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Consider the multiple linear regression model yi = x′
i
β + εi , where εi ’s are independent and identically

distributed random variables, xi ’s are known design vectors and β is the p × 1 vector of parameters. An
effective way of approximating the distribution of the M-estimator β̄n, after proper centering and scaling,
is the Perturbation Bootstrap Method. In this current work, second order results of this non-naive bootstrap
method have been investigated. Second order correctness is important for reducing the approximation er-
ror uniformly to o(n−1/2) to get better inferences. We show that the classical studentized version of the
bootstrapped estimator fails to be second order correct. We introduce an innovative modification in the stu-
dentized version of the bootstrapped statistic and show that the modified bootstrapped pivot is second order
correct (S.O.C.) for approximating the distribution of the studentized M-estimator. Additionally, we show
that the Perturbation Bootstrap continues to be S.O.C. when the errors εi ’s are independent, but may not
be identically distributed. These findings establish perturbation Bootstrap approximation as a significant
improvement over asymptotic normality in the regression M-estimation.

Keywords: Edgeworth expansion; generalized bootstrap; M-estimation; perturbation bootstrap; residual
bootstrap; S.O.C.; Studentization; wild bootstrap

1. Introduction

Consider the multiple linear regression model:

yi = x′
iβ + εi, i = 1,2, . . . , n (1.1)

where y1, . . . , yn are responses, ε1, . . . , εn are independent and identically distributed (IID) ran-
dom variables with common distribution F (say), x1, . . . ,xn are known non random design vec-
tors and β is the p-dimensional vector of parameters.

Suppose β̄n is the M-estimator of β corresponding to the objective function �(·) that is,
β̄n = arg mint

∑n
i=1 �(yi −x′

it). Now if ψ(·) is the derivative of �(·), then β̄n is the M-estimator
corresponding to the score function ψ(·) and is defined as the solution of the vector equation

n∑
i=1

xiψ
(
yi − x′

iβ
) = 0.
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It is known (cf. Huber [27]) that under some conditions on the objective function, design vectors
and error distribution F ; (β̄n − β) with proper scaling has an asymptotically normal distribution
with mean 0 and dispersion matrix σ 2Ip where σ 2 = Eψ2(ε1)/E2ψ ′(ε1).

After introduction of bootstrap by Efron in 1979 [17] as a resampling technique, it has been
widely used as a distributional approximation method. Resampling from the naive empirical dis-
tribution of the centered residuals in a regression setup, called residual bootstrap, was introduced
by Freedman [20]. Freedman [20] and Bickel and Freedman [8] had shown that given data, the
conditional distribution of

√
n(β∗

n − β̄n) converges to the same normal distribution as the distri-
bution of

√
n(β̄n −β) when β̄n is the usual least square estimator of β , that is, when �(x) = x2.

It implies that the residual bootstrap approximation to the exact distribution of the least square
estimator is first order correct as in the case of normal approximation. The advantage of the resid-
ual bootstrap approximation over normal approximation for the distribution of linear contrasts
of least square estimator for general p was first shown by Navidi [42] by investigating the un-
derlying Edgeworth Expansion (EE); although heuristics behind the same was given by Liu [37]
in restricted case p = 1. Consequently, EE for the general M-estimator of β was obtained by
Lahiri [31] when p = 1; whereas the same for the multivariate least square estimator was found
by Qumsiyeh [43]. EE of standardized and studentized versions of the general M-estimator in
multiple linear regression setup was first obtained by Lahiri [32]. Lahiri [32] also established the
second order results for residual bootstrap in regression M-estimation.

A natural generalization of sampling from the naive empirical distribution is to sample from
a weighted empirical distribution to obtain the bootstrap sample residuals. Broadly, the resulting
bootstrap procedure is called the weighted or generalized bootstrap. It was introduced by Mason
and Newton [40] for bootstrapping mean of a collection of IID random variables. Mason and
Newton [40] considered exchangeable weights and established its consistency. Lahiri [32] es-
tablished second order correctness of generalized bootstrap in approximating the distribution of
the M-estimator for the model (1.1) when the weights are chosen in a particular fashion depend-
ing on the design vectors. Wellner and Zhan [48] proved the consistency of infinite dimensional
generalized bootstrapped M-estimators. Consequently, Chatterjee and Bose [10] established dis-
tributional consistency of generalized bootstrap in estimating equations and showed that general-
ized bootstrap can be used in order to estimate the asymptotic variance of the original estimator.
Chatterjee and Bose [10] also mentioned the bias correction essential for achieving second order
correctness. An important special case of generalized bootstrap is the bayesian bootstrap of Ru-
bin [46]. Rao and Zhao [45] showed that the distribution function of M-estimator for the model
(1.1) can be approximated consistently by bayesian bootstrap. See the monograph of Barbe and
Bertail [4] for an extensive study of generalized bootstrap.

A close relative to the generalized bootstrap procedure is the wild bootstrap. It was introduced
by Wu [49] in multiple linear regression model (1.1) with errors εi ’s being heteroscedastic. Be-
ran [5] justified wild bootstrap method by pointing out that the distribution of the least square
estimator can be approximated consistently by the wild bootstrap approximation. Second order
results of wild bootstrap in heteroscedastic regression model was first established by Liu [37]
when p = 1. Liu [37] also showed that usual residual bootstrap is not capable of approximat-
ing the distribution of the least square estimator upto second order in heteroscedastic setup and
described a modification in resampling procedure which can establish second order correctness.
For general p, the heuristics behind achieving second order correctness by wild bootstrap in ho-
moscedastic least square regression were discussed in Mammen [39]. Recently, Kline and Santos
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[30] developed a score based bootstrap method depending on wild bootstrap in M-estimation for
the homoscedastic model (1.1) and established consistency of the procedure for Wald and La-
grange Multiplier type tests for a class of M-estimators under misspecification and clustering of
data.

A novel bootstrap technique, called the perturbation bootstrap was introduced by Jin, Ying
and Wei [28] as a resampling procedure where the objective function having a U-process struc-
ture was perturbed by non-negative random quantities. Jin, Ying and Wei [28] showed that in
standardized setup, the conditional distribution of the perturbation resampling estimator given
the data and the distribution of the original estimator have the same limiting distribution which
means this resampling method is first order correct without studentization. In a recent work, Min-
nier, Tian and Cai [41] also applied this perturbation resampling method in penalized regression
setup such as Adaptive Lasso, SCAD, lq penalty and showed that the standardized perturbed pe-
nalized estimator is first order correct. But, second order properties of this new bootstrap method
have remained largely unexplored in the context of multiple linear regression. In this current
work, the perturbation bootstrap approximation is shown to be S.O.C. for the distribution of stu-
dentized M-estimator for the regression model (1.1). An extension to the case of independent
and non-IID errors is also established, showing the robustness of perturbation bootstrap towards
the presence of heteroscedasticity. Therefore, besides the existing bootstrap methods, the per-
turbation bootstrap method can also be used in regression M-estimation for making inferences
regarding the regression parameters and higher order accuracy can be achieved than the normal
approximation.

A classical way of studentization in bootstrap setup, in case of regression M-estimator and for
IID errors, is to consider the studentization factor to be σ ∗

n = s∗
nτ ∗−1

n , τ ∗
n = n−1 ∑n

i=1 ψ ′(ε∗
i ),

s∗2
n = n−1 ∑n

i=1 ψ2(ε∗
i ) where ε∗

i = yi − x′
iβ

∗
n, i ∈ {1, . . . , n}, with β∗

n being the perturbation
bootstrapped estimator of β , defined in Section 2. Although the residual bootstrapped estimator
is S.O.C. after straight-forward studentization, the same pivot fails to be S.O.C. in the case of
perturbation bootstrap. Two important special cases are considered as examples in this respect.
The reason behind this failure is that although the bootstrap residuals are sufficient in capturing
the variability of the bootstrapped estimator in residual bootstrap, it is not enough in the case
of perturbation resampling. Modifications have been proposed as remedies and are shown to be
S.O.C. The modifications are based on the novel idea that the variability of the random perturbing
quantities G∗

i (1 ≤ i ≤ n) along with the bootstrap residuals are required to capture the variabil-
ity of the perturbation bootstrapped estimator; whereas individually they are not sufficient. For
technical details, see Section 4.2 and Section 5.1.

With a view to establish second order correctness, we start with the standardized setup and
then proceed to studentization. First, we find a two-term EE of the conditional density of a suit-
able stochastic approximation of the concerned bootstrapped pivot and then we show that it is the
required two-term EE corresponding to the bootstrapped pivot. The result then follows by com-
paring the EE of the bootstrapped pivot with that of underlying original pivot. The techniques
that are to be used in finding EE have been demonstrated and discussed in Bhattacharya and
Ghosh [6], Bhattacharya and Rao [7], Navidi [42], Lahiri [32] and Chatterjee and Lahiri [11].

A significant volume of work is available in bootstrapping M-estimators. We will conclude this
section by briefly reviewing the literature. Bootstrapping M-estimators in linear model has been
studied by Navidi [42], Lahiri [32,34], Rao and Zhao [45], Qumsiyeh [44], Karabulut and Lahiri
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[29], Jin, Ying and Wei [28], Hu [25], El Bantli [18] among others. And in the applications other
than linear model, bootstrapping in M-estimation and its subclasses has been investigated by Ar-
cones and Giné [2], Lahiri [33], Wellner and Zhan [48], Allen and Datta [1], Hu and Kalbfleisch
[26], Hlávka [24], Wang and Zhou [47], Chatterjee and Bose [10], Ma and Kosorok [38], Lahiri
and Zhu [35], Cheng and Huang [13], Feng, He and Hu [19], Lee [36], Cheng [12], among others.

The rest of the paper is organized as follows. Perturbation bootstrap is described briefly in Sec-
tion 2. Section 3 states the assumptions and motivations behind considering those assumptions.
Main results for IID case, along with the modification in bootstrap studentization, are stated in
Section 4. An extension to the case of independent and non-IID errors is proposed in Section 5.
An outline of the proofs are given in Section 6. Section 7 states concluding remarks. The details
of the proofs are available in a supplementary material (Das and Lahiri [14]).

2. Description of perturbation bootstrap

In the perturbation bootstrap, the objective function �(·) has been perturbed several times by
a non-negative random quantity to get a bootstrapped estimate of β . It has nothing to do with
residuals in resampling stage, unlike the residual and weighted bootstrap. More precisely, the
perturbation bootstrap estimator β∗

n is defined as

β∗
n = arg min

t

n∑
i=1

�
(
yi − x′

it
)
G∗

i

or in terms of the score function ψ(·), as the solution of the vector equation

n∑
i=1

xiψ
(
yi − x′

iβ
)
G∗

i = 0, (2.1)

where G∗
i , i ∈ {1, . . . , n} are non-negative and non-degenerate completely known random vari-

ables, considered as perturbation quantities. Note that, if μG∗ is the mean of G∗
1, then β̄n is

the solution of E(
∑n

i=1 xiψ(ε̄i) G∗
i |ε1, . . . , εn) = ∑n

i=1 xiψ(ε̄i)μG∗ = 0 where ε̄i = yi − x′
i β̄n,

i ∈ {1, . . . , n}, are the residuals corresponding to the M-estimator β̄n. This observation will be
helpful in finding a suitable stochastic approximation in bootstrap regime. For details, see Sec-
tion 6.

The central idea of the perturbation bootstrap is to draw a relatively large collection of IID
random samples {(G∗b

1 , . . . ,G∗b
n ) : b = 1, . . . ,B} from the distribution of G∗

1 and then to find the
conditional empirical distribution of

√
n(β∗

n − β̄n) given data yi : i = 1, . . . , n, by solving

n∑
i=1

xiψ
(
yi − x′

iβ
)
G∗b

i = 0

for each b ∈ {1, . . . ,B}; to approximate the distribution of
√

n(β̄n − β) asymptotically. As a
result the bootstrapped distribution may be used as an approximation to the original distribution,
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just like the normal approximation, in constructing confidence intervals and testing of hypotheses
regarding β .

Now, in the perturbation bootstrap M-estimation, G∗
i ’s can be thought of as weight corre-

sponding to the ith data point (xi , yi). To make it easier to understand, consider the least square
setup that is, �(x) = x2. In this case β∗

n takes the form

β∗
n =

(
n∑

i=1

xix′
iG

∗
i

)−1( n∑
i=1

xiyiG
∗
i

)
(2.2)

indicating that the perturbing quantities G∗
i ’s can be thought of as weights.

Remark 2.1. Consider the least square estimator β̂n. Then keeping the asymptotic properties

fixed, the perturbation bootstrap version β̂
∗
1n of β̂n can be defined alternatively as the solution of

n∑
i=1

xi

(
yi − x′

iβ
)(

G∗
i − μG∗

) +
n∑

i=1

xix′
i (β̂n − β)

(
2μG∗ − G∗

i

) = 0

which in turn implies that β̂
∗
1n is the solution of

n∑
i=1

xi

(
z∗
i − x′

iβ
) = 0, (2.3)

where z∗
i = x′

i β̂n + ε̂i[μ−1
G∗(G∗

i − μG∗)], ε̂i = yi − x′
i β̂n, i ∈ {1, . . . , n}. On the other hand, the

simple wild bootstrap version β̂
∗
2n of β̂n is defined as the solution of

n∑
i=1

xi

(
y∗
i − x′

iβ
) = 0, (2.4)

where y∗
i = x′

i β̂n + ε̂i ti , i ∈ {1, . . . , n} and {t1, . . . , tn} is a set of IID random variables indepen-
dent of {ε1, . . . , εn} with Et1 = 0, Var(t1) = 1. Additionally, one needs E(t3

1 ) = 1 for establish-
ing second order correctness of wild bootstrap approximation (cf. Liu [37], Mammen [39]). Now
Looking at (2.3) and (2.4) and in view of assumption (A.5)(ii), it can be said that the perturba-
tion bootstrap coincides with the wild bootstrap in least square setup. Therefore one can view
perturbation bootstrap as a generalization of the wild bootstrap in regression M-estimation.

Remark 2.2. There is a basic difference between perturbation bootstrap and weighted boot-
strap with respect to the construction of the bootstrapped estimator. Whereas in the perturbation
bootstrap, the bootstrapped estimator is defined through the non-negative and non-degenerate
random perturbations of the objective function; in weighted bootstrap, the bootstrapped esti-
mator is defined through bootstrap samples drawn from a weighted empirical distribution. See
for example the construction of the weighted bootstrapped estimator corresponding to Theo-
rem 2.3 of Lahiri [32] and compare it with our construction as stated in Section 2. However, as
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pointed out by a referee, one can think of the perturbation bootstrap, defined in Section 2, as
the weighted bootstrap version of some statistical functional if the design vectors are random.
Suppose, {(x1, y1), . . . , (xn, yn)} are IID with underlying probability measure Q. Then one can
write

β = T (Q) = arg min
t

EQ
[
�

(
yi − x′

it
)]

for some statistical functional T (·). Define empirical measures Qn = n−1 ∑n
i=1 1(xi, yi) and

Qn,W = n−1 ∑n
i=1 1(xi, yi)Wi where 1(·) is the indicator function and {W1, . . . ,Wn} are

weights. Then we have β̄n = T (Qn) and β∗
n = T (Qn,W ) when Wi = G∗

i , i ∈ {1, . . . , n}. The
weighted bootstrap of general statistical functionals of only the IID random variables is consid-
ered in the monograph of Barbe and Bertail [4]. Second order correctness of weighted bootstrap
of standardized mean of IID random variables was established by Haeusler, Mason and Newton
[22] under two choices of weights. One choice is the non-negative IID weights and the other
one is the self-normalized sum of non-negative IID random variables. Their results were ex-
tended by Barbe and Bertail [4] for general statistical functionals in IID case when the weights
are self-normalized sum of non-negative IID random variables (cf. Corollary 4.1 of Barbe and
Bertail [4]). For general M-estimation, Chatterjee [9] showed that weighted bootstrap estima-
tor is generally biased and established its second order correctness after properly correcting for
the bias. To the best of our knowledge, there is no second order result available in the literature
under studentized setup for general statistical functional. In this article, we have assumed the
design vectors to be non-random, implying that our setup fits neither in the general statistical
functional setup of Barbe and Bertail [4] nor in the general M-estimation setup of Chatterjee [9];
although Theorem 5.1 continue to hold when the design is random. Throughout the article we
consider weights to be non-negative IID. Our main motivation is to explore second order results
in studentized setup which, unlike the standardized (i.e., the known variance) case, is applicable
in practice. Further, we prove our results in the situation when errors are heteroscedastic. We
establish all our second order correctness results without requiring any bias correction.

3. Assumptions

Suppose, xi = (xi1, xi2, . . . , xip)′. Define, Dn ≡ D = (
∑n

i=1 xix′
i )

1/2, An = n−1D2, di = D−1xi ,

1 ≤ i ≤ n and q = p(p+1)
2 . Also define, q ×1 vector zi = (x2

i1, xi1xi2, . . . , xi1xip, x2
i2, xi2xi3, . . . ,

xi2xip, . . . , x2
ip)′ . Note that for any constants ai, . . . , an ∈ R,

∑n
i=1 aizi = 0 which implies and

is implied by
∑n

i=1 aixix′
i = 0. Hence, {z1, . . . , zn} are linearly independent if and only if {xix′

i :
1 ≤ i ≤ n} are linearly independent. Therefore, rn = the rank of

∑n
i=1 ziz′

i is nondecreasing in n.
So, if r = max{rn : n ≥ 1} then without loss of generality (w.l.g.), we can assume that rn = r for
all n ≥ q . Consider canonical decomposition of

∑n
i=1 ziz′

i as

L

(
n∑

i=1

ziz′
i

)
L′ =

[
Ir 0
0 0

]
,
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where L is a q × q non-singular matrix. Partition L as L′ = [L′
1 L′

2], where L1 is of order r × q .
Define r × 1 vector z̃i by

z̃i = L1zi , 1 ≤ i ≤ n.

Note that
∑n

i=1 z̃i z̃′
i = L1(

∑n
i=1 ziz′

i )L
′
1 = Ir . Suppose, vi = (x′

iψ(ε1), z′
iψ

′(ε1))
′. z̆i =

(z′
i , n

−1)′.
Let, �V denotes the normal distribution with mean 0 and dispersion matrix V and φV is

the density of �V. Write �V = � and φV = φ when V is the identity matrix. h′, h′′ denote
respectively first and second derivatives of real valued function h that is twice differentiable.
Also ‖ · ‖ denotes euclidean norm. For any set B ∈ Rp and ε > 0, δB denotes the boundary of
B , |B| denotes the cardinality of B and Bε = {x : x ∈ Rp and d(x,B) < ε} where d(x,B) =
inf{‖x − y‖ : y ∈ B}. For a function f : Rl → R and a non-negative integral vector α =
(α1, α2, . . . , αl)

′, Dαf = D
α1
1 · · ·Dαl

l f , where D
αj

j f denotes αj times partial derivative of f

with respect to the j th component of its argument, 1 ≤ j ≤ l. Also assume that (e1, . . . , ep)′ is
the standard basis of Rp . Let, P∗ and E∗ respectively denote conditional bootstrap probability
and conditional expectation of G∗

1 given data. The class of sets B denotes the collection of borel
subsets of Rp satisfying

sup
B∈B

�
(
(δB)ε

) = O(ε) as ε ↓ 0. (3.1)

Next we state the assumptions:

(A.1) ψ(·) is twice differentiable and ψ ′′(·) satisfies a Lipschitz condition of order α for some
0 < 2α ≤ 1.

(A.2) (i) An → A1 as n → ∞ for some positive definite matrix A1.
(ii) E(n−1 ∑n

i=1 viv′
i ) → A2 as n → ∞ for some non-singular matrix A2, where ex-

pectation is with respect to F .
(ii)′ E(n−1 ∑n

i=1 ṽi ṽ′
i ) → A3 as n → ∞ for some non-singular matrix A3 where ṽi is

defined as same way as vi with zi being replaced by z̆i .
(iii) nα/2(

∑n
i=1 ‖di‖6+2α)1/2 + ∑n

i=1 ‖z̃i‖4 = O(n−1).
(A.3) (i) Eψ(ε1) = 0 and σ 2 = Eψ2(ε1)/E(ψ ′(ε1)) ∈ (0,∞).

(ii) E|ψ(ε1)|4 + E|ψ ′(ε1)|4 + E|ψ ′′(ε1)|2 < ∞.
(A.4) G∗

i and εi are independent for all 1 ≤ i ≤ n.
(A.5) (i) EG∗3

1 < ∞.
(ii) Var(G∗

1) = μ2
G∗ , E(G∗

1 − μG∗)3 = μ3
G∗ .

(iii) (G∗
1 − μG∗) satisfies Cramer’s condition:

lim sup
|t |→∞

∣∣E(
exp

(
it

(
G∗

1 − μG∗
)))∣∣ < 1.

(iii)′ ((G∗
1 − μG∗), (G∗

1 − μG∗)2) satisfies Cramer’s condition:

lim sup
‖(t1,t2)‖→∞

∣∣E(
exp

(
it1

(
G∗

1 − μG∗
) + it2

(
G∗

1 − μG∗
)2))∣∣ < 1.
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(A.6) (i) (ψ(ε1),ψ
′(ε1)) satisfies Cramer’s condition:

lim sup
‖(t1,t2)‖→∞

∣∣E(
exp

(
it1ψ(ε1) + it2ψ

′(ε1)
))∣∣ < 1.

(i)′ (ψ(ε1),ψ
′(ε1),ψ

2(ε1)) satisfies Cramer’s condition:

lim sup
‖(t1,t2,t3)‖→∞

∣∣E(
exp

(
it1ψ(ε1) + it2ψ

′(ε1) + it3ψ
2(ε1)

))∣∣ < 1.

Define v̄i = (x̄′
i , z̄′

i )
′ where x̄i = xiψ(ε̄i), z̄i = ziψ

′(ε̄i ); {ε̄1, . . . , ε̄n} being the set of residuals.
Also, define Ā2n = n−1 ∑n

i=1 x̄i x̄′
i and Ā1n = n−1 ∑n

i=1 xix′
iψ

′(ε̄i ). Note that n−1 ∑n
i=1 v̄i v̄′

i is
an estimate of the matrix E(n−1 ∑n

i=1 viv′
i ) and due to assumption (A.2)(ii),

∑n
i=1 v̄i v̄′

i is non-
singular for sufficiently large n. Hence, without loss of generality the canonical decomposition
of

∑n
i=1 v̄i v̄′

i can be assumed as

B

(
n∑

i=1

v̄i v̄′
i

)
B′ = Ik,

where k = p + q and B is a k × k non-singular matrix. Define k × 1 vector v̆i by

v̆i = B̄vi , 1 ≤ i ≤ n.

To find valid EE in the perturbation bootstrap regime, the following condition (cf. Navidi [42])
is also required:

(A.7) There exists a δ > 0 such that −Kn(δ)/ logγn → ∞ where Bn(δ) = {1 ≤ i ≤ n :
(v̆′

i t)
2 > δγ 2

n for all t ∈ Rk with ‖t‖2 = 1}, Kn(δ) = |Bn(δ)|, the cardinality of the
set Bn(δ), and γn = (

∑n
i=1 ‖v̆i‖4)1/2.

But note that the condition (A.7) has already been satisfied in our set up due to Lemma 6.2
and the proposition in Lahiri [32].

Now we briefly explain the assumptions. Assumption (A.1) is smoothness condition on the
score function ψ(·). This condition is essential for obtaining a Taylor’s expansion of ψ(·) around
regression errors. Assumption (A.2) presents the regularity conditions on the design vectors nec-
essary to find EE. For the validity of asymptotic normality of the regression M-estimator, only
(A.2)(i) is enough (cf. Huber [27]); whereas additional condition (A.2)(ii) is required for the
validity of the EE. (A.2)(iii) states utmost how fast the L2 norm of the design vectors can in-
crease to get a valid EE. This condition is somewhat stronger than the condition (C.6) assumed
in Lahiri [32]; although there was a reduction in accuracy of bootstrap approximation due to this
relaxation. This type of conditions are quite common in the literature of edgeworth expansions in
regression setup; see for example Navidi [42], Qumsiyeh [43]. We now state an example where
assumption (A.2)(iii) is fulfilled.

Example 3.1. Suppose, {X(1), . . . ,X(p)} is a set of independent random vectors where X(j) =
(X1j , . . . , Xnj )

′ is a vector of n IID copies of the non-degenerate random variable X1j ,
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j ∈ {1, . . . , p}. Define, p × p matrix M = ((mjk))j,k=1,...,p where mjk = E(X2
1jX

2
1k) and

n × p matrix X = (X(1), . . . ,X(p)). Assume, E(X1j ) = E(X3
1j ) = 0 and E|X1j |8 < ∞ for all

j ∈ {1, . . . , p} and det(M) 
= 0. Then for the design matrix X, assumption (A.2)(iii) holds with
probability 1 (w.p. 1).

Proof. For the design matrix X, xi = (Xi1,Xi2, . . . ,Xip)′ and zi = (X2
i1,Xi1Xi2, . . . ,Xi1Xip,

X2
i2,Xi2Xi3, . . . ,Xi2Xip, . . . ,X2

ip)′ for i ∈ {1, . . . , n}.
First note that if all the entries of X are IID then the condition det(M) 
= 0 is redundant.

By Kolmogorov strong law of large numbers, An = n−1D2 → diag (E(X2
11), . . . , E(X2

1p)) and

n−1 ∑n
i=1 ‖xi‖6+2α → E‖x1‖6+2α both w.p. 1 and hence

nα/2

(
n∑

i=1

‖di‖6+2α

)1/2

≤ nα/2
∥∥D−1

∥∥3+α

(
n∑

i=1

‖xi‖6+2α

)1/2

= O
(
n−1) w.p. 1.

(3.2)

Again, since M is a non-singular matrix, n−1 ∑n
i=1 ziz′

i → N w.p. 1, for some positive definite
matrix N. This implies that ‖L‖ = O(n−1/2) w.p. 1 and hence

n∑
i=1

‖z̃i‖4 ≤ ‖L‖4
n∑

i=1

‖zi‖4

= O
(
n−1) w.p. 1.

(3.3)

Therefore, our claim follows from (3.2) and (3.3). �

Assumption (A.3) is the moment condition on the error variables through the score function
ψ(·). (A.3)(i) is generally assumed to establish asymptotic normality. Assumption (A.4) is in-
herent in the present setup, since G∗

i ’s are introduced by us to define the bootstrapped estimator
whereas εi ’s are already present in the process of data generation. The conditions present in
Assumption (A.5) are moment and smoothness conditions on the perturbing quantities G∗

i ’s, re-
quired for the valid two term EE in bootstrap setup. The Cramer’s condition is very common
in the literature of edgeworth expansions. Cramer’s condition is satisfied when the distribution
of (G∗

1 − μG∗) or ((G∗
1 − μ∗

G), (G∗
1 − EG∗

1)
2) has a non-degenerate component which is ab-

solutely continuous with respect to Lebesgue measure (cf. Hall [23]). An immediate choice of
the distribution of G∗

1 is Beta(γ, δ) where 3γ = δ = 3/2. Also one can investigate Generalized
Beta family of distributions for more choices of the distribution of G∗

1. Assumption (A.6) is the
Cramer’s condition on the errors. Although this assumption is not needed for obtaining EE of the
bootstrapped estimators, it is needed for obtaining EE for the original M-estimator.

Note that the condition (A.7) is somewhat abstract. Hence as pointed out by a referee, some
clarification would be helpful. To this end, it is worth mentioning that to find formal EE for the
standardized bootstrapped pivot (see Section 4.1), the most difficult step is to show

max
|α|≤p+q+4

∫
C1≤γn‖t‖≤C2

∣∣DαE∗eit′T∗
n
∣∣dt = op

(
n−1/2), (3.4)
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where C1,C2 are non-negative constants and T∗
n = ∑n

i=1 (X̆∗
i − E∗(X̆∗

i )), with X̆∗
i =

v̆i (Gi − μG∗)1(‖v̆i (Gi − μG∗)‖ ≤ 1). Now it is easy to see that for any |α| ≤ p + q + 4,
|DαE∗eit′T∗

n | is bounded above by a sum of n|α|-terms, each of which is bounded above by

C(α) · max
{
E∗

∥∥X̆∗
i − E∗

(
X̆∗

i

)∥∥|α| : i ∈ I∗
n

} ·
∏
i∈I∗c

n

∣∣E∗eit′X̆∗
i

∣∣,
where I∗

n ⊂ {1, . . . , n} is of size |α| and I∗c
n = {1, . . . , n} \ I∗

n and C(α) is a constant which
depends only on α.

Now note that for all i ∈ {1, . . . , n},

E∗
∥∥X̆∗

i − E∗
(
X̆∗

i

)∥∥|α| ≤ 2|α| and∣∣E∗eit′X̆∗
i

∣∣ ≤ ∣∣E∗eit′v̆i (Gi−μG∗ )
∣∣ + 2P∗

(∥∥v̆i (Gi − μG∗)
∥∥ > 1

)
.

Hence, in view of Cramer’s condition (A.5)(iii) and Lemma 6.2, if there exists a sequence of sets
{Jn}n≥1 such that Jn ⊂ {1, . . . , n} and for all i ∈ Jn, γ −1

n |t′v̆i | > ξ for some ξ > 0, then for some
0 < θ < 1 we have

sup

{ ∏
i∈I∗c

n

∣∣E∗eit′X̆∗
i

∣∣ : C1 ≤ γn‖t‖ ≤ C2

}

≤ sup

{ ∏
i∈I∗c

n ∩Jn

∣∣E∗eiγ −1
n t′X̆∗

i

∣∣ : C1 ≤ ‖t‖ ≤ C2

}

≤ θ |I∗c
n ∩Jn|.

(3.5)

Again |I∗c
n ∩ Jn| ≥ |Jn| − |α| and γn ≥ kn−1. Therefore, to achieve (3.4), it is enough to have

n2(p+q)+4 · θ |Jn|−(p+q+4) = o
(
n−1/2).

Hence due to Lemma 6.2, it is enough to have |Jn| ≥ an −C · logγn for some positive constant C

and a sequence of constants {an} increasing to ∞. This observation together with (3.5) justifies
condition (A.7).

We will denote the assumptions (A.1)–(A.5) by (A.1)′–(A.5)′ when (A.2) and (A.5) are re-
spectively defined with (ii)′ and (iii)′ instead of (ii) and (iii).

4. Main results

4.1. Rate of perturbation bootstrap approximation

Here we will state the approximation results both in standardized and studentized setup. It is
well known that

√
nβ̄n has asymptotic variance σ 2A−1

n . So, the standardized version of the M-

estimator β̄n is defined as Fn = √
nσ−1A1/2

n (β̄n −β). Now to define the standardized version of
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the corresponding bootstrapped statistic β∗
n, we need its conditional asymptotic variance, given

the data. Using Taylor’s expansion, it is quite easy to get the conditional asymptotic variance of√
nβ∗

n as Ā−1
1n Ā2nĀ−1

1n . Note that inverse of the matrices Ā−1
1n and Ā−1

2n are well defined for suffi-
ciently large sample size n due to the assumption (A.2)(i) and (A.3)(ii). Hence, the standardized
bootstrapped M-estimator F∗

n can be defined as

F∗
n = √

n�̄
−1/2
n

(
β∗

n − β̄n

)
,

where �̄
−1/2
n = Ā−1/2

2n Ā1n, Ā1/2
2n being defined in terms of the spectral decomposition of Ā2n;

although it can be defined in many different ways (cf. Lahiri [33]). Under some regularity con-
ditions, both the distribution of Fn and the conditional distribution of F∗

n can be shown to be
approximated asymptotically by a Normal distribution with mean 0 and variance Ip . Hence, it is
straightforward that perturbation bootstrap approximation to the distribution of the M-estimator
is first order correct. The second order result in standardized case is formally stated in Theo-
rem 4.1.

Proposition 4.1. Suppose, the assumptions (A.1)–(A4), (A.5)(i) hold. Then there exist constant
C1 > 0 and a sequence of Borel sets Q1n ⊆ Rn, such that P((ε1, . . . , εn) ∈ Q1n) → 1 as n → ∞,
and given (ε1, . . . , εn) ∈ Q1n, n ≥ C1 such that there exists a sequence of statistics {β∗

n}n≥1 such
that

P∗
(
β∗

n solves (2.1) and
∥∥β∗

n − β̄n

∥∥ ≤ C1 · n−1/2 · (logn)1/2) ≥ 1 − δnn
−1/2,

where δn ≡ δn(ε1, . . . , εn) tends to 0.

Theorem 4.1. Let {β∗
n}n≥1 be a sequence of statistics satisfying Proposition 4.1 depending on

(ε1, . . . , εn). Assume, the assumptions (A.1)–(A.5) hold.

(a) Then there exist constant C2 > 0 and a sequence of Borel sets Q2n ⊆ Rn and polynomial
a∗
n(·,ψ,G∗) depending on first three moments of G∗

1 and on ψ(·), ψ ′(·) & ψ ′′(·) through
the residuals {ε̄1, . . . , ε̄n} such that given (ε1, . . . , εn) ∈ Q2n, with P((ε1, . . . , εn) ∈
Q2n) → 1, we have for n ≥ C2,

sup
B∈B

∣∣∣∣P∗
(
F∗

n ∈ B
) −

∫
B

ξ∗
n (x) dx

∣∣∣∣ ≤ δnn
−1/2,

where ξ∗
n (x) = (1 + n−1/2a∗

n(x,ψ,G∗))φ(x) and δn ≡ δn(ε1, . . . , εn) tends to 0.
(b) Suppose in addition assumption (A.6)(i) holds. Then we have,

sup
B∈B

∣∣P∗
(
F∗

n ∈ B
) − P(Fn ∈ B)

∣∣ = op

(
n−1/2).

Now, the quantity σ 2 is mostly unavailable in practical circumstances. Hence, the non-pivotal
quantity like Fn is very rare in use in providing valid inferences. It is more reasonable to ex-
plore the asymptotic properties of a pivotal quantity, like the studentized version of the M-
estimator β̄n. Depending on the observed residuals ε̄i = yi − x′

i β̄n, i ∈ {1, . . . , n}, the nat-
ural way to define an estimator of σ 2 is σ̂ 2

n where σ̂n = snτ
−1
n , τn = n−1 ∑n

i=1 ψ ′(ε̄i ) and
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s2
n = n−1 ∑n

i=1 ψ2(ε̄i ). Hence, the studentized M-estimator in regression setup may be defined

as Hn = √
nσ̂−1

n A1/2
n (β̄n −β). Define the studentized version of the corresponding bootstrapped

estimator as

H∗
n = √

nσ ∗−1
n σ̂n�̄

−1/2
n

(
β∗

n − β̄n

)
,

where σ ∗
n = s∗

nτ ∗−1
n , τ ∗

n = n−1 ∑n
i=1 ψ ′(ε∗

i ), s∗2
n = n−1 ∑n

i=1 ψ2(ε∗
i ) and σ̂ 2

n and �̄
−1/2
n are as

defined earlier.

Theorem 4.2. Suppose, the assumptions (A.1)–(A.5) hold.

(a) Then there exist constant C3 > 0 and a sequence of Borel sets Q3n ⊆ Rn and polynomial
ã∗
n(·,ψ,G∗) depending on first three moments of G∗

1 and on ψ(·), ψ ′(·) & ψ ′′(·) through
the residuals {ε̄1, . . . , ε̄n}, such that given (ε1, . . . , εn) ∈ Q3n, with P((ε1, . . . , εn) ∈
Q3n) → 1, we have for n ≥ C3,

sup
B∈B

∣∣∣∣P∗
(
H∗

n ∈ B
) −

∫
B

ξ̃∗
n (x) dx

∣∣∣∣ ≤ δnn
−1/2,

where ξ̃∗
n (x) = (1 + n−1/2ã∗

n(x,ψ,G∗))φ(x) and δn ≡ δn(ε1, . . . , εn) tends to 0.

Suppose in addition assumption (A.6)(i)′ holds. Then

(b) for the collection of Borel sets B defined by (3.1),

sup
B∈B

∣∣P∗
(
H∗

n ∈ B
) − P(Hn ∈ B)

∣∣ = Op

(
n−1/2);

(c) if 2Eψ2(ε1)Eψ(ε1)ψ
′(ε1) 
= Eψ ′(ε1)Eψ3(ε1), then there exists ε > 0 such that,

P
(

lim inf
n→∞

√
n
[

sup
B∈B

∣∣P∗
(
H∗

n ∈ B
) − P(Hn ∈ B)

∣∣] > ε
)

= 1.

Remark 4.1. Proposition 4.1 states that there exists a sequence of perturbation bootstrapped
estimator β∗

n within a neighborhood of length C ·n−1/2(logn)1/2 around the original M-estimator
β̄n outside a set of bootstrap probability op(n−1/2). This existence result is essential in finding
valid EEs in bootstrap regime. This can be compared with Theorem 2.3(a) of Lahiri [32], where
similar kind of result was shown in case of residual and generalized bootstrap.

Remark 4.2. Note that, where as the error term in approximating the distribution of M-estimator
by perturbation bootstrap is of order Op(n−1/2) in the prevalent studentize setup, it reduces
the order of the error of approximation to op(n−1/2) in simple standardized setup. This means
that the difference between coefficients corresponding to the term n−1/2 in the EEs of original
and bootstrapped estimator can be made arbitrarily small in standardized setup, but not in usual
studentized setup.

Remark 4.3. To understand part (c) of Theorem 4.2, consider the usual least square estimator. In
least square setup, the condition in the Theorem 4.2(c) reduces to Eε3 
= 0. This simply means
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that if the studentization in perturbation bootstrapped version is performed analogously as in
case of original least square estimator, then the bootstrap distribution can not correct the original
distribution upto second order. If this is investigated more deeply, then it can be observed that the
usual studentized perturbation bootstrap approximation can not correct for the skewness of the
error distribution F .

4.1.1. Examples

Theorem 4.2 concludes that the standard way of performing studentization of the bootstrapped
estimator is first order correct. In order to show that the usual studentized setup is not second
order correct, we consider following two important special cases with ψ(x) = x.

Example 4.1. Consider the observations {y1, . . . , yn} are coming from the distribution F with a
location shift μ. This in terms of regression model becomes

yi = μ + εi .

Hence, in this setup p = 1, β = μ and xi = 1 for all i ∈ {1, . . . , n}.
It can be shown that in this setup, ξ̃n(·) and ξ̃∗

n (·), the EE of Hn and H∗
n respectively, turn out

to be

ξ̃n(x) =
[

1 − n−1/2
{
b̃11

d

dx
+ 6−1b̃31

d3

dx3

}]
φ(x),

ξ̃∗
n (x) =

[
1 − n−1/2

{
b̃∗

11
d

dx
+ 6−1b̃∗

31
d3

dx3

}]
φ(x),

where

b̃11 = −2−1σ−3Eε3
1, b̃31 = −2σ−3Eε3

1,

b̃∗
11 = −2σ−1

n n−1
n∑

i=1

ε̄i , b̃∗
31 = σ−3

n − 12σ−1
n n−1

n∑
i=1

ε̄i .

It is clear that b̃∗
11 as well as b̃∗

31 are not converging respectively to b̃11 and b̃31 in probability
and hence the perturbation bootstrap method is not second order correct in the above setup when
the bootstrapped estimator is studentized in the usual manner.

Example 4.2. Consider the simple linear regression model

yi = β0 + β1xi + εi,

where β0 and β1 are parameters of interest and εi ’s are IID errors. This model, in terms of our
multivariate linear regression structure, can be written as yi = x̃′

iβ + εi where β = (β0, β1)
′ and

x̃i = (1, xi)
′. Hence, the EEs of the original and bootstrapped estimators up to the order o(n−1/2),
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after usual studentization, respectively becomes

ξ̃n(y1, y2) =
[

1 − n−1/2

{
2∑

j=1

b̃
∗(j)

11
∂

∂yj

+
3∑

j=0

b̃
(j,3−j)

31

j !(3 − j)!D
(j,3−j)

}]
φ(y1, y2),

ξ̃∗
n (y1, y2) =

[
1 − n−1/2

{
2∑

j=1

b̃
∗(j)

11
∂

∂yj

+
3∑

j=0

b̃
∗(j,3−j)

31

j !(3 − j)!D
(j,3−j)

}]
φ(y1, y2),

where

b̃
(j)

11 = −2−1

[
n−1

n∑
i=1

e′
j A−1/2

n x̃i

]
γ1,

b̃
∗(j)

11 = op(1),

where (e1, . . . , ep)′ is the standard basis of Rp , j = 1 or 2, γ1 is the coefficient of skewness of ε1,
An = n−1 ∑n

i=1 x̃i x̃
′
i = [ 1 x̄

x̄ x̄2

]
where x̄ = n−1 ∑n

i=1 xi and x̄2 = n−1 ∑n
i=1 x2

i . Ā2n is as defined

in general setup with x̃i in place of xi for i ∈ {1, . . . , n}. The form of the coefficients b̃
(j1,j2)

31 and

b̃
∗(j1,j2)

31 are given in the supplementary material (Das and Lahiri [14]) for all (j1, j2) ∈ {(a, b) :
a, b ∈ {0,1,2,3} and a + b = 3}.

Note that, the coefficients b̃
(j)

11 , 1 ≤ j ≤ p, all can not vanish together unless γ1 = 0 and hence

b̃
∗(j)

11 can not converge to b̃
(j)

11 unless γ1 = 0. Similarly, it can be shown that same condition is

required to have the closeness of the coefficients b̃
(j,3−j)

31 and b̃
∗(j,3−j)

31 . Hence, the two EEs can
not get closer unless γ1 = 0, similar to the Example 4.1. This is exactly what is stated in the part
(c) of Theorem 4.2 in most general form.

4.2. Modification to the bootstrapped pivot

As it has been seen that H∗
n, the usual studentized version of the perturbation bootstrapped es-

timator is not attending the desired optimal rate op(n−1/2), so in the perspective of statistical
inference, perturbation bootstrap is not advantageous over asymptotic normal approximation.
For the sake of obtaining second order correctness, define the modified studentized β∗

n as

H̃∗
n = √

n
(
σ̃ ∗

n

)−1
σ̂n�̄

−1/2
n

(
β∗

n − β̄n

)
, (4.1)

where σ̃ ∗
n = s̃∗

nτ̃ ∗−1
n , τ̃ ∗

n = n−1 ∑n
i=1 ψ ′(ε∗

i )G
∗
i , s̃∗2

n = n−1 ∑n
i=1 ψ2(ε∗

i )(G
∗
i − μG∗)2.

The bootstrapped statistic H̃∗
n can be seen to be achieving the optimal rate, namely op(n−1/2),

in approximating the original studentized M-estimator Hn, which is formally stated in the fol-
lowing theorem:

Theorem 4.3. Suppose, the assumptions (A.1)′–(A.5)′ hold. Also assume EG∗4
1 < ∞.
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(a) Then there exist constant C4 > 0 and a sequence of Borel sets Q4n ⊆ Rn and polynomial
ā∗
n(·,ψ,G∗) depending on first three moments of G∗

1 and on ψ(·), ψ ′(·) & ψ ′′(·) through
the residuals {ε̄1, . . . , ε̄n}, such that given (ε1, . . . , εn) ∈ Q4n, with P((ε1, . . . , εn) ∈
Q4n) → 1, we have for n ≥ C4,

sup
B∈B

∣∣∣∣P∗
(
H̃∗

n ∈ B
) −

∫
B

ξ̄∗
n (x) dx

∣∣∣∣ ≤ δnn
−1/2,

where ξ̄∗
n (x) = (1 + n−1/2ā∗

n(x,ψ,G∗))φ(x) and δn ≡ δn(ε1, . . . , εn) tends to 0.
(b) Suppose, in addition (A.6)(i)′ holds. Then, for the collection of Borel sets defined by (3.1),

sup
B∈B

∣∣P∗
(
H̃∗

n ∈ B
) − P(Hn ∈ B)

∣∣ = op

(
n−1/2).

Remark 4.4. The modification that is needed to make the perturbation bootstrap method correct
up to second order, suggests that besides incorporating the effect of bootstrap randomization
through ψ(·) and ψ ′(·) in the studentization factor of the bootstrap estimator, it is also essential to
blend properly the effect of randomization that is coming directly from the perturbing quantities
G∗

i ’s.

Remark 4.5. As pointed out by a referee, the usefulness of the above results depend criti-
cally on the rate of the probability P((ε1, . . . , εn ∈ Qin)), i = 1,2,3,4. Following the steps
of the proofs, it can be shown that P((ε1, . . . , εn ∈ Qn)) = 1 − O(n−1/2(logn)−2+γ2) where
Qn = ⋂4

i=1 Qin, for some γ2 ∈ (0,2), although the rate can be improved under moment condi-
tion stronger than (A.3)(ii). In general, if E|ψ(ε1)|2γ3 + E|ψ ′(ε1)|2γ3 + E|ψ ′′(ε1)|γ3 < ∞ for
some natural number γ3 ≥ 2, then analogously it can be shown that P((ε1, . . . , εn ∈ Qn)) =
1 − O(n−(2γ3−3)/2(logn)−γ3+γ2) for some γ2 ∈ (0, γ3). This implies that second order correct-
ness of perturbation bootstrap can be established in almost sure sense under higher moment
condition.

Remark 4.6. The condition (3.1) on the collection of Borel subsets B of Rp , that is considered
in the above theorems, is somewhat abstract. This condition is needed for achieving two goals.
One is to obtain valid EE for the normalized part of the underlying pivot (cf. Corollary 20.4
of Bhattacharya and Rao [7]) and the other one is to bound the remainder term with an order
o(n−1/2) with probability (or bootstrap probability) 1−o(n−1/2). These two together allow us to
get EE for the underlying pivots. A natural choice for B is the collection of all Borel measurable
convex subsets of Rp .

5. Extension to independent and non-identically distributed
errors

In this section, we will extend second order results of perturbation bootstrap to the model (1.1)
with independent and non-identically distributed [hereafter referred to as non-IID] errors. Clearly
the case of non-IID errors includes the situation when the regression errors are heteroscedastic.



S.O.C. of perturbation bootstrap 669

In many practical situations, the measurements obtained have different variability due to a num-
ber of reasons and hence it is crucial for an inference procedure to be robust towards the presence
of heteroscedasticity. We will show that perturbation bootstrap can approximate the exact distri-
bution of the regression M-estimator β̄n up to second order even when the errors are non-IID.

Before stating second order result in non-IID case, we describe briefly the literature available
on bootstrap methods in heteroscedastic regression. Although there is huge literature available
on bootstrap in homoscedastic regression, literature on bootstrap in heteroscedastic regression
models is limited. Wu [49] mentioned the limitation of residual bootstrap in heteroscedasticity
and introduced wild bootstrap in least square regression. Beran [5] gave justification behind con-
sistency of wild bootstrap. Liu [37] established second order correctness of wild bootstrap in
heteroscedastic least square regression when dimension p = 1. Liu [37] proposed a modification
of residual bootstrap in resampling stage and gave justification behind second order correctness.
You and Chen [50] proved consistency of wild bootstrap in approximating the distribution of least
square estimator in semiparametric heteroscedastic regression model. Davidson and Flachaire
[15] and Davidson and MacKinnon [16] developed wild bootstrap procedure for testing the coef-
ficients in heteroscedastic linear regression. Arlot [3] developed a resampling-based penalization
procedure for model selection based on exchangeable weighted bootstrap.

We state some additional assumptions needed to establish second order correctness. Define,
A1n = n−1 ∑n

i=1 xix′
iEψ ′(εi) and A2n = n−1 ∑n

i=1 xix′
iEψ2(εi).

(A.2) (iii)′′ n−2 ∑n
i=1 ‖xi‖12 + ∑n

i=1[‖z̃i‖4 max{1,E|ψ ′(εi)|4}] = O(n−1).
(A.3) (i)′′ Eψ(εi) = 0 for all i ∈ {1, . . . , n}.

(ii)′′ n−1 ∑n
i=1[E|ψ(εi)|6+υ +E|ψ ′(εi)|6+υ +E|ψ ′′(εi)|4+υ ] = O(1) for some υ > 0.

(A.6) (i)′′ (ψ(εn),ψ
′(εn),ψ

2(εn))
∞
n=1 satisfies Cramer’s condition in a uniform sense i.e. for

any positive b,

lim sup
n→∞

sup
‖(t1,t2,t3)‖>b

∣∣E(
exp

(
it1ψ(εn) + it2ψ

′(εn) + it3ψ
2(εn)

))∣∣ < 1.

(A.8) A1n and A2n both converge to non-singular matrices as n → ∞.

We will denote the assumptions (A.1)–(A.4) by (A.1)′′–(A.4)′′ when (A.2) is defined with
(iii)′′ instead of (iii) and (A.3) is defined with (i)′′, (ii)′′ in place of (i) and (ii) respectively.

5.1. Rate of perturbation bootstrap approximation

Note that when the regression errors are non-identically distributed,
√

nβ̄n has asymptotic vari-
ance A−1

1n A2nA−1
1n . Hence, the natural way of defining studentized pivot corresponding to β̄n

is

H̆n = √
n�̄

−1/2
n (β̄n − β),

where �̄
−1/2
n = Ā−1/2

2n Ā1n with Ā1n = n−1 ∑n
i=1 xix′

iψ
′(ε̄i ), Ā2n = n−1 ∑n

i=1 xix′
iψ

2(ε̄i ) and
ε̄i = yi − x′

i β̄n, i ∈ {1, . . . , n}. Define the corresponding bootstrap pivot as

H̆∗
n = √

n�
∗−1/2
n

(
β∗

n − β̄n

)
,
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where �
∗−1/2
n = A∗−1/2

2n A∗
1n with ε∗

i = yi − x′
iβ

∗
n, A∗

1n = n−1 ∑n
i=1 xix′

iψ
′(ε∗

i )G
∗
i and A∗

2n =
n−1 ∑n

i=1 xix′
iψ

2(ε∗
i )(Gi − μG∗)2, i ∈ {1, . . . , n}.

Theorem 5.1. Suppose, the assumptions (A.1)′′–(A.4)′′ and (A.5)(i) hold.

(a) Then there exist constant C5 > 0 and a sequence of Borel sets Q5n ⊆ Rn, such that
P((ε1, . . . , εn) ∈ Q5n) → 1 as n → ∞, and given (ε1, . . . , εn) ∈ Q5n, n ≥ C5 such that
there exists a sequence of statistics {β∗

n}n≥1 such that

P∗
(
β∗

n solves (2.1) and
∥∥β∗

n − β̄n

∥∥ ≤ C5 · n−1/2 · (logn)1/2) ≥ 1 − o
(
n−1/2).

(b) Suppose in addition (A.5)(ii), (iii)′ and (A.8) hold. Then there exist polynomial
ă∗
n(·,ψ,G∗) depending on first three moments of G∗

1 and on ψ(·), ψ ′(·) & ψ ′′(·) through
the residuals {ε̄1, . . . , ε̄n}, such that given (ε1, . . . , εn) ∈ Q5n, we have for n ≥ C5,

sup
B∈B

∣∣∣∣P∗
(
H̆∗

n ∈ B
) −

∫
B

ξ̆∗
n (x) dx

∣∣∣∣ ≤ δnn
−1/2,

where ξ̆∗
n (x) = (1 + n−1/2ă∗

n(x,ψ,G∗))φ(x) and δn ≡ δn(ε1, . . . , εn) tends to 0.
(c) Suppose, in addition to the assumptions (A.1)′′–(A.4)′′, (A.5)(i), (ii), (iii)′ and (A.8),

(A.6)(i)′′ holds. Then, for the collection of Borel sets defined by (3.1),

sup
B∈B

∣∣P∗
(
H̆∗

n ∈ B
) − P(H̆n ∈ B)

∣∣ = op

(
n−1/2).

Remark 5.1. The form of the studentized pivot H̆∗
n, defined for achieving second order cor-

rectness in non-IID case is different from H̃∗
n, due to the difference in asymptotic variances

of β̄n in two setups. In non-IID case, one cannot ignore computation of the negative square
root of a matrix at each bootstrap iteration. But Theorem 5.1 is more general than Theorem 4.3
in the sense that it also includes the case when errors are IID. Note that �̄

∗
n = Ā∗−1

1n Ā∗
2nĀ∗−1

1n

where Ā∗
1n = n−1 ∑n

i=1 xix′
iψ

′(ε∗
i ) and Ā∗

2n = n−1 ∑n
i=1 xix′

iψ
2(ε∗

i ) and σ ∗
n = s∗

nτ ∗−1
n where

τ ∗
n = n−1 ∑n

i=1 ψ ′(ε∗
i ), s∗2

n = n−1 ∑n
i=1 ψ2(ε∗

i ). We need to modify �̄
∗
n and σ ∗

n to �∗
n and σ̃ ∗

n

respectively to achieve second order correctness.

Remark 5.2. There is no difference in employing perturbation bootstrap and the usual residual
bootstrap with respect to the accuracy of inference. Under some mild conditions, both are sec-
ond order correct. But in view Theorem 5.1, the advantage of employing perturbation bootstrap
instead of residual counterpart is evident when the errors are no longer identically distributed.
Perturbation bootstrap continues to be S.O.C. in non-IID case without any modification, whereas
a modification in the resampling stage is required for residual bootstrap to achieve the same. To
see this, consider the heteroscedastic simple linear regression model

yi = βxi + εi, (5.1)
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where εi ’s are independent, Eεi = 0 and Eε2
i = σ 2

i . The least square estimator of β is
β̂ = ∑n

i=1 xiyi/
∑n

i=1 x2
i and hence Var(β̂) = ∑n

i=1 x2
i σ 2

i /(
∑n

i=1 x2
i )2. The bootstrap obser-

vations in residual bootstrap are y∗∗
i = xiβ̂ + e∗

i where {e∗
1, . . . , e∗

n} is a random sample from
{(e1 − ē), . . . , (en − ē)}, ē = n−1 ∑n

i=1 ei and ei = yi −xiβ̂ , i ∈ {1, . . . , n}, are least square resid-
uals. The residual bootstrapped least square estimator is β̂∗∗ = ∑n

i=1 xiy
∗∗
i /

∑n
i=1 x2

i . Hence,
Var(β̂∗∗|ε1, . . . , εn) = ∑n

i=1(ei − ē)2/
∑n

i=1 x2
i where n−1 ∑n

i=1[(ei − ē)2 − σ 2
i ] → 0 as n →

∞. Thus Var(β̂∗∗|ε1, . . . , εn) is not a consistent estimator of Var(β̂)and hence residual bootstrap
is not second order correct in approximating the distribution of β̂ when errors are heteroscedas-
tic. For details, see Liu [37]. On the other hand, if β̂∗ is the perturbation bootstrapped least square
estimator, then it is easy to show Var(β̂∗|ε1, . . . , εn) = ∑n

i=1 x2
i σ 2

i /(
∑n

i=1 x2
i )2 +Op(n−1). Ad-

ditionally, a centering adjustment is required in the definition of residual bootstrapped version of
the regression M-estimator to achieve second order correctness even when the regression errors
are IID (cf. Lahiri [32]); whereas in the perturbation bootstrap no adjustment is needed.

Remark 5.3. In view of second order correctness of bootstrap in heteroscedastic linear regres-
sion, Theorem 5.1 is the most general result available. Nonparametric or residual bootstrap fails
in heteroscedasticity, as shown by Liu [37]. Liu [37] developed a weighted bootstrap method
as a modification of residual bootstrap in least square setup for the simple linear regression
model (5.1). She proposed the weight to be xi/

∑n
i=1 x2

i corresponding to ith centered residual
(ei − ēn), i ∈ {1, . . . , n}, to achieve second order correctness. There is no general theory available
on weighted bootstrap for the multiple linear regression model (1.1) even in heteroscedastic least
square setup, to the best our knowledge.

6. Proofs

First, we define some notations. Throughout this section, C,C1,C2, . . . will denote generic
constants that do not depend on the variables like n,x, and so on. For a non-negative inte-
gral vector α = (α1, α2, . . . , αl)

′ and a function f = (f1, f2, . . . , fl) : Rl → Rl , l ≥ 1, write
|α| = α1 + · · · + αl , α! = α1! · · ·αl !, f α = (f

α1
1 ) · · · (f αl

l ). For t = (t1, . . . , tl)
′ ∈ Rl and α as

above, define tα = t
α1
1 · · · tαl

l . The collection B will always be used to denote the collection of
Borel subsets of Rp which satisfy (3.1). μG∗ and σ 2

G∗ will respectively denote mean and vari-
ance of G∗

1. We want to mention here that only the important steps are presented in the proofs
of the proposition and the theorems. For further details, see the supplementary material Das and
Lahiri [14]. Although the proofs for second order results of perturbation bootstrap go through
more or less same line as that for residual bootstrap in Lahiri [32], the advantage in perturbation
bootstrap is that the perturbing quantities are independent of the regression errors and hence it is
much easier to obtain suitable stochastic approximation to the bootstrapped pivot and finally the
EE than the same in case of residual bootstrap. On the negative side, in our proofs at least we
need Cramer’s condition separately on regression errors and on the perturbing quantities [see as-
sumptions (A.5) and (A.6)], whereas for residual bootstrap, one can derive a restricted Cramer’s
condition on resampled residuals from the Cramer’s condition on regression errors to obtain sec-
ond order correctness. Moreover, second order results can be established for residual bootstrap,
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after a modification, without any Cramer type condition in the case p = 1 (cf. Karabulut and
Lahiri [29]). We do not know yet if similar conclusion can be drawn in case of perturbation
bootstrap.

Before coming to the proofs we state some lemmas:

Lemma 6.1. Let, {Yi = (Yi1, Yi2)
′,1 ≤ i ≤ n} be a collection of mean zero independent random

vectors. Define, for some non random vectors l1i and l2i of dimensions p1 and p2 respectively
with

∑n
i=1 lji l′ji = Ipj

and γ̃n = (
∑2

j=1
∑n

i=1 ‖lji‖4)1/2 = O(n−1/2),

Ui = (
l′1iYi1, l′2iYi2

)′
, Vn = Cov

(
n∑

i=1

Ui

)
, Ũi = V−1/2

n Ui

for 1 ≤ i ≤ n, and Sn = ∑n
i=1 Ũi . Let α̃n = n−1 ∑n

i=1 E‖Yi‖3I (‖Yi‖2 > λγ̃ −1
n ), where I (·) is

the indicator function and λ satisfies 0 < λ < lim infn→∞ λn, λi = the smallest eigen value of
�i , �i = Cov(Yi ). Suppose, {M0n}n≥1, {Min}n≥1, i = 1, . . . , p be (p + 1) sequence of matri-
ces such that for each n ≥ 1, M0n is of order p × (p + r). and Min,1 ≤ i ≤ p, are of order
(p + r) × (p + r), p ≥ 1, r ≥ 1. Let, k = p + r , M̄0n = [0 : Ir ]r×k and M̃0n = [M′

0n : M̄′
0n]′.

Define the functions gn : Rk → Rp by gn(x) = M0nx + (x′M1nx, . . . ,x′Mpnx)′, x ∈ Rk , n ≥ 1.
Assume that

(a) there exists a constant k such that n−1 ∑n
i=1 E‖Yi‖3 < k for all n ≥ 1;

(b) α̃n = o(1);
(c) the characteristic function gn of Yn satisfies lim supn→∞ sup‖(t)‖>b |gn(t)| < 1 for all

b > 0;
(d) max{‖Min‖ : 1 ≤ i ≤ p} = O(γ̃n);
(e) ‖M0n‖ = O(1), lim infn→∞ inf{‖M̃0nu‖ : ‖u‖ = 1,u ∈ Rk} ≥ δ for some constant δ > 0.

Then for the class B of Borel sets satisfying (3.1),

sup
B∈B

∣∣∣∣P(
gn(Sn) ∈ B

) −
∫

B

ξ̊n(x) dx

∣∣∣∣ = o(γ̃n) as n → ∞,

where ξ̊n(·) = (1 +n−1/2å(·))φD̊n
(·), D̊n = M0nM′

0n and å(·) is a polynomial whose coefficients
are continuous functions of E(Yi )

α, |α| ≤ 3 and i ∈ {1, . . . , n}.

Proof. The above lemma follows from Theorem 20.6 of Bhattacharya and Rao [7] and retracting
the proofs of Lemma 3.1 and 3.2 of Lahiri [32]. �

Lemma 6.2. Under the assumptions (A.1)–(A.3) or (A.1)′′–(A.3)′′, it follows that

(
n∑

i=1

‖v̆i‖4

)1/2

= Op

(
n−1/2).

Proof. See supplementary material (Das and Lahiri [14]). �
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Lemma 6.3. Under the assumptions (A.2)(i) and (A.2)(iii) or (A.2)(iii)′′, the following is true.

(a) (
∑n

i=1 ‖di‖6)1/4 + (
∑n

i=1 ‖di‖4)1/2 = O(n−1/2).
(b)

∑n
i=1 ‖xi‖j = O(n) for j = 3,4,5,6,6 + 2α when the errors are IID and for j =

6 + 2α,3, . . . ,12 when the errors are non-IID.

Proof. This lemma follows from assumption (A.2) and by applying Hölders inequality. �

We present only outline of the proofs of the main results from Sections 4 and 5 to save space.
For details, see the supplementary material (Das and Lahiri [14]).

6.1. Outline of the proof of Proposition 4.1

Suppose,

n∑
i=1

xiψ
(
yi − x′

it
∗
n

)
G∗

i = 0.

Then by Taylor’s expansion we have,

n∑
i=1

xiψ(ε̄i)G
∗
i +

n∑
i=1

xix′
i

(
β̄n − t∗n

)
ψ ′(ε̄i )G

∗
i +

n∑
i=1

xi

[x′
i (β̄n − t∗

n)]2

2
ψ ′′(ui)G

∗
i = 0, (6.1)

where for each i ∈ {1, . . . , n}, |ui − ε̄i | ≤ |ε∗
i − ε̄i |.

Now (6.1) can be written as

L∗
n

(
t∗n − β̄n

) = �∗
n + R∗

n (6.2)

where

�∗
n = n−1

n∑
i=1

xiψ(ε̄i)
(
G∗

i − μG∗
)
,

L∗
n = n−1

n∑
i=1

xix′
iψ

′(ε̄i )G
∗
i ,

E∗L∗
n = n−1

n∑
i=1

xix′
iψ

′(ε̄i )μG∗ ,

R∗
n = n−1

n∑
i=1

xi

[x′
i (β̄n − t∗n)]2

2
ψ ′′(ui)G

∗
i .

By Fuk and Nagaev inequality [21] [hereafter referred to as FN(71)], Lemma 6.3, the Lipschitz
property of ψ ′′(·) and the Taylor’s expansion of ψ(·) and ψ ′(·), it follows that there exist a
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constant C > 0 and a sequence of Borel sets Qn ⊆ Rn, such that given (ε1, . . . , εn) ∈ Qn with
P((ε1, . . . , εn) ∈ Qn) → 1 , for n ≥ C and any 0 < ε < 1,

P∗

(∣∣∣∣∣
n∑

i=1

‖xi‖3+α
(
G∗

i − EG∗
i

)∣∣∣∣∣ > nε

)
= o

(
n−1/2), (6.3)

P∗

(∣∣∣∣∣
n∑

i=1

xij xikψ
′(ε̄i )

(
G∗

i − EG∗
i

)∣∣∣∣∣ > nε

)
= o

(
n−1/2), j, k ∈ {1, . . . , p}, (6.4)

P∗
(∥∥�∗

n

∥∥ > C · n−1/2(logn)1/2) = o
(
n−1/2). (6.5)

Hence, from (6.3)–(6.5), on the set Qn and given (ε1, . . . , εn) ∈ Qn with P((ε1, . . . , εn) ∈
Qn) → 1, for n ≥ C1, (6.2) can be rewritten as (t∗n − β̄n) = fn(t∗n − β̄n), where fn is a
continuous function from Rp to Rp satisfying P∗(‖fn(t∗n − β̄n)‖ ≤ C1 · n−1/2(logn)1/2) =
1 − o(n−1/2) as n → ∞ whenever ‖t∗n − β̄n‖ ≤ C1 · n−1/2(logn)1/2 for some constants C1 > 0.

Hence, Proposition 4.1 follows by Brouwer’s fixed point theorem.

6.2. Outline of the proof of Theorem 4.1

Consider, the sequence of statistics {β∗
n}n≥1 which satisfies the proposition. Then (6.2) can be

written as

√
n
(
β∗

n − β̄n

) = L∗−1
n

√
n
[
�∗

n + χ̃∗
n + R∗

1n

]
(6.6)

= L∗−1
n

√
n�∗

n + R∗
2n, (6.7)

where χ̃∗
n = n−1 ∑n

i=1 xi
[x′

i (β
∗
n−β̄n)]2

2 ψ ′′(ε̄i )G
∗
i .

Now, by FN(71), for some constant C > 0,

P∗
(∥∥R∗

1n

∥∥ > C · n−(2+α)/2(logn)(2+α)/2) = op

(
n−1/2)

and

P∗
(∥∥R∗

2n

∥∥ > C · n−1/2(logn)
) = op

(
n−1/2).

Again,

L∗−1
n = (

E∗L∗
n

)−1 + W ∗
n + Z̃∗

n, (6.8)

where

W ∗
n = (

E∗L∗
n

)−1(E∗L∗
n − L∗

n

)(
E∗L∗

n

)−1
,

Z̃∗
n = (

E∗L∗
n

)−1(E∗L∗
n − L∗

n

)(
E∗L∗

n

)−1(E∗L∗
n − L∗

n

)
L∗−1

n .
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Now, it can be shown by FN(71) that for some constant C1 > 0, as n ≥ C1,

P∗
(∥∥Z̃∗

n

∥∥ > C1 · n−1/2(logn)−1)
≤ P∗

(∥∥L∗
n − E∗L∗

n

∥∥ > C1 · n−1/4(logn)−1/2)
= op

(
n−1/2).

(6.9)

Therefore, it follows that there exists C2 > 0 and a sequence of Borel sets Q2n, such that
P((ε1, . . . , εn) ∈ Q2n) → 1 as n → ∞, and given (ε1, . . . , εn) ∈ Q2n and n ≥ C2,

√
n
(
β∗

n − β̄n

) = (
E∗L∗

n

)−1√
n�∗

n + W ∗
n

√
n�∗

n + (
E∗L∗

n

)−1√
nχ∗

n + R∗
3n, (6.10)

where

χ∗
n = n−1

n∑
i=1

xi

[x′
i ((E∗L∗

n)
−1�∗

n)]2

2
ψ ′′(ε̄i )μG∗

and

P∗
(∥∥R∗

3n

∥∥ = o
(
n−1/2)) = 1 − o

(
n−1/2).

Since �̄
−1/2
n = Op(1), so by argument similar to (4.12) of Qumsiyeh [43], we have

sup
B∈B

∣∣P∗
(
F∗

n ∈ B
) − P∗

(
U∗

n ∈ B
)∣∣ = op

(
n−1/2), (6.11)

where U∗
n = √

n�̄
−1/2
n [(E∗L∗

n)
−1�∗

n + W ∗
n �∗

n + (E∗L∗
n)

−1χ∗
n ].

Now, for all 1 ≤ i ≤ n, defining Y ∗
i = (G∗

i − μG∗), X∗
i = v̆iY

∗
i , V∗

n = ∑n
i=1 Cov∗(X∗

i ), X̃∗
i =

V∗−1/2
n X∗

i and S∗
n = ∑n

i=1 X̃∗
i , it can be established that

U∗
n = M∗

0nS∗
n + (

S∗′
n M∗

1nS∗
n, . . . ,S∗′

n M∗
pnS∗

n

)′
, (6.12)

where M∗
0n = Op(1) and M∗

jn = Op(n−1/2) for all j ∈ {1, . . . , p}.
Therefore, by Lemmas 6.1 and 6.2,

sup
B∈B

∣∣∣∣P∗
(
U∗

n ∈ B
) −

∫
B

ξ∗
n (x) dx

∣∣∣∣ = op

(
n−1/2) as n → ∞, (6.13)

where

ξ∗
n (x) =

[
1 − n−1/2

{ ∑
|ν|=1

b
∗(ν)
11 Dν +

∑
|ν|=3

b
∗(ν)
31

ν! Dν

}]
φ(x). (6.14)

Now, the coefficients b
∗(ν)
11 and b

∗(ν)
31 can be computed using the transformation techniques of

Bhattacharya and Ghosh [6]. If ν1 is a p × 1 vector with all the elements being 0, except the j th
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one and ν2 is a p × 1 vector with all the elements being 0, except the j1, j2 and j3 positions then
after some algebraic calculations it can be shown that

b
∗(ν1)
11 =

p∑
k=1

hjkn

(
n−1

n∑
i=1

[
z′
iE

∗
knĀ−1

1n xiψ(ε̄i)ψ
′(ε̄i )

])

(6.15)

+ (2n)−1
n∑

i=1

a∗
jinx′

iĀ
−1
1n Ā2nĀ−1

1n xiψ
′′(ε̄i ),

b
∗(ν2)
31 = n−1

n∑
i=1

[(
3∏

m=1

a∗
jmin

)
ψ3(ε̄i )

]

+ 2n−2
n∑

i,j=1

[
a∗
j1in

a∗
j2in

(
p∑

k=1

hj3knz′
iE

∗
knĀ−1

1n xj

)
ψ2(ε̄i )ψ(ε̄j )ψ

′(ε̄j )

]

+ 2n−2
n∑

i,j=1

[
a∗
j1in

a∗
j3in

(
p∑

k=1

hj2knz′
iE

∗
knĀ−1

1n xj

)
ψ2(ε̄i )ψ(ε̄j )ψ

′(ε̄j )

]
(6.16)

+ 2n−2
n∑

i,j=1

[
a∗
j2in

a∗
j3in

(
p∑

k=1

hj1knz′
iE

∗
knĀ−1

1n xj

)
ψ2(ε̄i )ψ(ε̄j )ψ

′(ε̄j )

]

+ 3n−3
n∑

i,j,l=1

a∗
j1in

a∗
j2in

a∗
j3in

(
x′
j Ā−1

1n xlx′
lĀ

−1
1n xi

)
ψ ′′(ε̄l)ψ

2(ε̄i )ψ
2(ε̄j ),

where Ā1n and Ā2n are as defined earlier and Ā−1/2
2n = (h1n, . . . ,hpn), h′

jnxi = a∗
jin, hjn =

(h1jn, . . . , hpjn), j ∈ {1, . . . , p}, i ∈ {1, . . . , n} and E∗
kn is a q × p matrix with ‖E∗

kn‖ ≤ q for all
k ∈ {1, . . . , p}.

Now, one can find the two term EE of Fn = √
nσ−1A1/2

n (β̄n −β) in similar way such that (for
details, see Lahiri [32])

sup
B∈B

∣∣∣∣P(Fn ∈ B) −
∫

B

ξn(x) dx

∣∣∣∣ = o
(
n−1/2) as n → ∞, (6.17)

where

ξn(x) =
[

1 − n−1/2
{ ∑

|ν|=1

b
(ν)
11 Dν +

∑
|ν|=3

b
(ν)
31

ν! Dν

}]
φ(x), (6.18)

where the coefficients b
(ν1)
11 and b

(ν2)
31 are such that for all j, j1, j2, j3 ∈ {1, . . . , p}, (b∗(ν1)

11 −b
(ν1)
11 )

and (b
∗(ν2)
31 − b

(ν2)
31 ) both can be shown to converge in probability to 0. Hence by (6.12)–(6.18),

Theorem 4.1 follows.
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6.3. Outline of the proof of Theorem 4.2

We have,

H∗
n = √

nσ ∗−1
n σ̂n�̄

−1/2
n

(
β∗

n − β̄n

)
, (6.19)

where σ ∗
n is as defined earlier. Now using Taylor’s expansion and Lipschitz property of ψ ′′(·), it

can be established that

H∗
n = F∗

n − √
nσ̂n�̄

−1/2
n Z∗

n

((
E∗L∗

n

)−1
�∗

n

) + R∗
4n, (6.20)

where

Z∗
n = (

2s3
n|τn|

)−1

[
2τns

2
n

(
1

n

n∑
i=1

ψ ′′(ε̄i )
[
x′
i

((
E∗L∗

n

)−1
�∗

n

)])

− τ 2
n

(
2

n

n∑
i=1

ψ(ε̄i)ψ
′(ε̄i )

[
x′
i

((
E∗L∗

n

)−1
�∗

n

)])]

and there exist constants C3 > 0 and a sequence of Borel sets Q3n such that P(Q3n) ↑ 1 and
given (ε1, . . . , εn) ∈ Q3n and n ≥ C3,

P∗
(∥∥R∗

4n

∥∥ = o
(
n−1/2)) = 1 − o

(
n−1/2). (6.21)

Therefore, writing H∗
n as H∗

n = Ũ∗
n + R∗

4n, we have

Ũ∗
n = M̃0n∗S∗

n
+ (

S∗′
n M̃1n∗S∗

n
, . . . ,S∗′

n M̃pn∗S∗
n

)′
, (6.22)

where M̃0n∗ = Op(1) and M̃∗
jn = Op(n−1/2) for all j ∈ {1, . . . , p}.

Hence, by Lemma 6.1,

sup
B∈B

∣∣∣∣P∗
(
Ũ∗

n ∈ B
) −

∫
B

ξ̃∗
n (x) dx

∣∣∣∣ = op

(
n−1/2) as n → ∞ (6.23)

where

ξ̃∗
n (x) =

[
1 − n−1/2

{ ∑
|ν|=1

b̃
∗(ν)
11 Dν +

∑
|ν|=3

b̃
∗(ν)
31

ν! Dν

}]
φ(x). (6.24)

Hence part (a) follows by (4.12) of Qumsiyeh [43].
Suppose the two term EE of the original studentized regression M-estimator Hn =√
nσ̂−1

n A1/2
n (β̄n − β) is

ξ̃n(x) =
[

1 − n−1/2
{ ∑

|ν|=1

b̃
(ν)
11 Dν +

∑
|ν|=3

b̃
(ν)
31

ν! Dν

}]
φ(x). (6.25)



678 D. Das and S.N. Lahiri

Now part (b) of Theorem 4.2 follows directly by comparing (6.24) and (6.25). Again after some
algebraic calculations, it can be shown that b̃

(ν)
11 and b̃

(ν)
31 both contain terms involving [2Eψ2(ε1)

Eψ(ε1)ψ
′(ε1)−Eψ ′(ε1)Eψ3(ε1)] which cannot be replicated by the terms present in b̃

∗(ν)
11 and

b̃
∗(ν)
31 (cf. Supplementary material (Das and Lahiri [14])). Hence part (c) of Theorem 4.2 follows.

6.4. Outline of the proof of Theorem 4.3

We have the modified studentized bootstrapped M-estimator as,

H̃∗
n = √

n
(
σ̃ ∗

n

)−1
σ̂n�̄

−1/2
n

(
β∗

n − β̄n

)
, (6.26)

where σ̃ ∗
n = s̃∗

nτ̃ ∗−1
n , τ̃ ∗

n = n−1 ∑n
i=1 ψ ′(ε∗

i )G
∗
i and s̃∗2

n = n−1 ∑n
i=1 ψ2(ε∗

i )(G
∗
i − μG∗)2. Also

suppose, τ̄n = μG∗τn and s̄2
n = σ 2

G∗s2
n .

Now using the same line of arguments which is working behind (6.20) in the proof of Theo-
rem 4.2, it can be shown that

H̃∗
n = F∗

n − √
nσ̂n�̄

−1/2
n

(
Z∗

n − Z̄∗
n

)((
E∗L∗

n

)−1
�∗

n

) + R∗
5n, (6.27)

where Z̄∗
n is as defined in the proof of Theorem 4.2 and Z̃∗

n is defined as

Z̄∗
n = 2−1(τ̄ns̄n)

−2

[
2τ̄ns̄

2
n

(
n−1

n∑
i=1

ψ ′(ε̄i )
(
G∗

i − μG∗
))

− τ̄ 2
n

(
n−1

n∑
i=1

ψ2(ε̄i )
[(

G∗
i − μG∗

)2 − σ 2
G∗

])]

and there exist constant C4 > 0 and a sequence of Borel sets Q4n such that P(Q4n) ↑ 1 and given
(ε1, . . . , εn) ∈ Q4n and n ≥ C4,

P∗
(∥∥R∗

5n

∥∥ = o
(
n−1/2)) = 1 − o

(
n−1/2). (6.28)

Therefore, defining Y ∗
1i = G∗

i − μG∗ , Y ∗
2i = (G∗

i − μG∗)2 − σ 2
G∗ , X∗

i = (v̆′
iY

∗
1i , n

−1/2ψ2(ε̄i ) ×
Y ∗

2i )
′, V∗

n = ∑n
i=1 Cov∗(X∗

i ), X̃∗
i = V∗−1/2

n X∗
i , S̄∗

n = ∑n
i=1 X̃∗

i with v̄i defined with z̆i in place
of zi .

Hence, we have H̃∗
n as H̃∗

n = Ū∗
n + R∗

5n, where

Ū∗
n = M̄∗

0nS̄∗
n + (

S̄∗′
n M̄∗

1nS̄∗
n, . . . , S̄∗′

n M̄∗
pnS̄∗

n

)′ (6.29)

with M̄∗
0n = Op(1) and M̄∗

jn = Op(n−1/2) for all j ∈ {1, . . . , p}.
Hence, there exists a two term EE ξ̄∗(·), as in Theorem 4.2, such that

sup
B∈B

∣∣∣∣P∗
(
H̃∗

n ∈ B
) −

∫
B

ξ̄∗
n (x) dx

∣∣∣∣ = op

(
n−1/2) as n → ∞. (6.30)
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Now, ξ̄∗
n (·) can be found explicitly as in standardized case. See supplementary material Das

and Lahiri [14] for more details. Again if ξ̄∗
n (·) is compared with ξ̃n(·), given by (6.25), then it can

be established that all the coefficients in ξ̄∗
n (·) are close in probability to that of ξ̃n(·), unlike the

case of naive studentized bootstrapped estimator. One point we want to make here that the term
Z̄∗

n which is present in the expression of H̃∗
n, unlike the expression of H∗

n, introduces important
third order terms which are crucial in getting second order correctness. Therefore, Theorem 4.3
follows.

6.5. Outline of the proof of Theorem 5.1

See supplementary material (Das and Lahiri [14]).

7. Conclusion

Second order results of Perturbation Bootstrap method in regression M-estimation are estab-
lished. It is shown that the classical way of studentization in perturbation bootstrap setup is not
sufficient for correcting the distribution of the regression M-estimator upto second order. This is a
general statement corresponding to the fact that the usual studentized perturbation bootstrapped
estimator is not capable of correcting the effect of skewness of the error distribution in least
square regression. Novel modification is proposed in general setup by properly incorporating the
effect of the randomization of the random perturbing quantities in the prevalent studentization
factor and is shown as second order correct in both IID and non-IID error setup. Thus, in a way
the results in this paper establish perturbation bootstrap method as a refinement of the approx-
imation of the exact distribution of the regression M-estimator over asymptotic normality. The
second order result in non-IID case establishes robustness of the perturbation bootstrap towards
the presence of heteroscedasticity, similar to the wild bootstrap, but in the more general setup of
M-estimation. This is an important finding from the perspective of S.O.C. inferences regarding
the regression parameters.
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