK = 1 − ∑K−1
k=1 πk , and applying the union bound gives

pr

(⋃
k

{∣∣log(nk/n) − log(πk)
∣∣ ≥ ε

})
≤ C1(K − 1) exp

(−C2nε2)
.

The final claim follows since log(nl/nk) − log(πl/πk) = log(nl/n) − log(πl) − log(nk/n) +
log(πk). �
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