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We revisit the celebrated family of BDG-inequalities introduced by Burkholder, Gundy (Acta Math. 124
(1970) 249–304) and Davis (Israel J. Math. 8 (1970) 187–190) for continuous martingales. For the inequal-

ities E[τ p
2 ] ≤ CpE[(B∗(τ ))p] with 0 < p < 2 we propose a connection of the optimal constant Cp with an

ordinary integro-differential equation which gives rise to a numerical method of finding this constant. Based
on numerical evidence, we are able to calculate, for p = 1, the explicit value of the optimal constant C1,
namely C1 = 1.27267 . . . . In the course of our analysis, we find a remarkable appearance of “non-smooth
pasting” for a solution of a related ordinary integro-differential equation.
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1. Introduction

We consider the following version of the Burkholder–Davis–Gundy inequality [8,10]:

Theorem 1.1. There is a constant C > 0 such that, for every bounded stopping time τ , we have

E
[
τ

1
2
] ≤ CE

[
B∗(τ )

]
. (1)

Here (B(t))t≥0 denotes a standard Brownian motion, starting at B(0) = 0. By B∗(t), we de-
note the corresponding running maximum of the absolute value

B∗(t) := sup
0≤u≤t

∣∣B(u)
∣∣.

It is obvious that the set of constants C which satisfy inequality (1) is a closed, unbounded
interval in R+. By the results of [5], it is known that C = 3

2 is contained in this set. To the best
of our knowledge, this is the smallest constant known in the previous literature. In the present
paper, we establish the optimal value for this constant.
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Theorem 1.2. There is an ordinary integro-differential equation (see (31) below) depending on
real parameters C > 0 and t0 > 0 such that C satisfies (1) if and only if there is t0 such that this
equation has a well-defined solution.

Numerical solutions of the equation (31) reveal that the smallest such C, that is, the optimal
constant in the Burkholder–Davis–Gundy inequality (1), equals

Ĉ ≈ 1,27267 . . . .

The paper is organised as follows. As usual in stochastic control theory, we first introduce the
value function of the optimal stopping problem which corresponds to the inequality (1). After
some structural facts about the stopping problem we turn to some analytic properties of the value
function in Section 3. We deduce the OIDE (ordinary integro-differential equation) which is
referred to in Theorem 1.2. The subsequent section is devoted to properties of solutions to the
fundamental OIDE (31) which are needed to identify these solutions with the value function of
the stopping problem in Section 5.

The critical t̂0 > 0 associated to the optimal constant Ĉ via (31) below also turns out to be of
somewhat independent interest: if ρ denotes the first moment, say after t = 1, when t is bigger

than cB∗(t)2, then E[ρ 1
2 ] is finite or infinite depending on whether c is smaller or bigger than t̂0

(Proposition 5.6 and 5.7). In Section 6, we state a pointwise version of the BDG inequalities and
in Section 7 we briefly discuss the case of general 0 < p < 2 without entering into a numerical
analysis. Finally, in Section 8 we discuss the fact why the constant Ĉ = √

3 which was estab-
lished by D. Burkholder [7] as the optimal constant for (1) in the case of martingales which are
not necessarily continuous, is different from the present constant Ĉ = 1,27267 . . . which holds
true for continuous processes. We relate this discrepancy with a certain lack of concavity of the
value function.

2. The value function of an optimal stopping problem

Fix a constant C > 0. Following a well-known path in optimal control theory we define the value
function

V
(
t, b, b∗) := sup

τ∈T (t)

E
(t,b,b∗)[τ 1

2 − CB∗(τ )
]
, (2)

where T (t) denotes the set of bounded stopping times τ ≥ t and E
(t,b,b∗) denotes the expectation

conditionally on starting the Brownian motion B at time t with the values Bt = b,B∗
t = b∗. The

domain of definition of V is

D = {(
t, b, b∗) : 0 ≤ t < ∞,0 ≤ |b| ≤ b∗ < ∞}

. (3)

Equivalently, we can write

V
(
t, b, b∗) := sup

τ∈T
E

[√
t + τ − C

(
b∗ ∨ (

b + B(τ)
)∗)]

, (4)
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which follows from the strong Markov property and stationarity of increments of Brownian mo-
tion.

Denote by Ĉ the infimum of C > 0 such that (1) holds true. Clearly Ĉ still satisfies (1). If
C < Ĉ, then V (t, b, b∗) ≡ ∞, otherwise we have:

Lemma 2.1. Let C ≥ Ĉ then V defined via (2) is

(i) continuous,
(ii) finite-valued, and

(iii) t �→ V (t, b, b∗) − √
t is decreasing for fixed |b| ≤ b∗.

In particular, (ii) follows from the bounds

√
t + Cb∗ ≥ V

(
t, b, b∗) ≥ √

t − Cb∗. (5)

Proof. The lower bound of V follows from choosing the stopping time t ∈ T (t). For the upper
bound, observe that we can estimate for an arbitrary τ ∈ T

√
t + τ − C

(
b∗ ∨ (

b + B(τ)
)∗) ≤ √

t + √
τ − C

(
b + B(τ)

)∗

≤ √
t + √

τ − CB(τ)∗ + C|b|
≤ √

t + Cb∗ + √
τ − CB(τ)∗.

Taking expectations, we get the upper bound for V from the representation in (4).
Next, observe that for τ ∈ T we have for t < t ′

√
t + τ − C

(
b∗ ∨ (

b + B(τ)
)∗) − √

t ≤ √
t ′ + τ − C

(
b∗ ∨ (

b + B(τ)
)∗) − √

t ′

by concavity of the square root. Now (iii) follows by taking expectations and suprema.
For (i), please refer to Sections 7 and 9.2 in [13]. �

To exclude the trivial case, we assume in the sequel that C ≥ Ĉ.
For fixed C, the stopping region S ⊆ D and the non-stopping region NS ⊆ D are defined by

S := {
V = t

1
2 − Cb∗}, NS := {

V > t
1
2 − Cb∗}. (6)

To characterize the stopping region S first note that it is certainly not a good idea to stop when
|B(t)| < B∗(t).

Lemma 2.2. Let (t, b, b∗) ∈ D with |b| < b∗. Then (t, b, b∗) ∈ NS.

Proof. Consider the first exit time of the interval [−b∗, b∗]. �

Next, we observe a useful scaling property of V (compare Burkholder [7]).
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Lemma 2.3. For a > 0 and (t, b, b∗) ∈ D, we have

V
(
a2t, ab, ab∗) = aV

(
t, b, b∗). (7)

Proof. This follows directly from the scaling property of Brownian motion: if (Bt )t≥0 is a stan-
dard Brownian motion, then (a−1Ba2t )t≥0 again is a standard Brownian motion. Also, a random
time a2τ is a stopping time for the first process if and only if τ is a stopping time for the second
process. �

This allows us to derive the following lemma where the first part is a direct consequence
of Lemmas 2.1(iii) and 2.3 and the second part is technical and deferred to the Appendix in
Lemma B.3.

Lemma 2.4. Let 0 ≤ t ≤ t ′ and b ∈R. Then (t, b, |b|) ∈ S implies (t ′, b, |b|) ∈ S.
Hence, for fixed C ≥ Ĉ there is a smallest t0 ∈ [0,∞] such that (t, b, |b|) ∈ S if and only if

t

|b|2 ≥ t0. (8)

In fact, we have t0 ∈ (0,∞).

The next result is a standard result in optimal control theory and also intuitively rather obvious.
Again, the proof is deferred to the Appendix.

Lemma 2.5. Suppose C ≥ Ĉ and let (t, b, b∗) be in the non-stop region NS. Consider a Brown-
ian motion (B(u))t≤u starting at time t conditionally on B(t) = b and B∗(t) = b∗. Let τ be the
first hitting time of the stopping region S, that is,

τ = inf
{
u ≥ t : (u,B(u),B∗(u)

) ∈ S
}
. (9)

Then the value process stopped at time τ

M(u)τ := V
(
u ∧ τ,B(u ∧ τ),B∗(u ∧ τ)

)
, u ≥ t, (10)

is a martingale.
The unstopped value process

M(u) := V
(
u,B(u),B∗(u)

)
, u ≥ t, (11)

still is a supermartingale.

We conclude this section with a minor technical remark. In the above statement, as well as in
most of the paper, we follow the usual language of optimal control theory to condition on the
event {B(t) = b,B∗(t) = b∗}. As this is a null set under P, this procedure needs some proper
interpretation in order to make it rigorous.

Let us now introduce some notation to make this a bit clearer.
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We denote by (F(u))u≥0 the (right-continuous, saturated) filtration generated by the Brownian
motion (B(u))u≥0. Of course, in definition (2) the stopping time τ ∈ T (t) is understood with
respect to this filtration. But it is clear from the Markov property that, for fixed (t, b, b∗), we may
assume that τ ∈ T (t) depends only on the behavior of the Brownian motion (B(u))u≥t after time
t and not on the previous behavior of (B(u))0≤u≤t (except for the requirements B(t) = b and
B∗(t) = b∗).

To formalize this fact, we denote by (G(t)(u))u≥t the (right-continuous, saturated) filtration
generated by (B(u) − B(t))u≥t . A stopping time τ ∈ T (t) (i.e., with respect to the filtration
(F(u))u≥0) then may also be considered as a randomized stopping time with respect to the fil-
tration (G(t)(u))u≥t , the randomization given by the trajectories of (B(u))0≤u≤t . As (B(u))0≤u≤t

is independent of the filtration (G(t)(u))u≥t , we conclude that the value of (2) does not change
whether we optimize over the randomized or the non-randomized stopping times with respect to
the filtration (G(t)(u))u≥t . For an introduction to the notion of randomized stopping times, please
refer to [3].

The bottom line of these considerations is that we may assume w.l.o.g. in (2) that τ ∈ T (t) is
a stopping time with respect to the filtration (G(t)(u))u≥t .

Now, the statement of Lemma 2.5 could be rephrased without referring to conditioning on a
null set, by noting that τ is a stopping time with respect to the filtration (G(t)(u))t≤u.

All other statements in the paper referring to conditioning on the values B(t) and B∗(t) could
be made rigorous in an analogous way if the reader insists, but we do not further elaborate on
these technicalities.

3. The value function from an analytic perspective

Again fix C ≥ Ĉ. Differentiating the scaling equation (7) with respect to a and setting a = 1 we
obtain, at least formally, the PDE

2tVt + bVb + b∗Vb∗ = V. (12)

The optimal constant C for inequality (1) will be determined by analyzing whether this PDE
has a reasonable solution for given C > 0 or not.

We need some preparation. For 0 < h < 1 we denote by f h(s) the density of the distribution
of the stopping time ρh = inf{t : |B(t)| = 1}, where B is a Brownian motion starting at B(0) =
1 − h.

Define

g(s) = lim
h↘0

f h(s)

h
, s > 0.

It is well known (e.g., [11], Exercise 2.2.8.11) that there is an explicit representation of f h(s)

as an infinite sum. By differentiation of each summand, we obtain an explicit infinite sum repre-
sentation also for g(s) (see the Appendix below).

The function g appears in the formulation of the subsequent lemma which will turn out to be
of crucial relevance for our analysis.
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Lemma 3.1. Let W : D → R
+ be a continuous function such that

(a) b∗ �→ W(t, b, b∗) is Lipschitz continuous and
(b) W(t,1,1) − √

t is decreasing.

Furthermore let S ⊆ D be defined by SW := {(t, b, |b|) ∈ D : t/b2 ≥ tW } for some fixed tW .
Consider a standard Brownian Motion B(t) and define τW to be the first hitting time of SW .
Suppose that X(t) := W(t,B(t),B∗(t)) is a supermartingale and X(t ∧ τW ) is a martingale.
Further assume that the process X(t ∧ τW ∧ σh) is uniformly integrable where σh is given by
σh := inf{s ≥ t : |B(s)| = 1 + h}.

Then,

(i)

Wb∗(t,1,1) := lim
h↘0

1

h

[
W(t,1,1 + h) − W(t,1,1)

] = 0 for 0 < t < tW ; (13)

(ii)

Wb(t,1,1) := lim
h↘0

1

h

[
W(t,1,1) − W(t,1 − h,1)

]

= −
∫ ∞

0

[
W(t + s,1,1) − W(t,1,1)

]
g(s) ds.

(14)

Observe that (i) in the above lemma would follow directly from Ito’s formula if we assume
that W is sufficiently differentiable by considering

dX(t) =
(

Wt + 1

2
Wbb

)
dt + Wb dB(t) + Wb∗ dB∗(t) (15)

which is the increment of a martingale. The process dB∗(t) is non-decreasing and its
variation is a.s. singular with respect to Lebesgue measure. A necessary condition for
(W(t,B(t),B∗(t)))τW ≥t to be a martingale therefore is that Wb∗ vanishes a.s. with respect to
the variation measure of dB∗. This indicates that Wb∗(t, b, b∗) = 0 should hold true whenever
|b| = b∗ and (t, b, b∗) is in the non-stop region NS. In particular, we should have Wb∗(t,1,1) = 0,
for t < tW .

Proof of Lemma 3.1. (i) For h > 0 as in (13) define, conditionally on B(t) = 1 and B∗(t) = 1,
the stopping times

σh := inf
{
u ≥ t : ∣∣B(u)

∣∣ = 1 + h
}

and (16)

τh := σh ∧ τW . (17)

Recall that the random variable τW is a stopping time with respect to the filtration (G(t)(u))t≤u.
Note that the process (u,B(u),B∗(u))u≥t , starting at B(t) = 1 and B∗(t) = 1 + h, also remains
in D \ SW up to the stopping time τW . To see this, we distinguish two cases:
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(i) t ≤ u < τh: Here we have B(u) < 1 + h = B∗(u) and thus (u,B(u),B∗(u)) ∈ D \ SW .
(ii) τh ≤ u < τW : In this case B∗(u) is the same for B∗(t) = 1 and B∗(t) = 1 + h.

As t < t0, we have that τ is a.s. strictly positive. This implies that

lim
h↘0

P
[
σh = τh

] = 1, (18)

as limh↘0 σh = t , almost surely.
We may write

W(t,1,1 + h) − W(t,1,1)

= E
(t,1,1+h)

[
W

(
τh,B

(
τh

)
,B∗(τh

))] −E
(t,1,1)

[
W

(
τh,B

(
τh

)
,B∗(τh

))]
= E

(t,1,1+h)
[
W

(
τh,B

(
τh

)
,1 + h

)] −E
(t,1,1)

[
W

(
τh,B

(
τh

)
,B∗(τh

))]
.

(19)

Here we use that B∗(τh) = 1 + h conditionally on B∗(t) = 1 + h as τh ≤ σh by definition.
Furthermore we make use of the martingale property of W(t,B(t),B∗(t)) and the optional stop-
ping theorem. For the use of the latter, we need the assumption that (W(u ∧ τh,B(u ∧ τh),

B∗(u ∧ τh)))u≥t is uniformly integrable.
On the set {σh = τh} we have B∗(τh) = B∗(σh) = 1 + h for both initial conditions B(t) = 1,

B∗(t) = 1 + h and B(t) = 1,B∗(t) = 1. Therefore, the value W(τh,B(τh),B∗(τh)) is the same
under both initial conditions. It follows that

E
(t,1,1+h)

[
W

(
τh,B

(
τh

)
,1 + h

)
1{σh=τh}

]
−E

(t,1,1)
[
W

(
τh,B

(
τh

)
,B∗(τh

))
1{σh=τh}

] = 0.

On the remaining set {τh < σh} we have B∗(τh) ∈ [1,1 + h]. Because W is Lipschitz contin-
uous in the variable b∗ with some constant L we may estimate

E
(t,1,1+h)

[
W

(
τh,B

(
τh

)
,1 + h

)
1{τh<σh}

]
−E

(t,1,1)
[
W(τh,B

(
τh

)
,B∗(τh

)
1{τh<σh}

] ≤ LhP
[
τh < σh

]
.

Dividing (19) by h and passing to the limit we obtain from (18) that

Wb∗(t,1,1) := lim
h↘0

1

h

[
W(t,1,1 + h) − W(t,1,1)

] = 0.

(ii) As X is a martingale before hitting SW we have for ρh as above that

W(t,1 − h,1) = E
(t,1−h,1)

[
W

(
ρh,1,1

)] =
∫ ∞

0
W(t + s,1,1)f h(s) ds,

where the density f h is given by

f h(s) := 1√
2πs3

∞∑
n=−∞

[
(4n + h)e− (4n+h)2

2s + (4n + 2 − h)e− (4n+2−h)2
2s

]
. (20)
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We can use this relation to calculate the derivative w.r.t. the second component:

−Wb(t,1,1) := lim
h↘0

1

h

∫ ∞

0

[
W(t + s,1,1) − W(t,1,1)

]
f h(s) ds.

We split this integral into two parts at some point α > 0 and observe that f h(s) is contin-
uous and f h(s) ↘ 0 for h ↘ 0 pointwise at s > 0 and thus by Dini’s theorem also uniformly
(monotone) on any interval [α,K], for 0 < h < h0(α). Therefore, we have

lim
h↘0

1

h

∫ K

α

[
W(t + s,1,1) − W(t,1,1)

]
f h(s) ds

=
∫ K

α

[
W(t + s,1,1) − W(t,1,1)

]
g(s) ds

(21)

for g given by

g(s) := lim
h↘0

f h(s)

h
= 1√

2πs3

[
1 + 2 ·

∞∑
n=1

(−1)n
(

1 − (2n)2

s

)
e− (2n)2

2s

]
. (22)

As before, because u �→ W(u,1,1) − √
u is decreasing and s �→ √

t + s − √
t is concave, we

have W(t + s,1,1) − W(t,1,1) ≤ √
t + s − √

t ≤ s 1
2
√

t
. Therefore the integrand is dominated

by sf h(s)

2
√

th
.

For K > 0, we can then estimate

1

h

∫ ∞

K

sf h(s) ds = 1

h
P
[
ρh > K

]
E

[
(Bρh − B0)

2|ρh > K
]

= P
[
ρh > K

]
(2 − h) ≤ 2P

[
ρh > K

]
.

This probability tends to 0 uniformly in K , thus the integrals over [K,∞) can be neglected and
we can replace K by ∞ in (21).

For the other part of the integral, we first observe that

lim
h↘0

1

h

∫ α

0
sf h(s) ds

= lim
h↘0

1

h

∫ ∞

0
sf h(s) ds − 1

h

∫ ∞

α

sf h(s) ds

= lim
h↘0

1

h
E

[
ρh

] − 1

h

∫ ∞

α

sf h(s) ds

= lim
h↘0

2 − h − 1

h

∫ ∞

α

sf h(s) ds = 2 −
∫ ∞

α

sg(s) ds.

The last integral converges to 2 for α → 0 by monotone convergence.
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We conclude by setting M ≥ |Wt(u,1,1)| for u ∈ [t, t + α], making the estimate∣∣∣∣ 1

h

∫ α

0

[
W(t + s,1,1) − W(t,1,1)

]
f h(s) ds

∣∣∣∣ ≤ M

h

∫ α

0
sf h(s) ds

h→0→ M

(
2 −

∫ ∞

α

sg(s) ds

)
,

and then taking the limit for α → 0. �

We can now apply this technical lemma to our value function V by checking that the assump-
tions of the previous lemma are satisfied by the value function V .

Lemma 3.2. Let V : D →R be the value function for (2). Then,

(i)

Vb∗(t,1,1) := lim
h↘0

1

h

[
V (t,1,1 + h) − V (t,1,1)

] = 0 for 0 < t < t0; (23)

(ii)

Vb(t,1,1) := lim
h↘0

1

h

[
V (t,1,1) − V (t,1 − h,1

]

= −
∫ ∞

0

[
V (t + s,1,1) − V (t,1,1)

]
g(s) ds.

(24)

Proof. V is continuous by Lemma 2.1 and Lipschitz-continuous in b∗ by definition. We also
have V (t,1,1)−√

t is decreasing by Lemma 2.1. Furthermore V (t,B(t),B∗(t)) is a martingale
up to hitting S by Lemma 2.5. Thus, setting W = V , SW = S and tW = t0, it remains to check
the required uniform integrability condition. We have

−C(1 + h) ≤ V
(
u ∧ τh,B

(
u ∧ τh

)
,B∗(u ∧ τh

))
≤ V

(
t,B

(
u ∧ τh

)
,B∗(u ∧ τh

)) + (√
u ∧ τh − √

t
)

≤ V (t,0,0) +
√

τh ≤ V (t,0,0) + 1

4
+ τh,

where the first estimate follows because the function u �→ V (u,b, b∗) − √
u is decreasing in u.

The second inequality is due to the fact that V is decreasing in |b| and increasing in b∗ as well as
B∗(u ∧ τh) ≤ 1 + h. Now, τh ≤ σh and σh has exponential moments and is therefore integrable
which yields the desired uniform integrability.

Observe that τh is smaller than the first hitting time of the non-stop region NS no matter
whether we condition on (t,1,1) or (t,1,1 + h) which warrants the use of Lemma 2.5. �
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The subsequent lemma shows that, for t > t0, the behavior of Vb and Vb∗ follows a different
pattern than the one given by Lemma 3.2. We find that

Vb∗(t,1,1) + Vb(t,1,1) = −C, (25)

where we have to interpret this equation properly.

Lemma 3.3. For t > t0, we have

lim
h↘0

1

h

[
V (t,1 + h,1 + h) − V (t,1,1)

] = −C. (26)

Proof. For t > t0, we have

V
(
t, b∗, b∗) = t

1
2 − Cb∗,

for b∗ in a neighbourhood of 1. �

To abbreviate notation we shall sometimes denote by V (t) the function V (t,1,1) (recall that
we keep C ≥ Ĉ and the corresponding t0 = t0(C) fixed). We thus obtain the following integro-
differential equation for V (t).

Lemma 3.4. The function V (t) satisfies the following equations

2tV ′(t) = V (t) + C, t > t0, (27)

2tV ′(t) = V (t) +
∫ ∞

0

[
V (t + s) − V (t)

]
g(s) ds, t < t0. (28)

Proof. The first assertion is obvious, as we have

V (t) = t
1
2 − C, for t > t0. (29)

The second equation follows, at least formally, from (12), (23) and (24).
To justify (28) in a more pedantic way, note that for a > 1 we obtain from (7)

aV (t,1,1) − V (t,1,1) = V
(
a2t, a, a

) − V (t,1,1)

= (
V

(
a2t, a, a

) − V (t, a, a)
)

+ (
V (t, a, a) − V (t,1, a)

)
+ (

V (t,1, a) − V (t,1,1)
)
.

Dividing by a − 1 and letting a decrease to 1, we deduce (28) from Lemma 3.2. �

Let us discuss the behaviour of the function V (t) at t = t0. As observed in the previous section,
V (t) is continuous so that we must have “continuous pasting” at t0. It is the immediate reflex –
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at least it was so for the present authors – to expect smooth pasting of V (t) at t = t0 that is,
limt↘t0 V ′(t) = limt↗t0 V ′(t). By (27) and (28), this would result in determining t0 by equating
C with

∫ ∞
0 (V (t0 + s) − V (t0))g(s) ds. To our big surprise, this turned out not to be the case;

after some time of reconsidering we had to conclude that there is little reason why the smooth
pasting principle should prevail in the present context. Here is one intuitive reason: for a fixed
number t0 > 0 we have that for almost all trajectories of a Brownian motion B = (B(t))t≥0,

starting at B(0) = 0, there is no t > 0 such that the two equalities |B(t)| = B∗(t) = ( t
t0

)
1
2 are

simultaneously verified. By Lemma 2.4, we conclude that a discontinuity of the derivatives of
V (t,B(t),B∗(t)) can only take place where these two equations are simultaneously satisfied.
Roughly speaking: the Brownian motion B “does not see” a kink of the function V (t) at t = t0.

As a matter of fact, this natural example of a case of non-smooth pasting in the case of con-
tinuous martingales seems to us a remarkable feature of the present paper. The literature on
non-smooth pasting is generally revolving around non-continuous processes. Some examples of
non-smooth pasting for processes with jumps can be found in [1,2,6,9] and [14].

4. The integro-differential-equation

Fix the parameters C > 0 and t0 > 0. We consider the ordinary integro-differential equation for
the function U = UC,t0

U(t) = t
1
2 − C, t ≥ t0, (30)

2tU ′(t) = U(t) +
∫ ∞

0

[
U(t + s) − U(t)

]
g(s) ds, 0 < t ≤ t0, (31)

where g is given by (22).
Here the fixed behaviour (30) of U(t), for t ≥ t0, is considered as the initial condition, and sub-

sequently the OIDE (ordinary integro-differential equation) (31) is solved by letting t decrease
from t0 to 0. For t = t0, the derivative U ′(t0) in (31) is understood as the left limit of U ′(t) when
t increases to t0.

It is standard to verify that, for C > 0, t0 > 0, and ε > 0 the solution UC,t0 of (30) is well-
defined for t ∈ [ε,∞) and depends smoothly on the parameters C and t0. On the other hand, the
2t term on the left-hand side of (31) indicates that only for special cases of C and t0 this solution
can be extended to a continuous and finitely valued function U(t), defined for all t ∈ [0,∞).

The evidence resulting from our numerical analysis of the solutions (UC,t0(t))t>0, in depen-
dence of C and t0, can be resumed as follows:

Numerical Evidence 4.1.

(i) There is a smallest number Č > 0 as well as a unique number ť0 > 0 such that the OIDE

(31) admits a solution UČ,ť0(t) which has a finite limit limt→0 UČ,ť0(t). This solution is

monotone increasing and UČ,ť0(t) ≥ t
1
2 − Č.

(ii) For 0 < C < Č there does not exist t0 > 0 such that U(t) = UC,t0(t) remains bounded
from below as t ↘ 0.
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(iii) For C > Č there are precisely two values t1 = t1(C), t2 = t2(C) depending on C in a
continuous and one-to-one way such that UC,ti (t) has a finite limit, as t ↘ 0, for i = 1,2.

These solutions satisfy UC,ti (t) ≥ t
1
2 −C. For t0 ∈ (t1, t2), the solutions of the OIDE (31)

tend to +∞, for t ↘ 0, while, for t0 /∈ [t1, t2], the solutions tend to −∞, for t ↘ 0. We
have t1(C) < ť0 < t2(C) and lim

C→Č
t1(C) = lim

C→Č
t2(C) = ť0.

The functions UC,t1 and UC,t2 are monotone increasing and

UC,t1(t) < UČ,ť0(t), for all t ∈ [0,∞[. (32)

Finally, we find the numerical values

Č ≈ 1.27267 . . . and ť0 ≈ 0.9036 . . . . (33)

We have not been able to provide a mathematically rigorous proof of the above assertions and
only rely on the numerical evidence (which is based on Euler-type simulations in Python with
variable step sizes). We therefore consider the above statements rather as hypotheses underlying
our subsequent results and we shall carefully point out in the subsequent statements where we
rely on this evidence.

For example, for C = 1.25 < Č which is case (ii) above we illustrate the situation by Figure 1.
For C = 1.274 > Č, which is case (iii) above, we find t1 ≈ 0.85 . . . and t2 ≈ 0.95 . . . , as

illustrated in Figure 2.
When C decreases to the critical value Č ≈ 1.27267 . . . the numerics suggest that the length

t2 − t1 of the intervals (t1, t2) decreases to zero and that these intervals shrink to a single point

Figure 1. The subcritical case C < Č: Numerical solutions for C = 1.25 and various values for the pasting
position t0 in the interval [0.8,1]. The graph underneath is t1/2 − C through which all solutions cut in the
subcritical case when they get close to 0.
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Figure 2. The supercritical case C > Č: Numerical solutions for C = 1.274 and and various values for the
pasting position t0 in the interval [0.6,1.2]. We find that while solutions for t0 in an interval (t1, t2) with
t1 ≈ 0.85 and t2 ≈ 0.95 stay above the graph of t1/2 −C (in fact, they tend to +∞, as t → 0), the solutions
fall to −∞ for t → 0 if t0 /∈ [t1, t2]. At the transition of these two regimes lie the bounded solutions UC,t1

and UC,t2 (which are not explicitly displayed in the above figure but are squeezed between the neighbouring
solutions UC,t ).

ť0 ∈ ]0,∞[ for which we find ť0 ≈ 0.9036 . . . . It is convincing from the numerics that the lim-

iting solution UČ,ť0(t) then is well-defined for all t ≥ 0 by letting UČ,ť0(0) := limt↘0 UČ,ť0(t).

This function UČ,ť0(t) is monotone increasing and such that UČ,ť0(t) lies above the function

UČ,0(t) = t
1
2 − Č. Clearly we expect that UČ,ť0 must be the “right” solution, which may be

identified with the value function V defined in (2) for the optimal constant Ĉ = Č and, in par-
ticular, that Č ≈ 1.27267 . . . equals the optimal constant Ĉ in the Burkholder–Davis–Gundy
inequality (1). We shall subsequently deduce this result more formally.

5. Identifying the value-function

Admitting the Numerical Evidence 4.1 we shall show that the function UČ,ť0(t), obtained above
from the analysis of the OIDE (31), indeed determines the value function V (t, b, b∗) as defined in
(2) for the constant Ĉ = Č and that this constant is indeed the optimal Burkholder–Davis–Gundy
constant in inequality (1).

Starting from a solution U(t) = UC,t0(t) of the OIDE (31) for parameters C > 0 and t0 > 0
such that U(t) extends continuously to a finite value U(0) we may extend this solution (by slight
abuse of notation) to a function U(t, b, b∗), defined on D, by first letting

U(t, b,1) :=
∫ ∞

0
U(t + s)f 1−|b|(s) ds, for 0 ≤ |b| < 1, (34)
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where f h(s) is defined in Section 3. For general (t, b, b∗) ∈ D we use (7) to define

U
(
t, b, b∗) = b∗U

(
t

(b∗)2
,

b

b∗ ,1

)
. (35)

For later reference, we note that U(t) ≥ √
t − C implies

U
(
t, b, b∗) ≥ √

t − Cb∗, for all
(
t, b, b∗) ∈ D. (36)

Lemma 5.1. Fix C > 0 and t0 > 0 such that U(t) extends continuously to a finite U(0) and
admit the Numerical Evidence 4.1(i) and (iii). Let (B(u))u≥t be a Brownian motion starting
at some time t > 0 at B(t) = b and B∗(t) = b∗. The process U(u,B(u),B∗(u))u≥t is then a
local super-martingale. It is a local martingale up to entering the stopping area S := {(t, b, b∗) :
|b| = b∗, t/(b∗)2 ≥ t0}.

For the proof, we need the following lemma to justify the use of Ito’s formula for a function
that is not smooth everywhere but where the Brownian Motion hardly ever touches the set where
it is not differentiable.

Lemma 5.2. Let W : D → R be a continuous function and tW > 0 such that

(a) the derivatives Wt and Wbb exist and are continuous on the interior of D, and
(b) Wt + 1

2Wbb = 0,
(c) Wb∗ ≤ 0, and
(d) Wb∗(t, b, |b|) = 0 for t

b2 < tW .

Define SW := {(t, b, |b|) ∈ D : t

b2 ≥ tW }. For a standard Brownian Motion B(t) let τW be the
first hitting time of S for (t,B(t),B∗(t)). Then,

(i) X(t) := W(t,B(t),B∗(t)) is a local supermartingale, and
(ii) X(t ∧ τW ) is a local martingale.

Proof. This follows at least formally from the assumptions and Ito’s formula

dX(t) =
(

Wt + 1

2
Wbb

)
dt + Wb dB(t) + Wb∗ dB∗(t). (37)

To address this in a more formal way, let ε > 0 and define the stopping times (ρε
n)∞n=0 by ρε

0 = 0
and

ρε
n = inf

{
t : t ≥ ρε

n−1 + ε and
∣∣B(t)

∣∣ = B∗(t)
}
.

We also denote by Aε the union
⋃∞

n=0 �ρε
n, ρε

n + ε� which is a predictable subset of � ×R+.

Denoting by A0 = ⋂∞
n=0 A

1
n , the set A0 simply equals {|B(t)| = B∗(t)}. Fixing T > 0, the

Lebesgue-measure of {ω} × [0, T ] ∩ Aε tends to zero, for almost all ω ∈ �.
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Fix a bounded stopping time τ such that (B(t))0≤t≤τ remains bounded. It follows that Wt as
well as Wbb also remain bounded on Aε ∩ �0, τ � so that

Xε(t) :=
∫ t

0
1Bε dX(s)

is a martingale and Bε = (� × R+) \ Aε is the complement of Aε . Indeed, it suffices to reason
on the stochastic intervals �ρε

n−1 + ε,ρε
n � and to observe that B∗(t) remains constant on these

intervals.
Turning to the remaining part

Y ε(t) :=
∫ t

0
1Aε dX(s) = X(t) − Xε(t)

we shall show that along a sequence these processes tend almost surely to the non-increasing
process

Y 0(t) =
∫ t

0
1A0 dX(s) =

∫ t

0
1A0Wb∗

(
t,B(t),B∗(t)

)
dB∗(t).

Indeed, the dominated convergence theorem for Ito-Integrals yields convergence in probability
and thus subsequence convergence almost surely. Fixing this sequence of ε’s we can take the
process to the appropriate limit. �

Proof of Lemma 5.1. It follows from definition (34) that, for (t, b, b∗) ∈ D such that t > 0 and
0 ≤ |b| < b∗, the heat equation

Ut + 1

2
Ubb = 0

is satisfied.
On the boundary, for t < t0, we can apply the definition of U to obtain

Ub(t,1,1) + Ub∗(t,1,1) := lim
h↘0

1

h

[
U(t,1 + h,1 + h) − U(t,1,1)

]

= lim
h↘0

1

h

[
U

(
t/(1 + h)2) − U(t)

] + U
(
t/(1 + h)2)

= −2tU ′(t) + U(t)

= −
∫ ∞

0

[
U(t + s) − U(t)

]
g(s) ds.

The last equality is exactly the OIDE (31). Applying Lemma 3.1(ii) one obtains that the last
expression is equal to

Ub(t,1,1) := − lim
h↘0

1

h

[
U(t,1 − h,1) − U(t,1,1)

]
,
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where all the assumptions of this lemma are easily checked. Clearly the left and right deriva-
tives of Ub agree. It follows that Ub∗(t,1,1) = 0 and more generally that Ub∗(t, b, |b|) = 0 for
t/b2 < t0. For t ≥ t0 we can derive as in Lemma 3.3 that

Ub∗(t,1,1) = −Ub(t,1,1) − C =
∫ ∞

0

[
(t + s)

1
2 − t

1
2
]
g(s) ds − C.

This expression is monotone decreasing in t , and is necessarily non-positive at t0 so that

U(t,1,1) ≥ t
1
2 − C holds. We conclude that, for arbitrary t > 0, Ub∗ ≤ 0.

Having established that Ub∗ ≤ 0 and Ub∗(t, b, |b|) = 0 for t

b2 < t0 we may derive, at least
formally, the assertion of the present lemma from (A.2) and Ito’s formula as in (15).

Now, we can conclude using Lemma 5.2 �

Let us now observe the following relations between value functions to the optimal stopping
problem and solutions to the OIDE (31).

Lemma 5.3. Let V C be the value function as defined in (2) for a constant C > 0 that satisfies
the inequality (1). Take t0 = t0(C) ∈ (0,∞) to be the corresponding point separating S from NS
(see (6)). Then V C(t) := V C(t,1,1) satisfies the OIDE (31) for this choice of C and t0.

Proof. For t ≥ t0, we have V C(t) = t
1
2 − C.

For t < t0 denote by τh = σh ∧ τ the stopping time as in (17) above, conditionally on (t,1,1).
Note that (V C(u,B(u),B∗(u)))t≤u≤τh then is a uniformly integrable martingale. To see this, we
make a distinction for u ≤ ν and u > ν where ν is the stopping time ν := inf{s : B∗(s)2t0 ≤ s}:

1. u ≤ νh := ν ∧ τh: The domain of ((u,B(u),B∗(u)) is bounded by |B(u)| ≤ B∗(u) ≤ 1 +h

and u ≤ νh ≤ B∗(νh)2t0 ≤ (1 + h)2t0. Clearly V C is bounded on this domain.
2. u > νh: Here the properties of V C given in Lemma 2.5 allow us to see that one can rewrite

the process as

V C
(
u,B(u),B∗(u)

) = E
(u,B(u),B∗(u))

[
σ

1
2
] − CB∗(u),

where σ is again the first time where B(u) = B∗(u) holds. Note that this holds because
B∗(v) is now constant for u ≤ v ≤ σ , and it is clearly the definition of a uniformly inte-
grable martingale, provided the conditional expectation is well defined, which it is by the
estimate

E
(u,B(u),B∗(u))

[
σ

1
2
] ≤ u

1
2 + B∗(u).

Hence, the formula

V C(t,1,1) = E
(t,1,1)

[
V C(τh,B

(
τh

)
,B∗(τh

)]
is justified. This was the only assumption of Lemma 3.1 which is not immediate from the defini-
tion of V C . Now the claim follows from Lemma 3.1. �
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Proposition 5.4. Admitting the Numerical Evidence 4.1(i) and (ii), the constant Č obtained in

(33) equals the optimal constant Ĉ for (1), and the function UČ,ť0(t, b, b∗) obtained in (34) and
(35) equals the value function V (t, b, b∗) as defined in (2) for the constant Ĉ = Č.

The value t̂0 associated to Ĉ by Lemma 2.4 equals the constant ť0 in (33).

Proof. To show Ĉ ≥ Č, suppose that C > 0 is a constant satisfying the Burkholder–Davis–
Gundy inequality (1), that is, suppose that C ≥ Ĉ. Then by Lemma 5.3 we have that V C(t) :=
V C(t,1,1) satisfies the OIDE (31) for this choice of C and the corresponding t0(C) separating
S from NS.

As V C(t) is increasing in t and satisfies V C(0) ≥ −C we conclude from the Numerical Evi-
dence 4.1(i) and (ii) that C ≥ Č. This yields Ĉ ≥ Č.

To show conversely that Ĉ ≤ Č consider the function UČ,ť0(t, b, b∗). By Lemma 5.1 the

process (UČ,ť0(t,B(t),B∗(t))t≥0 is a local supermartingale. Hence we have, conditionally on
(t, b, b∗) ∈ D and for each bounded stopping time τ ≥ t and localizing sequence (τn)

∞
n=1,

UČ,ť0
(
t, b, b∗) ≥ E

(t,b,b∗)[UČ,ť0
(
τ ∧ τn,B(τ ∧ τn),B

∗(τ ∧ τn)
)]

≥ E
(t,b,b∗)[(τ ∧ τn)

1
2 − ČB∗(τ ∧ τn)

]
,

where the second inequality derives from (36). In the limit for n → ∞, this yields

UČ,ť0(t, b, b∗) ≥ E
(t,b,b∗)[τ 1

2 − ČB∗(τ )]. Hence, UČ,ť0(t, b, b∗) dominates the value func-
tion V Č(t, b, b∗) as defined in (2) for the constant Č. This shows Č ≥ Ĉ as well as
UČ,ť0 ≥ V Č = V Ĉ . �

We can finally summarize these results to proof the main theorem.

Proof of Theorem 1.2. Suppose that C = Ĉ is the optimal constant for (1) and let t̂0 ∈ (0,∞)

the corresponding critical value given by Lemma 2.4. Then V = V (t) satisfies the OIDE (30)
and this solution is increasing in t and satisfies V (0) ≥ −C.

As shown in the previous section, there is a minimal C allowing for such a solution, for an
appropriately chosen t0 ∈ (0,∞). This value of C therefore must coincide with the optimal value

Ĉ for the Burkholder–Davis–Gundy inequality (1).
Conversely if C is chosen such that for some t0 ∈ (0,∞) the OIDE (30), (31) has a solution

on [0, T ] then the Numerical Evidence 4.1(ii) gives that C ≥ C̄ = Ĉ and so (1) holds. �

Remark 5.5. It is interesting to consider, for a fixed constant C > Ĉ, the relation between the
value-function V C(t, b, b∗) defined in (2) and the corresponding solutions of the OIDE (31). In
this case, the Numerical Evidence 4.1(iii) indicates that there are two bounded solutions UC,t1(t)

and UC,t2(t). Which of the two is the “good one”, that is, which one equals the value function
V C(t,1,1)?

To answer this question, first note that, for C > Ĉ, we clearly have the monotonicity relation

V C(t, b, b∗) ≤ V Ĉ(t, b, b∗). It is also easy to see that t0(C) < t0(Ĉ) = t̂0 = ť0, where t0(C) is
associated to the value function V C(t, b, b∗) via Lemma 2.4. In other words, the stopping region
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S for the function t
1
2 − CB∗(t) in (2) is bigger than the stopping region S for the function

t
1
2 − ĈB∗(t).

It follows from the numerical evidence that the value t1(C) for which we have t1(C) < t̂0 is
the only candidate for the “good” solution while for t2(C) for which we have t2(C) > t̂0, we
cannot have UC,t2(C)(t) = V C(t,1,1). We can conclude from Lemma 5.3 that the value function
V C(t,1,1) indeed equals the solution UC,t1(C)(t) of the OIDE (31).

The fact that UC,t2(C)(t) cannot be the “good” solution has the following consequence which
is interesting in its own right (compare [15]).

Proposition 5.6. Admitting the Numerical Evidence 4.1(iii) we have that, for t2 > t̂0, the stop-
ping time

ρ = inf

{
s ≥ 1 : s

(B∗(s))2
≥ t2

}
(38)

satisfies

E
[
ρ

1
2
] = ∞. (39)

Proof. Define the stopping time τ by

τ := inf

{
s ≥ 1 : s

B∗(s))2
≥ t2 and

∣∣B(s)
∣∣ = B∗(s)

}
. (40)

Clearly τ ≥ ρ, as we may equivalently define

τ := inf
{
s ≥ ρ : ∣∣B(s)

∣∣ = B∗(s)
}
. (41)

We claim that E[ρ 1
2 ] < ∞ if and only if E[τ 1

2 ] < ∞. Indeed, it follows from (41) that the law
of τ − ρ, conditionally on (ρ,B(ρ),B∗(ρ)), is that of the first hitting time σ of the level B∗(ρ)

by the absolute value of a Brownian motion (W(u))u≥0 starting at W(0) = B(ρ). We may (very
crudely) estimate E[σ ] ≤ B∗(ρ)2.

Noting that at time ρ we have B∗(ρ)2 ≤ ρ
t2

we may estimate

E
[
τ − ρ|ρ,B(ρ),B∗(ρ)

] ≤ ρ

t2
.

Hence, we obtain

E
[
τ

1
2
] = E

[
ρ

1
2
] +E

[
E

[
τ

1
2 − ρ

1
2 |ρ,B(ρ),B∗(ρ)

]]
≤ E

[
ρ

1
2
] +E

[
E

[
(τ − ρ)

1
2 |ρ,B(ρ),B∗(ρ)

]]
≤ E

[
ρ

1
2
] +E

[
E

[
τ − ρ|ρ,B(ρ),B∗(ρ)

] 1
2
]

≤
(

1 + 1√
t2

)
E

[
ρ

1
2
]
,

which readily shows that E[ρ 1
2 ] < ∞. This implies that E[τ 1

2 ] < ∞.
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So let us suppose that E[τ 1
2 ] < ∞ and work towards a contradiction.

Define the stopping region S(t2) relative to t2 as

S(t2) =
{(

t, b, |b|) ∈ D : t

b2
≥ t2

}
,

and the corresponding non-stopping region by NS(t2) = D \ S(t2).
We condition on some fixed (1, b, b∗) ∈ NS(t2). Note that τ is the first time when

(t,B(t),B∗(t))t≥1 leaves NS(t2).
Admitting the Numerical Evidence 4.1(iii), associate to t2 > t̂0 the constant C > Ĉ such that

UC,t2(t) is a solution of the OIDE (31) which remains bounded as t ↘ 0. We write UC,t2(t, b, b∗)
for its extension defined in (35). In contrast, we denote by V C(t, b, b∗) the value function as
defined in (2) for the constant C.

The process (UC,t2(t,B(t),B∗(t)))1≤t≤τ is a local martingale by Lemma 5.1, where the
present t2 corresponds to t0 in the statement of this lemma.

In addition, we show that this local martingale is a uniformly integrable martingale up to time
τ , that is, the family of random variables UC,t2(σ,B(σ ),B∗(σ )), where σ ranges in the stopping
times 1 ≤ σ ≤ τ , is uniformly integrable. Recall the scaling relation

UC,t2
(
σ,B(σ),B∗(σ )

) = B∗(σ )UC,t2

(
σ

B∗(σ )2
,

B(σ )

B∗(σ )
,1

)
,

and note that σ

B∗(σ )2 remains in the interval [0, t2] so that, by compactness, the term

|UC,t2( σ

B∗(σ )2 ,
B(σ )
B∗(σ )

,1)| remains bounded by some constant M > 0. Therefore,

∣∣UC,t2
(
σ,B(σ),B∗(σ )

)∣∣ ≤ MB∗(σ ) ≤ MB∗(τ ).

If E[τ 1
2 ] < ∞ we infer from the Burkholder–Davis–Gundy inequality (this time the reverse in-

equality to (1)) that the random variable B∗(τ ) is integrable. Hence, the family of random vari-
ables UC,t2(σ,B(σ ),B∗(σ )) is dominated by the integrable random variable MB∗(τ ) which
shows that the local martingale UC,t2(t,B(t),B∗(t))1≤t≤τ is of class D and is thus a uniformly
integrable martingale.

Hence, conditionally on (1, b, b∗) ∈ NS(t2) we obtain

UC,t2
(
1, b, b∗) = E

(1,b,b∗)
[
UC,t2

(
τ,B(τ),B∗(τ )

)]
. (42)

We now pass to the process (V C(t,B(t),B∗(t)))t≥1 again conditionally on (1, b, b∗) ∈ NS(t2).
By Lemma 2.5, we know that this process is a supermartingale. Repeating the above argument,
we obtain that this supermartingale is uniformly integrable up to time τ . Hence,

V C
(
1, b, b∗) ≥ E

(1,b,b∗)[V C
(
τ,B(τ),B∗(τ )

)]
. (43)

Noting that at time τ we arrived in the stopping region S(t2) we obtain

UC,t2
(
τ,B(τ),B∗(τ )

) = V C
(
τ,B(τ),B∗(τ )

) = τ
1
2 − CB∗(τ ).
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Hence (42) and (43) yield

V C
(
1, b, b∗) ≥ UC,t2

(
1, b, b∗),

for all (1, b, b∗) ∈ D. As we have seen that V C = UC,t1(C) ≤ UC,t2(C), and UC,t1(C) is not equal
to UC,t2(C), we arrive at the desired contradiction. �

The above result is complemented by the following estimate in the reverse direction.

Proposition 5.7. Admitting the Numerical Evidence 4.1(iii), we have, for t1 < t̂0, that the stop-
ping time

ρ = inf

{
s ≥ 1 : s

(B∗(s))2
≥ t1

}
(44)

satisfies

E
[
ρ

1
2
]
< ∞. (45)

Proof. Similarly as in the proof of the previous proposition, we define

τ := inf

{
s ≥ 1 : s

(B∗(s))2
≥ t1 and

∣∣B(s)
∣∣ = B∗(s)

}
.

We shall show that

E
[
τ

1
2
]
< ∞ (46)

which will imply (45).
We condition on (1, b, b∗) in the non-stop region NS(t1) defined as in the preceding proof, and

will show

E
(1,b,b∗)

[
τ

1
2
] ≤ Kb∗ (47)

for some constant K > 0, which will imply (46) by integrating over the values B(1) = b and
B∗(1) = b∗.

We associate to t1 < t̂0 the corresponding C > Ĉ such that the solution UC,t1(t) of the OIDE
(31) remains bounded (Numerical Evidence 4.1(iii)).

Using the Numerical Evidence 4.1(iii) there is some α > 0 such that the solutions UC,t1(t)

of the OIDE (31) and the value function V Ĉ(t) = UČ,ť0(t) for the optimal constant Ĉ = Č are
separated by some α > 0, that is,

V Ĉ(t) ≥ UC,t1(t) + α, for all t ≥ 0. (48)

Indeed, for t ≥ t̂0 we have UC,t1 = t
1
2 − C and UĈ,t̂0(t) = t

1
2 − Ĉ. For t ∈ [0, t̂0] we have

UĈ,t̂0(t) < UC,t0(t) by (32) so that by compactness we obtain a separating constant α > 0.



The sharp constant for the BDG inequality 2519

More generally, we obtain from (34)

V Ĉ(t, b,1) ≥ UC,t1(t, b,1) + α, for all (t, b,1) ∈ D. (49)

Similarly as in the above proof we consider, conditionally on (1, b, b∗), the processes

(
UC,t1

(
u,B(u),B∗(u)

))
1≤u≤τ

and
(
V Ĉ

(
u,B(u),B∗(u)

))
1≤u≤τ

.

Both are local martingales up to time τ . Let (τn)
∞
n=1 be a sequence of localizing, bounded

stopping times, τn ≥ 1, increasing to τ ,

V Ĉ
(
1, b, b∗) = E

(1,b,b∗)
[
V Ĉ

(
τn,B(τn),B

∗(τn)
)]

= E
(1,b,b∗)

[
B∗(τn)V

Ĉ

(
τn

B∗(τn)2
,

B(τn)

B∗(τn)
,1

)]

≥ E
(1,b,b∗)

[
B∗(τn)U

C,t1

(
τn

B∗(τn)2
,

B(τn)

B∗(τn)
,1

)]
+ αE(1,b,b∗)

[
B∗(τn)

]
= UC,t1

(
1, b, b∗) + αE(1,b,b∗)

[
B∗(τn)

]
.

Hence, letting n → ∞, for each (1, b, b∗)

V Ĉ
(
1, b, b∗) − UC,t1

(
1, b, b∗) ≥ αE(1,b,b∗)

[
B∗(τ )

]
.

Using the scaling relation again, we get

V Ĉ

(
1

(b∗)2
,

b

b∗ ,1

)
− UC,t1

(
1

(b∗)2
,

b

b∗ ,1

)
≥ α

b∗E
(1,b,b∗)[B∗(τ )

]
. (50)

Observe that we can also find a bound β such that

β ≥ V Ĉ(t) − UC,t1(t), for all t ≥ 0

as the difference equals C − Ĉ for t ≥ t̂0 and is bounded for the compact interval [0, t̂0]. This

directly yields β as a bound on V Ĉ(t, b,1) − UC,t1(t, b,1) which shows that the left hand side
of (50) remains uniformly bounded. This yields (47) with K = β/α and finishes the proof. �

Remark 5.8. As regards the limiting case when we define ρ in (44) by replacing t1 by the critical

value t̂0, we conjecture that we obtain E[ρ 1
2 ] = ∞. But we were not able to prove this result.

6. A pointwise version of one of Davis’ inequalities

The value function V allows to derive a pointwise version of the Burkholder–Davis–Gundy in-
equality (1), which holds true in an almost sure sense rather than in expectation as stated in (1).
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This line of argument, inspired by the idea of robust superhedging from mathematical finance, is
well known (see, e.g., [5] and [4]).

Theorem 6.1. Denote by V = V Ĉ the value function (2) associated to the optimal constant Ĉ

and consider the Brownian motion B = (B(t))t≥0 with its (right continuous, saturated) natural
filtration (F(t))t≥0.

There is a predictable process H(t) satisfying E[∫ T

0 H 2(t) dt] < ∞, for each T > 0, given
a.s. by

H(t) = Vb

(
t,B(t),B∗(t)

)
(51)

for Lebesgue almost all t > 0, such that, for every bounded stopping time τ ,

τ
1
2 − CB∗(τ ) ≤

∫ τ

0
H(t) dB(t), a.s. (52)

Before giving the proof we observe the well-known fact that (52) trivially implies (2) by taking
expectations on both sides of (52).

Proof of Theorem 6.1. Lemma 2.5 states that the continuous process

X(t) = V
(
t,B(t),B∗(t)

)
is a supermartingale, starting at X(0) = V (0,0,0) = 0. By Doob–Meyer, we may decompose X

as

X = M − A, (53)

where M is a continuous local martingale and A is a continuous non-decreasing predictable
process, and M(0) = A(0) = 0.

In fact, M is a square integrable martingale as we will show in Lemma A.1 in the Appendix.
By martingale representation, we may find a predictable process H with E[∫ T

0 H(t)2 dt] < ∞,
for each T > 0 such that

M(t) =
∫ t

0
H(u)dB(u).

By applying Ito to both sides of (53), we obtain the relation (51) which must hold true, for P-
almost each ω and for Lebesgue almost all t (the null set depending on ω). The formal application
of Ito’s formula can be justified using the result in Lemma 5.2. �

7. BDG-inequalities for general 0 < p < 2

The above procedure can be easily modified to obtain similar results for the inequalities E[τ p
2 ] ≤

CpE[(B∗(τ ))p] with 0 < p < 2. Lemmas 2.2 and 2.4 stay essentially the same, with a different
scaling given by

V
(
a2t, ab, ab∗) = apV

(
t, b, b∗).
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This leads to the PDE

2tVt + bVb + b∗Vb∗ = pV

and the OIDE

2tVt (t) = pV (t) +
∫ ∞

0

[
V (t + s) − V (t)

]
g(s) ds

for 0 ≤ t ≤ t0 and the starting condition V (t) = t
p
2 − C for t ≥ t0.

In principle, a similar analysis as in the present paper should provide explicit numerical values
Ĉ(p) and t̂0(p), in dependence of 0 < p < 2. We leave this task to future research.

On the other hand, for p > 2 the present method does not seem to apply and some new idea is
needed.

8. Relation to the Burkholder constant Ĉ = √
3

In this section, we consider martingales also allowing for jumps and we focus (w.l.o.g.) on mar-
tingales (Mn)

N
n=0 defined on a finite probability space � (see Lemma 8.2 below). The BDG

inequality (1) reads in this context as

E
[[M,M]

1
2
N

] ≤ CE
[
M∗

N

]
, (54)

where [M,M]n = ∑n
j=1(Mj −Mj−1)

2 denotes the quadratic variation process. It was shown by

D. Burkholder [7] that in this context the sharp constant Ĉ equals Ĉ = √
3.

One may ask for a deeper reason why we obtain a different sharp constant in (1) for continuous
martingales as for martingales also having jumps. One reason is that the value function V fails
to have a certain concavity property.

Fix a point d = (t, b, b∗) ∈ D as well as α > 0, β > 0. Define the points dα, dβ ∈ D by

dα = (
t + α2, b + α,max

(
b∗, |b + α|)),

dβ = (
t + β2, b − β,max

(
b∗, |b − β|)).

We also define p = β
α+β

and q = α
α+β

.

Proposition 8.1. There exist x ∈ D as well as α > 0, β > 0 such that

V (d) < pV (dα) + qV (dβ). (55)

Of course, we could verify the above proposition in a trivial way by numerically analyzing the
function V (t, b, b∗) and detecting explicitly some d,α and β . It is also clear where we should
search for such a “bad” triple (x,α,β), namely in a neighborhood of the “kink” related to the
“non-smooth pasting” (Figures 1 and 2) which displays a strong form of non-concavity.
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But this is not our point. The purpose of the above statement is to show how the non-concavity
(55) of the value function V is related to the difference between the case of continuous martin-
gales and the case of martingales with jumps.

Also note that the equations Vt + 1
2Vbb = 0 in the interior of D and Vb∗ = 0 on the non-

stopping boundary of D (i.e., (23) and (15) above), imply that in the (properly interpreted) case
of infinitesimal increments α and β we do have a “≤” in (55) above. This is the message of
Lemma 2.5.

Proof of Proposition 8.1. Admitting the subsequent lemma, we consider a dyadic martingale
(Mn)

N
n=0 starting at M0 = 0.

Let us fix some notation: The underlying probability space is given by

� = {
(ω1, . . . ,ωN) : ωn ∈ {−1,1}}

and the filtration (Fn)
N
n=0 is given by Fn = σ(ω1, . . . ,ωn). Consider the process

(Xn)
N
n=1 = (

V
([M,M]n,Mn,M

∗
n

))N

n=0,

where V = V Ĉ is the value function (2) associated to the optimal constant Ĉ ≈ 1,27267 . . . for
continuous processes.

It may happen that (Xn)
N
n=0 is a supermartingale. In this case

0 = X0 ≥ E
[
V

([M,M]N,MN,M∗
N

)]
≥ E

[[M,M]
1
2
N − ĈM∗

N

]
,

so that we obtain the inequality

E
[[M,M]

1
2
N

] ≤ ĈE
[
M∗

N

]
.

However, we know that Ĉ ≈ 1,27267 . . . is smaller than the sharp constant Ĉ = √
3 for mar-

tingales with jumps so that there must exist some dyadic martingale (Mn)
N
n=1 such that the cor-

responding process (Xn)
N
n=1 fails to be a supermartingale.

This means that there is some 0 ≤ n ≤ N − 1 and ω(n) = (ω1, . . . ,ωn) such that – with slight
abuse of notation – we find

d := ([M,M]n
(
ω(n)

)
,Mn

(
ω(n)

)
,M∗

n

(
ω(n)

))
as well as

dα = ([M,M]n+1
(
ω(n),1

)
,Mn+1

(
ω(n),1

)
,M∗

n+1

(
ω(n),1

))
,

dβ = ([M,M]n+1
(
ω(n),−1

)
,Mn+1

(
ω(n),−1

)
,M∗

n+1

(
ω(n),−1

))
such that inequality (55) holds true. �
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For the following lemma, recall that a martingale is dyadic if the increment Mn+1 − Mn can
attain at most two values, conditionally on σ(M1, . . . ,Mn).

Lemma 8.2. For a constant C > 0 the following are equivalent:

(i) Every dyadic martingale (Mn)
N
n=0 satisfies (54).

(ii) Every martingale (Mn)
N
n=0 defined on a finite probability space satisfies (54).

(iii) Every L2 bounded martingale (Mt)0≤t≤T satisfies (54).

Proof. The equivalence (ii) ⇔ (iii) is standard but for the convenience of the reader we will
recall the argument for the non-trivial implication (ii) ⇒ (iii).

First, we can reduce the problem to discrete L2-martingales: Fix an L2-bounded martingale
M = (Mt)0≤t≤1, based on a filtered probability space (�,F, (Ft )0≤t≤T ,P) and consider the
martingales (Mk2−n)2n

k=0 for n ∈ N. If they fulfill (54), then letting n → ∞ yields that M satis-
fies (54).

Now, fix an L2-bounded martingale M = (Mn)0≤n≤N on a filtered probability space
(�,F, (Fn)0≤n≤N,P). Consider the net of finite subfiltrations (Fn)0≤n≤N of this filtration and
their associated martingales MG = (MG

n )Nn=0 (i.e. MG
n = E[Mn|Gn]). By (ii), every MG satisfies

(54). The L2 limit of MG is M and (iii) follows.
The implication (ii) ⇒ (i) is trivial.
To show (i) ⇒ (ii) first observe that without loss of generality we can assume M0 to be de-

terministic. First, we can translate the martingale such that it has mean 0. Second, if M0 is
random, then define a martingale (M ′

n)
N+1
n=0 with M ′

0 := 0 and M ′
i := Mi−1 for i > 0. Then

[M ′,M ′]N+1 = [M,M]N and M
′∗
N+1 = M∗

N .
Now, suppose first that (Mn)

1
n=0 is just a one step martingale on a finite probability space �

with M0 = 0. We then have that M1 is a finitely valued random variable with E[M1] = M0 = 0.
By possibly passing to a bigger (still finite) �, we may find a partition (A1, . . . ,Ap) of � such

that M1 takes at most 2 values on each Aj and

E[M11Aj
] = 0, j = 1, . . . , p.

We now define a dyadic martingale (M̃j )
p

j=0 by M̃0 = 0 and

M̃j − M̃j−1 := M11Aj
, j = 1, . . . , p.

Clearly the variables ([M,M]1,M
∗
1 ) and ([M̃, M̃]p, M̃∗

p) are equal in law. This shows that, at

least for N = 1, we may associate to every finitely values martingale (Mn)
1
n=0 a dyadic martin-

gale (M̃j )
p

j=0 such that (54) holds true for M if and only if it does so for M̃ .
It is rather obvious how to continue the above construction in an inductive way so that we

may associate to each finitely valued martingale (Mn)
N
n=0 a dyadic martingale (M̃j )

p

j=0 such that

([M,M]N,M∗
N) and ([M̃, M̃]p, M̃∗

p) are equal in law. This readily shows (i) ⇒ (ii). �
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Appendix A: The martingale property of the value process and
square integrability

Proof of Lemma 2.5. We denote the function appearing on the right-hand side of (5) by v(t, b∗):

v
(
t, b∗) := t

1
2 − Cb∗, t, b∗ ≥ 0.

For fixed (t, b, b∗) ∈ D and t ≤ T we denote by V T (t, b, b∗) the value function defined similarly
as in (2), but where we only allow for stopping times τ ∈ T (t) which are bounded by T . Clearly
V T (t, b, b∗) increases to V (t, b, b∗), as T → ∞, pointwise for (t, b, b∗) ∈ D. Also note that
V (T ,b, b∗) = v(T , b∗). Fix (t, b, b∗) and a bounded stopping time t ≤ σ ≤ τ . We have to show
that

V
(
t, b, b∗) = E

(t,b,b∗)[V (
σ,B(σ),B∗(σ )

)]
. (A.1)

By the monotone convergence theorem, it will suffice to show that

lim
T →∞V T

(
t, b, b∗) = lim

T →∞E
(t,b,b∗)[V T (σT ,B

(
σT

)
,B∗(σT

)]
(A.2)

for σT := σ ∧ τT where τT is the stopping time defined conditionally on (t, b, b∗) by

τT = inf
{
u ≥ t : V T

(
u,B(u),B∗(u)

) = v
(
u,B∗(u)

)}
.

We then have that τT is bounded by T and increases a.s. to τ . The crucial property is

V T
(
t, b, b∗) = E

(t,b,b∗)[v(
τT ,B∗(τT

))]
,

and, more generally, for any stopping time t ≤ ρ ≤ τT ,

V T
(
ρ,B(ρ),B∗(ρ)

) = E
[
v
(
τT ,B∗(τT

))|F(ρ)
]
.

This classical result can be found in [13], Theorem 2.2. Putting this together and taking ρ = σT ,
we obtain (A.2).

The proof of the supermartingale property which still holds true, after time τ is identical with
an inequality instead of an equality. �

We can even show that the value process is bounded in L2 up to some fixed time T :

Lemma A.1. The supermartingale (X(t))0≤t≤T given by

X(t) := V
(
t,B(t),B∗(t)

)
is uniformly bounded from above and bounded in L2. Furthermore the martingale component of
its Doob–Meyer decomposition X(t) = M(t) − A(t) is also bounded in L2 and we obtain the
following quantitative estimates for stopping times σ with 0 ≤ σ ≤ T :
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(i) X(σ) ≤ T
1
2 ,

(ii) E[X(σ)2] ≤ KT ,
(iii) E[M(σ)2] ≤ E[M(T )2] < ∞.

Proof. We first observe that V (t, b, |b|)− (t
1
2 −C|b|) ≤ V (0, b, |b|)− (−C|b|) ≤ C|b| holds as

a consequence of Lemma 2.1(iii) which gives us the estimate V (t, b, |b|) ≤ t
1
2 . Letting b → 0

this also implies V (t,0,0) ≤ t
1
2 and we can show (i) by

V
(
t, b, b∗) ≤ V

(
t,0, b∗) ≤ V (t,0,0) ≤ t

1
2 .

V is monotone increasing in t and monotone decreasing in |b| and b∗. So we can observe for the
positive part of X that

E
[(

X(σ)+
)2] ≤ (

V (T ,0,0)+
)2 ≤ T .

For the negative part X(t)− we can use V (t, b, b∗) ≥ t
1
2 − Cb∗ ≥ −Cb∗ and estimate

E
[(

X(σ)−
)2] ≤ C2

E
[
B∗(T )2].

In summary, we have

E
[
X(σ)2] ≤ T + C2

E
[
B∗(T )2].

To show the last assertion, we now split X into a sum of bounded processes in the following
way. Define the stopping times (σn)

∞
n=0 by

σn = inf
{
t : ∣∣B(t)

∣∣ = 2n
} ∧ T ,

and define the processes Xn, obtained by starting X at time σn−1 and stopping it at time σn:

Xn(t) = σn−1Xσn(t) = (Xt∧σn − Xσn−1)1�σn−1,T �(t).

Of course, we have X = ∑∞
n=1 Xn and the trajectories of (Xn(t))0≤t≤T are only different from

zero on the set ({σn−1 < T })∞n=1.
The probability of these events can be estimated by

P[σn−1 < T ] ≤ c1e
−c222n

, (A.3)

for some constants c1 = c1(T ) and c2 = c2(T ).
Using a classical inequality on uniformly bounded supermartingales (apparently due to P.

Meyer [12]), we obtain that each Mn is a square integrable martingale whose norm can be esti-
mated by

∥∥Mn(T )
∥∥2

L2(P)
≤ c32c4nP[σn−1 < T ], (A.4)

for some constants c3, c4 depending only on T .
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Combining (A.3) and (A.4), we deduce that

∥∥M(T )
∥∥2

L2(P)
=

∞∑
n=1

∥∥Mn(T )
∥∥2

L2(P)
< ∞.

�

For the convenience of the reader, we spell out the message of Meyer’s theorem [12], Theo-
rem 46, in the present context.

Theorem A.2 (Meyer). Let X = (X(t))0≤t≤T be a uniformly bounded supermartingale

‖X‖∞ := sup
0≤t≤T

∥∥X(t)
∥∥

L∞ ≤ c < ∞.

Denoting by X = M − A its Doob–Meyer decomposition we get that M is a square integrable
martingale whose norm can be estimated by ‖M‖2

2 := ‖M(T )‖2
L2 ≤ 18c2.

Proof. By standard approximation results, it will suffice to show the result for a super-martingale
X = (X(n))Nn=0 in finite discrete time. Note that in this case we have A(0) = 0 and

A(n + 1) − A(n) = E
[
X(n + 1) − X(n)|F(n)

]
, n = 1, . . . ,N

so that ∥∥�A(n)
∥∥

L∞ ≤ 2c.

We may telescope A(N) = ∑N
n=1(A(n) − A(n − 1)) to obtain

A(N)2 = 2
N∑

n=1

(
A(n) − A(n − 1)

) N∑
j=n

(
A(j) − A(j − 1)

)

= 2
N∑

n=1

(
A(n) − A(n − 1)

)(
A(N) − A(n − 1)

)
.

By taking expectations, we get

E
[
A(N)2] = 2

N∑
n=1

E
[
E

[(
A(n) − A(n − 1)

)(
A(N) − A(n − 1)

)|F(n − 1)
]]

= 2
N∑

n=1

E
[(

A(n) − A(n − 1)
)
E

[
A(N) − A(n − 1)|F(n − 1)

]]
.

The final term is uniformly bounded as

E
[
A(N) − A(n − 1)|F(n − 1)

] = E
[
X(N) − X(n − 1)|F(n − 1)

] ≤ 2c.
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This yields

E
[
A(N)2] ≤ 4c

N∑
n=1

E
[
A(n) − A(n − 1)

] = 4cE
[
X(N) − X(0)

] ≤ 8c2.

To obtain a bound for ‖M‖2 we use the relation M = X + A and ‖X(N)‖L∞ ≤ c to get

E
[
M(N)2] ≤ 2E

[
A(N)2] + 2c2 ≤ 18c2. �

Appendix B: Some facts on the stopping time of first leaving
a corridor

We discuss the first exit time of the interval [−h,2 + h] for some h > 0 for a standard Brownian
motion B started at B(0) = 0,

σh := inf
{
t : ∣∣B(t) − 1

∣∣ = 1 + h
}
.

This stopping time has a well-known density and a well-known Laplace-Transform L (see e.g.
[11], Section 2.2.8.C) given by

L(θ) = cosh(
√

2θ)

cosh((1 + h)
√

2θ)
.

One can calculate the expected value of the stopping time by noting that E[σh] = E[B2
σh] so

that E[σh] = h(2 + h). The Jensen-inequality directly implies that the fractional moments of

order less than 1 also exist and one has the estimate E[(σh)
1
2 ] ≤ (h(2 + h))

1
2 . This motivates

to conjecture that E[(σh)
1
2 ]

h
→ ∞ for h → 0. We can get an expression for this moment using

the Laplace-transform above by the formula E[(σh)
1
2 ] = −1

�( 1
2 )

∫ ∞
0 θ− 1

2 L′(θ) dθ , which we can

evaluate to

E
[(

σh
) 1

2
] =

√
2

π

[∫ ∞

0

sinh(hu)

u cosh((1 + h)u)2
du + h

∫ ∞

0

cosh(u) tanh((1 + h)u)

u cosh((1 + h)u)
du

]
,

where a substitution u = √
2θ was used. It can be shown that both of these integrals are in fact

finite for positive h, but we are only interested in the above limiting behavior of this expression.
To see this first note that the integrands of both integrals are always positive. Furthermore the
hyperbolic tangent converges to 1. Therefore, we can fix a constant K such that for h < 1 we
have that tanh((1 + h)u) ≥ 1

2 for u ≥ K . Putting this together, we make the following estimate:

E[(σh)
1
2 ]

h
≥ 1√

2π

∫ ∞

K

cosh(u)

u cosh((1 + h)u)
du

≥ 1

2
√

2π

∫ ∞

K

e−hu

u
du = 1

2
√

2π

∫ ∞

hK

e−u

u
du.
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The last expression now obviously diverges for h → 0. The following lemma which we will need
later on uses the above observations.

Lemma B.1. Let K > 0 be an arbitrary constant. There exist t, h > 0 such that

E
[(

t + σh
) 1

2 − t
1
2
] ≥ Kh.

Proof. By the above observations, we can choose h small enough to obtain E[(σh)
1
2 ] ≥

h(1 + K). We also have E[(σh)
1
2 ] − E[(t + σh)

1
2 − t

1
2 ] < h for small enough t by monotone

convergence of (t + s)
1
2 − t

1
2 to s

1
2 for t → 0. �

We can now proceed to show the following facts about t0 to prove the final statement of
Lemma 2.4.

Lemma B.2. Let C ≥ Ĉ and V (t, b, b∗) the corresponding value function. The map t �→
V (t,1,1)−(t

1
2 −C) is decreasing and if V (1,1,1) > 1−C it follows that V (1,1,1)−(1−C) <

V (0,1,1) − (−C).

Proof. We need a quantitative version of Lemma 2.1(iii) which already shows that t �→
V (t,1,1) − (t

1
2 − C) is decreasing. First, choose some ν ≥ 1 to be a bounded stopping time

which achieves

V (1,1,1) −E
(1,1,1)

[
ν

1
2 − CB∗(ν)

]
< ε (B.1)

such that

P[ν > 1 + 2ε] > (2ε)
1
2 (B.2)

for arbitrary ε > 0. It is clear by definition of V that there exists a stopping time which satisfies
(B.1). Suppose there is no appropriate stopping time such that (B.2) is satisfied, then there is an
optimizing sequence of bounded stopping times which converge to 1 in probability and thus a
subsequence which converges almost surely. This would imply that V (1,1,1) = 1 − C which
contradicts the assumptions of the lemma.

Now, we can consider the stopping time ν as a randomized stopping time with respect to the
filtration (G(1)(u))u≥1. The shifted stopping time ν′ := ν − 1 is then a randomized stopping time
with respect to (G(0)(u))u≥0. We can now estimate[

V (0,1,1) − (−C)
] − [

V (1,1,1) − (1 − C)
]

≥ E
(0,1,1)

[
ν′ 1

2 − CB∗(ν′)] −E
(1,1,1)

[
ν

1
2 − CB∗(ν)

] + 1 − ε

= E
[(

ν′) 1
2 − (

1 + ν′) 1
2 + 1

] − ε

≥ E
[((

ν′) 1
2 − (

1 + ν′) 1
2 + 1

)
1ν′>2ε

] − ε

≥ [
(2ε)

1
2 − (

(1 + 2ε)
1
2 − 1

)]
(2ε)

1
2 − ε > ε − √

2ε
3
2 > 0.
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To get from the second to the third line, we used that by definition ν = ν′ + 1 and
E

(0,1,1)[B∗(ν′)] = E
(1,1,1)[B∗(ν)]. We dropped the superscript to emphasize that we now view

ν′ as a stopping time with respect to the filtration (G(0)(u))u≥0. To obtain the fourth and the

fifth line in the derivation, we observe that the map t �→ t
1
2 − (1 + t)

1
2 + 1 is non-negative and

non-decreasing, and use (B.2). The sixth line can be derived by noting that s �→ (1 + s)
1
2 − 1 is

concave and thus lies completely under its tangent at s = 0. The last inequality holds for ε small

enough. In the same way, one can actually show that as long as the spread V (t,1,1) − (t
1
2 − C)

is strictly positive, it is also strictly decreasing. �

Lemma B.3. Let C ≥ Ĉ and t0 = t0(C) the critical point separating S from NS. Then

1. t0 > 0 and
2. t0 < ∞.

Proof. 1. Assume t0 = 0. This means that we actually have

V
(
t, b∗, b∗) = t

1
2 − Cb∗

for all t > 0. We then obtain for arbitrary t, h > 0 that

E
(t,1,1)

[(
σh

) 1
2 − C(1 + h)

] ≤ t
1
2 − C

by the supermartingale property of the value-process. This is a contradiction to Lemma B.1 for
small enough t and h.

2. Assume t0 = ∞. This means that V (t,1,1) > t
1
2 − C everywhere. As C ≥ Ĉ we also have

V (0,1,1) ≤ 0. By Lemma B.2 we can set α := V (1,1,1) − 1 + C < C. Now fix some h > α
C−α

and t > (1 + h)2. We can then make the following estimate, where we use twice the fact that the

function t �→ V (t, b, |b|) − (t
1
2 − C|b|) is decreasing and σh is defined as before:

V (t,1,1) = E
(t,1,1)

[
V

(
σh,1 + h,1 + h

)]
≤ V (t,1 + h,1 + h) +E

(t,1,1)
[(

σh
) 1

2 − t
1
2
]

= (1 + h)V

(
t

(1 + h)2
,1,1

)
+E

(t,1,1)
[(

σh
) 1

2 − t
1
2
]

≤ t
1
2 − (1 + h)(C − α) +E

(t,1,1)
[(

σh
) 1

2 − t
1
2
]

< V (t,1,1) − h(C − α) + α +E
(t,1,1)

[(
σh

) 1
2 − t

1
2
]
.

Now we can eliminate V (t,1,1) on both sides and note that h, C and α do not depend on t . The
last term however goes to 0 for t → ∞ by dominated convergence (since 0 ≤ √

t + σh − √
t ≤√

σh and
√

t + σh − √
t ↘ 0). This leads to the desired contradiction. �
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