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We consider a random symmetric matrix X = [Xjk]nj,k=1 with upper triangular entries being i.i.d. random

variables with mean zero and unit variance. We additionally suppose that E|X11|4+δ =: μ4+δ < ∞ for
some δ > 0. The aim of this paper is to significantly extend a recent result of the authors Götze, Naumov
and Tikhomirov (2015) and show that with high probability the typical distance between the Stieltjes trans-

form of the empirical spectral distribution (ESD) of the matrix n− 1
2 X and Wigner’s semicircle law is of

order (nv)−1 logn, where v denotes the distance to the real line in the complex plane. We apply this result
to the rate of convergence of the ESD to the distribution function of the semicircle law as well as to rigidity
of eigenvalues and eigenvector delocalization significantly extending a recent result by Götze, Naumov and
Tikhomirov (2015). The result on delocalization is optimal by comparison with GOE ensembles. Further-
more the techniques of this paper provide a new shorter proof for the optimal O(n−1) rate of convergence
of the expected ESD to the semicircle law.

Keywords: delocalization; local semicircle law; mean spectral distribution; random matrices; rate of
convergence; rigidity; Stieltjes transform

1. Introduction and main result

Let X = [Xjk]nj,k=1 be a random Hermitian matrix with upper triangular entries being inde-
pendent random variables with mean zero and unit variance. Denote the n eigenvalues of the
symmetric matrix W := 1√

n
X in the increasing order by

λ1(W) ≤ · · · ≤ λn(W)

and introduce the eigenvalue counting function NI (W) := |{1 ≤ k ≤ n : λk(W) ∈ I }| for any
interval I ⊂ R, where |A| denotes the number of elements in the set A. The pioneering result
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of [38] states that for any interval I ⊂R of fixed length and independent of n

lim
n→∞

1

n
ENI (W) =

∫
I

gsc(λ) dλ, (1.1)

where gsc(λ) := 1
2π

√
(4 − λ2)+ and (x)+ := max(x,0). Wigner considered the special case

when all Xjk take only two values ±1 with equal probabilities. Later on the result (1.1) was
called Wigner’s semicircle law and has been extended in various aspects, see, for example, [2,15,
24,32,33] and [20]. For an extensive list of references, we refer to the monographs [1,4] and [35].
In what follows, we call Wigner’s semicircle law or semicircle law not only a result of type (1.1),
but the limiting probability distribution as well.

If an interval I is of fixed length, independent of n, it typically contains a macroscopically
large number of eigenvalues, which means a number of order n. In this case we may rewrite (1.1)
in the following form

1

n|I | ENI (W) = 1

|I |
∫

I

gsc(λ) dλ + o

(
1

|I |
)

. (1.2)

It is of interest to investigate the case of smaller intervals where the number of eigenvalues cease
to be macroscopically large. In this case the second term on the right-hand side of (1.2) needs to
be refined. An appropriate analytical tool for asymptotic approximations is the Stieltjes transform
of the empirical spectral distribution function Fn(x) := 1

n
N(−∞,x](W), which is given by

mn(z) :=
∫ ∞

−∞
dFn(λ)

λ − z
= 1

n
Tr(W − zI)−1 = 1

n

n∑
j=1

1

λj (W) − z
,

where z = u + iv, v > 0. For the imaginary part of mn(z), we get

Immn(u + iv) =
∫ ∞

−∞
v

(λ − u)2 + v2
dFn(λ) = 1

v

∫ ∞

−∞
P

(
u − λ

v

)
dFn(λ)

which is a kernel density estimator with a Poisson kernel P(x) and bandwidth v. For a mean-
ingful estimator of the spectral density, we cannot allow the distance v to the real line, that
is the bandwidth of the kernel density estimator, to be smaller than the typical 1

n
-distance be-

tween eigenvalues. Hence, in what follows we shall be mostly interested in the situations when
v ≥ c

n
, c > 0, where in some situations c may depend on n, growing for example like logn.

Under rather general conditions, one can establish the convergence of mn(z) for fixed v > 0 to
the Stieltjes transform of Wigner’s semicircle law which is given by

s(z) =
∫ ∞

−∞
gsc(λ) dλ

λ − z
= − z

2
+

√
z2

4
− 1.

It is much more difficult to establish the convergence in the region 1 ≥ v ≥ c
n

. Significant progress
in that direction was recently made in a series of results by Erdös, Schlein and Yau [12–14], Erdös
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et al. [10], showing that with high probability uniformly in u ∈R

∣∣mn(u + iv) − s(u + iv)
∣∣ ≤ logβ n

nv
, β > 0, (1.3)

which they called local semicircle law. It means that the fluctuations of mn(z) around s(z) are of
order (nv)−1 (up to a logarithmic factor). The value of β depends on n, more precisely on β :=
βn = c log logn, where c > 0 denotes some constant. In in the papers [12–14] the inequality (1.3)
has been shown assuming that the distribution of Xjk has has sub-exponential tails for all 1 ≤
j, k ≤ n. Moreover in [10] this assumption had been relaxed to requiring E |Xjk|p ≤ μp for all
p ≥ 1, where μp are some constants.

Without loss of generality, we will assume in what follows that X is a real symmetric matrix.
We say that the conditions (C0) hold if:

• Xjk , 1 ≤ j ≤ k ≤ n, are i.i.d. real random variables;
• EX11 = 0, EX2

11 = 1;
• E |X11|4+δ =: μ4+δ < ∞ for some δ > 0.

Our results proven below apply to the case of Hermitian matrices as well. Here we may addi-
tionally assume for simplicity that ReXjk and ImXjk are independent r.v. for all 1 ≤ j < k ≤ n.
Otherwise one needs to extend the moment inequalities for linear and quadratic forms in complex
r.v. (see [18], Theorem A.1–A.2) to the case of dependent real and imaginary parts, the details of
which we omit.

The result (1.3) under the conditions (C0) was proved in a series of papers [9,11,31] with an
n-dependent value β = c log logn. In [18], we gave a self-contained proof based on the methods
developed in [26,28] while at the same time reducing the power of logn from β = c log logn to
β = 2. Our work and some crucial bounds of our proof were motivated by the methods used in a
recent paper of Cacciapuoti, Maltsev and Schlein [8], where the authors improved the log-factor
dependence in (1.3) in the sub-Gaussian case. Let κ := δ

2(4+δ)
. In [18], Theorem 1.1, it is shown,

assuming conditions (C0), that for any fixed V > 0 there exist positive constants A0,A1 and C

depending on δ and V such that

E
∣∣mn(z) − s(z)

∣∣p ≤
(

Cp2

nv

)p

, (1.4)

for all 1 ≤ p ≤ A1(nv)κ , V ≥ v ≥ A0n
−1 and |u| ≤ 2 + v. Note that when stating that some

constant C depends on δ we actually mean that it may depends on μ4+δ as well, that is C =
C(δ,μ4+δ). Applying Markov’s inequality, we may rewrite (1.4) in the following form

P

(∣∣mn(z) − s(z)
∣∣ ≥ K

nv

)
≤

(
Cp2

K

)p

, (1.5)

for all 1 ≤ p ≤ A1(nv)κ , V ≥ v ≥ A0n
−1 and |u| ≤ 2 + v. For applications, the range of v, such

that (1.4) holds for fixed p is relevant. It is clear that V ≥ v ≥ Cp
1
κ n−1. Since we are interested

in error probabilities which are polynomially small only, it suffices to choose p to be of order

logn, which implies that V ≥ v ≥ Cn−1 log
1
κ n. At the same time the constant K in (1.5) should

be of order log2 n. Comparing with (1.3), we get β = 2.
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In the region |u| > 2 + v, we can control the imaginary part of mn(s) only. It was proved
in [18], Theorem 1.1, that for any u0 > 0 there exist positive constants A0,A1 and C depending
on u0,V and δ such that

E
∣∣Immn(z) − Im s(z)

∣∣p ≤
(

Cp2

nv

)p

, (1.6)

for all 1 ≤ p ≤ A1(nv)κ , V ≥ v ≥ A0n
−1 and |u| ≤ u0.

As mentioned above, we are interested in the case when p is of order logn which implies V ≥
v ≥ n−1 log

1
κ n. This choice yields that in our applications all bounds will depend on log

1
κ n. The

power κ−1, which is independent of n, may be rather large for δ near zero. The aim of the current
paper is to strengthen the results of [18,19] by proving bounds of type (1.3) with β = 1 while
at the same time showing that p and v may be taken of order logn and n−1 logn, respectively.
This is done in Theorem 1.1 below. To this end, we combine our techniques from [18] with
fruitful ideas from [9] and [31] in particular their moment matching technique. A crucial result
in that direction is Lemma 3.1. See the sketch of proof below in Section 1.2. It still remains one
challenging open problem, namely extending the bounds to weaken the moment condition to
δ = 0.

1.1. Main result

Let us introduce the following notation

�n(z) := mn(z) − s(z), z = u + iv.

The main result of this paper is the following theorem, which estimates the fluctuations (1.3) and
strengthens (1.4) and (1.6).

Theorem 1.1. Assume that the conditions (C0) hold and let V > 0 be some constant.

(i) There exist positive constants A0,A1 and C depending on V and δ such that

E
∣∣�n(z)

∣∣p ≤
(

Cp

nv

)p

,

for all 1 ≤ p ≤ A1 logn, V ≥ v ≥ A0n
−1 logn and |u| ≤ 2 + v.

(ii) For any u0 > 0 there exist positive constants A0,A1 and C depending on u0,V and δ

such that

E
∣∣Im�n(z)

∣∣p ≤
(

Cp

nv

)p

,

for all 1 ≤ p ≤ A1 logn, V ≥ v ≥ A0n
−1 logn and |u| ≤ u0.

As a consequence of this result, we may show that similarly to (1.5) for all K > 0

P

(∣∣�n(z)
∣∣ ≥ K

nv

)
≤

(
Cp

K

)p

, (1.7)
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valid for all 1 ≤ p ≤ A1 logn, V ≥ v ≥ A0n
−1 logn and |u| ≤ 2 + v. Taking p and K of order

logn, we may guarantee that (1.7) is less then, for example, n−2. Thus, comparing with (1.3), we
get β = 1.

Applications of Theorem 1.1 outside the limit spectral interval, that is for |u| ≥ 2, require
stronger bounds on Im�n. Let us denote

γ := γ (u) := ∣∣|u| − 2
∣∣ (1.8)

and introduce the following quantity

α := α(δ) = 2

4 + δ
,

which will control the level of truncation of the matrix entries. We say that the set of condi-
tions (C1) holds if:

• (C0) are satisfied;
• |Xjk| ≤ Dnα,1 ≤ j, k ≤ n, where D := D(α) denotes some positive constant depending on

α only.

By definition κ = δ/(2(4 + δ)), hence we may write κ = 1−2α
2 .

Theorem 1.2. Assume that the conditions (C1) hold and u0 > 2 and V > 0. There exist positive
constants A0,A1 and C depending on δ,u0 and V such that

E
∣∣Im�n(z)

∣∣p ≤ Cppp

np(γ + v)p
+ Cpp2p

(nv)2p(γ + v)
p
2

+ Cp

npv
p
2 (γ + v)

p
2

+ Cpp
p
2

(nv)
3p
2 (γ + v)

p
4

,

for all 1 ≤ p ≤ A1(nv)κ , V ≥ v ≥ A0n
−1 and 2 ≤ |u| ≤ u0.

1.2. Sketch of the proof of Theorem 1.1 and Theorem 1.2

The proof of Theorem 1.1 is similar to the proof [18], Theorem 1.1. Applying Lemma B.1 in [18]
see (2.9) below and [8], Proposition 2.2, it is shown in Section 2 that one may estimate E |�n(z)|p
or E | Im�n(z)|p (depending on Re(z) being near or far from the spectral interval [−2,2]) by
the moments E |Tn(z)|p (see definition (2.6)).

To estimate E |Tn(z)|p , we may repeat all the steps of the proof of Theorem 2.1 in [18] with
one important modification. One of the crucial steps in the proof is the bound E |Rjj (z)|p ≤ C

p

0 .
It was shown in [18], Lemma 4.1, that this bound holds for all V ≥ v ≥ A0n

−1 and 1 ≤ p ≤
A1(nv)κ . Since we have to choose p of order logn we need to prove bounds in the region v ≥
ṽ := n−1 log

1
κ n. In order to close the gap in v from ṽ to v0 := n−1 logn with p being still of order

logn we apply the following strategy. We start from the fact that E |Rjj (z)|p ≤ C
p

0 log( 1
κ
−1)p n

for all v ≥ v0, see Lemma 3.3. In order to remove the logarithmic factor from the r.h.s. of the last
bound, we apply ideas motivated by moment matching techniques used in [9] and [31]. That is
we construct a symmetric random matrix Y := [Yjk]njk such that EXs

jk = EY s
jk,1 ≤ s ≤ 4 and

Yjk are sub-Gaussian random variables, see Lemma 3.4 (see Lemma 5.1 [31]). Then we show
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in Lemma 3.5 that the bound E |Rjj (z)|p ≤ Cp + E |Ry
jj (z)|p still holds for all v ≥ v0 and p of

order logn, where Ry denotes R with the X matrix being replaced by the Y matrix. Our technique
in the proof of Lemma 3.5 is a Stein type method. Finally, using the sub-gaussian properties of
Y we show in Lemma 4.1 that E |Ry

jj (z)|p ≤ C
p

0 for all v ≥ v0 and 1 ≤ p ≤ c logn, for some
constant c. All these arguments rely on the proof of Lemma 3.1. Note in contrast that in [31] the
moment matching techniques were used to estimate the distance mn(z)− s(z) directly combined
with a combinatorial approach (see, for example, Lemma 5.1 and Lemma 5.2 in [31]).

The proof of Theorem 1.2 is based on the same arguments as the proof of Theorem 1.2 in [18].
Note that E |Tn(z)|p is bounded in terms of E Imp Rjj . The same arguments as for E |Rjj (z)|p
will give us the bound E Imp Rjj ≤ H

p

0 Imp s(z) + H
p

0 pp(nv)−p valid for some big constant
H0 > 0 and v ≥ v0,1 ≤ p ≤ c logn. Since we can derive explicit bounds for Im s(z) inside as
well as outside the limit spectrum we are able to control the size of E |Tn(z)|q as well as of
E | Im�n(z)|p on the whole real line in terms of the quantity γ (see (1.8)). This is a another key
argument for the proof of Theorem 1.2.

1.3. Delocalization, rigidity and rate of convergence

In this section, we present results about delocalization of eigenvectors, rate of convergence of
empirical spectral distribution function (ESD) to the semicircle law and rigidity of eigenvalues.
These results strengthen the corresponding results in [19].

We start this section by showing delocalization of eigenvectors. This question has been inten-
sively studied in many papers, for example, in [11,13,25] and [9].

Let us denote by uj := (uj1, . . . , ujn) the eigenvectors of W corresponding to the eigenvalue
λj (W).

Theorem 1.3. Assume that conditions (C0) hold with δ = 4. For any 0 < φ < 2 there exist
positive constants C and C1 depending on φ and μ8 such that for any

P

(
max

1≤j,k≤n
|ujk|2 ≥ C1 logn

n

)
≤ C

n2−φ
.

We remark here that it is possible to relax the moment conditions to the case 0 < δ < 4 as well.
But here we may only conclude that there exists some constant c(δ) > 0 depending on δ such
that

P

(
max

1≤j,k≤n
|ujk|2 ≥ C1 logn

n

)
≤ C

nc(δ)
.

A comparison with a similar result for the GOE ensemble (see [1], Corollary 2.5.4) and the
delocalization of eigenvectors of the unit sphere shows that this result is optimal with respect
to the power of logarithm. It is not clear though whether it is still possible to strengthen the
probability bounds above. The numerical calculations in Section 5 of [19] strongly suggest that
the actual probability bounds should be very poor. The proof of this theorem is similar to the
proof of Theorem 1.4 in [19], but since this result is optimal we present it here. It is given in
Section 5. The proof is based on Lemma 3.1.



2364 Götze, Naumov, Tikhomirov and Timushev

The results on rate of convergence and the rigidity of eigenvalues are based on Theorem 1.1
and Theorem 1.2. We first investigate the rate of convergence in probability of ESD to the dis-
tribution function of Wigner’s semicircle law defined as follows Gsc(x) := ∫ x

−∞ gsc(λ) dλ. To
measure the distance between distribution functions, we introduce the uniform distance

�∗
n := sup

x∈R

∣∣Fn(x) − Gsc(x)
∣∣.

At this point, we omit a detailed discussion of previous results and refer the reader instead to [19],
which provides links to the related papers [3,22,25,26] and [36]. We prove the following theorem.

Theorem 1.4. Assume that the conditions (C0) hold. Then there exist positive constants c and
C depending on δ such that for all 1 ≤ p ≤ c logn

P
(
�∗

n ≥ K
) ≤ Cp log2p n

Kpnp

for all K > 0.

Let N [x − ξ
2n

, x + ξ
2n

] := NI (W) for I = [x − ξ
2n

, x + ξ
2n

], ξ > 0. The following result is the
direct corollary of Theorem 1.4.

Corollary 1.5. Assume that conditions (C0) hold. Then there exist positive constants c and C

depending on δ such that for all 1 ≤ p ≤ c logn and all ξ > 0,K > 0

P

(∣∣∣∣N [x − ξ
2n

, x + ξ
2n

]
ξ

− gsc(x)

∣∣∣∣ ≥ K

ξ

)
≤ Cp log2p n

Kpnp
. (1.9)

Taking K = C1n
−1 log2 n with C1 = Ce2/c (one may of course take a larger constant), we get

that

P

(
�∗

n ≥ C1 log2 n

n

)
≤ 1

n2
. (1.10)

The proof of Theorem 1.4 will be given in Section 6. We believe that it is still possible to reduce
the power of log in (1.9) from 2p to p or even p

2 , which would be optimal due to the result of
Gustavsson [29] for the Gaussian Unitary Ensembles (GUE).

Instead of �∗
n one may study the following distance of the mean spectral distribution to its

limit

�n := sup
x∈R

∣∣EFn(x) − Gsc(x)
∣∣.

The first estimate of �n was obtained by Z. Bai [5], who showed the bound �n = O(n− 1
4 )

assuming μ4 < ∞. Already in 1998, Girko [16] published an error bound order O(n− 1
2 ) under

the same moment conditions. In 2002, [17] he closed gaps in his proof. The same result was
independently obtained by Bai, Miao and Tsay [6] and Götze and Tikhomirov [22], Girko [16]
claimed that the actual rate of convergence of the expected spectral distribution function to the
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semi-circle law is O(n−1/2) even in the Gaussian case. In 2002, Götze and Tikhomirov [21]
showed that for the GUE the rate of convergence to the semi-circle law is O(n−2/3). In 2005,
[23] they improved this bound to O(n−1). In 2007 in [37] the bound �n = O(n−1) was obtained
for the Gaussian Orthogonal Ensemble (GOE) as well. Up to this point it was not clear what
the optimal rate of convergence to the semi-circular law under weak moment conditions only
should be. It follows from [7] that if the distributions of the matrix entries satisfy a Poincaré type

inequality then �n = O(n− 2
3 ). Recently Götze and Tikhomirov [28] proved the bound �n =

O(n−1) assuming that μ8 < ∞ or μ4 < ∞ combined with the assumption |Xjk| ≤ Cn
1
4 a.s.

Finally in [27], the following theorem was proved.

Theorem 1.6. Assume that the conditions (C0) hold. There exist a positive constant C(δ) de-
pending on δ such that

�n ≤ C(δ)

n
.

In Section 6, we give an alternative proof of this theorem, based on the methods developed in
this paper.

Another application of Theorem 1.1 is the following result which shows the rigidity of eigen-
values. Let us define the quantile position of the j th eigenvalue by

γj :
∫ γj

−∞
gsc(λ) dλ = j

n
, 1 ≤ j ≤ n.

We will prove the following theorem.

Theorem 1.7. Assume that the conditions (C0) hold and let K > 0 be an integer. Then:

(i) For all j ∈ [K,n − K + 1] there exist constants c and C,C1 depending on δ such that
for all 1 ≤ p ≤ c logn we have

P
(|λj − γj | ≥ C1K

[
min(j, n − j + 1)

]− 1
3 n− 2

3
) ≤ Cp log2p n

Kp
.

(ii) Assume that δ = 4. For any 0 < φ < 2 and all j ≤ K or j ≥ n − K + 1 there exist
constants c and C,C1 depending on φ and μ8 such that for 5 ≤ p ≤ c logn

P
(|λj − γj | ≥ C1K

[
min(j, n − j + 1)

]− 1
3 n− 2

3
) ≤ C

n2−φ
+ Cp log12p n

Kp
.

For comparisons, we refer the interested reader to relevant results of Gustavsson [29] for the
Gaussian case, as well as to the results in the papers [10], Theorem 7.6, [11], Theorem 2.13, [25],
Remark 1.2, [31], Theorem 3.6, and [8], Theorem 4, already mentioned above. The proof of The-
orem 1.7 is similar to the proof of Theorem 1.3 in [19] up to some small improvements due to an
improved bound in Theorem 1.4. For proving the part (ii), we use the result of Theorem 1.2, using
ideas from [8], Lemma 8.1, and [10], Theorem 7.6. Note here that our techniques allow to treat
the case 0 < δ < 4 in (ii) as well, but with weaker probability bounds in (ii) of order n−c(δ), where
c(δ) > 0 depends on moment exponent δ. We omit the details and the proof of Theorem 1.7.
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1.4. Notations

Throughout the paper, we will use the following notations. We assume that all random variables
are defined on common probability space (
,F,P) and let E be the mathematical expectation
with respect to P. We denote by 1[A] the indicator function of the set A.

We denote by R and C the set of all real and complex numbers. We also define C+ := {z ∈
C : Im z ≥ 0}. Let T = [1, . . . , n] denotes the set of the first n positive integers. For any J ⊂ T

introduce TJ := T\J. To simplify all notations, we will write Tj ,TJ,j instead of T{j} and TJ∪{j}
respectively.

For any matrix W together with its resolvent R and Stieltjes transform mn we shall system-
atically use the corresponding notations W(J),R(J),m

(J)
n , respectively, for the sub-matrix of W

with entries Xjk, j, k ∈ T \ J. For simplicity, we write W(j),W(J,j) instead of W({j}),W(J∪{j}).
The same is applies to R,mn etc.

By C and c we denote some positive constants. If we write that C depends on δ, we mean that
C = C(δ,μ4+δ).

For an arbitrary matrix A taking values in Cn×n we define the operator norm by ‖A‖ :=
supx∈Rn:‖x‖=1 ‖Ax‖2, where ‖x‖2 := (

∑n
j=1 |xj |2) 1

2 . We also define the Hilbert–Schmidt norm

by ‖A‖2 := Tr
1
2 AA∗ = (

∑n
j,k=1 |Ajk|2) 1

2 .

2. Proof of the main result

The proofs of Theorem 1.1 and Theorem 1.2 repeat the arguments of [18], but for the readers
convenience we provide the main steps here. We start with the recursive representation of the
diagonal entries Rjj (z) = [(W − zI)−1]jj of the resolvent. As noted before, we shall system-
atically use for any matrix W together with its resolvent R, Stieltjes transform mn and etc. the
corresponding quantities W(J),R(J),m

(J)
n and etc. for the corresponding sub matrix with entries

Xjk, j, k ∈ T \ J. We will often omit the argument z from R(z) and write R instead. We may
express Rjj in the following way

Rjj = 1

−z + Xjj√
n

− 1
n

∑
l,k∈Tj

XjkXjlR
(j)
kl

. (2.1)

Let εj := ε1j + ε2j + ε3j + ε4j , where

ε1j = 1√
n
Xjj , ε2j = −1

n

∑
l �=k∈Tj

XjkXjlR
(j)
kl , (2.2)

ε3j = −1

n

∑
k∈Tj

(
X2

jk − 1
)
R(j)

kk , ε4j = 1

n

(
Tr R − Tr R(j)

)
. (2.3)

Using these notations, we may rewrite (2.1) as follows

Rjj = − 1

z + mn(z)
+ 1

z + mn(z)
εj Rjj . (2.4)
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Summing last equations for j = 1, . . . , n, we obtain

1 + zmn(z) + m2
n(z) = Tn, (2.5)

where

Tn := 1

n

n∑
j=1

εj Rjj , (2.6)

It is well known that s(z) satisfies the following quadratic equation

1 + zs(z) + s2(z) = 0. (2.7)

From (2.5) and (2.7), we conclude that

�n = Tn

z + mn(z) + s(z)
= Tn

bn(z)
,

where

bn(z) := b(z) + �n, b(z) := z + 2s(z). (2.8)

From Lemma B.1 in [18] (see also [8], Proposition 2.2) it follows that for all v > 0 and |u| ≤ 2+v

(using the quantities (2.8))

|�n| ≤ C min

{ |Tn|
|b(z)| ,

√|Tn|
}
. (2.9)

Moreover, let u0 be an arbitrary fixed positive number. Then for all v > 0 and |u| ≤ u0

| Im�n| ≤ C min

{ |Tn|
|b(z)| ,

√|Tn|
}
. (2.10)

This means that in order to bound E |�n|p (or E | Im�|p , respectively) it is enough to estimate
E |Tn|p .

Let V be an arbitrary fixed positive real number and A0 is some large constant defined below.
We introduce the following region in the complex plane:

D := {
z = u + iv ∈ C : |u| ≤ u0,V ≥ v ≥ v0 := A0n

−1 logn
}
. (2.11)

The following theorem provides a general bound for E |Tn|p for all z ∈ D in terms of diag-
onal resolvent entries. To formulate the result of the theorem, we need to introduce additional
notations. Let

A(q) := max
|J|≤1

max
j∈TJ

E
1
q Imq R(J)

jj , (2.12)

where J may be an empty set or one point set. We also denote

Ep := ppAp(κp)

(nv)p
+ p2p

(nv)2p
+ |b(z)| p

2 A
p
2 (κp)

(nv)p
,
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where κ = 16
1−2α

.

Theorem 2.1. Assume that the conditions (C1) hold and u0 > 2 and V > 0. There exist positive
constants A0,A1 and C depending on α,u0 and V such that for all z ∈D we have

E |Tn|p ≤ CpEp,

where 1 ≤ p ≤ A1 logn.

Proof. See [18], Theorem 2.1. �

Proof of Theorem 1.1. By standard truncation arguments (see [18], Lemmas D.1–D.3) in what
follows we may assume that

|Xjk| ≤ Dnα for all 1 ≤ j, k ≤ n

and some D := D(α) > 0.
Applying Theorem 2.1, we will show in Section 3, Lemma 3.1, that there exist constants H0

depending on u0,V and A0,A1 depending on α and H0 such that

Ap(κp) ≤ H
p

0 Imp s(z) + H
p

0 pp

(nv)p

for all 1 ≤ p ≤ A1 logn and z ∈ D. This inequality and Theorem 2.1 together imply that

E |Tn|p ≤ Cppp Imp s(z)

(nv)p
+ Cpp2p

(nv)2p
+ Cp|b(z)| p

2 Im
p
2 s(z)

(nv)p
+ Cp|b(z)| p

2 p
p
2

(nv)
3p
2

(2.13)

with some new constant C which depends on H0. To estimate E | Im�n|p , we may choose one
of the bounds (2.10), depending on z being near the edge of the limiting spectral interval or not.
If |b(z)|p ≥ Cppp

(nv)p
, then we may use the bound

E | Im�n|p ≤ Cp E |Tn|p
|b(z)|p .

The r.h.s. of the last inequality may be estimated applying (2.13). We get

E | Im�n|p ≤ Cppp Imp s(z)

(nv)p|b(z)|p + Cpp2p

(nv)2p|b(z)|p + Cp Im
p
2 s(z)

(nv)p|b(z)| p
2

+ Cpp
p
2

(nv)
3p
2 |b(z)| p

2

.

Since |b(z)|p ≥ Cppp

(nv)p
the last inequality may be rewritten in the following way

E | Im�n|p ≤ Cppp Imp s(z)

(nv)p|b(z)|p + Cp Im
p
2 s(z)

(nv)p|b(z)| p
2

+ Cppp

(nv)p
.
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It remains to estimate the imaginary part of s(z). Since

Imp s(z) ≤ cp
∣∣b(z)

∣∣p for |u| ≤ 2 and Imp s(z) ≤ cpvp

|b(z)|p otherwise

both inequalities combined yield

E | Im�n|p ≤
(

Cp

nv

)p

,

where we have used as well the fact that c
√

γ + v ≤ |b(z)| ≤ C
√

γ + v for all |u| ≤ u0, 0 <

v ≤ v1. We assume now that |b(z)|p ≤ Cppp

(nv)p
. Then Imp s(z) ≤ Cppp

(nv)p
and we obtain a bound

proportional to |Tn| 1
2 . Hence,

E | Im�n|p ≤ Cp
E |Tn| p

2 ≤
(

Cp

nv

)p

.

Similar arguments apply to E |�n|p . �

Proof of Theorem 1.2. From Theorem 2.1, we may conclude that

E |Tn|p ≤ Cppp Imp s(z)

(nv)p
+ Cpp2p

(nv)3p
+ Cp|b(z)| p

2 Im
p
2 s(z)

(nv)p
+ Cp|b(z)| p

2 p
p
2

(nv)
3p
2

.

Applying (2.10), we get

E | Im�n|p ≤ Cp E |Tn|p
|b(z)|p .

This inequality together with (2.13) leads to

E | Im�n|p ≤ Cppp Imp s(z)

(nv)p|b(z)|p + Cpp2p

(nv)2p|b(z)|p + Cp Im
p
2 s(z)

(nv)p|b(z)| p
2

+ Cpp
p
2

(nv)
3p
2 |b(z)| p

2

.

Since c
√

γ + v ≤ |b(z)| ≤ C
√

γ + v for all |u| ≤ u0, 0 < v ≤ v1 and

cv√
γ + v

≤ Im s(z) ≤ cv√
γ + v

for all 2 ≤ |u| ≤ u0,0 < v ≤ v1,

we finally get

E | Im�n|p ≤ Cppp

np(γ + v)p
+ Cpp2p

(nv)2p(γ + v)
p
2

+ Cp

npv
p
2 (γ + v)

p
2

+ Cpp
p
2

(nv)
3p
2 (γ + v)

p
4

.

This bound concludes the proof of the theorem. �
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3. A moment bound for diagonal entries of the resolvent

In this section, we prove bounds for the diagonal entries of the resolvent. As mentioned before in
the Introduction and Section 1.2, these bounds will play a crucial role in the proof of Theorem 1.1
and Theorem 1.2. To formulate the main result, we shall introduce additional notations. We
denote

�(z) := Im s(z) + p

nv
, (3.1)

and recall definition of the region D,

D := {
z = u + iv ∈ C : |u| ≤ u0,V ≥ v ≥ v0 := A0n

−1 logn
}
,

where u0,V > 0 are any fixed real numbers and A0 is some large constant determined below.
The main result of this section is the following lemma.

Lemma 3.1. Assuming the conditions (C1) there exist positive constants C0,H0 depending on
u0,V and positive constants A0,A1 depending on C0,H0, δ and K (see the next section for
definition of K) such that for all z ∈ D and 1 ≤ p ≤ A1 logn we have

max
j∈T

E
∣∣Rjj (z)

∣∣p ≤ C
p

0 , (3.2)

E
1

|z + mn(z)|p ≤ C
p

0 , (3.3)

max
j∈T

E Imp Rjj (z) ≤ H
p

0 �p(z). (3.4)

Note that the region D and p depend on α via some constants A0 and A1 only, but the power of
the logarithmic factor in the definition of D is independent of α. We split the proof of this lemma
into two subsections. In the first subsection we prove (3.2) and (3.3). In the second subsection,
we prove (3.4). The proofs are very similar and we shall give the proof of (3.2) in full detail
while only sketching the proofs of (3.3) and (3.4). Note that in the subsequent sections we keep
the notations for the constants A0,A1,C0 and H0 introduced above, but the particular values
may depend on the location.

3.1. Moment bounds for the absolute value of resolvent entries

We start this section with the following lemma which was proved in [18], Lemma 4.1.

Lemma 3.2. Assuming the conditions (C1) there exist a positive constant C0 depending on u0,V

and positive constants A0,A1 depending on C0, δ such that for all z ∈ D and 1 ≤ p ≤ A1(nv)κ

we have

max
j,k∈T

E
∣∣Rjk(z)

∣∣p ≤ C
p

0 (3.5)
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and

E
1

|z + mn(z)|p ≤ C
p

0 .

Proof. See [18], Lemma 4.1. �

Proof of (3.2) and (3.3). Since u is fixed and |u| ≤ u0 we shall omit u from the notation of the
resolvent and denote R(v) := R(z). Sometimes in order to simplify notations we shall also omit
the argument v in R(v) and just write R. The same applies to the Stieltjes transform mn(z).

Let ṽ = n−1 log
1
κ n, then 1 ≤ p ≤ A1(nṽ)κ = A1 logn. Without loss of generality, we may

consider p = A1 logn only (otherwise one may apply Lyapunov’s inequality for moments). It
follows from (3.5) that

max
j∈T

E
∣∣Rjj (v)

∣∣p ≤ C
p

0

for all V ≥ v ≥ ṽ. To prove (3.2), we need to descent from ṽ to v0 while keeping p = A1 logn.

Applying Lemma 3.3 below with s0 := log
1
κ
−1 n we may show that for all v ≥ v0

max
j∈T

E
∣∣Rjj (v)

∣∣p ≤ C
p

0 log( 1
κ
−1)p n.

It remains to remove the log factor on the right hand side of the previous inequality. To this aim,
we shall adopt the moment matching technique which has been successfully used recently by
Lee and in Yin in [31] (see Lemma 5.2 and Lemma 5.3). We denote by Yjk,1 ≤ j ≤ k ≤ n a
triangular set of random variables such that |Yjk| ≤ D, for some D chosen later, and

EXs
jk = EY s

jk for s = 1, . . . ,4.

It follows from Lemma 3.4 below that such a set of random variables exists. Let us denote
Wy := 1√

n
Y,Ry := (Wy − zI)−1 and m

y
n(z) := 1

n
Tr Ry(z). Then, in Lemma 3.5 we show that

for all v ≥ v0 and 5 ≤ p ≤ A1 logn there exist positive constants C1,C2 such that

E
∣∣Rjj (v)

∣∣p ≤ C
p

1 + C2 E
∣∣Ry

jj (v)
∣∣p.

It is easy to see that Yjk are sub-Gaussian random variables. It follows from Lemma 4.1 of the
following section that

E
∣∣Ry

jj (v)
∣∣p ≤ C

p

0 .

This fact concludes the proof of (3.2). Similar arguments yield the estimate (3.3). �

Lemma 3.3. Let C0 be some constant. Assume that for all v′ ≥ ṽ and all 1 ≤ p ≤ A1(nv′)κ we
have

max
j,k∈T

E
∣∣Rjk

(
v′)∣∣p ≤ C

p

0 and E
1

|z + mn(v′)|p ≤ C
p

0 . (3.6)
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Then for all s0 ≥ 1, v ≥ ṽ/s0 we have

max
j,k∈T

E
∣∣Rjk(v)

∣∣p ≤ 2p(1 + s0)
pC

p

0 and E
1

|z + mn(v)|p ≤ s
p

0 C
p

0 .

Proof. We first consider the diagonal entries. Let us fix s0 ≥ 1 and v ≥ ṽ/s0 and denote v′ =
s0v ≥ ṽ. Applying Lemma A.1 and the main assumption (3.6), we get∣∣Rjj (v)

∣∣p ≤ s
p

0

∣∣Rjj (s0v)
∣∣ ≤ (C0s0)

p. (3.7)

Applying the resolvent equality∣∣Rjk(v) − Rjk(s0v)
∣∣ ≤ v(s0 − 1)

∣∣[R(v)R(s0v)
]
jk

∣∣.
The Cauchy–Schwarz inequality and Lemma A.3 together imply that∣∣Rjk(v) − Rjk(s0v)

∣∣ ≤ √
s0

√∣∣Rjj (v)
∣∣∣∣Rkk(s0v)

∣∣.
It follows that

E
∣∣Rjk(v)

∣∣p ≤ 2p
E

∣∣Rjk(s0v)
∣∣p + 2ps

p
2

0 E
1
2
∣∣Rjj (v)

∣∣p E 1
2
∣∣Rkk(s0v)

∣∣p.

Applying (3.7), we get

E
∣∣Rjk(v)

∣∣p ≤ 2pC
p

0 + 2ps
p

0 C
p

0 ≤ 2p(1 + s0)
pC

p

0 .

Similarly, applying Lemma A.1, (Inequality (A.1)), we arrive at a bound for E 1
|z+mn(v)|p . We

omit the details. �

Lemma 3.4. For any A,B ∈ R with B ≥ A2 + 1, there exists a random variable X such that

EX = 0, EX2 = 1, EX3 = A, EX4 = B

and

supp(X) ∈ [−DB,DB],
for some D independent of B .

Proof. See [31], Lemma 5.2. �

Lemma 3.5. For all v ≥ v0 and 5 ≤ p ≤ logn there exist positive constants C1,C2 such that

E
∣∣Rjk(v)

∣∣p ≤ C
p

1 + C2 E
∣∣R̃jk(v)

∣∣p (3.8)

and

E
1

|z + mn(v)|p ≤ C
p

1 + C2 E
1

|z + m̃n(v)|p . (3.9)



Local semicircle law 2373

Proof. We first prove (3.8). The method is based on the following replacement scheme, which
has been used in recent results [9] and [31]. We replace the n(n+1)

2 matrix entries Xab by Yab,1 ≤
a ≤ b ≤ n, thus replacing the corresponding resolvent entries Rjk by Ry

jk for every pair of (j, k).

Let J,K⊂ T. Denote by W(J,K) the random matrix W with all entries in the positions (μ, ν),μ ∈
J, ν ∈ K replaced by 1√

n
Yμν . Assume that we have already exchanged all entries in positions

(μ, ν),μ ∈ J, ν ∈ K and are going to replace an additional entry in the position (a, b), a ∈ T \
J, b ∈ T \K. Without loss of generality, we may assume that J=∅,K =∅ (hence W(J,K) = W)
and then denote V := W({a},{b}). The following additional notations will be needed

E(a,b) =
{

eaeT
b + ebeT

a, 1 ≤ a < b ≤ n,

eaeT
a, a = b

and U := W − Xab√
n

E(a,b), where ej denotes a unit column-vector with all zeros except j th posi-
tion. In these notations, we may write

W = U + 1√
n
XabE(a,b), V = U + 1√

n
YabE(a,b).

Recall that R := (W − zI)−1 and denote S := (V − zI)−1 and T := (U − zI)−1. Let us assume
that we have already proved the following fact

E |Rjk|p = I(p) + θ1C
p

n2
+ θ1 E |Rjk|p

n2
, (3.10)

where I(p) is some quantity depending on p,n (see (3.24) below for precise definition) and
|θ1| ≤ 1,C > 0 are some numbers. Similarly,

E |Sjk|p = I(p) + θ2C
p

n2
+ θ2 E |Sjk|p

n2
, (3.11)

where |θ2| ≤ 1. It follows from (3.10) and (3.11) that(
1 − θ1

n2

)
E |Rjk|p ≤

(
1 − θ2

n2

)
E |Sjk|p + 2Cp

n2
. (3.12)

Let us denote ρ := (1 − θ2
n2 )(1 − θ1

n2 )−1. We get

E |Rjk|p ≤ ρE |Sjk|p + C
p

1

n2
, (3.13)

with some positive constant C1. Repeating (3.13) recursively n(n + 1)/2 times, we arrive at the
following bound

E |Rjk|p ≤ ρ
n(n+1)

2 E
∣∣Ry

jk

∣∣p + C
p

1

n2

(
1 + ρ1 + · · · + ρ

n(n+1)
2 −1

1

)
. (3.14)
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It is easy to see from the definition of ρ that for some θ , say |θ | < 4, we have

ρ ≤ 1 + |θ |
n2

.

From this inequality and (3.14), we deduce that

E |Rjk|p ≤ C2 E
∣∣Ry

jk

∣∣p + C
p

3 , (3.15)

with some positive constants C2 and C3. From the last inequality, we may conclude the statement
of the lemma. It remains to prove (3.10) (resp. (3.11)). Applying the resolvent equation, we get
for m ≥ 0

R = T +
m∑

μ=1

(−1)μ

n
μ
2

X
μ
ab

(
TE(a,b)

)μT + (−1)m+1

n
m+1

2

Xm+1
ab

(
TE(a,b)

)m+1R. (3.16)

The same identity holds for S

S = T +
m∑

μ=1

(−1)μ

n
μ
2

Y
μ
ab

(
TE(a,b)

)μT + (−1)m+1

n
m+1

2

Ym+1
ab

(
TE(a,b)

)m+1S. (3.17)

We investigate (3.16). In order handle arbitrary high moments of Rjk we apply a Stein type
technique which we have used in previous papers [18] and [26]. Let us introduce the following
function ϕ(z) := z|z|p−2 and write

E |Rjk|p = ERjkϕ(Rjk).

Applying (3.16), we get

E |Rjk|p =
4∑

μ=0

(−1)μ

n
μ
2

EX
μ
ab

[(
TE(a,b)

)μT
]
jk

ϕ(Rjk)

+
m∑

μ=5

(−1)μ

n
μ
2

EX
μ
ab

[(
TE(a,b)

)μT
]
jk

ϕ(Rjk)

(3.18)

+ 1

n
m+1

2

EXm+1
ab

[(
TE(a,b)

)m+1R
]
jk

ϕ(Rjk)

=: A0 +A1 +A2.

The bound for A2 is easy. It is straightforward to check that [(TE(a,b))m+1R]jk is the sum of
2m+1 terms of the following type

Tji1Ti1i2 · · ·TimimRimk,
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where il = a or il = b for l = 1, . . . ,m. We may estimate |Rak| or |Rbk| by n, since v > n−1.

Taking absolute values, applying Hölder’s inequality and the bound E
1
cp |Til il+1 |cp < C0 log

1
κ
−1 n

for some c > 0 (see Lemma 3.3 with s0 := log
1
κ
−1 n) we get

|A2| ≤ 1

n
m+1

2

E |Xab|m+1[(TE(a,b)
)m+1R

]
jk

|Rjk|p−1

≤ n logc(κ) n

n
m+1

2

E
1
p |Xab|(m+1)p

E
p−1
p |Rjk|p,

where c(κ) > 0 – some constant depending on κ . Using (C1) we may assume without loss

of generality that |Xjk| ≤ Dn
1
2 −φ for some φ > 0 depending on δ. Indeed, one may choose

φ := δ
2(4+δ)

. Applying this fact and the last inequality, we may write

|A2| ≤ Cn logc(κ) n

nφ(m+1)
E

p−1
p |Rjk|p.

We now choose m such that φ(m+ 1) = 4. Applying 2 = 2
p

+ 2(p−1)
p

and Young’s inequality, we
obtain

|A2| ≤ C

n
2
p

+ 2(p−1)
p

E
p−1
p |Rjk|p ≤ Cp

pn2
+ E |Rjk|p

n2
. (3.19)

Let us consider the term A1 =A1,5 + · · · +A1,m, where

A1,μ := (−1)μ

n
μ
2

EX
μ
ab

[(
TE(a,b)

)μT
]
jk

ϕ(Rjk), μ = 5, . . . ,m.

We fix some μ ≥ 5 and bound A1,μ. Let us introduce the following quantity

T̃jk := E
(
Rjk|M(a,b)

)
, (3.20)

where M(a,b) := σ {Xst , (s, t) �= (a, b)} – σ -algebra generated by Xst ,1 ≤ s ≤ t ≤ n, (s, t) �=
(a, b). We may split A1,μ into a sum of two terms A1,μ = B1 +B2, where

B1 := (−1)μ

n
μ
2

EX
μ
ab

[(
TE(a,b)

)μT
]
jk

ϕ(T̃jk),

B2 := (−1)μ

n
μ
2

EX
μ
ab

[(
TE(a,b)

)μT
]
jk

[
ϕ(Rjk) − ϕ(T̃jk)

]
.

For the first term, we may write

|B1| ≤ 1

n
μ
2
E |Xab|μ E

∣∣[(TE(a,b)
)μT

]
jk

∣∣|T̃jk|p−1 ≤ C logc(κ) n

n
μ
2

E |Xab|μ E
p−1
p |Rjk|p

≤ C logc(κ) n

n2+φ(μ−4)
E

p−1
p |Rjk|p ≤ C

n
2
p

+ 2(p−1)
p

E
p−1
p |Rjk|p ≤ Cp

n2
+ E |Rjk|p

n2
.
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Let us introduce the following function

f (t) := ϕ
(
T̃jk + t (Rjk − T̃jk)

)
, t ∈ [0,1]. (3.21)

It is easy to see that

f (1) = ϕ(Rjk), f (0) = ϕ(T̃jk).

Moreover, by Taylor’s formula, for all l ≥ 1,

f (t) =
l−1∑
k=0

f (k)(0)

k! tk + t l

(l − 1)! Eθ (1 − θ)l−1f (l)(θ t), (3.22)

where θ is uniformly distributed on [0,1] and independent of all other r.v. It is straightforward
to check that there exists some positive constant Kl depending on l such that∣∣f (l)(t)

∣∣ ≤ Klp
l |t |l∣∣T̃jk + t (Rjk − T̃jk)

∣∣p−l−1
.

Applying (3.22) with t = 1, l = 1 we estimate B2 as follows

|B2| ≤ p

n
μ
2
E |Xab|μ

∣∣[(TE(a,b)
)μT

]
jk

∣∣|Rjk − T̃jk|
∣∣T̃jk + θ(Rjk − T̃jk)

∣∣p−2
.

Using triangular inequalities, we may bound (up to some constant) the r.h.s. of the previous
inequality by the sum |B2| ≤ I1 + I2, where

I1 = p

n
μ
2
E |Xab|μ

∣∣[(TE(a,b)
)μT

]
jk

∣∣|Rjk − T̃jk||T̃jk|p−2,

I2 = pp

n
μ
2
E |Xab|μ

∣∣[(TE(a,b)
)μT

]
jk

∣∣|Rjk − T̃jk|p−1.

Applying again (3.16), we obtain I1 ≤ I11 + · · · + I14, where we denoted

I11 := p

m∑
l=1

1

n
μ+l

2

E |Xab|μ+l
∣∣[(TE(a,b)

)μT
]
jk

[(
TE(a,b)

)lT
]
jk

∣∣|T̃jk|p−2,

I12 := p

m∑
l=1

1

n
μ+l

2

E |Xab|l E |Xab|μ E
∣∣[(TE(a,b)

)μT
]
jk

[(
TE(a,b)

)lT
]
jk

∣∣|T̃jk|p−2,

I13 := p

n
μ+m+1

2

E |Xab|μ+m+1
∣∣[(TE(a,b)

)μT
]
jk

[(
TE(a,b)

)m+1R
]
jk

∣∣|T̃jk|p−2,

I14 := p

n
μ+m+1

2

E |Xab|μ
∣∣[(TE(a,b)

)μT
]
jk

∣∣E(|Xab|m+1
∣∣[(TE(a,b)

)m+1R
]
jk

∣∣∣∣M(a,b)
)∣∣T̃jk|p−2.

It is straightforward to check that

I11 ≤ Cm

n
4
p

+ 2(p−2)
p

E
p−2
p |Rjk|p ≤ Cp

n2
+ E |Rjk|p

n2
.
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The term I12 may be estimated in a similar way. The terms I13 and I14 can be estimated as
before choosing m sufficiently large. Let us consider the term I2. Similarly, it may be rewritten
as follows

I21 :=
m∑

l=1

pp

n
μ+l(p−1)

2

E |Xab|μ+l(p−1)
E

∣∣[(TE(a,b)
)μT

]
jk

[(
TE(a,b)

)lT
]
jk

∣∣p−1
,

I22 :=
m∑

l=1

pp

n
μ+l(p−1)

2

E
p−1 |Xab|l E |Xab|μ E

∣∣[(TE(a,b)
)μT

]
jk

[(
TE(a,b)

)lT
]
jk

∣∣p−1
,

I23 := pp

n
μ+(m+l)(p−1)

2

E |Xab|μ+(m+1)(p−1)
∣∣[(TE(a,b)

)μT
]
jk

[(
TE(a,b)

)m+1R
]
jk

∣∣p−1
,

I24 := pp

n
μ+(m+l)(p−1)

2

E |Xab|μ
∣∣[(TE(a,b)

)μT
]
jk

∣∣[E(|Xab|m+1
∣∣[(TE(a,b)

)m+1R
]
jk

∣∣∣∣M(a,b)
)]p−1

.

We investigate I21. We obtain

I21 ≤
m∑

l=1

Ccppp logc(κ)p n

n2+φl(p−1)
≤ Cp

n2
.

The same estimate is valid for I22. The terms I23,I24 may be estimated as before choosing m

sufficiently large. Finally, we conclude that

|A1| ≤ Cp

n2
+ E |Rjk|p

n2
. (3.23)

Let us consider now the term A0. Applying (3.22) with t = 1, l = 5−μ we rewrite A0 as follows

A0 =
4∑

μ=0

(−1)μ

n
μ
2

EX
μ
ab E

[(
TE(a,b)

)μT
]
jk

ϕ(Tjk)

+
4∑

μ=0

(−1)μ

n
μ
2

4−μ∑
l=1

1

l! EX
μ
ab

[(
TE(a,b)

)μT
]
jk

(Rjk − Tjk)
lϕ(l)(Tjk)

+
4∑

μ=0

(−1)μ

n
μ
2

1

(4 − μ)! EX
μ
ab

[(
TE(a,b)

)μT
]
jk

(Rjk − Tjk)
5−k(1 − θ)4−k

× ϕ(5−μ)
(
Tjk + θ(Rjk − Tjk)

)
=: A00 +A01 +A02.

Let us study the term A01. We may write A01 = ∑4
μ=0

∑4−μ
l=1 (−1)μ(l!)−1Bμl . We fix some

μ = 0, . . . ,4 and some l = 1, . . . ,4 − μ. We may apply now (3.16) with m ≥ 4 and get Bμl =
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B(0)
μl +B(1)

μl +B(2)
μl , where

B(0)
μl :=

∑
μ1+···+μm=l

μ+μ1+2μ2+···+mμm≤4

Cl
μ1,...,μm

n
μ
2 + μ1

2 + 2μ2
2 +···+ mμm

2

EX
μ+μ1+2μ2+···+mμm

ab

×E
[(

TE(a,b)
)μT

]
jk

[(
TE(a,b)

)
T

]μ1
jk

· · · [(TE(a,b)
)mT

]μm

jk
ϕ(l)(Tjk),

B(1)
μl :=

∑
μ1+···+μm=l

μ+μ1+2μ2+···+mμm>4

Cl
μ1,...,μm

n
μ
2 + μ1

2 + 2μ2
2 +···+ mμm

2

EX
μ+μ1+2μ2+···+mμm

ab

×E
[(

TE(a,b)
)μT

]
jk

[(
TE(a,b)

)
T

]μ1
jk

· · · [(TE(a,b)
)mT

]μm

jk
ϕ(l)(Tjk),

B(2)
μl :=

l∑
μm+1=1

∑
μ1+···+μm=l−μm+1

Cl
μ1,...,μm+1

n
μ
2 + μ1

2 + 2μ2
2 +···+ (m+1)μm+1

2

×EX
μ+μ1+2μ2+···+(m+1)μm+1
ab ϕ(l)(Tjk)

× [(
TE(a,b)

)μT
]
jk

[(
TE(a,b)

)
T

]μ1
jk

. . .
[(

TE(a,b)
)mT

]μm

jk

[(
TE(a,b)

)m+1R
]μm+1
jk

,

where Cl
μ1,...,μm+1

are multinomial coefficients. We now introduce in (3.10)

I(p) := A00 +
4∑

μ=0

4−μ∑
l=1

(−1)μ

l! B(0)
μl . (3.24)

The estimate of B(1)
μl is similar to A1, see (3.23). Here, one has to expand ϕ(l)(Tjk) at the point

T̃jk and apply the same arguments as before. To estimate B(2)
μl we again expand ϕ(l)(Tjk) at

the point T̃jk . From here on, we may apply the same arguments as for A1 and A2 (see (3.23)
and (3.19)) by taking m large enough and bound |Rak| or |Rbk| by n. The same procedure applies
to A02. We finally get

E |Rjk|p = I(p) + rn(p),

where ∣∣rn(p)
∣∣ ≤ Cp

n2
+ E |Rjk|p

n2
.

The proof of (3.9) is similar. Let us denote by m
(a,b)
n (z) the Stieltjes transform of W({a},{b}). It is

easy to see that

1

z + mn(z)
= 1

z + m
(a,b)
n (z)

+ mn(z) − m
(a,b)
n (z)

(z + mn(z))(z + m
(a,b)
n (z))

.

We may use this formula recursively together with (3.16) and get (3.9). We omit the details. �
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3.2. Moments of the imaginary part of diagonal entries of the resolvent

Lemma 3.6. Assuming conditions (C1) there exist positive constants H0 depending on u0,V

and positive constants A0,A1 depending on H0, δ such that for all 1 ≤ p ≤ A1(nv)κ and z ∈ D

we get

max
j∈T

E Imp Rjj (z) ≤ H
p

0 Imp s(z) + H
p

0 p2p

(nv)p
.

Proof. See [18], Lemma 5.1. �

Proof of (3.4). Let ṽ = n−1 log
1
κ n, then 1 ≤ p ≤ A1(nṽ) = A1 logn. Without loss of generality

we may consider p = A1 logn only. Using the notation introduced in (3.1) the statement of
Lemma 3.6 may be rewritten (up to constant) in the following way

max
j∈T

E Imp Rjj (z) ≤ H
p

0 pp�p(z) ≤ H
p

0 logp n�p(z) (3.25)

for all V ≥ v ≥ ṽ. To prove (3.2), we need to descent from ṽ to v0 while maintaining that p =
A1 logn. Applying Lemma 3.7 below with s0 := log

1
κ
−1 n we may show that for all v ≥ v0

max
j∈T

E Imp Rjj (v) ≤ H
p

0 log( 2
κ
−1)p n�p(z).

It remains to remove the log factor from the r.h.s. on the previous equation. We may proceed as
before and arrive at the following bound for any j ∈ T

E Imp Rjj (v) ≤ C
p

1 �p(z) + C2 E Imp Ry
jj (v).

See Lemma 3.8 below. It follows from Lemma 4.2 in the next section that

max
j∈T

E Imp Ry
jj (v) ≤ H

p

0 �p(z). �

Lemma 3.7. Let C0 be some constant. Assume that for all v′ ≥ ṽ and all 1 ≤ p ≤ A1(nv′)κ we
have

max
j∈T

E Imp Rjj

(
v′) ≤ H

p

0 logp n�p(z). (3.26)

Then for all s0 ≥ 1, v ≥ ṽ/s0 we have

max
j,k∈T

E Imp Rjk(v) ≤ s
2p

0 H
p

0 logp n�p(z).

Proof. The proof is similar to the proof of Lemma 3.3. Applying Lemma A.2 we get

E Imp Rjj (v) ≤ s
p

0 E Imp Rjj (s0v) ≤ s
p

0 H
p

0 �q(s0v) ≤ s
2p

0 H
p

0 logp n�q(v).
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We consider now the case j �= k. Then

Im Rjk = v
[
RR∗]

jk
= v

n∑
l=1

Rj lR∗
lk ≤ v

(
n∑

l=1

|Rj l |2
) 1

2
(

n∑
l=1

|Rlk|2
) 1

2

.

Applying Lemma A.3, we get

Im Rjk ≤
√

Im Rjj Im Rkk.

It follows that

E Imp Rjk(v) ≤ s
2p

0 H
p

0 logp n�q(v). �

Lemma 3.8. For all v ≥ v0 and 5 ≤ p ≤ logn there exists a constant C0 > 0 such that

E
∣∣Im Rjj (v)

∣∣p ≤ C
p

0 �p(z) +E
∣∣Im Ry

jj (v)
∣∣p. (3.27)

Proof. The proof of this lemma is similar to the proof of Lemma 3.5. We shall omit the details,
but emphasize some important points. Applying (3.16) with some m ≥ 0 we get

Im Rjj = Im Tjj +
m∑

μ=1

(−1)μ

n
μ
2

X
μ
ab Im

[(
TE(a,b)

)μT
]
jj

+ (−1)m+1

n
m+1

2

Xm+1
ab Im

[(
TE(a,b)

)m+1R
]
jj

.

Introduce the function ψ(x) := xp−1 and write E Imp Rjj = E Im Rjjψ(Im Rjj ). Similarly
to (3.18), we get

E Imp Rjj =
4∑

μ=0

(−1)μ

n
μ
2

EX
μ
ab Im

[(
TE(a,b)

)μT
]
jj

ψ(Im Rjj )

+
m∑

μ=5

(−1)μ

n
μ
2

EX
μ
ab Im

[(
TE(a,b)

)μT
]
jj

ψ(Im Rjj )

(3.28)

+ 1

n
m+1

2

EXm+1
ab Im

[(
TE(a,b)

)m+1R
]
jj

ψ(Im Rjj )

=: A0 +A1 +A2.

We shall keep the same notations as in the proof of Lemma 3.5. Let us consider the term A2.
Repeating the same arguments as in the proof of Lemma 3.5 for the corresponding terms and
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applying ‖R‖ ≤ v−1, we get

|A2| ≤ 1

n
m+1

2

E |Xab|m+1 Im
[(

TE(a,b)
)m+1R

]
jj

Imp−1 Rjj

≤ logc n

n
m+1

2 v
E

1
p |Xab|(m+1)p

E
p−1
p Imp Rjj .

Since |Xjk| ≤ Dn
1
2 −φ we obtain that

|A2| ≤ C logc(κ) n

nφ(m+1)v
E

p−1
p Imp Rjj .

We may choose m such that φ(m + 1) = 4. Applying 2 = 2
p

+ 2(p−1)
p

, Young’s inequality and

(nv)−1 ≤ �(z), we obtain

|A2| ≤ C�(z)

n
2
p

+ 2(p−1)
p

E
p−1
p Imp Rjj ≤ Cp�p(z)

n2
+ E Imp Rjj

n2
. (3.29)

Let us consider A1 and split it into the sum A1 =A1,5 +· · ·+A1,m. For an arbitrary 5 ≤ μ ≤ m,
we get A1,μ = B1 +B2, where

B1 := (−1)μ

n
μ
2

EX
μ
ab Im

[(
TE(a,b)

)μT
]
jj

ψ(Im T̃jj ),

B2 := (−1)μ

n
μ
2

EX
μ
ab Im

[(
TE(a,b)

)μT
]
jj

[
ψ(Im Rjj ) − ψ(Im T̃jj )

]
and T̃jj are defined in (3.20). The term [(TE(a,b))μT]jj is a sum of 2μ terms of the following
type

Tji1Ti1i2 · · ·Tiμ−1iμTiμj ,

where il = a or il = b for l = 1, . . . ,μ. The imaginary part of such a product may be bounded
from above by a product where at least one factor is | Im Til il+1 |. All other factors may be bounded
by their absolute values due to the first statement (3.2) of Lemma 3.1. Applying Hölder’s inequal-
ity to this product and Lemma 3.7, we get

|B1| ≤ Cp�p(z)

n2
+ E Imp Rjj

n2
.

By the same arguments we get similar bounds for B2 and A0. We omit the details. �
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4. Bounds for moments of diagonal entries of the resolvent in
the sub-Gaussian case

As mentioned in the previous section, we have to bound the moments of the diagonal entries of
the resolvent in the sub-Gaussian case. We denote

D̃ := {
z = u + iv ∈C : |u| ≤ u0,V ≥ v ≥ ṽ0 := A0n

−1},
where u0,V > 0 are any fixed real numbers and A0 is some large constant determined below.
Comparing with D we allow to descent to A0n

−1 along v.
We say that the conditions (CG) are satisfied if Xjk satisfies the conditions (C0) and have a

sub-Gaussian distribution. It is well known that the random variables ξ are sub-Gaussian if and
only if E |ξ |p = O(p

p
2 ) as p → ∞. We define the sub-Gaussian norm of ξ as

‖ξ‖ψ2 := sup
p≥1

p− 1
2 E

1
p |ξ |p.

In what follows, we assume that K := ‖Xjk‖ψ2 .

Lemma 4.1. Assuming the conditions (CG) there exist a positive constant C0 depending on
u0,V and positive constants A0,A1 depending on C0 and K such that for all z ∈ D̃ and 1 ≤ p ≤
A1nv we have

max
j,k∈T

E
∣∣Rjk(z)

∣∣p ≤ C
p

0 (4.1)

and

E
1

|z + mn(z)|p ≤ C
p

0 .

The proof of Lemma 4.1 is based on several auxiliary results and will be given at the end of
this section. In this proof, will shall use ideas from [26] and [28]. One of main ingredients of
the proof is the descent method for Rjj which is based on Lemma 4.3 below and Lemma A.1 in
the Appendix, which in this form appeared in [8]. Comparing the result of Lemma 4.1 with [8],

Lemma 3.4, that in the latter the power p is bounded from above by (nv)
1
4 , which is non-optimal.

Since u is fixed and |u| ≤ u0 we shall omit u from the notation of the resolvent and denote
R(v) := R(z). Sometimes in order to simplify notations we shall also omit the argument v in
R(v) and just write R.

We also estimate the moments of the imaginary part of the diagonal entries of the resolvent.
Recall that (see definition (3.1))

�(z) := Im s(z) + p

nv
.

To simplify notations, we will often write �(v) and � instead of �(z).
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Lemma 4.2. Assuming conditions (CG) there exist a positive constant H0 depending on u0,V

and positive constants A0,A1 depending on H0 and K such that for all 1 ≤ p ≤ A1nv and z ∈ D̃

we get

max
j∈T

E
∣∣Im Rjj (z)

∣∣p ≤ H
p

0 �p(z).

Note that the values of A0 and A1 in this lemma are different from the values of correspond-
ing quantities in Lemma 4.1, but for simplicity we shall use the same notations. Applying both
lemmas, we shall restrict the upper limit of the moment of order p to the minimum of the two
A1’s and the lower end of the range of v to the maximum of the two A0’s via v ≥ A0n

−1.
For any j ∈ TJ, we may express R(J)

jj in the following way

R(J)
jj = 1

−z + Xjj√
n

− 1
n

∑
l,k∈TJ,j

XjkXjlR
(J,j)
lk

. (4.2)

Let ε
(J)
j := ε

(J)
1j + ε

(J)
2j + ε

(J)
3j + ε

(J)
4j , where

ε
(J)
1j := 1√

n
Xjj , ε

(J)
2j := −1

n

∑
l �=k∈TJ,j

XjkXjlR
(J,j)
kl ,

ε
(J)
3j := −1

n

∑
k∈TJ,j

(
X2

jk − 1
)
R(J)

kk (z), ε
(J)
4j := 1

n

(
Tr R(J) − Tr R(J,j)(z)

)
.

We also introduce the quantities �
(J)
n (z) := m

(J)
n (z) − s(z) and

T (J)
n := 1

n

∑
j∈TJ

ε
(J)
j R(J)

jj .

The following lemma, Lemma 4.3, allows to recursively estimate the moments of the diagonal
entries of the resolvent. The proof of the first part of this lemma may be found in [8] and it is
included here for the readers convenience.

Lemma 4.3. For an arbitrary set J⊂ T and all j ∈ TJ there exist a positive constant c0 depend-
ing on u0,V only such that for all z = u + iv with V ≥ v > 0 and |u| ≤ u0 we have∣∣R(J)

jj

∣∣ ≤ c0
(
1 + ∣∣T (J)

n

∣∣ 1
2
∣∣R(J)

jj

∣∣ + ∣∣ε(J)
j

∣∣∣∣R(J)
jj

∣∣) (4.3)

and

1

|z + m
(J)
n (z)|

≤ c0

(
1 + |T (J)

n | 1
2

|z + m
(J)
n (z)|

)
. (4.4)

Proof. See [18], Lemma 4.2. �
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Lemma 4.4. Assume that the conditions (CG) hold. Let C0 and s0 be arbitrary numbers such
that H0 ≥ max(1/V,6c0), s0 ≥ 2. There exist a sufficiently large constant A0 and small constant
A1 depending on C0, s0,V only such that the following statement holds. Fix some ṽ : ṽ0s0 ≤
ṽ ≤ V . Suppose that for some integer L > 0, all u,v′, q such that ṽ ≤ v′ ≤ V, |u| ≤ u0,1 ≤ q ≤
A1(nv′)

max
J:|J|≤L

max
l,k∈TJ

E
∣∣R(J)

lk

(
v′)∣∣q ≤ C

q

0 . (4.5)

Then for all u,v, q such that ṽ/s0 ≤ v ≤ V, |u| ≤ u0, 1 ≤ q ≤ A1(nv)

max
J:|J|≤L−1

max
l,k∈TJ

E
∣∣R(J)

lk (v)
∣∣q ≤ C

q

0 .

Proof. Let us fix an arbitrary s0 ≥ 2 and v ≥ ṽ/s0, J⊂ T such that |J| ≤ L − 1. In the following
let j, k ∈ TJ. By an obvious inequality we have

E
∣∣ε(J)

j

∣∣2q ≤ 32q
(
E

∣∣ε(J)
1j

∣∣2q +E
∣∣ε(J)

2j + ε
(J)
3j

∣∣2q +E
∣∣ε(J)

4j

∣∣2q)
.

From (CG) and Lemmas A.5–A.6 we may conclude that

E
∣∣ε(J)

j

∣∣2q ≤ Cqqq

nq
+ Cqqq

(nv)q
E Imq m

(J,j)
n (z) + Cqq2q

(nv)2q
.

Applying Lemma A.1 and (4.5), we obtain the following estimate

E
[
Imm

(J,j)
n (z)

]q ≤ s
q

0 C
q

0 .

In view of these inequalities, we may write

E
∣∣ε(J)

j

∣∣2q ≤ (CC0s0)
qqq

(nv)q
+ Cqq2q

(nv)2q
. (4.6)

Similarly, we can estimate

E
∣∣T (J)

n

∣∣q ≤
(

1

n

∑
j∈TJ

E
∣∣ε(J)

j

∣∣2q
)1/2(1

n

∑
j∈TJ

E
∣∣R(J)

jj (v)
∣∣2q

)1/2

(4.7)

≤ (CC
3
2
0 s

3
2
0 )qq

q
2

(nv)
q
2

+ (CC0s0)
qqq

(nv)q
.

Applying Hölder’s inequality and Lemma 4.3, we write

E
∣∣R(J)

jj (v)
∣∣q ≤ (3c)q

(
1 +E

1
2
∣∣T (J)

n

∣∣q E 1
2
∣∣R(J)

jj (v)
∣∣2q +E

1
2
∣∣ε(J)

j

∣∣2q
E

1
2
∣∣R(J)

jj (v)
∣∣2q)

.
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Lemma A.1 and assumption (4.5) imply E |R(J)
jj (v)|2q ≤ C

2q

0 s
2q

0 . Hence, we may use (4.6)
and (4.7) to show that

E
∣∣R(J)

jj (v)
∣∣q ≤ (3c)q

(
1 + (CC0s0)

2qq
q
4

(nv)
q
4

+ (CC0s0)
3q
2 q

q
2

(nv)
q
2

+ (CC0s0)
qqq

(nv)q

)
. (4.8)

The off-diagonal entries R(J)
jk may be expressed as follows

R(J)
jk = − 1√

n

∑
l∈TJ,j

XjlR
(J,j)
lk R(J)

jj .

Applying Hölder’s inequality, Lemma A.1 and assumption (4.5) we obtain

E
∣∣R(J)

jk

∣∣q ≤ n− q
2 E

1
2

∣∣∣∣ ∑
l∈TJ,j

XjlR
(J,j)
lk

∣∣∣∣2q

E
1
2
∣∣R(J)

jj

∣∣2q ≤ (s0C0)
qn− q

2 E
1
2

∣∣∣∣ ∑
l∈TJ,j

XjlR
(J,j)
lk

∣∣∣∣2q

.

Khinchine’s inequality for sub-Gaussian random variables, Lemmas A.3, A.1 and assump-
tion (4.5) together imply

E
1
2

∣∣∣∣ ∑
l∈TJ,j

XjlR
(J,j)
lk

∣∣∣∣2q

≤ Cqq
q
2 E

1
2

∣∣∣∣ ∑
l∈TJ,j

∣∣R(J,j)
lk

∣∣2
∣∣∣∣q ≤ (Cs0C0q)

q
2

v
q
2

.

From the last two inequalities, we conclude the following bound

E
∣∣R(J)

jk

∣∣q ≤ (CC
3
2
0 s

3
2
0 )qq

q
2

(nv)
q
2

. (4.9)

We may choose now the constants A0 sufficiently large, respectively A1 sufficiently small such
that (4.8)–(4.9) result in

max
j,k∈TJ

E
∣∣R(J)

jk (v)
∣∣q ≤ C

q

0

for 1 ≤ q ≤ A1(nṽ/s0), v ≥ ṽ/s0. �

Proof of Lemma 4.1. We first prove (4.1). Let us choose some sufficiently large constant C0 >

max(1/V,6c0) and fix s0 := 2. Here c0 is defined in Lemma 4.3. We also choose A0 and A1 as
in Lemma 4.4. Let L := [logs0

V/ṽ0] + 1. Since ‖R(J)(V )‖ ≤ V −1 we may write

max
J:|J|≤L

max
l,k∈TJ

E
∣∣R(J)

lk (V )
∣∣p ≤ C

p

0

for all u,p such that |u| < 2 and 1 ≤ p ≤ A1(nV ). Fix arbitrary v : V/s0 ≤ v ≤ V and p : 1 ≤
p ≤ A1(nv). Lemma 4.4 yields that

max
J:|J|≤L−1

max
l,k∈TJ

E
∣∣R(J)

lk (v)
∣∣p ≤ C

p

0
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for 1 ≤ p ≤ A1(nV/s0), v ≥ V/s0. We may repeat this procedure L times and finally obtain

max
l,k∈T

E
∣∣Rlk(v)

∣∣p ≤ C
p

0

for 1 ≤ p ≤ A1(nV/sL
0 ) ≤ A1(nṽ0) and v ≥ V/sL

0 = ṽ0. Thus, we proved (4.1). Similarly one
may prove (4.4). �

The following lemma is the analogue of Lemma 4.3 and provides a recurrence relation for
Im Rjj .

Lemma 4.5. For any set J and j ∈ TJ there exists a positive constant C1 depending on u0,V

such that for all z = u + iv with V ≥ v > 0 and |u| ≤ u0 we have

Im R(J)
jj (z) ≤ C1

[
Im s(z)

(
1 + (∣∣ε(J)

j

∣∣ + ∣∣T (J)
n

∣∣ 1
2
)∣∣R(J)

jj (z)
∣∣) + ∣∣Im ε

(J)
j + Im�(J)

n

∣∣∣∣R(J)
jj (z)

∣∣
+ (∣∣ε(J)

j

∣∣ + ∣∣T (J)
n

∣∣ 1
2
)

Im R(J)
jj (z)

]
.

Proof. The proof is similar to the proof of Lemma 4.3 and by this reason it is omitted. �

Lemma 4.6. Assume that the conditions (CG) hold. Let H0 be sufficiently large positive constant
and s0 be an arbitrary number such that s0 ≥ 2. There exist sufficiently large A0 and small A1
depending on H0, s0,V only such that the following holds. Fix some ṽ : ṽ0s0 ≤ ṽ ≤ V . Suppose
that for some integer L > 0, all u,v′, q such that ṽ ≤ v′ ≤ V, |u| ≤ u0,1 ≤ q ≤ A1(nv′)

max
J:|J|≤L

max
l∈TJ

E Imq R(J)
ll

(
v′) ≤ H

q

0 �q
(
v′). (4.10)

Then for all u,v, q such that ṽ/s0 ≤ v ≤ V, |u| ≤ u0, 1 ≤ q ≤ A1(nv)

max
J:|J|≤L−1

max
l∈TJ

E Imq R(J)
ll (v) ≤ H

q

0 �q(v).

Proof. From Lemma 4.5 it follows that

E Imq R(J)
jj ≤ (CC0)

q Imq s(z)E
1
2
(
1 + (∣∣ε(J)

j

∣∣ + ∣∣T (J)
n

∣∣ 1
2
)2q

+ (CC0)
q
E

1
2
∣∣Im ε

(J)
j + Im�(J)

n

∣∣2q

+ Cq
E

1
2
(∣∣ε(J)

j

∣∣ + ∣∣T (J)
n

∣∣ 1
2
)2q

E
1
2 Im2q R(J)

jj .

To estimate E |ε(J)
j |2q and E |T (J)

n |q we may proceed as in Lemma 4.4. We obtain the following
inequalities

E
∣∣ε(J)

j

∣∣2q ≤ 32q

[
Cqqq

nq
+ (C)qqq

(nv)q
+ Cqq2q

(nv)2q
+ 1

(nv)2q

]
≤ Cqqq

(nv)q
(4.11)
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and

E
∣∣T (J)

n

∣∣q ≤ C
q

0

(
1

n

∑
j∈TJ

E
∣∣ε(J)

j

∣∣2q
)1/2

≤ Cqq
q
2

(nv)
q
2
. (4.12)

Choosing v′ := s0v ≥ v1 we may show that 2q ≤ A1nv′. Applying Lemma A.2 and using the
assumption (4.10) we get

E Im2q R(J)
jj (v) ≤ s

2q

0 E Im2q R(J)
jj (s0v) ≤ s

2q

0 H
2q

0 �2q(s0v).

Since we need an estimate involving �2q(v) instead of �2q(s0v) on the r.h.s. of the previous
inequality we need to perform a descent along the imaginary line from s0v to v. Hence, we again
need to apply Lemma A.2. Choosing suitable constants A0 and A1 in (4.11) and (4.12) one may
show that

E Imq R(J)
jj ≤ (CC0)

q
E

1
2
∣∣Im ε

(J)
j + Im�(J)

n

∣∣2q + H
q

0

2
�q. (4.13)

Applying Lemmas A.7 and A.6 we obtain

E
∣∣Im ε

(J)
j

∣∣2q ≤ Cqqq

(nv)q
E Imq m

(J,j)
n (z) + Cqq2q

(nv)2q

which may be rewritten as follows

E
∣∣Im ε

(J)
j

∣∣2q ≤ (Cs0)
2qqqHq

(nv)q
�q(z) + Cqq2q

(nv)2q
. (4.14)

To estimate E | Im�
(J)
n |q we may proceed as in the proof of Theorem 1.1. We will apply Theo-

rem 2.1 (one has to replace in the definition of (2.12) the maximum over |J| ≤ 1 by the maximum
over |J| ≤ L) and assumption (4.10). Hence,

E
∣∣Im�(J)

n

∣∣2q ≤ (Cs0)
2qqqHq

(nv)q
�q(z) + Cqq2q

(nv)2q
. (4.15)

Combining the estimates (4.14) and (4.15), we may choose constants A0 and A1 (correcting the
previous choice if needed) such that

(CC0)
q
E

1
2
∣∣Im ε

(J)
j

∣∣ ≤ H
q

0

2
�q(z).

The last two inequalities and (4.13) together imply the desired bound

E Imq R(J)
jj ≤ H

q

0 �q. �
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Proof of Lemma 4.2. Let us take any u0 > 0 and any v̂ ≥ 2 + u0, |u| ≤ u0. Furthermore we fix
an arbitrary J⊂ T. We claim that

Im s(u + iv̂) ≥ 1

2
Im R(J)

jj (u + iv̂). (4.16)

Indeed, note first that for all u (and |u| ≤ u0 as well)

Im R(J)
jj (u + iv̂) ≤ 1

v̂
. (4.17)

For all |u| ≤ u0 and |x| ≤ 2, we obtain

v̂

(x − u)2 + v̂2
≥ v̂

(2 + u0)2 + v̂2
≥ 1

2v̂
.

It follows from the last inequality that

Im s(u + iv̂) = 1

2π

∫ 2

−2

v̂

(u − x)2 + v̂2

√
4 − x2 dx ≥ 1

2v̂
. (4.18)

Comparing (4.17) and (4.18), we arrive at (4.16).
We now take v ≥ max(v̂,V ). Let H0 be some large constant, H0 ≥ max(C′,C′′). We choose

s0,A0 and A1 as in the previous Lemma 4.6 obtaining

max
J:|J|≤L

max
j∈TJ

E Imq R(J)
jj (z) ≤ H

q

0 �q(z)

with L = [− logs0
ṽ0] + 1. We may now proceed recursively in L steps and arrive at

max
j∈T

E Imq Rjj (z) ≤ H
q

0 �q(z)

for v ≥ ṽ0 and 1 ≤ q ≤ A1nv. �

5. Delocalization of eigenvectors

In this section, we prove Theorem 1.3. The ideas of the proof are similar to [19], Theorem 1.4,
but for completeness we provide the details below. Note that the proof is essentially based on
Lemma 3.1.

Proof of Theorem 1.3. Let us introduce the following distribution function

Fnj (x) :=
n∑

k=1

|ujk|2 1
[
λk(W) ≤ x

]
.
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Using the eigenvalue decomposition of W, it is easy to see that

Rjj (z) =
n∑

k=1

|ujk|2
λk(W) − z

=
∫ ∞

−∞
1

x − z
dFnj (x),

which means that Rjj (z) is the Stieltjes transform of Fnj (x). For any λ > 0, we have

max
1≤k≤n

|ujk|2 ≤ sup
x

(
Fnj (x + λ) − Fnj (x)

) ≤ 2 sup
u

λ Im Rjj (u + iλ). (5.1)

To finish the proof, we need to show that with high probability the r.h.s. of (5.1) is bounded by
n−1 logn. Let us recall the following notations. We chose an arbitrary 0 < φ′ < 1

4 . Let X̂jk :=
Xjk 1[|Xjk| ≤ Dn

1
2 −φ′ ], X̃jk := Xjk 1[|Xjk| ≤ Dn

1
2 −φ′ ]−EXjk 1[|Xjk| ≤ Dn

1
2 −φ′ ] and finally

X̆jk := X̃jkσ
−1, where σ 2 := E |X̃11|2. Let X̂, X̃ and X̆ denote symmetric random matrices

with entries X̂jk, X̃jk and X̆jk , respectively. Similarly we denote the resolvent matrices by R̂, R̃
and R̆. In this case we have

P(W �= Ŵ) ≤ C

n2−φ
,

where φ := 8φ′. Let u0 > 0 denote a large constant, whose exact value will be chosen later.
Applying [19], Lemmas A.1, A.2, it follows that

P
(‖W‖ ≥ u0

) ≤ C

n2−φ
.

In what follows, we may assume that ‖W‖ ≤ u0 and W = Ŵ. Then for |u| ≥ 2u0 and v > 0 we
get ∣∣Rjj (u + iv)

∣∣ ≤
∫ u0

−u0

1√
(x − u)2 + v2

dFnj (x) ≤ 1

u0
≤ C,

where C is some large positive constant which will be chosen later. It remains to estimate
|Rjj (u + iv)| for all −2u0 ≤ u ≤ 2u0. Denote this interval by U0 := [−2u0,2u0]. By the tri-
angular inequality, we may write |Rjj | = |R̂jj | ≤ |R̃jj | + |R̂jj − R̃jj |. Using the simple identity

R̂jj − R̃jj = [
R̂(Ŵ − W̃)R̃

]
jj

we get

|R̂jj − R̃jj | ≤ ‖Ŵ − W̃‖∥∥eT
j R̂

∥∥
2‖R̃ej‖2,

where ej is a unit column-vector with all entries zero except for an entry one at the position j .
Using Lemma A.3 in the Appendix, we conclude that

|R̂jj | ≤ |R̃jj | + 1

v
‖Ŵ − W̃‖

√
|R̂jj ||R̃jj |.
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It is easy to see that

‖Ŵ − W̃‖2
2 = 1

n

∑
j,k

[
E |Xjk|1

[|Xjk| ≥ Dn
1
2 −φ

]]2 ≤ C

n4
.

We may take v = v0 := C1n
−1 logn, with C1 ≥ A0. Applying the inequality 2|ab| ≤ a2 + b2, we

get

sup
u∈U0

|Rjj | ≤ 3 sup
u∈U0

|R̃jj |. (5.2)

It remains to estimate supu∈U0
|R̃jj (u + iv0)|. It is easy to see that

R̃(z) = (W̃ − zI)−1 = σ−1(W̆ − zσ−1I
)−1 = σ−1R̆

(
σ−1z

)
. (5.3)

Applying the resolvent identity, we get

R̆(z) − R̆
(
σ−1z

) = (
z − σ−1z

)
R̆(z)R̆

(
σ−1z

)
. (5.4)

Combining (5.3) and (5.4), we obtain

∣∣R̃jj (z) − R̆jj (z)
∣∣ ≤ (

σ−1 − 1
)∣∣R̆jj

(
σ−1z

)∣∣ + |z|(σ−1 − 1)

v

√∣∣R̆jj (z)
∣∣∣∣R̆jj

(
σ−1z

)∣∣.
It is easy to check that (σ−1 − 1) ≤ Cn− 3

2 and max(|zR̆jj (z)|, |zR̆jj (σ
−1z)|) ≤ C for some

constant C. Similarly to the previous calculations, we get that

sup
u∈U0

|R̃jj | ≤ 3 sup
u∈U0

|R̆jj |. (5.5)

Note, that the matrix W̆ satisfies the conditions (C1). Applying Lemma 3.1 with p = c logn, we
obtain

P
(∣∣R̆jj (u + iv0)

∣∣ ≥ C0e
6
c
) ≤ E |R̆jj (u + iv0)|p

(C0e
6
c )p

≤ 1

n6
.

We partition the interval U0 into kn := n4 disjoint sub-intervals of equal length, that is, −2u0 =
x0 ≤ x1 ≤ · · · ≤ xkn = 2u0. Then the Newton–Leibniz formula implies

sup
u∈U0

∣∣R̆jj (u + iv0)
∣∣ ≤ max

1≤k≤kn

sup
xk−1≤x≤xk

∣∣R̆jj (x + iv0)
∣∣

≤ max
1≤k≤kn

∣∣R̆jj (xk−1 + iv0)
∣∣ + max

1≤k≤kn

∫ xk

xk−1

∣∣R̆′
jj (u + iv0)

∣∣du.

We may write

max
1≤k≤kn

∫ xk

xk−1

∣∣R̆′
jj (u + iv0)

∣∣du ≤ C

n2−φ
.
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Thus we arrive at

P

(
sup
u∈U0

∣∣R̆jj (u + iv0)
∣∣ ≥ 2C0e

6
c

)
≤

kn∑
k=1

P
(∣∣R̆jj (xk−1 + iv0)

∣∣ ≥ C0e
6
c
) ≤ C

n2
. (5.6)

We choose now λ := v0. In view of (5.1), (5.2), (5.5) and (5.6), we get that there exist C and C1
such that

P

(
max

1≤j,k≤n
|ujk|2 ≤ C1 logn

n

)
≥ 1 − C

n2−φ
,

which concludes the proof. �

6. Rate of convergence to the semicircle law

In this section, we prove Theorem 1.4 and Theorem 1.6. We estimate the difference between
Fn (resp. EFn) and Gsc in the Kolmogorov metric via the distance between the corresponding
Stieltjes transforms. For this purpose, we formulate the following smoothing inequality proved
in [22], Corollary 2.3, which allows to relate distribution functions to their Stieltjes transforms.
For all x ∈ [−2,2] let us define γ (x) := 2 − |x|. Given 1

2 > ε > 0 we introduce the following
intervals Jε := {x ∈ [−2,2] : γ (x) ≥ ε} and J′

ε := Jε/2.

Lemma 6.1. Let v0 > 0 and 1
2 > ε > 0 be positive numbers such that

2(
√

2 + 1)v0 ≤ ε
3
2 .

Assume that F is an arbitrary distribution function with the Stieltjes transform f (z). Then for
any V > 0 and v′ := v′(x) := v0/

√
γ (x), x ∈ J′

ε , there exist absolute positive constants C1,C2
and C3 such that the following inequality holds

�(F,G) ≤ C1

∫ ∞

−∞
∣∣f (u + iV ) − s(u + iV )

∣∣du + C2v0 + C3ε
3
2

+ 2 sup
x∈J′

ε

∣∣∣∣∫ V

v′

(
f (x + iv) − s(x + iv)

)
dv

∣∣∣∣.
Proof. See [22], Corollary 2.3, or [26], Proposition 2.1. �

In what follows, we will need the following version of this lemma.

Corollary 6.2. Assuming the conditions of Lemma 6.1, we have

E
1
p
[
�∗

n

]p ≤ C1

∫ ∞

−∞
E

1
p
∣∣mn(u + iV ) − s(u + iV )

∣∣p du + C2v0 + C3ε
3
2

(6.1)

+ C1 E
1
p sup

x∈J′
ε

∣∣∣∣∫ V

v′

(
mn(x + iv) − s(x + iv)

)
dv

∣∣∣∣p.
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Proof. The proof is the direct consequence of the previous lemma and we omit it. For details,
the interested reader is referred to [26], Corollary 2.1. �

Proof of Theorem 1.4. We start from the part (i). We proceed as in the proof of Theorem 1.1
in [26]. We choose in Corollary 6.2 the following values for the parameters v0, ε and V . Let us

take v0 := A0n
−1 logn, ε := (2v0a)

2
3 and V := 4. We may partition J′

ε into kn := n4 disjoint
subintervals of equal length. Let us denote the endpoints of these intervals by xk, k = 0, . . . , kn.
We get −2 + ε = x0 < x1 < · · · < xkn = 2 − ε. For simplicity, we denote �n(u + iv) := mn(u +
iv)− s(u+ iv) but we will not omit the argument. We start to estimate the second integral in the
r.h.s. of (6.1). It is easy to see that

sup
x∈J′

ε

∣∣∣∣∫ V

v′
�n(x + iv) dv

∣∣∣∣ ≤ max
1≤k≤kn

sup
xk−1≤x≤xk

∣∣∣∣∫ V

v′
�n(x + iv) dv

∣∣∣∣. (6.2)

Applying the Newton–Leibniz formula, we may write

sup
xk−1≤x≤xk

∣∣∣∣∫ V

v′
�n(x + iv) dv

∣∣∣∣ ≤
∣∣∣∣∫ V

v′
�n(xk−1 + iv) dv

∣∣∣∣
(6.3)

+
∫ xk

xk−1

∫ V

v′

∣∣�′
n(x + iv)

∣∣dv dx.

It follows from Cauchy’s integral formula that for all z = x + iv with v ≥ v0 we have

∣∣�′
n(x + iv)

∣∣ ≤ C

v2
≤ Cn2. (6.4)

We may conclude from (6.3) and (6.4) that

sup
xk−1≤x≤xk

∣∣∣∣∫ V

v′
�n(x + iv) dv

∣∣∣∣ ≤
∣∣∣∣∫ V

v′
�n(xk−1 + iv) dv

∣∣∣∣ + C

n
.

Applying this inequality to (6.2) together with expectations we obtain

E sup
x∈J′

ε

∣∣∣∣∫ V

v′
�n(x + iv) dv

∣∣∣∣p ≤ E max
1≤k≤kn

∣∣∣∣∫ V

v′
�n(xk−1 + iv) dv

∣∣∣∣p + Cp

np

(6.5)

≤
kn∑

k=1

∣∣∣∣∫ V

v′
E

1
p
∣∣�n(xk−1 + iv)

∣∣p dv

∣∣∣∣p + Cp

np
.

Since x ∈ J′
ε it follows from Theorem 1.1 that

E
∣∣�n(x + iv)

∣∣p ≤
(

Cp

nv

)p

. (6.6)
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Choosing p = A1(nv0)
1−2α

2 = c logn we finally get from (6.5) and (6.6) that

E
1
p sup

x∈J′
ε

∣∣∣∣∫ V

v′
�n(x + iv) dv

∣∣∣∣p ≤ Ck
1
p
n log2 n

n
+ C

n
≤ C log2 n

n
. (6.7)

It remains to estimate the first of the integrals in (6.1). It was proved in [19], Inequality 2.8, that

E
1
p
∣∣�n(u + iV )

∣∣p ≤ Cp|s(z)| p+1
p

n
, (6.8)

which holds for all z = u + iV ,u ∈ R. Hence,∫ ∞

−∞
E

1
p
∣∣�n(u + iV )

∣∣p du ≤ Cp

n

∫ ∞

−∞

∫ ∞

−∞
dudGsc(x)

((x − u)2 + V 2)
p+1
p

≤ C log2 n

n
. (6.9)

Combining now (6.1), (6.7) and (6.9), we get

E
1
p
[
�∗

n

]p ≤ C log2 n

n
.

Since E
1
p [�∗

n]p is non-decreasing function of p, the last inequality remains valid for all 1 ≤ p ≤
c logn. To finish the proof of Theorem 1.4, it remains to apply Markov’s inequality

P
(
�∗

n ≥ K
) ≤ E[�∗

n]p
Kp

≤ Cp log2p n

Kpnp
. �

Proof of Theorem 1.6. Applying Lemma 6.1 with F := EFn, we get

�n ≤ 2
∫ ∞

−∞
∣∣Emn(u + iV ) − s(u + iV )

∣∣du + C1v0 + C2ε
3
2

(6.10)

+ 2 sup
x∈J′

ε

∣∣∣∣∫ V

v′

(
Emn(x + iv) − s(x + iv)

)
dv

∣∣∣∣.
Let us take v0 := A0n

−1, ε := (2v0a)
2
3 and V := 4. As before, we denote �n(u+ iv) := mn(u+

iv) − s(u + iv). The bound for the first integral follows from [28], Inequality 3.11

∣∣E�n(u + iV )
∣∣ ≤ C|s(z)|2

n
.

This bound gives ∫ ∞

−∞
∣∣E�n(u + iV )

∣∣du ≤ C

n
. (6.11)
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To estimate the second integral we shall use the same arguments as in the proof of Lemma 3.5.
We denote by Yjk,1 ≤ j ≤ k ≤ n a triangular set of random variables such that |Yjk| ≤ D, for
some D chosen later, and

EXs
jk = EY s

jk for s = 1, . . . ,4.

By Lemma 3.4 these random variables exist. Let us denote Wy := 1√
n

Y,Ry := (Wy − zI)−1 and

m
y
n(z) := 1

n
Tr Ry(z). We will show below that for all j, j = 1, . . . , n, there exists φ > 0 such that

∣∣ERjj (z) −ERy
jj (z)

∣∣ ≤ C

n1+φv
(6.12)

and, hence, ∣∣Emn(z) −Em
y
n(z)

∣∣ ≤ C

n1+φv
. (6.13)

It follows from [28], Theorem 1.3, that∣∣Em
y
n(z) − s(z)

∣∣ ≤ C

nv
3
4

+ C

n
3
2 v

3
2 |z2 − 4| 1

4

. (6.14)

Inequalities (6.14) and (6.13) together imply that∣∣Emn(z) − s(z)
∣∣ ≤ C

nv
3
4

+ C

n1+φv
+ C

n
3
2 v

3
2 |z2 − 4| 1

4

.

Calculating the second integral in (6.10), we get

�n ≤ C

n
.

It remains to prove (6.12). For every j, j = 1, . . . , n, we do n(n+1)
2 replacements and corre-

sponding exchanges of Rjj by Ry
jj . Let J,K ⊂ T. We denote by W(J,K) a random matrix W

with entries 1√
n
Yμν in the positions (μ, ν),μ ∈ J, ν ∈ K. Assume that we have already replaced

the entries in positions (μ, ν),μ ∈ J, ν ∈ K and want to replace in addition the entry in position
(a, b), a ∈ T\J, b ∈ T\K. Without loss of generality, we may assume that J=∅,K =∅ (hence
W(J,K) = W) and denote by V := W({a},{b}). Introduce

E(a,b) =
{

eaeT
b + ebeT

a, 1 ≤ a < b ≤ n,

eaeT
a, a = b.

and U := W − Xab√
n

E(a,b), where ej denotes a unit column-vector with all entries zeros except in
the j th position. Using these notations, we may write

W = U + 1√
n
XabE(a,b), V = U + 1√

n
YabE(a,b).
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Recall that R := (W − zI)−1 and denote S := (V − zI)−1 and T := (U − zI)−1. Applying (3.16)
and (3.17) we get

ERjj −ESjj =
m∑

μ=5

(−1)μ

n
μ
2

E
[
X

μ
ab − Y

μ
ab

]
E

[(
TE(a,b)

)μT
]
jj

+ (−1)m+1

n
m+1

2

EXm+1
ab

[(
TE(a,b)

)m+1R
]
jj

(6.15)

− (−1)m+1

n
m+1

2

EYm+1
ab

[(
TE(a,b)

)m+1S
]
jj

.

Without loss of generality we may assume that |Xjk| ≤ Dn
1
2 −φ for some φ > 0 depending on α.

Choosing m and applying Lemma 3.2 we estimate the third term in (6.15) as follows

1

n
m+1

2

E |Xab|m+1
∣∣[(TE(a,b)

)m+1R
]
jj

∣∣ ≤ C

n3+φv
.

The same bound obviously holds for the fourth term in (6.15). Let us consider now the first
term and investigate the part corresponding to Xab (the same estimates are valid for the part
corresponding to Yab)

m∑
μ=5

(−1)μ

n
μ
2

E
[
X

μ
ab

]
E

[(
TE(a,b)

)μT
]
jj

.

It is straightforward to check that [(TE(a,b))μT]jj is the sum of 2ν terms of the following type

Tji1Ti1i2 · · ·TimimTimj ,

where il = a or il = b for l = 1, . . . ,m. Assume that a and b are not equal to j . Then, the first and
the last terms in the last product are off diagonal entries of the resolvent T. Applying Hölder’s
inequality, Lemma A.8 and Lemma 3.2, we get

m∑
μ=5

1

n
μ
2
E |Xab|μ E

∣∣[(TE(a,b)
)μT

]
jj

∣∣ ≤ C

n3+φv
.

Assume now that a or (and) b are equal to j . The number of configurations of this type is of
order n. Similarly to the previous inequality, we thus obtain the bound

m∑
μ=5

1

n
μ
2
E |Xab|μ E

∣∣[(TE(a,b)
)μT

]
jj

∣∣ ≤ C

n2+φ
.

Repeating the same steps for all n(n+1)
2 pairs of (a, b) we arrive at (6.12) and (6.13) respec-

tively. �
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Appendix: Auxiliary lemmas

A.1. Inequalities for resolvent matrices

In this section, we collect some inequalities for the resolvent of the matrix W.

Lemma A.1. For any z = u + iv ∈ C+ we have for any s ≥ 1∣∣R(J)
jj (u + iv/s)

∣∣ ≤ s
∣∣R(J)

jj (u + iv)
∣∣

and

1

|u + iv/s0 + m
(J)
n (u + iv/s0)|

≤ s0

|u + iv + m
(J)
n (u + iv)|

. (A.1)

Proof. See [18], Lemma C.1. �

Lemma A.2. Let g(v) := g(u+ iv) be the Stieltjes transform of some distribution function G(x).
Then for any s ≥ 1

Img(v/s) ≤ s Img(v) and Img(v) ≤ s Img(v/s).

Proof. See [18], Lemma C.2. �

Lemma A.3. For any z = u + iv ∈ C+ we have

1

n

∑
l,k∈TJ

∣∣R(J)
kl

∣∣2 ≤ 1

v
Imm(J)

n (z). (A.2)

For any l ∈ TJ ∑
k∈TJ

∣∣R(J)
kl

∣∣2 ≤ 1

v
Im R(J)

ll . (A.3)

Proof. See [18], Lemma C.4. �

A.2. Moment inequalities for linear and quadratic forms in the
sub-Gaussian case

In this subsection, we estimate the moments of ε
(J)
νj for ν = 1, . . . ,4 (recall the definition (4.2))

in the sub-Gaussian case. It is well known that the random variables ξ is sub-Gaussian if and
only if E |ξ |p = O(p

p
2 ) as p → ∞. We define the sub-Gaussian norm of ξ as

‖ξ‖ψ2 := sup
p≥1

p− 1
2 E

1
p |ξ |p.
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We may conclude that E |ε(J)
1j |p ≤ Cp

p
2 n− p

2 . The following lemma is the Hanson–Wright in-
equality for quadratic forms, see [30]. The following improved version is due to [34].

Lemma A.4 (Hanson–Wright inequality). Let X = (X1, . . . ,Xn) ∈ Rn be a random vector
with independent components Xi which satisfy EXi = 0 and ‖X‖ψ2 ≤ K . Let A = [ajk]nj,k=1 be
an n × n matrix. Then, for every t ≥ 0

P

(∣∣∣∣∣
n∑

j,k=1

ajkXjXk −
n∑

j=1

ajj EX2
jj

∣∣∣∣∣ ≥ t

)
≤ 2 exp

[
−c min

(
t2

K4‖A‖2
2

,
t

K2‖A‖
)]

.

Proof. See [34], Theorem 1.1. �

A direct consequence of this lemma is the following result.

Lemma A.5. Assume that X1, . . . ,Xn are i.i.d. sub-Gaussian random variables which satisfy
EXi = 0 and ‖X‖ψ2 ≤ K . Then for all p ≥ 2 there exists a positive constant C depending on K

such that

E
∣∣ε(J)

2j + ε
(J)
3j

∣∣p ≤ Cpp
p
2

(nv)
p
2
E Im

p
2 m

(J,j)
n (z) + Cppp

(nv)p
.

Proof. Applying E |ξ |p = p
∫ ∞

0 tp−1 P(|ξ | ≥ t) dt and Lemma A.4, we get

E
∣∣ε(J)

2j + ε
(J)
3j

∣∣p ≤ 2p

np

∫ ∞

0
tp−12 exp

[
−c min

(
t2

K4‖R(J,j)‖2
2

,
t

K2‖R(J,j)‖
)]

dt.

We may split the last integral in two integrals over the regions [0,‖R(J,j)‖2
2‖R(J,j)‖−1] and

[‖R(J,j)‖2
2‖R(J,j)‖−1,∞] obtaining

E
∣∣ε(J)

2j + ε
(J)
3j

∣∣p ≤ 2p‖R(J,j)‖p

2

np

∫ ∞

0
tpe

−c t2

K4 dt + 2p‖R(J,j)‖p

np

∫ ∞

0
tpe

−c t

K2 dt

≤ Cpp
p
2

(nv)
p
2
E Im

p
2 m

(J,j)
n (z) + Cppp

(nv)p
,

where in the second inequality we applied Lemma A.3 and ‖R(J,j)‖p ≤ v−p . �

It remains to estimate E |ε(J)
4j |p . The bound for this term is distribution-independent and given

in the following lemma.

Lemma A.6. For p ≥ 2, we have

E
∣∣ε(J)

4j

∣∣p ≤ 1

(nv)p
.
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Proof. See [18], Lemma A.9. �

In order to bound E Imp Rjj we also need the following lemma.

Lemma A.7. Assume that X1, . . . ,Xn are i.i.d. sub-Gaussian random variables which satisfy
EXi = 0 and ‖X‖ψ2 ≤ K . Then for all p ≥ 2 there exists a positive constant C depending on K

such that

E
∣∣Im ε

(J)
2j + Im ε

(J)
3j

∣∣p ≤ Cpp
p
2

(nv)
p
2
E Im

p
2 m

(J,j)
n (z) + Cppp

(nv)p
.

Proof. The proof is similar to the proof of the previous Lemma A.5. We omit the details. �

A.3. Moment inequalities for off-diagonal entries of the resolvent

Lemma A.8. Assume that the conditions (C1) hold. Then for all 1 ≤ j < k ≤ n and 1 ≤ q ≤
2 + δ

2 there exists a positive constant C such that

E |Rjk|q ≤ C

(nv)
q
2
.

Proof. Consider the following equality

Rjk = − 1√
n

(∑
l∈Tj

XjlR
(j)
lk

)
Rjj .

Applying Hölder’s inequality, we get

E |Rjk|q ≤ n− q
2 E

1
2

∣∣∣∣∑
l∈Tj

XjlR
(j)
lk

∣∣∣∣2q

E
1
2 |Rjj |2q .

Conditioning, applying Rosenthal’s inequality and Lemma 3.2 we obtain

E |Rjk|q ≤ Cqn− q
2

(
q

q
2 E

1
2

(∑
l∈Tj

∣∣R(j)
lk

∣∣2
)q

+ qqμ
1
2
2q E

1
2

(∑
l∈Tj

∣∣R(j)
lk

∣∣2q
))

.

This inequality and Lemma A.3 together imply that

E |Rjk|q ≤ Cqq
q
2 (nv)−

q
2 + qqμ

1
2
2q(nv)−

q
2 .

Hence, for 1 ≤ q ≤ 2 + δ
2 we get

E |Rjk|q ≤ C(nv)−
q
2 . �



Local semicircle law 2399

Acknowledgements

We would like to thank the Associate Editor and the Reviewers for helpful comments and sug-
gestions.

All authors were supported by CRC 701 “Spectral Structures and Topological Methods in
Mathematics”. A. Naumov, A. Tikhomirov and D. Timushev were supported by RFBR N 14-01-
00500. A. Tikhomirov and D. Timushev were also supported by Programs of UD RAS, project
N 15-16-1-3. A. Naumov was also supported by Hong Kong RGC GRF 403513, RFBR N 16-
31-00005 and President’s of Russian Federation Grant for young scientists N 4596.2016.1.

References

[1] Anderson, G.W., Guionnet, A. and Zeitouni, O. (2010). An Introduction to Random Matrices. Cam-
bridge Studies in Advanced Mathematics 118. Cambridge: Cambridge Univ. Press. MR2760897

[2] Arnold, L. (1967). On the asymptotic distribution of the eigenvalues of random matrices. J. Math.
Anal. Appl. 20 262–268. MR0217833

[3] Bai, Z., Hu, J., Pan, G. and Zhou, W. (2011). A note on rate of convergence in probability to semicir-
cular law. Electron. J. Probab. 16 2439–2451. MR2861680

[4] Bai, Z. and Silverstein, J.W. (2010). Spectral Analysis of Large Dimensional Random Matrices, 2nd
ed. Springer Series in Statistics. New York: Springer. MR2567175

[5] Bai, Z.D. (1993). Convergence rate of expected spectral distributions of large random matrices. I.
Wigner matrices. Ann. Probab. 21 625–648. MR1217559

[6] Bai, Z.D., Miao, B. and Tsay, J. (2002). Convergence rates of the spectral distributions of large Wigner
matrices. Int. Math. J. 1 65–90. MR1825933

[7] Bobkov, S.G., Götze, F. and Tikhomirov, A.N. (2010). On concentration of empirical measures and
convergence to the semi-circle law. J. Theoret. Probab. 23 792–823. MR2679957

[8] Cacciapuoti, C., Maltsev, A. and Schlein, B. (2015). Bounds for the Stieltjes transform and the density
of states of Wigner matrices. Probab. Theory Related Fields 163 1–59. MR3405612

[9] Erdös, L., Knowles, A., Yau, H.-T. and Yin, J. (2012). Spectral statistics of Erdős–Rényi Graphs II:
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