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In this paper, we provide bounds on the asymptotic variance for a class of sequential Monte Carlo (SMC)
samplers designed for approximating multimodal distributions. Such methods combine standard SMC
methods and Markov chain Monte Carlo (MCMC) kernels. Our bounds improve upon previous results,
and unlike some earlier work, they also apply in the case when the MCMC kernels can move between the
modes. We apply our results to the Potts model from statistical physics. In this case, the problem of sharp
peaks is encountered. Earlier methods, such as parallel tempering, are only able to sample from it at an
exponential (in an important parameter of the model) cost. We propose a sequence of interpolating distri-
butions called interpolation to independence, and show that the SMC sampler based on it is able to sample
from this target distribution at a polynomial cost. We believe that our method is generally applicable to
many other distributions as well.

Keywords: asymptotic variance bound; central limit theorem; metastability; Potts model; scale invariance;
sequential Monte Carlo

1. Introduction

Sequential Monte Carlo sampling [13,20,29] is a method designed to approximate a sequence
of probability distributions {μk}0≤k≤n defined upon a common measurable space (E,E). The
method uses N ≥ 1 samples (or particles) that are generated in parallel and propagated via im-
portance sampling and resampling methods. In the context of this article, we are concerned with
the class of algorithms where μ0 is an easy to sample distribution and μn is a complex distribu-
tion and μ1, . . . ,μn−1 interpolate (in some sense) between μ0 and μn. In addition, the particles
are moved/mutated through Markov kernels of invariant measure μk at time k. The SMC method-
ology has proven itself to be a very efficient tools for inference in a wide variety of statistical
models and applications including stochastic volatility [22], regression models [8] and approxi-
mate Bayesian computation [14]. In this article, we develop theoretical tools for analysing SMC
samplers [13], a particular class of SMC algorithms, and introduce a new type of interpolating
sequences of distributions that enjoys, in many situations, better convergence properties than
more standard tempering sequences that are usually used in practice. The SMC methodology is
by now fairly well understood; for example, high-dimensional asymptotic results are obtained
in [1,2], the study of the long-time behaviour is presented in [21,36] and its performances for
exploring multimodal distributions are described in [16,34]. For a book-length treatment of the
subject, the reader is referred to [12]. [17] has shown concentration inequalities and moment
bounds that take into account global mixing properties of the Markov kernels. These results are
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formulated in terms of the so-called Dobrushin coefficients, that is, the contraction rate of the
Markov kernels in total variational distance. The authors also generalise their results to stochas-
tic optimization algorithms. The main results in this paper, Theorems 3.1 and 3.2 only bound the
asymptotic variance. Theorem 3.1 is using global mixing properties (spectral gap) of the Markov
kernels, while Theorem 3.2 is using local mixing properties (thus it is more suited to multimodal
distributions). Proving non-asymptotic bounds under similar conditions is an interesting problem
for further research.

Multimodal distributions appear in a wide variety of applications in statistics, physics, eco-
nomics and many more. However, sampling from such distributions is a challenging problem.
In the context of interest, one well-known advantage of SMC samplers over traditional Markov
Chain Monte Carlo (MCMC) methods is their ability to work relatively well for multimodal dis-
tributions. Although this phenomenon is known to practitioners, there have been only very few
attempts to rigorously explain and quantify this behaviour. [16] and [34] were the first to show
error bounds (moment bounds) for SMC samplers when applied to explore multimodal distribu-
tions. These results are extremely interesting from a conceptual perspective; unfortunately, the
applications of these results require very stringent assumptions that are rarely met in practical
scenarios of interest to practitioners. One of the main purposes of this article is to develop widely
applicable tools for studying the asymptotic properties of SMC samplers when applied to probe
multimodal distributions. To this end, we leverage a metastable approximation to obtain new
bounds on the asymptotic variance of the SMC estimates; see [30] for a comprehensive mono-
graph on metastability. These bounds show that if the time scale it takes for the Markov kernels
to approximate a mixture of local equilibrium distributions sufficiently well is polynomial in
some size parameter of the system, then the SMC sampler can sample from the multimodal tar-
get distribution in polynomial time. In other words, this shows that Markov kernels with good
metastability properties can be leveraged to construct SMC samplers that can explore multimodal
target distributions in polynomial time.

We demonstrate the applicability of our results by analysing a model from statistical physics,
the Potts model with three colours at critical temperature. Earlier methods, such as parallel tem-
pering, are only able to sample configurations from the Potts model at an exponential cost [4]
when using standard tempering bridging distributions; this is mainly caused by the appearance of
both wide and narrow peaks in the target distribution. Indeed, [39] have shown that, in general,
parallel and simulated tempering using tempering distributions are torpidly mixing for such tar-
get distributions. The recent paper [5] has introduced model specific interpolating distributions
for the Potts model called entropy dampening distributions and proven (Theorem 7.7 of [5]) that
the simulated tempering algorithm mixes in polynomial time when using these distributions.

The other main contribution of this article is the introduction of a new general interpolating
sequence of distributions, coined interpolation to independence sequence. We rigorously prove
that an SMC sampler utilizing this newly developed interpolating sequence can generate config-
urations of the Potts model at a computational cost that only scales cubicly in the system size;
this improves improving upon the earlier polynomial rate obtained in [5]. The interpolation to
independence sequence is not model specific; we believe that it has a wide range of potential
applications to many systems that display scale invariance properties.

The paper is organised as follows. In Section 2, we introduce the basic tools required, such as
Feynman-Kac semigroups. In Section 3, we state and prove our general asymptotic bounds. In
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Section 4, we introduce the interpolation to independence sequence of distributions. Section 5
states our results for the Potts model, and Section 6 contains the proofs of these results.

1.1. Notations

For a function ϕ : E → R, the supremum norm is written as ‖ϕ‖∞ = supx∈E |ϕ(x)|. Consider a
probability measure μ on E and ϕ ∈ L1(μ); we repeatedly use the shorthand notation μ(ϕ) =∫
E

ϕ(x)μ(dx) and write Varμ(ϕ) for the variance of ϕ under μ. The Hilbert space L2(μ) has
scalar product

〈f,g〉μ =
∫

E

f (x)g(x)μ(dx)

and associated norm ‖ · ‖L2(μ). We sometimes identify μ with the linear operator from L2(μ) to
itself that maps the function ϕ to the constant function that equals μ(ϕ) everywhere. A Markov
kernel K that lets μ invariant is identified with the linear operator K : L2(μ) → L2(μ)

Kϕ(x) =
∫

K(x, dy)ϕ(y).

For an operator L : L2(μ) → L2(μ), its triple norm equals

|||L|||L2(μ) = sup
{‖Lϕ‖L2(μ) : μ(

ϕ2) ≤ 1
}
.

Similarly, the quantity |||L|||∞ equals the supremum of ‖Lϕ‖∞ over the set of test functions such
that ‖ϕ‖∞ ≤ 1. The notation N (m,σ 2) designates the Gaussian distribution with mean m and
variance σ 2. We use the notation A 
 B to denote the union of the disjoint subsets A,B ⊂ E.
Finally, for a function ϕ : E → R and a subset S ⊂ E, the function ϕ|S : S → R is the restriction
of ϕ to S; for x ∈ S, we have ϕ|S(x) = ϕ(x).

2. Preliminaries

Suppose that we are interested in inference from some distribution μ on some Polish state space
(E,E). We define an interpolating sequence μ0,μ1, . . . ,μn of distributions with μn = μ; the
distribution μ0 is chosen so that it is straightforward to generate independent samples from it.
In this article, we assume that for any index 0 ≤ k ≤ n − 1 the distribution μk+1 is absolutely
continuous with respect to μk and denote by gk,k+1 the Radon–Nykodym derivative

gk,k+1 = dμk+1

dμk

.

We work under the standing assumption that these Radon–Nikodym derivatives are bounded and
set

�g = max
{‖gk,k+1‖∞ : 0 ≤ k ≤ n − 1

}
< ∞.
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We will make extensive use of the linear operator Gk,k+1 : L2(μk+1) → L2(μk) defined as

Gk,k+1ϕ = gk,k+1ϕ. (2.1)

For a test function ϕ : E → R, our goal is to estimate the performances of the Sequential Monte
Carlo (SMC) algorithm for estimating the expectation μ(ϕ). Recall that the SMC algorithm with
N particles proceeds as follows [13]. An initial set {ξ1

0 , . . . , ξN
0 } of N i.i.d. samples from the

probability distribution μ0 is generated. The empirical distribution

μN
0 = (1/N)

N∑
i=1

δξ i
0
,

where δa denotes the Dirac mass at a ∈ E, is an approximation of μ0. In order to produce a parti-
cle approximation of μ, the algorithm iterates mutation and resampling steps. Suppose that a par-
ticle approximation μN

k = (1/N)
∑N

i=1 δξ i
k

has already been obtained. The mutation steps gener-

ates N particles {ξ̃1
k , . . . , ξ̃N

k } distributed as ξ̃ i
k ∼ Kk(ξ

i
k, dx) where Kk(x, dy) is a Markov ker-

nel that lets the distribution μk invariant; given {ξ1
k , . . . , ξN

k }, the particles ξ̃1
k , . . . , ξ̃N

k are inde-

pendent. The subsequent particle approximation μN
k+1 = (1/N)

∑N
i=1 δξ i

k+1
is obtained through

a multinomial resampling step; the particles {ξ1
k+1, . . . , ξ

N
k+1} are N i.i.d. samples from the

{ξ1
k , . . . , ξN

k }-valued random variable that equals ξ i
k with probability gk,k+1(ξ

i
k)/[gk,k+1(ξ

1
k ) +

· · · + gk,k+1(ξ
N
k )]. This procedures can be iterated to produce a sequence of particle approxima-

tions μN
0 , . . . ,μN

n . The output of the SMC algorithm employing N ≥ 1 particles is an empirical
approximation μN

n to μn = μ,

μN
n = (1/N)

N∑
i=1

δξ i
n
.

The mutation and resampling steps are also frequently used in genetic optimization algorithms,
and some of these algorithms can be analysed in terms of the same Feynman-Kac formulation,
we refer the reader to [11] for more details. Asymptotic properties of the SMC algorithm are
by now well understood (see, e.g., [15], and [12] for a comprehensive overview). For ease of
presentation, we will often present our results for functions with mean zero and finite moment
of order (1 + ε) for some ε > 0; in other words, for a probability distribution π , we consider the
linear subspace

L2+
0 (π) := {

ϕ : E →R such that π
(|ϕ|2+ε

)
< ∞ for some ε > 0 and π(ϕ) = 0

}
.

Theorem 1 of [9] implies that for a test function ϕ ∈ L2+
0 (μ), the following limit holds in distri-

bution,

lim
N→∞N1/2[μN

n − μ
]
(ϕ) =N

(
0,Vn(ϕ)

)
, (2.2)
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with asymptotic variance Vn(ϕ) that can be expressed as

Vn(ϕ) =
n∑

k=0

Vk,n(ϕ) with Vk,n(ϕ) := ‖Gk,k+1Kk+1 · · ·Gn−1,nKnϕ‖2
L2(μk)

(2.3)

and Vn,n(ϕ) := ‖f ‖2
L2(μk)

= Varμ(ϕ). We note that the CLT and the expression (2.3) was first

proven for multivariate processes and more general Feynman-Kac models in the case of bounded
functions in [15]. In the next section, we establish bounds on the asymptotic variance Vn(ϕ)

under various natural conditions.

3. Bounds on the asymptotic variance

In this section, we state and prove new asymptotic variance bounds for SMC empirical aver-
ages. Section 3.1 considers bounds under global mixing assumptions. Section A.1 (in the sup-
plementary material [32]) considers the multimodal case, under the assumption that there is no
mixing between the modes. In Section 3.2, we obtain general results for multimodal distribu-
tions. To lighten the notations, for a positive operator M : L2(μ) → L2(μ) and test functions
f,g ∈ L2(μ), we set 〈f,g〉μ,M := 〈f,Mg〉μ and ‖ϕ‖2

L2(μ),M
:= 〈ϕ,Mϕ〉μ. In particular, we

have that ‖ϕ‖L2(μk),Gk,k+1
= ‖ϕ‖L2(μk+1)

, with Gk,k+1 defined as in Equation (2.1).

3.1. Bound under global mixing assumptions

The following theorem bounds the asymptotic variance Vn(ϕ) in terms of the “global” mixing
properties of the Markov kernels Kk and the size of the relative density gk,k+1. Before stating
our result, we need to introduce some notations. Recall that μk : L2(μk) → L2(μk) denotes the
orthogonal projection operator that maps a function ϕ to the constant function that equals μk(ϕ)

everywhere and that the Markov operator Kk lets μk invariant. We define the quantity

γK := 1 − max
{|||Kk − μk|||L2(μk)

: 1 ≤ k ≤ n
}; (3.1)

For any test function ϕ ∈ L2(μk), we thus have that ‖(Kk − μk)ϕ‖L2(μk)
≤ (1 − γK)‖ϕ‖L2(μk)

.
In the case where the Markov kernels Kk are reversible, the quantity γK is a uniform lower bound
on their absolute spectral gap. The larger γK , the better the mixing properties of these Markov
kernels.

Theorem 3.1 (Variance bound under a global mixing assumption). Let ϕ ∈ L2+
0 (μ) be a test

function. Assume that

�g <
1

(1 − γK)2
. (3.2)

The CLT (2.2) holds with asymptotic variance Vn(ϕ) such that

Vn(ϕ) ≤ 1

1 − (1 − γK)2 · �g

Varμn
(ϕ).
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Proof. Recall the formula (2.3) for the asymptotic variance. First, note that Vn,n(ϕ) = Varμn
(ϕ).

By definition of the upper bound �g and the operators Gk,k+1, it follows that

Vk,n(ϕ) = ‖Gk,k+1Kk+1Gk+1,k+2Kk+2 · . . . · Gn−1,nKnϕ‖2
L2(μk)

≤ �g‖Kk+1Gk+1,k+2Kk+2 · . . . · Gn−1,nKnϕ‖2
L2(μk),Gk,k+1

= �g‖Kk+1Gk+1,k+2Kk+2 · . . . · Gn−1,nKnϕ‖2
L2(μk+1)

.

Also, since the Markov kernel Kj let μj invariant and μ(ϕ) = 0, we have that

μk+1Gk+1,k+2Kk+2 · . . . · Gn−1,nKnϕ(x) = 0

for any x ∈ E. Consequently, the quantity ‖Kk+1Gk+1,k+2Kk+2 · . . . · Gn−1,nKnϕ‖2
L2(μk+1)

can

also be expressed as

∥∥(Kk+1 − μk+1)Gk+1,k+2Kk+2 · . . . · Gn−1,nKnϕ
∥∥2

L2(μk+1)
. (3.3)

The definition (3.1) of γK further yields that (3.3) is less than

(1 − γK)2‖Gk+1,k+2Kk+2 · . . . · Gn−1,nKnϕ‖2
L2(μk+1)

(3.4)

so that Vk,n(ϕ) ≤ �g(1 −γK)2‖Gk+1,k+2Kk+2 · . . . ·Gn−1,nKnϕ‖2
L2(μk+1)

. Keeping in mind that

‖ϕ‖2
L2(μk)

= Varμk
(ϕ), iterating the same arguments shows that

Vk,n(ϕ) ≤ (
�g(1 − γK)2)n−k Varμ(ϕ).

Since Vn(ϕ) = ∑n
k=0 Vk,n(ϕ) and �g(1 − γK)2 < 1, the conclusion follows. �

Theorem 3.1 gives an improvement over the quadratic error bounds provided by Theorem 1.2
of [34]; indeed, contrarily to their result, our bound on the asymptotic variance does not depend
on the number n ≥ 1 of resampling stages. Note that the required assumption (3.2) can easily be
enforced by including a sufficient number n ≥ 1 of resampling stages and/or by increasing the
amount of MCMC steps at each stage. It is important to note that Theorem 3.1 does not assume
that the target distribution μ is unimodal in any sense; instead, assumptions on the global mixing
properties of the Markov kernels Kk are leveraged. However, and as is widely acknowledged
in the Markov Chain Monte-Carlo literature, it is generally difficult to design Markov kernels
with good global mixing properties for multimodal distributions. This is remark is one of main
motivations for our work; in the next sections, we describe results that do not require the Markov
kernels Kk to possess good global mixing properties.
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3.2. Bound for the multimodal case

In this section, we examine the case of multiple modes. Mixing between modes is allowed. We
look at partitions of the state space E that may vary with the algorithm index k,

E :=
m(k)⊔
j=1

F
(j)
k .

This means that one allows different modes, and potentially a different number of modes, for
each intermediate distribution μk . This extra generality allows us to analyse a wider range of
interpolating distributions. In particular, we will use this property in the analysis of the Potts
model (see Section 5). We define the growth-within-mode constant as

Bk,k+1 := max
{
μk+1

(
F

(r)
k

)
/μk

(
F

(r)
k

) : 1 ≤ r ≤ m(k)
}
. (3.5)

The restriction of μk to F
(r)
k , denoted by μk,r , is defined as

μk,r (S) := μk(S ∩ F
(r)
k )

μk(F
(r)
k )

for every measurable S ⊂ E.

Consider the situation where, as is common in practice, the Markov kernel Kk is of the form
Kk = P

tk
k for some Markov kernel P k ; in words, the kernel Kk corresponds to iterating tk steps

of the Markov kernel P k . We introduce an approximation called metastable state, which is a
kernel μ̂k defined as

μ̂k(x,ϕ) =
m(k)∑
r=1

αk,r (x)μk,r (ϕ|F (r)
k

), (3.6)

where for every x ∈ E and index 1 ≤ k ≤ n the family {αk,r (x)}m(k)
r=1 is a sequence of non-negative

real numbers that are such that

m(k)∑
r=1

αk,r (x) ≤ 1. (3.7)

Since
∑m(k)

r=1 αk,r (x) can be strictly smaller than one, the metastable operator μ̂k is not necessar-

ily a Markov kernel. A natural choice is αk,r (x) = Kk(x,F
(r)
k ) (the probability of ending up in

mode F
(r)
k when started from x). Another possibility, useful when the chain mixes well globally,

consists in setting αk,r (x) = μk(F
(r)
k ); this approximation results in μ̂k(x, dy) = μk(dy). As

will become clear in Section 3.3, for a suitable choice of coefficients αk,r (x), the approximation
Kk ≈ μ̂k is often accurate, even for reasonably small values of tk . The following result is our
variance bound in this setting.
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Theorem 3.2 (Variance bound for multimodal case with mixing). Assume that �g < ∞. For
a bounded and measurable test function ϕ, the CLT (2.2) holds with an asymptotic variance
Vn(ϕ) = ∑n

k=0 Vk,n(ϕ) where, for any index 0 ≤ k ≤ n − 1, we have

Vk,n(ϕ) ≤ �g

n−1∏
j=k+1

{
Bj,j+1 + �g‖Kj − μ̂j‖∞

}‖ϕ‖2∞. (3.8)

Proof. Since ‖Gk,k+1‖∞ ≤ �g , we have

Vk,n(ϕ) ≤ �g‖Kk+1Gk+1,k+2 · . . . · Gn−1,nKnϕ‖2
L2(μk+1)

.

Moreover, ‖Kk+1Gk+1,k+2 · . . . · Gn−1,nKnϕ‖2
L2(μk+1)

is less than

‖Kk+1Gk+1,k+2 · . . . · Gn−1,nKnϕ‖∞ × ‖Kk+1Gk+1,k+2 · . . . · Gn−1,nKnϕ‖L1(μk+1)
.

Since the Markov kernel Kk+1 lets μk+1 invariant, this is a contraction in L1(μk+1); conse-
quently

‖Kk+1Gk+1,k+2Kk+2 · . . . · Gn−1,nKnϕ‖L1(μk+1)

≤ ‖Gk+1,k+2Kk+2 · . . . · Gn−1,nKnϕ‖L1(μk+1)

= ‖Kk+2 · . . . · Gn−1,nKnϕ‖L1(μk+2)
≤ · · · ≤ ‖ϕ‖L1(μ) ≤ ‖ϕ‖∞.

Also, since ‖Knϕ‖∞ ≤ ‖ϕ‖∞, we have that

‖Kk+1Gk+1,k+2 · . . . · Gn−1,nKnϕ‖∞ ≤
{

n−1∏
j=k+1

|||KjGj+1|||∞
}

‖ϕ‖∞.

Furthermore, |||KjGj+1|||∞ ≤ |||μ̂jGj+1|||∞+|||(Kj − μ̂j )Gj+1|||∞. Definition (3.5) yields that
|||μ̂jGj+1|||∞ is less than Bj,j+1; similarly, |||(Kj − μ̂j )Gj+1|||∞ ≤ �g|||Kj − μ̂j |||∞. It follows
that

|||KjGj+1|||∞ ≤ Bj,j+1 + �g|||Kj − μ̂j |||∞,

as required. �

Note that unlike Theorem 3.1, here we use the supremum norm (thus our result is restricted
to bounded functions), because we have encountered some technical difficulties when using
‖ · ‖L2(μk)

norms in this setting. The main improvement in this theorem over the results of [34]
is that mixing is allowed between the modes. For completeness, a variant of the asymptotic vari-
ance bound of [34] (when no mixing is allowed between the modes) is presented in Section A.1
(in the supplementary material [32]).
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3.3. Framework for metastable approximation

In order to apply Theorem 3.2, one needs to bound the norm ‖Kk − π̂k‖L∞ for 1 ≤ k ≤ n. This
section provides with a framework for establishing such bounds. Suppose that the state space E

is partitioned into modes {F (j)}mj=1 and that each mode is comprised of an inner region I(j) and

a border region B(j); in other words, we have the following decomposition of the state space,

E =
m⊔

i=1

F (j) =
m⊔

i=1

{
I(j) 
B(j)

}
.

It will reveal useful to set

I =
m⊔

j=1

I(j) and B =
m⊔

j=1

B(j).

For every 1 ≤ j ≤ m, we denote restrictions of μ to F (j) by μ(j), defined by the relation

μ(j)(ϕ) = μ(ϕ|F (j) )

μ(F (j))
. (3.9)

For x ∈ E and an integer t ≥ 1, consider the quantity

q(i)(x, t) := P
(
XτB ∈ I(i), τB ≤ t |X0 = x

)
,

where {Xk}k≥0 is a Markov chain with Markov transition kernel P , and τB is the time of exit
from B, τB := inf{t ≥ 0 : Xt /∈ B}. This expresses the probability that we exit the border regions
in one of the first t steps, and the first step outside B is in the inner region I(i) . Our main result
in this section, Theorem 3.3 quantifies the approximation P t ≈ π̂ (t), where the kernel π̂ (t) is
defined as

π̂ (t)(x, dy) :=
⎧⎨⎩

μ(j)(dy) for x ∈ I(j),∑
j

q(j)
(
x, �t/2�) · μ(j)(dy) for x ∈ B. (3.10)

Note that
∑m(k)

i=1 q(i)(x, t) = P(τB ≤ t) ≤ 1 so condition (3.7) is satisfied. The bound on the
discrepancy |||P t − π̂ (t)|||∞ is expressed in terms of the event SB(x, t) (stay in the border region)
defined as

SB(x, t) := {start at x ∈ B and stay inside B for t steps}.
When starting in the inner region of a mode and after a number of steps slightly larger than
the local mixing time, the Markov chain is typically approximately distributed according to the
restriction of the stationary distribution to that mode; nevertheless, the Markov chain is still not
likely to escape from that mode. When starting from a border region, the Markov chain typically
enters the inner region rapidly then stay there in the rest of the steps, and mix well within that
mode. The number of steps thus needs to be chosen carefully to make sure that we exit the border
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regions and mix well within the modes, but do not exit the modes once we have entered an inner
region (due to the “potential well” effect).

Theorem 3.3 (Quantifying the quality of metastable approximation). Let π̂ (t) be defined as
in (3.10), then the following bound holds,∣∣∣∣∣∣P t − π̂ (t)

∣∣∣∣∣∣∞ ≤ max
x∈B

P
(
SB

(
x, �t/2�))

+ 2 max
1≤i≤m

max
�t/2�≤r≤t

sup
x∈I(i)

dTV
(
P r (x, ·),μ(i)

)
.

(3.11)

Proof. For two distributions η1, η2 on E (which are not necessarily probability distributions),
we define their total variational distance as

dTV(η1, η2) := 1

2
sup

f :E→[−1,1]
∣∣η1(f ) − η2(f )

∣∣,
where the supremum is taken among Borel-measurable functions from E to [−1,1]. By the
definition of |||P t − π̂ (t)|||∞, we can rewrite it as∣∣∣∣∣∣P t − π̂ (t)

∣∣∣∣∣∣∞ = 2 sup
x∈E

dTV
(
P t (x, ·), π̂ (t)(x, ·)),

so we need to bound this total variational distance for every x ∈ E. We consider two separate
cases.

Fist, assume that X0 = x ∈ I(i) for some 1 ≤ i ≤ m. In this case, q(i)(x, �t/2�) = 1, so
π̂ (t)(x, ·) = μ(i)(·), and thus

2dTV
(
P t (x, ·), π̂ (t)(x, ·)) = 2dTV

(
P t (x, ·),μ(i)

)
,

which is bounded by the right-hand side of (3.11).
Alternatively, assume that X0 = x ∈ B. For 1 ≤ i ≤ m, define the events

E(i) := {
X0 = x,XτB ∈ I(i), τB ≤ �t/2�}.

Let E∪ := ∪1≤i≤mE(i), and Ec = (E∪)c (the complement of E∪). Then P(E(i)) = q(i)(x, �t/2�),
and we can write the two kernels P t (x, dy) and π̂ (t)(x, dy) as

P t (x, dy) = P
(
Xt ∈ dy|Ec

) · P(Ec
)+

m∑
i=1

P
(
Xt ∈ dy|E(i)

) · P(E(i)
)
,

π̂ (t)(x, dy) =
m∑

i=1

μ(i)(dy) · P(E(i)
)
.

Based on this, by the triangle inequality, we have

2dTV
(
P t (x, ·), π̂ (t)(x, ·)) ≤ P

(
Ec

)+ 2
m∑

i=1

P
(
E(i)

) · dTV
(
L
(
Xt |E(i)

)
,μ(i)

)
,
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where L(Xt |E(i)) denotes the law of Xt conditioned on E(i). The result now follows from the
fact that P(Ec) ≤ maxx∈B P(SB(x, �t/2�)) and

dTV
(
L
(
Xt |E(i)

)
,μ(i)

) ≤ max
1≤i≤m

max
�t/2�≤r≤t

sup
x∈I(i)

dTV
(
P r (x, ·),μ(i)

)
. �

To use Theorem 3.3, one does not need to know the exact probabilities P t (x,F (i)) of ending
up in the different modes. Instead, one only needs to estimate the probability of staying in the
border regions for many steps, and the total variational distance of P t (x, ·) from the local restric-
tion μ(i) when started from a point x in an inner region I(i). As shall be seen in the application,
these quantities can typically be bounded using concentration inequalities and drift arguments.

4. Interpolation to independence sequence

Suppose that we have a sequence of probability distributions (ηk)k∈Z+ defined on (�k)k∈Z+ ,
respectively (which are product spaces of increasing dimension), and that our target is ηd . Sup-
pose that these distributions satisfy some sort of scale invariance property. By this, we mean that
for sufficiently high k, the number, position, and probability mass of the modes are essentially
constant in some appropriate coordinate system (i.e., the positions of the modes have approxi-
mately reached a limit). For such systems, we define the interpolation to independence sequence
as a sequence of distributions on �d , denoted by μ0, . . . ,μd such that μd := ηd (i.e., the target
measure in dimension d), and μk corresponds to the distribution when the first k coordinates are
distributed according to ηk , and the rest of the coordinates are i.i.d. uniformly distributed on �

(independently of the first k coordinates). For the SMC sampler based on this sequence, we use
some appropriate MCMC kernels Kk that first change the first k coordinates (such as versions of
the Glauber dynamics), and then replace the rest of the coordinates by independent copies.

The interpolation to independence sequence consists of miniaturised versions of the original
system (and some independent coordinates to keep the state space invariant). As we are going
to see, if the system satisfies the scale invariance property, then the number and location of the
modes is essentially the same across all the distributions. This ensures that the growth-within-
mode constants Bk,k+1 are small, and thus the method is efficient if the MCMC moves are chosen
appropriately (see Theorems 3.2 and 3.3). This is a key difference with the standard tempering
sequence, because the change of the temperature parameter might alter the number and location
of the modes drastically, so the growth-within-mode constants might be very large (see [4]).

The idea of interpolating to independence have appeared in the literature of Stein’s method,
see Section 3.4 of [7]. At this point, we note that somewhat similar ideas have appeared for
SMC methods in [3], where a gradual coarsening of the grid is used for the solution of PDEs,
and in [26], where graphical models are studied, and the interpolating sequence is chosen by
breaking them into smaller blocks gradually. Multigrid methods have been fruitful for solving
challenging problems in numerical analysis, and MCMC samplers based on this idea have been
also proposed in [18]. In addition, some variations to the standard tempering distributions in
have been proposed in the literature to parallel tempering, such as truncating the peaks [23] and
moving across different dimensional spaces [27].
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However, most of these works are lacking in theoretical explanation of the efficiency of the
proposed methodology. Moreover, it is not clear to us whether they can overcome the type of
problem we encounter for the Potts model (where some of the modes have exponentially small
probability according the initial distribution, and thus they might take exponentially long time to
be discovered). We note that Theorem 7.7 of [5] has shown that for some model specific inter-
polating distributions called entropy dampening distributions, the simulated tempering MCMC
sampler for the Potts model mixes in polynomial time.

The following section states our application in this paper, a bound on the asymptotic vari-
ance of the SMC method using the interpolation to independence sequence of distributions ap-
plied to the Potts model. We would like to emphasise the fact that the interpolation to indepen-
dence methodology is not limited to this single example. A natural generalisation is to use it for
sampling from exponential random graph models. For such models, MCMC sampling has been
shown to mix very slowly, and the location of the modes depends of the temperature parameter
(see [6]). However, they are believed to be scale invariant, so our method could be useful for
sampling from them.

5. Application to the Potts model

5.1. Introduction

In this section, we are going to study the Potts model introduced in [33]. Let G be a simple
graph with M vertices. The model consists of M spins σ := (σ1, . . . , σM) taking values in  :=
{1, . . . , q}M for some q ≥ 2 (these are called “colours”). The Hamiltonian of the model is defined
as

H(σ) = −
∑

(i,j)∈G

J · 1[σi=σj ], (5.1)

where the summation is over all the edges in G. The sign of J determines whether the neighbors
prefer the same colour (ferromagnetic case) or different colour (antiferromagnetic case). The
Gibbs distribution on configurations is given by

μPotts
β̃,G

(σ ) := exp(−β · H(σ))

Z(β)
, (5.2)

where β is the inverse temperature parameter (a constant independent of σ ), and Z(β) is the
normalising constant.

We will consider the 3 colour mean-field case, when G is the complete graph, and q = 3. In
this case, a simple rearrangement (see [4]) shows that we can equivalently write the model as

μPotts
β̃,M

(σ ) := exp(Mβ̃(s1(σ )2 + s2(σ )2 + s2(σ )2))

Z̃(β̃)
, (5.3)

where sk(σ ) is the ratio of spins of colour k for k = 1,2,3, β̃ := βJ
2 M , and Z̃(β̃) is the new

normalising constant. We call the triple s1(σ ), s2(σ ), s3(σ ) the magnetisation vector.
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Figure 1. Contour plots of the log-likelihood as a function of (s1, s2, s3).

This model is known to undergo a first order phase transition at β̃c = 2 log(2). We denote the
distribution of the magnetisation vector as

μ
mag
β̃,M

(s1, s2, s3) := μPotts
β̃,M

({
σ : s1(σ ) = s1, s2(σ ) = s2, s3(σ ) = s3

})
.

To show the difference between the different phases, we include 3 contour plots of

logμ
mag
β̃,M

(s1, s2, s3) = log

((
M

Ms1

)(
M − Ms1

Ms2

)
· exp(Mβ̃(s2

1 + s2
2 + s2

3))

Z̃(β̃)

)
for β̃ = β̃c/2, β̃ = β̃c and β̃ = 2β̃c , for M = 1000. The plots show s1, s2 and s3 in a barycentric
coordinate system, the darker colours correspond to areas of higher probability (see Figure 1).
As we can see, for β̃ < β̃c , there is a single local maximum centered at (s1, s2, s3) = ( 1

3 , 1
3 , 1

3 ).
At β̃ = β̃c, there are 4 local maximums, centered at

C1 :=
(

2

3
,

1

6
,

1

6

)
, C2 :=

(
1

6
,

2

3
,

1

6

)
,

C3 :=
(

1

6
,

1

6
,

2

3

)
and C4 :=

(
1

3
,

1

3
,

1

3

)
.

(5.4)

Finally, for β̃ > β̃c , there are 3 local maximums, centered at (1,0,0), (0,1,0) and (0,0,1).
The Glauber dynamics Markov chain updates a randomly chosen spin conditioned on the rest

of the spins in each step. [10] has shown that this chain is fast mixing in part of the region β̃ < β̃c

(called the high temperature region), but its mixing time increases exponentially in the number
of spins for β̃ ≥ β̃c . This phenomenon is caused by the existence of multiple modes for β̃ ≥ β̃c .

Parallel tempering (also called Metropolis coupled MCMC) is a popular method that has been
shown to work well for some multimodal distributions (see [28,38]). However, it was shown in
[4] that parallel and simulated tempering will have exponentially slow mixing time for β̃ ≥ β̃c if
the tempering distributions with the standard temperature ladder are used. The reason for this is
that the 3 new modes that appear for β̃ ≥ β̃c have very little probability according to the uniform
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distribution on all configurations. This means that even if theoretically we could move between
the modes in the levels of high temperature, practically we will almost never move to the 3 new
modes.

The goal of this section is to show that this difficulty can be overcome by SMC methods using
the interpolation to independence sequence of distributions defined in Section 4. For simplicity,
we will only consider the case β̃ = β̃c (but we believe that similar arguments work for any tem-
perature and number of colours). The MCMC moves that we are going to use for μk do one step
in the Glauber dynamics for (σ1, . . . , σk), and replace the rest of the spins by independent copies.
We denote the Markov kernel corresponding to this move by P k , and the kernel combining tk
such steps by Kk = P

tk
k . Then it is easy to see that this kernel is a reversible with respect to μk .

It is not difficult to see heuristically that if we applying the SMC algorithm with Glauber
dynamics steps, and choose the interpolating distributions μi as μPotts

β̃c·(i/n),M
for 0 ≤ i ≤ n (tem-

pering distributions), then most of the particles would stay close to the central mode, and they
would never discover the 3 other modes (we have some numerical evidence for this). For such
a sequence of distributions, the product of the growth-within-mode constants,

∏M−1
j=0 Bj,j+1,

grows exponentially with M .

5.2. Main result

Theorem 5.1 (SMC variance bound for the Potts model). Suppose that β̃ = β̃c . There is a
constant C1 ∈ R+ such that for the SMC sampler described above, assuming that the number
of MCMC steps in stage k is chosen as tk = �C1k log(k)2�, the asymptotic variance of the SMC
empirical average of any bounded function f :  → R satisfies that

VM(f ) ≤ C2M‖f ‖2∞, (5.5)

for some absolute constant C2 ∈R+.

Due to space considerations we only prove this result for β̃ = β̃c , but we believe that a similar
result holds for the Potts model with any number of colours, and any temperature parameter β̃ .
Here we note that the overall amount of computational effort needed to obtain a sample of unit
variance by this algorithm is O(M3 log2(M)). This is significantly better than the mixing rate
obtained in [5]. We think that this could be improved to a smaller power of M by resampling
only when the effective sample size parameter (ESS) is below a certain threshold (see [13]),
since resampling is not necessary in each stage because the ratio of particles in the separate
modes is converging quickly to a limit.

6. Proofs for the Potts model

The proof of Theorem 5.1, based on our theoretical results, is rather complex. To make the pre-
sentation clear, in Section 6.1 we first state 5 key propositions bounding the maximal density ratio
(�g) and growth-within-mode (Bj,j+1) constants in Theorem 3.2 and the 3 terms in Theorem 3.3
(the probability of escaping from the inner regions, the probability of staying in the border re-
gions, and the total variational distance to the local restriction of the stationary distribution to the
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mode when started from a place in one of the inner regions). Based on these propositions, we
then prove Theorem 5.1.

In Section 6.2, we show some preliminary results that will be used in the proof of the key
propositions. This is followed by Section 6.3, where we show a lemma bounding the drift of the
Glauber dynamics chain. Finally, in Sections 6.4–6.6, we prove the key propositions used in the
proof of Theorem 5.1.

In the rest of this paragraph, we introduce some notations that will be used through the proof.
Let σ(0) ∈  = {1,2,3}M be a fixed starting point, and σ(0), σ (1), σ (2), . . . be a realisation of
the Glauber dynamics chain started at σ(0). Let

S(k) := (
s1
(
σ(k)

)
, s2

(
σ(k)

)
, s3

(
σ(k)

))
be the vector of the ratios of different colours in σ(k). It is shown in [10] that S(k) is also a
Markov chain, called the magnetisation chain. We call the state space of this chain S . In order
to understand the geometry of S , we will think of each point of it in barycentric coordinates.
We will call by T := {(s1, s2, s3) : 0 ≤ s1, s2, s3 ≤ 1, s1 + s2 + s3 = 1} the main triangle. On
Figure 2, we illustrate this triangle with an equilateral triangle with side length 1. The centroid
of this triangle is point C4, and we denote the 3 vectors pointing from C4 to the three corners

of an equilateral triangle by e1, e2 and e3 (each of them has length
√

3
3 ). Then to each point

s = (s1, s2, s3) ∈ T , the sum C(s) := s1e1 + s2e2 + s3e3 is the corresponding two dimensional
vector. We define the distance of two points s, s′ ∈ T , denoted by d(s, s′), the Euclidean distance
of C(s) and C(s′), which can be rewritten as

d
(
s, s′) := ∥∥(s1 − s′

1

)
e1 + (

s2 − s′
2

)
e2 + (

s3 − s′
3

)
e3
∥∥

=
√〈(

s1 − s′
1

)
e1 + (

s2 − s′
2

)
e2 + (

s3 − s′
3

)
e3,

(
s1 − s′

1

)
e1 + (

s2 − s′
2

)
e2 + (

s3 − s′
3

)
e3
〉

(6.1)

= 1√
2

√(
s1 − s′

1

)2 + (
s2 − s′

2

)2 + (
s3 − s′

3

)2
.

Figure 2. Position of modes in barycentric coordinates.
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The main triangle T is divided into 4 subtriangles, Ti := {(s1, s2, s3) : si ∈ (1/2,1],0 ≤
s1, s2, s3 ≤ 1, s1 + s2 + s3 = 1} for i = 1,2,3, and T4 := {(s1, s2, s3) : 0 ≤ s1, s2, s3 ≤ 1/2, s1 +
s2 + s3 = 1}. Then it is easy to see that the these are equilateral triangles, with centroid Ci for
Ti , for 1 ≤ i ≤ 4. We define the distance between a point s ∈ T to the closes of the centres
C1, . . . ,C4 as

dC(s) := min
(
d(s,C1), d(s,C2), d(s,C3), d(s,C4)

)
. (6.2)

Then one can see that for every 1 ≤ i ≤ 4, s ∈ Ti , we have dC(s) = d(s,Ci).
We define the modes in the following way. For 0 ≤ j ≤ 107, we set m(j) := 1, and F

(1)
j := .

For 107 ≤ j ≤ M , we set m(k) := 4, and

F
(i)
j :=

{
x ∈  :

∑j

k=1 1[xk = i]
j

>
1

2

}
for i = 1,2,3 and (6.3)

F
(4)
j :=  \ (

F
(1)
j ∪ F

(2)
j ∪ F

(3)
j

)
. (6.4)

Thus we compute the ratio of the spins of each colour among the first k spins, look at which
triangle this ratio vector falls into on Figure 2, and assign them to the corresponding mode. Now
we proceed with the definition of the inner regions. For j ≤ 107, choose a single inner region as
I(1)

j := , and the border region is an empty set. For 107 < j ≤ M , and 1 ≤ i ≤ 4, we define the
inner regions as

I(i)
j :=

{
σ ∈  : −ρ

4
≤ sk(σ1:j ) − Ci,k ≤ ρ

2
for k = 1,2,3

}
with ρ := 10−6, (6.5)

where sk(σ1:j ) := (
∑j

l=1 1[σl=k])/j is the ratio of spins of colour k among the first j spins. The

points (s1(σ1:j ), s2(σ1:j ), s3(σ1:j )) for σ ∈ I(i)
j fall in a small equilateral triangle centered at Ci

with sides parallel to the sides of T . The fact that j > 107 ensures that the inner regions are
non-empty. The border regions are defined as B(i)

j := F
(i)
j \ I(i)

j for 1 ≤ i ≤ 4.

6.1. Key propositions and proof of Theorem 5.1

In this section, we state 5 key propositions bounding the various terms in Theorems 3.2 and 3.3,
and then prove Theorem 5.1 based on them. Our first proposition bounds the maximal density
ratio constant �g .

Proposition 6.1. The maximal density constant �g := max0≤k≤n−1 maxx∈
μk+1(x)

μk(x)
satisfies that

�g ≤ exp(2β̃c).
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Proof. Let us denote the number of spins of colours 1,2,3 among x1, . . . , xk by n1(x1:k),
n2(x1:k) and n3(x1:k), respectively. Then

μk+1(x)

μk(x)
= Zk(β̃c)

Zk+1(β̃c)
· exp

(
β̃c

(
n2

1(x1:k+1) + n2
2(x1:k+1) + n2

3(x1:k+1)

k + 1

− n2
1(x1:k) + n2

2(x1:k) + n2
3(x1:k)

k

))
.

Now it is easy to show that∣∣∣∣n2
1(x1:k+1) + n2

2(x1:k+1) + n2
3(x1:k+1)

j + 1
− n2

1(x1:k) + n2
2(x1:k) + n2

3(x1:k)
k

∣∣∣∣ ≤ 1,

thus

Zk(β̃c)

Zk+1(β̃c)
exp(−β̃c) ≤ μk+1(x)

μk(x)
≤ Zk(β̃c)

Zk+1(β̃c)
exp(β̃c).

The fact that
∑

x∈ μk(x) = ∑
x∈ μk+1(x) = 1 implies that Zk(β̃c)

Zk+1(β̃c)
≤ exp(β̃c), and thus �g ≤

exp(2β̃c). �

Our second result bounds the growth-within-mode constants Bj,j+1 defined in (3.5).

Proposition 6.2 (Bounds on the growth-within-mode constants). We have B0,1 = B1,2 = 1,
and for any 2 ≤ j ≤ M − 1,

Bj,j+1 ≤ 1 + C · log(j)5

j3/2

for some absolute constant C > 0.

The proof of this result, based on Taylor expansions, is quite technical, with no probabilis-
tic ingredient, so it is included in Section A.5 (in the supplementary material [32]). The third
proposition bounds the time needed to approach one of the centers. The proof is included in
Section 6.5.

Proposition 6.3 (Time to get to a central region). Let {S(t)}t≥0 be the magnetisation chain
on S . Let

τ := inf

{
k ∈N : dC

(
S(k)

) ≤ ρ

8

}
,

that is, the first time we get closer than ρ
8 to one of the centers. Then for any initial position

s ∈ S , any r ∈ R+,

P
(
τ > r · CM log(M)|S(0) = s

) ≤ exp
(−�r�),

where C > 0 is an absolute constant.
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The fourth proposition bounds the total variational distance from the local distribution in the
modes. The proof is included in Section 6.6.

Proposition 6.4. Suppose that k ≥ 330M log(M). Let P denote the Markov kernel of the
Glauber dynamics on μM . Then for M larger than some absolute constant, for any σ ∈ I(i)

M
for some 1 ≤ i ≤ 4, we have

dTV
(
P k(σ, ·),μ(i)

M

) ≤ C

M2
+ 3k2 exp

(−C′ · M)
,

where C,C′ > 0 are some absolute constants.

Now we state the proof of our variance bound based on these key propositions.

Proof of Theorem 5.1. By (2.3), the asymptotic variance satisfies that VM(f ) = ∑M
j=0 Vj,M(f ),

with the terms Vj,M(f ) can be bounding by Theorem 3.2 as

Vj,M(f ) ≤ ‖f ‖2∞�g

M−1∏
i=j+1

{
Bi,i+1 + �g|||K i − π̂ i |||∞

}

≤ ‖f ‖2∞�g

M−1∏
i=0

Bi,i+1 ·
M−1∏

i=j+1

{
1 + �g|||K i − π̂ i |||∞

}
.

(6.6)

By Proposition 6.1, we have �g ≤ exp(2β̃c). Proposition 6.2 implies that
∏M−1

i=0 Bi,i+1 ≤ CB for
some absolute constant CB < ∞.

Let us choose ti = �Ri log(i)2� for some constant R, and K i := P
ti
i , where P i is the Markov

kernel described in Section 4 (combining a Glauber dynamics step in the first i coordinates
(σ1, . . . , σi) with respect to μPotts

β̃c,k
and replacing the rest of the coordinates (σi+1, . . . , σM) by

independent copies). Based on Theorem 3.3, we have

|||K i − π̂ i |||∞ = ∣∣∣∣∣∣P ti
i − π̂ (ti )

∣∣∣∣∣∣∞ ≤ max
x∈Bi

P
(
SB

(
x, �ti/2�))

+ 2 max
1≤l≤4

max
�ti /2�≤r≤ti

sup
x∈I(l)

dTV
(
P r

i (x, ·),μ(l)
)
,

(6.7)

where Bi := ∪lB(l)
i is the union of the border regions. By using Propositions 6.3 and 6.4 (applied

by substituting M = i and using the fact that the rest of the spins are independent), by choosing
R sufficiently large, for i larger than some absolute constant, we have

max
x∈Bi

P
(
SB

(
x, �ti/2�)) ≤ 1

i2
, and (6.8)

2 max
1≤l≤4

max
�ti /2�≤r≤ti

sup
x∈I(l)

dTV
(
P r

i (x, ·),μ(l)
) ≤ C′

i2
, (6.9)

for some absolute constant C′ < ∞. The result now follows by (6.6). �
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6.2. Preliminary results

In this section, we will first prove anti-concentration and concentration results for sequences of
random variables satisfying certain drift conditions. After these, we show a coupling argument for
showing how good mixing in the magnetisation chain can be used to show good mixing in in the
original Glauber dynamics chain. The proofs are included in Section A.3 (in the supplementary
material [32]).

Lemma 6.5 (A lower bound on the exit time). Assume that (Xl)l≥0 is a sequence of random
variables adapted to some filtration (Fl )l≥0. Suppose that

(1) |Xl+1 − Xl | ≤ R almost surely for every l ≥ 0 for some absolute constant R,
(2) E(Xl+1 − Xl |Fl ) ≤ δ for some δ > 0,
(3) X0 = x0 for some fixed constant x0 ∈R, and
(4) Var(Xl+1 − Xl |Fl ) ≥ v for every t ≥ 0 for some absolute constant v > 0.

Suppose that z ≥ 12 R√
v

, then

P

[
min

0≤l≤4(z+2R/
√

v)2
(Xl − x0) ≤ −z

√
v + 4(z + 2R/

√
v)2δ

]
≥ 1

6
.

Remark 6.6. This lemma quantifies the fact that if the variance of the jumps is always at least
an absolute constant greater than 0, and the drift δ towards to right is sufficiently small, then after
O(r) steps, we will move to the left O(

√
r) with reasonable probability.

Lemma 6.7 (Moving in a region of negative drift). Assume that (Xl)l≥0 is a sequence of
random variables adapted to some filtration (Fl)l≥0. Suppose that

(1) |Xl+1 − Xl | ≤ R almost surely for every l ∈N for some absolute constant R,
(2) E(Xl+1 − Xl |Fl ) ≤ −δ for some δ > 0,
(3) X0 = x0 for some fixed constant x0 ∈R.

Then the probabilities of moving backward, and forward, respectively, can be bounded as

P(X�(1+c)T /δ� − x0 ≥ −T ) ≤ exp

(
−cT δ

4R2

)
for any c ≥ 1, T > 0, (6.10)

P

(
max

0≤k≤l
(Xk − x0) ≥ T

)
≤ l exp

(
−T δ

R2

)
for any l ∈ N, T > 0. (6.11)

The following lemma shows that once two chains have met in magnetisation, they can be
coupled together in O(M log(M)) time with high probability.

Lemma 6.8 (From coupling in magnetisation to coupling in spins). Let σ(0), σ̃ (0) ∈  such
that s(σ (0)) = s(̃σ (0)). Let (σ (t))t≥0 and (̃σ (t))t≥0 be two Glauber dynamics chains with tem-
perature parameter β̃c started at σ(0) and σ̃ (0), respectively. Let τ := inf{t ≥ 0 : σ(t) = σ̃ (t)}.
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Then there is a coupling ((σ (t))t≥0, (̃σ (t))t≥0) such that for this coupling,

P(τ > t) ≤ M

2
exp

(
− t

9M

)
.

6.3. Bounding the drift towards the centers

The following lemma shows bounds the drift towards the centers at a given distance from the
centers.

Lemma 6.9 (Drift bound). Let {S(k)}k≥0 be the magnetisation chain on S . Then for any
s ∈ S with dC(s) > 1/M , we have

E
(
dC

(
S(1)

)− dC

(
S(0)

)|S(0) = s
)

≤ −ϕ(dC(s))

M
+ 1

M2
·
(

8 + 1

2(dC(s) − 1/M)

)
,

with ϕ : [0,
√

3/6] → R defined as

ϕ(t) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0.002 · t√
3/24

for 0 ≤ t ≤ √
3/24,

0.002 ·
√

3/12 − t√
3/24

for
√

3/24 ≤ t ≤ √
3/12 and

0.002 · t − √
3/12√

3/24
for

√
3/12 ≤ t ≤ √

3/6.

The proof of Lemma 6.9 is included in Section A.2 (in the supplementary material [32]).
Figure 3 plots ϕ(t) for 0 ≤ t ≤ √

3/6. Note that ϕ(t) = 0 for t = 0 and t = √
3/12.

Figure 3. ϕ(t) for 0 ≤ t ≤ √
3/6.
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6.4. Bounds on escaping from the center

In this section, we prove the following proposition bounding the probability of escaping from the
region near one of the centers.

Proposition 6.10 (Escaping from a central region). Let {S(t)}t≥0 be the magnetisation chain

on S . Assuming that S(0) = s with dC(s) ≤ ρ ·
√

3
2 , the probability of getting further away than

ρ
√

3 in l steps is bounded as

P

(
max

0≤k≤l
dC

(
S(k)

)
> ρ

√
3
∣∣S(0) = s

)
≤ l2 exp(−CescM), (6.12)

for M larger than some absolute constant, where Cesc is an absolute constant that can be chosen
as Cesc = 0.005ρ2.

Remark 6.11. By the inner mode sets I(i)
M and the sets �̃(i) := {σ ∈  : −ρ ≤ sl(σ ) − Ci,l ≤

2ρ for l = 1,2,3} satisfy that in the magnetisation space, their defining equations restrict them

into equilateral triangles, with edge lengths
√

3
2 · ρ for I(i)

M , and 2
√

3 · ρ for �̃(i). Therefore, in

particular, this proposition implies that if we start from σ(0) = σ ∈ I(i)
M , then the probability of

the Glauber dynamics chain {σ(k)}k≥0 exiting from �̃(i) in the first l steps can be bounded as

P
(
σ(k) /∈ �̃(i) for some 1 ≤ k ≤ l|σ(0) = σ

) ≤ l2 exp(−CescM), (6.13)

for M larger than some absolute constant.

Proof of Proposition 6.10. Using Lemma 6.9, we can see that for s ∈ S satisfying that dC(s) ∈
[ρ

√
3

2 , ρ
√

3], for M larger than some absolute constant,

E
(
dC

(
S(1)

)− dC

(
S(0)

)|S(0) = s
) ≤ −ϕ(

ρ
√

3
2 )

2M
≤ −0.012ρ

M
.

In order to get further away than ρ from one of the centers, we need to spend a period of time

when the distance is between ρ
√

3
2 and ρ

√
3, and then exceed ρ

√
3.

Notice that we cannot apply the martingale-type inequalities of Lemma 6.7 directly to
{dC(S(k))}k≥0 because the drift does not hold uniformly in every k. Instead of direct applica-
tion, we use a coupling argument. For every 0 ≤ k ≤ l − 1, we define a sequence of random
variables D

(k)
0 ,D

(k)
1 , . . . , as follows. First, we set D

(k)
0 := dC(S(k)). After this, we define the rest

of the sequence such that it satisfies that for every j ∈N,

D
(k)
j+1 − D

(k)
j := 1[dC(S(k+j))∈[ρ

√
3

2 ,ρ
√

3][ρ
√

3
2 ,ρ

√
3]] · [dC

(
S(k + j + 1)

)− dC

(
S(k + j)

)]
− 1[dC(S(k+j))/∈[ρ

√
3

2 ,ρ
√

3]] · 0.012ρ

M
.



Error bounds for sequential Monte Carlo samplers 331

From the above definitions it follows that for s ∈ S satisfying that dC(s) ∈
[
ρ

√
3

2 , ρ
√

3
]
,

P

(
max

0≤k≤l
dC

(
S(k)

)
> ρ

∣∣S(0) = s
)

≤
l−1∑
k=0

P

(
max

0≤i≤l−k

(
D

(k)
i

) ≥ √
3ρ

∣∣∣S(0) = s
)
.

Then from their definition, we can see that the random variables (D
(k)
i )0≤i≤l−k satisfy the con-

ditions of Lemma 6.7 with R = 1
M

and δ := 0.012ρ
M

, and the claim of the proposition follows by

applying (6.11) with T =
√

3
2 ρ − 1

M
and δ = 0.012ρ

M
on max0≤i≤l−k(D

(k)
i ), and then summing

up. �

6.5. Getting to one of the centers

In this section, we prove Proposition 6.3 based on drift arguments and concentration inequalities.
The following lemma will be used for the proof.

Lemma 6.12 (Minimum variance of jumps). Let {S(t)}t≥0 be the magnetisation chain on S .
Then for M larger than some absolute constant, for any starting point s ∈ S ,

Var
(
dC

(
S(1)

)|S(0) = s
) ≥ vmin

M2
with vmin := 0.001.

Proof. Using the notations of the proof of Lemma 6.9, it is straightforward to show that

Pi→j (s1, s2, s3) ≥ si · 1

2 + exp(β̃c)
= si

18
.

Moreover, it is also easy to check that

P�(s1, s2, s3) ≥
∑

1≤i≤3

si

1 + exp[ 2
M

+ 2β̃c(sj − si)] + exp[ 2
M

+ 2β̃c(sk − si)]
≥ 1

54
.

The proof is based on the fact that for an equilateral triangle of unit edge length, and a point on
the plane outside the triangle, the difference between the distances of the point and the closest

and furthest away corners of the triangle is at least
√

3
2 − 1

2 .
Assume first that (s1, s2, s3) more than 1

M
away from the edges of the central triangle T4 (in

d distance). Then without loss of generality, assume that s1 ≥ 1
3 . Then P1→2(s1, s2, s3) ≥ 1

54 and
P1→3(s1, s2, s3) ≥ 1

54 . Since the three positions s, s1→2 and s1→3 form an equilateral triangle

of side length 1
M

, unless a central point is included in this triangle, there is at least 1
M

(
√

3
2 − 1

2 )

difference between two of dC(s), dC(s1→2) and dC(s1→3). Therefore, the variance is lower
bounded as

Var
(
dC

(
S(1)

)|S(0) = s
) ≥ 2

54

(
1

2
·
(√

3

2
− 1

2

)
· 1

M

)2

>
0.001

M2
.
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If the triangle formed by s, s1→2 and s1→3 contains a central point, then one can check that
the same bound still holds for M greater than some absolute constant by suitably choosing the
direction i → j .

Finally, if (s1, s2, s3) is no more than 1
M

away from the edges of the central triangle T4, then
one can still choose i → j in a way that we do not exit from the triangle that we are in (T1, T2,
T3 or T4), for M larger than some absolute constant, |dC(si→j ) − dC(s)| > 0.4

M
, and si ≥ 1

4 . For
this choice, we have Pi→j (s1, s2, s3) ≥ 1

72 , and thus

Var
(
dC

(
S(1)

)|S(0) = s
) ≥ 2

72

(
1

2
· 0.4

M

)2

>
0.001

M2
. �

Now we are ready to prove the main result of this section.

Proof of Proposition 6.3. Let c1 := 1000 and c2 := 1. Let

r :=
⌈(√

3

12
− c1

√
log(M)

M

)/(
c2√
M

)⌉
+ 1 and

m := r + 1 +
⌈(√

3

12
− c1

√
log(M)

M
− ρ

8

)/(
c2√
M

)⌉
.

Define a sequence of distances d0 > d1 > · · · > dm as follows,

d0 :=
√

3

6
, dr−1 :=

√
3

12
+ c1

√
log(M)

M
, dr :=

√
3

12
, dr+1 :=

√
3

12
− c1

√
log(M)

M
,

dm := ρ

8
, dk − dk+1 := c2√

M
for k ∈ {1, . . . ,m − 2} \ {r − 1, r}.

For 1 ≤ j ≤ m, we define the arrival times τj := inf{k ≥ 0 : dC(S(k)) ≤ dj }. The proof will con-
sist of subsequently estimating the differences τj+1 − τj for 0 ≤ j ≤ m − 1. Figure 4 illustrates
the position of the distances (dj )0≤j≤m, and the function ϕ(t).

Based on Lemma 6.9, we obtain the following simplified drift bounds. For M larger than some
absolute constant, for every s ∈ S , we have

E
(
dC

(
S(1)

)− dC

(
S(0)

)|S(0) = s
) ≤ 20

M2
. (6.14)

Based on the definition of the distances dj and the function ϕ(t), it follows that for M larger
than some absolute constant, for every j ∈ {0, . . . ,m − 1} \ {r, r − 1}, for every s ∈ S such that

dC(s) ∈ [dj+1 − 1
3c1

√
log(M)

M
,dj + 1

3c1

√
log(M)

M
], we have

E
(
dC

(
S(1)

)− dC

(
S(0)

)|S(0) = s
) ≤ −ϕ(dj )

2M
. (6.15)

First, we are going to estimate τr+1 − τr−1. By applying Lemma 6.5 to {dC(S(τr−1 +
k))}k≥0 with δ = 20

M2 , R = 1
M

, v = vmin
M2 (based on Lemma 6.12), and z = 4c1

√
log(M)

M
/
√

v =
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Figure 4. The distances d0, d1, . . . , dm.

4c1√
vmin

√
M log(M), it follows that for M larger than some absolute constant, and any s ∈ S ,

P
(
τr+1 − τr−1 ≤ Rr−1 + Rr |S(0) = s

)
> c4, (6.16)

where Rr−1 = Rr := c3M log(M), c3 := 70c2
1

vmin
and c4 := 1

6 . For j ∈ {0, . . . ,m − 1} \ {r − 1, r},
let

Rj :=
⌈(

2 + 32 log(M)

c2M1/2ϕ(dj )

)
· 2c2

√
M

ϕ(dj )

⌉
.

We are going to show that the probability of τj+1 − τj being greater than Rj is small. Let us
define the interval Ij as

Ij :=
[
dj+1 − 1

3
c1

√
log(M)

M
,dj + 1

3
c1

√
log(M)

M

]
.

Notice that the drift bound (6.15) only holds for positions s for which dC(s) is within interval
Ij . Since we can possibly exit from this interval within Rj steps from time τj , we cannot apply
the martingale inequalities directly to {dC(S(τj + k))}k≥0 as previously. This difficulty can be
resolved by a coupling argument similar to the one in the proof of Proposition 6.10.

For every j ∈ {0, . . . ,m − 1} \ {r − 1, r}, we define a sequence of random variables
D

(j)

0 ,D
(j)

1 , . . . , as follows. First, we set D
(j)

0 := dC(S(τj )). After this, we define the rest of
the sequence based on the condition that for every l ∈ N,

D
(j)

l+1 − D
(j)
l := 1[dC(S(τj +l))∈Ij ] · [dC

(
S(τj + l + 1)

)− dC

(
S(τj + l)

)]
− 1[dC(S(τj +l))/∈Ij ] · ϕ(dj )

2M
.
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Due to the definition of this sequence, for every s ∈ S , we have

P
(
τj − τj−1 > Rj |S(0) = s

)
≤ P

(
max

0≤i≤Rj

D
(j)

0 > dj + 1

3
c1

√
log(M)

M
|S(0) = s

)
+ P

(
D

(j)
Rj

> dj+1|S(0) = s
)
.

(6.17)

Based on the definition, it follows that {D(j)
i }i≥0 satisfies the conditions of Lemma 6.7 with

filtration (Fl )l≥0 := (σ (S(τj ), . . . , S(τj + l)))l≥0, R = 1
M

, and δ = ϕ(dj )

2M
. Therefore by (6.10)

and (6.11), for M larger than some absolute constant, for every j ∈ {0, . . . ,m − 1} \ {r − 1, r},
for every s ∈ S , we have P(D

(j)
Rj

> dj+1|S(0) = s) ≤ 1
2M2 , and

P

(
max

0≤i≤Rj

D
(j)

0 > dj + 1

3
c1

√
log(M)

M
|S(0) = s

)
≤ 1

2M2
,

therefore

P
(
τj − τj−1 > Rj |S(0) = s

) ≤ 1

M2
. (6.18)

Now it is easy to show that for M larger than some absolute constant,

m∑
j=0

Rj ≤ c5M log(M), (6.19)

for some absolute constant c5. Moreover, based on (6.16) and (6.18), by the union bound, it
follows that for M larger than some absolute constant, for every s ∈ S ,

P
(
τm < c5M log(M)|S(0) = s

)
>

c4

2
. (6.20)

Since this result holds for any s ∈ S , therefore by repeated application, we obtain that for any
k ∈ Z+,

P
(
τm > k(c5 + 1)M log(M)|S(0) = s

) ≤
(

1 − c4

2

)k

, (6.21)

which implies the claim of the theorem. �

6.6. Fast mixing at the center via curvature

In this section, we are going to show that once we get near the center of one of the modes, we
will quickly approach the stationary distribution restricted to that mode, proving Proposition 6.4.
For this, we will use a curvature (i.e., path-coupling) argument.

Let (�,d�) be a Polish metric space, and P(x, y) a Markov kernel on �. For two probability
measures μ, η on �, we define �(μ,η) as the set of measures ν on � × � with first and second
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marginals μ and η (that is,
∫
y∈�

ν(dx, dy) = μ(dx) and
∫
x∈�

ν(dx, dy) = η(dy)), and we define
the Wasserstein distance of μ and η, denoted by W1(μ,η), as

W1(μ,η) := sup
ν∈�(μ,η)

∫
x,y∈�

d(x, y)ν(dx, dy).

Then for x, y ∈ �, x �= y, [31] defines

κ(x, y) := d�(x, y) − W1(P (x, ·),P (y, ·))
d�(x, y)

,

and calls κ := infx,y∈�,x �=y κ(x, y) the coarse Ricci curvature. This quantity can be used to
estimate the speed of convergence to the stationary distribution of the Markov chain.

[31] says that (�,d�) satisfies the ε-geodesic property if for any two points x, y ∈ �, there
exists a set of points x0 := x, x1, . . . , xl := y such that d�(x, y) = d�(x0, x1)+· · ·+d�(xl−1, xl)

and d�(xi, xi+1) ≤ ε for every 0 ≤ i < l. Proposition 19 of [31] shows that for such spaces,
κ = infx,y∈�,x �=y,d�(x,y)≤ε κ(x, y), that is, it suffices to estimate κ(x, y) for pairs of points whose
distance is at most ε. We will choose � as a subset of S (the state space of the colour ratio vector
S), and define the distance

d�(x, y) := M

2

(|x1 − y1| + |x2 − y2| + |x3 − y3|
)
,

corresponding to the amount of edges one needs to traverse on the hexagonal lattice to get from
x to y. This distance is 1-geodesic, thus it will suffice to bound κ(x, y) for neighbouring points
x, y. It turns out that if we choose P as the Markov kernel of the magnetisation chain, κ(x, y)

will not be positive through the whole state space S . This negative curvature still persists even
for the local restrictions of the Markov kernel to the 4 modes (the 4 triangles on Figure 2).
This is caused by the non-convexity of the distribution at the regions separating the modes. For
1 ≤ i ≤ 4, we define 4 regions near the center of the modes as

�(i) := {
s ∈ S : −ρ ≤ sl − Ci,l ≤ 2ρ for l = 1,2,3

}
. (6.22)

The following proposition shows that the curvature is positive in these regions. The proof of this
result is included in Section A.4 (in the supplementary material [32]).

Proposition 6.13 (Curvature bound). Consider the state space (�(m), d�) as above for some
1 ≤ m ≤ 4, and let P

mag
(m) be the restriction of the kernel of the magnetisation chain P mag to �(i),

i.e. for x, y ∈ �(m), we let

P
mag
(m) (x, dy) := P mag(x,

(
�(m)

)c) · δx(dy) + 1[y∈�(m)] · P (x, dy),

where δx(dy) corresponds to the Dirac-δ distribution at x. Let κ denote the coarse Ricci curva-
ture of the kernel P

mag
(m) on the metric space (�(m), d�). Then for M larger than some absolute

constant, we have κ ≥ 0.01
M

.
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Let �̃(i) := {σ ∈  : s(σ ) ∈ �(i)}. Let μM|�̃(i) denote the restriction of μM to �̃(i) (i.e.

μM|�̃(i) (f ) = μM(f ·1
�̃(i) )

μM(�̃(i))
, and μ

(i)
M denote the restriction of μM to F

(i)
M (i.e. μ

(i)
M (f ) =

μM(f ·1
F

(i)
M

)

μM(F
(i)
M )

). The following lemma bounds the total variational distance of these two distribu-

tions. It will be used in the proof of Proposition 6.4.

Lemma 6.14. For M larger than some absolute constant, for every 1 ≤ i ≤ 4, we have

dTV
(
μM|�̃(i) ,μ

(i)
M

) ≤ C�

M2
and μM|�̃(i)

(
�̃(i) \ I(i)

M

) ≤ C�

M2
, (6.23)

for some absolute constant C� < ∞ (the inner regions I(i)
M are defined as in (6.5)).

This lemma essentially states that most of the mass of the distribution μM is contained near
the centers. The proof of is included in Section A.6 (in the supplementary material [32]). Now
we are ready to prove Proposition 6.4.

Proof of Proposition 6.4. Let P �(i) be a Markov kernel that is the restriction of P to �(i), i.e.,
for every x, y ∈ �(i),

P �̃(i) (x, dy) := P
(
x,

(
�(i)

)c) · δx(dy) + 1[y∈�̃(i)] · P (x, dy).

Let σ(0) be a fixed element of �̃(i), σ ′(0) ∼ μM|�̃(i) , and define copies of them as �(0) :=
σ(0) and �′(0) = σ ′(0). Let {σ(i)}i≥0 and {σ ′(i)}i≥0 be two Markov chains evolving according
to the kernel P , and let {�(i)}i≥0 and {�′(i)}i≥0 be two Markov chains evolving according
to the kernel P�̃(i) . We are going to obtain the total variational distance bound by creating a
coupling {σ(i), σ ′(i),�(i),�′(i)}0≤i≤k of these four chains. Let μ

mag
(i) denote the restriction of

the magnetisation distribution μ
mag
β̃c,M

to �(i). First, we note that for k1 := �300M log(M)�, based

on Proposition 6.13, and Corollary 21 of [31], we have

dTV
((

P
mag
(i)

)k1
(
s
(
σ(0)

)
, ·),μmag

(i)

) ≤ W1
((

P
mag
(i)

)k1
(
s
(
σ(0)

)
, ·),μmag

(i)

)
≤ 3ρM ·

(
1 − 0.01

M

)k1

≤ 1

2M2
,

(6.24)

for M larger than some absolute constant. In the first step, we have used fact that the minimum
distance between disjoint two points in our metric d� is 1.

Let ν and η be two probability measures on a finite space W . Proposition 4.7 of [25] shows
the existence of an optimal coupling, that is, a coupling (X,Y ) of two random variables X ∼ ν
and Y ∼ η such that P(X �= Y) = dTV(ν,η).

We choose the coupling (s(�(k1)), s(�
′(k1))) as an optimal coupling. By (6.24) means that

they satisfy that

P
(
s
(
�(k1)

) �= s
(
�′(k1)

)) ≤ 1

M2
(6.25)
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for M larger than some absolute constant. Given the joint distribution of (s(�(k1)), s(�
′(k1))),

we choose the joint distribution (�(k1),�
′(k1)) arbitrarily among the possibilities. After this, we

define {�(i)}1≤i≤k1−1 and {�′(i)}1≤i≤k1−1 based on their conditional distribution given �(0),
�(k1), and �′(0), �′(k1), respectively (their joint distribution can be chosen arbitrarily among
the possibilities).

Now that {�(i),�′(i)}0≤i≤k1 is defined, we define {σ(i)}0≤i≤k1 and σ ′(i)}0≤i≤k1 recursively,
based on the optimal coupling with {�(i)}0≤i≤k1 and {�′(i)}0≤i≤k1 , respectively. That is, if we
have already defined {σ(j)}0≤j≤i for some 0 ≤ i ≤ k1 − 1, then we define σ(i + 1) such that
σ(i + 1) and �(i + 1) are optimally coupled, and similarly for σ ′(i + 1) and �′(i + 1). Due to
the definition of the Markov kernels P �̃(i) and P , we have

P
(
σ(k1) �= �(k1)

) ≤ P
(
σ(i) /∈ �(i) for some 1 ≤ i ≤ k1

)
,

and since σ(0) ∈ I(i)
M , by Proposition 6.10, we have

P
(
σ(k1) �= �(k1)

) ≤ k2
1 exp(−CescM). (6.26)

Based on Lemma 6.14, we have P(σ ′(0) /∈ I(i)
M ) ≤ C�

M2 , and therefore by the same argument, we
have

P
(
σ ′(k1) �= �′(k1)

) ≤ k2
1 exp(−CescM) + C�

M2
. (6.27)

At this point, by combining (6.25), (6.26) and (6.27), we can see that

P
(
s(σk1) �= s

(
σ ′

k1

)) ≤ 2k2
1 exp(−CescM) + C� + 1

M2
. (6.28)

From this point onwards, whenever s(σk1) = s(σ ′
k1

), we define the joint distribution {σi, σ
′
i }k1≤i≤k

conditioned on (σk1, σ
′
k1

) as the coupling given by Lemma 6.8. When s(σk1) �= s(σ ′
k1

), the joint
distribution {σi, σ

′
i }k1≤i≤k is chosen arbitrarily. Then based on Lemma 6.8, for M larger than

some absolute constant, we have

P
(
σk �= σ ′

k

) ≤ 2k2
1 exp(−CescM) + C� + 1

M2
+ M

2
exp

(
− (k − k1)

9M

)
≤ 2k2

1 exp(−CescM) + C� + 2

M2
.

(6.29)

Finally, we define the joint distribution of {�′(i), σ ′(i)}k1≤i≤k as the optimal coupling in each
step as previously. With the same argument as in (6.27), we have

P
(
σ ′(k) �= �′(k)

) ≤ k2 exp(−CescM) + C�

M2
, (6.30)

for M larger than some absolute constant. By combining (6.29) and (6.30), we obtain that for M

larger than some absolute constant,

P
(
σk �= �′

k

) ≤ 3k2 exp(−CescM) + 2C� + 2

M2
, (6.31)
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and the result follows by noticing that �′
k is distributed according to μM|�̃(i) and that by Lemma

(6.14), dTV(μM|�̃(i) ,μ
(i)
M ) ≤ C�

M2 . �
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