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We discuss the convergence in distribution of the r-fold (reverse) integrated empirical process in the space
Lp , for 1 ≤ p ≤ ∞. In the case 1 ≤ p < ∞, we find the necessary and sufficient condition on a positive
random variable X so that this process converges weakly in Lp . This condition defines a Lorentz space and
can be also characterized in terms of several integrability conditions related to the process {(X− t)r+ : t ≥ 0}.
For p = ∞, we obtain an integrability requirement on X guaranteeing the convergence of the integrated
empirical process. In particular, these results imply a limit theorem for the stop-loss distance between the
empirical and the true distribution. As an application, we derive the asymptotic distribution of an estimator
of the Zolotarev distance between two probability distributions. The connections of the involved processes
with equilibrium distributions and stochastic integrals with respect to the Brownian bridge are also briefly
explained.

Keywords: distributional limit theorems; integrated Brownian bridge; integrated empirical process; Lorentz
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1. Introduction

Empirical processes play a central role in asymptotic statistics. Applications of the widely devel-
oped theory of empirical processes continuously arise in non-parametric statistics. For instance,
many estimators are constructed by a plug-in approach, that is, the true (and unknown in prac-
tice) distribution of the underlying random variable is replaced with the empirical distribution
corresponding to a random sample. The asymptotic properties of the estimator are often derived
by analyzing the behavior of the empirical process in a suitable metric space and the help of other
mathematical tools, such as invariance principles or continuous mapping theorems (see van der
Vaart and Wellner [32]). The development of central limit theorems (CLT) for Banach valued
random variables (see, for instance, Araujo and Giné [2] and Ledoux and Talagrand [19]), and
the analysis of the convergence of the empirical process in such spaces, has also been essential for
understanding the asymptotic behavior of important elements in statistics, such as Cramér-von
Mises type statistics (see Shorack and Wellner [30] or del Barrio et al. [6]). As apparent in the
recent book by Giné and Nickl [10], empirical processes are also in the core of the probabilistic
foundations of infinite-dimensional statistical models.

Throughout this paper, unless noted otherwise, X is a non-degenerate and positive random
variable with (cumulative) distribution function F , and X1, . . . ,Xn (n ∈ N) is a random sample
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from X. We denote by Fn the classical empirical distribution function of the sample, i.e.,

Fn(t) := 1

n

n∑
i=1

I{Xi≤t}, n ∈N, t ≥ 0,

where IA stands for the indicator function of the set A. In the sequel, En is the empirical process
associated with X, that is,

En(t) := √
n
(
Fn(t) − F(t)

)
, n ∈ N, t ≥ 0. (1)

For 1 ≤ p ≤ ∞, we consider the space Lp ≡ Lp([0,∞),A,m), where A and m are the
Lebesgue σ -algebra and measure, respectively, of equivalence classes of measurable functions
f : [0,∞) −→R endowed with the norm

‖f ‖p :=

⎧⎪⎪⎨
⎪⎪⎩

(∫ ∞

0

∣∣f (x)
∣∣p dx

)1/p

, if 1 ≤ p < ∞,

ess sup
x∈[0,∞)

∣∣f (x)
∣∣, if p = ∞.

In this work, we discuss the asymptotic behavior in Lp of the r-fold (reverse) integrated em-
pirical process, that is, the process recursively defined by

I
[1]
n (t) :=

∫ ∞

t

En(x)dx and I
[r]
n (t) :=

∫ ∞

t

I
[r−1]
n (x)dx, r = 2,3, . . . .

Upon integration by parts, this process can be expressed as

I
[r]
n (t) = 1

�(r)

∫ ∞

t

(x − t)r−1
En(x)dx, n ∈ N, t ≥ 0, r ≥ 1, (2)

where �(·) is the Euler gamma function. This alternative representation of I[r]n makes sense for
non-integer values of r . We therefore consider real values of r ∈ [1,∞). The process I[1]

n will be
simply denoted by In.

The asymptotic behavior of En in L1 is well-understood and it has been deeply discussed in
del Barrio et al. [7]. For instance, it is known that En converges in distribution to BF (the F -
Brownian bridge) in L1 if and only if X belongs to the Lorentz space L2,1 (see Section 2 for the
definition of this space). We recall that the F -Brownian bridge is the process BF := B◦F , where
B is a standard Brownian bridge on [0,1], that is, a centered Gaussian process with covariance
function γ (s, t) = s ∧ t − st and continuous paths, with probability 1. Nevertheless, it should be
remarked that the result that asserts the convergence of En in L1 cannot be directly applied to
derive the limiting distribution of In in L1 because the linear mapping

ξ(f )(t) :=
∫ ∞

t

f (x)dx, t ≥ 0,

is not continuous, not even well-defined, from L1 to L1.
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Obviously, as En converges to BF in several metric spaces, the natural candidate for being the
(weak) limit of I[r]n in (2) is the r-fold (reverse) integrated F -Brownian bridge,

I
[r]
F (t) := 1

�(r)

∫ ∞

t

(x − t)r−1
BF (x)dx, t ≥ 0, r ≥ 1. (3)

Again, for simplicity, I[1]
F is denoted by IF . The main goal of this work is to find conditions on

the random variable X so that I[r]n converges weakly to I
[r]
F in Lp .

Apart from the possible independent theoretical interest of the results in this paper, the main
ideas of this work can also be potentially useful to determine the asymptotic distribution of func-
tionals in which integrals of empirical processes are involved. This may occur when considering
the empirical counterpart of quantities related to integrals of distribution functions. We briefly
mention three contexts in which this frequently happens.

1. Reliability theory: One of the main topics in reliability theory is the notion of the mean
residual life function of a positive random variable X (see, for instance, Lai and Xie [18]), defined
by

μ(t) := E(X − t |X > t) = E(X − t)+
1 − F(t)

= 1

1 − F(t)

∫ ∞

t

(
1 − F(x)

)
dx, t ≥ 0,

where (a)+ := max{a,0} is the positive part of the real number a. The function μ(t) character-
izes a lifetime distribution and there are several ageing notions defined in terms of the behavior
of μ(t).

Additionally, if 0 < μ := EX < ∞, X is said to be harmonic new better than used in expecta-
tion (HNBUE) if ∫ ∞

t

(
1 − F(x)

)
dx ≤ μ exp(−t/μ) for all t ≥ 0. (4)

Analogously, X is harmonic new worse than used in expectation (HNWUE) if the reverse in-
equality in (4) holds. The HNBUE (respectively, HNWUE) class is fairly large and includes all
the usual ageing (respectively, anti-ageing) classes of life distributions (see Lai and Xie [18] or
Marshall and Olkin [21]).

2. Probability metrics: Let X and Y be two random variables with distribution functions F

and G, respectively. For r ∈N and 1 ≤ p ≤ ∞, the stop-loss metric of order r in Lp (see Rachev
et al. [26]) is defined by

dr,p(F,G) := 1

r!
∥∥π

[r]
X − π

[r]
Y

∥∥
p
, (5)

where

π
[r]
X (t) := E(X − t)r+ and π

[r]
Y (t) := E(Y − t)r+, t ∈ R.

In risk theory (see Denuit et al. [8]), the metrics d1,∞ and d1,1 are respectively called the stop-
loss distance and the integrated stop-loss distance. By Fubini’s theorem, it can be readily checked
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that

dr,p(F,G) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

�(r)

(∫ ∞

−∞

∣∣∣∣
∫ ∞

t

(x − t)r−1(F(x) − G(x)
)

dx

∣∣∣∣
p

dt

)1/p

, if p < ∞,

1

�(r)
sup
t∈R

∣∣∣∣
∫ ∞

t

(x − t)r−1(F(x) − G(x)
)

dx

∣∣∣∣, if p = ∞.

(6)

This metric is closely related to the so-called Zolotarev metric of order r in Lp (see Section 5
for details).

From (6), we see that
√

ndr,p(Fn,F ) = ‖I[r]n ‖p . Hence, the convergence of the process I[r]n in
Lp immediately translates into a limit theorem for the stop-loss distance between the empirical
and the true distribution (see Remarks 2 and 7 in Section 3).

3. Stochastic orderings: Let X and Y be two random variables with distribution functions F

and G, respectively. It is said that X is less than or equal to Y in the stop-loss order (see, for
instance, Denuit et al. [8]) if∫ ∞

t

(
F(x) − G(x)

)
dx ≥ 0, for all t ∈ R.

This relation is also called the risk-seeking stochastic dominance rule in risk theory (see
Levy [20]) and it is closely related to other important stochastic orders such as the (increasing)
convex order and the Lorenz order (see Shaked and Shanthikumar [29]). Higher order stochas-
tic dominance rules can be defined analogously by integrating recursively. Many inequality and
poverty measures, such as (generalized) Gini indices and Lorenz curves, can also be expressed
by means of integrals of distribution functions.

The results in this paper differ substantially from those obtained by Henze and Nikitin [14,
15], where the authors considered integrals of the empirical process with respect to the empir-
ical measure. In this way, the integrability problems that arise in an infinite measure space are
avoided. Integrated empirical distribution functions and integrated Brownian motion processes
also appear in the context of the asymptotic theory of nonparametric estimates of convex func-
tions (see Groeneboom et al. [12,13]). In this set of problems, the convergence issues come down
to the local behavior of the integrated processes and the limiting process is a (drifted) version of
integrated Brownian motion rather than Brownian bridge. Other integrated processes have been
considered in different fields. For instance, there is a substantial interest in the integrated Brow-
nian motion in connection with “small ball probabilities” (see Chen and Li [5]). In the same
direction, Nazarov and Nikitin [22] deal with integrated Gaussian processes.

In the next section, we introduce the necessary definitions and some preliminary technical re-
sults. We recall some basic facts and properties of Lorentz spaces. We also concisely summarize
previos well-known results on the weak convergence of random variables taking values in Lp .
In Section 3, we establish the most significant contributions of this paper. For 1 ≤ p < ∞, we
characterize the convergence in distribution of I[r]n in Lp by means of several equivalent integra-
bility conditions, such as the membership of X to a certain Lorentz space and others related to
the process {(X − t)r+ : t ≥ 0}. These conditions also amount to the convergence of the empirical
process in a weighted Lp space. We also obtain a sufficient condition that guarantees the weak
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convergence of I[r]n in L∞. The techniques in the proofs differ depending on the value of p. In
the case 1 ≤ p < ∞, one of the ingredients of the proof of the main result (Theorem 1) is the
(functional) CLT in Lp spaces. However, when p = ∞, we show that, under appropriate as-
sumptions, the process I[r]n is asymptotically tight (Theorem 2). In Section 4, we point out some
properties of the Gaussian process IF . Section 5 illustrates the usefulness of the ideas in this
paper by deriving the asymptotic distribution of an estimator of the Zolotarev distance between
two probability distributions. Finally, some concluding remarks, in which we discuss the rela-
tionships of the involved processes with equilibrium distributions and stochastic integrals with
respect to the Brownian bridge, close the paper.

2. Definitions and auxiliary results

For 0 < p,q < ∞, the Lorentz space Lp,q ≡ Lp,q(�,F,P) of real-valued random variables is
defined by

Lp,q :=
{
X : ‖X‖p,q :=

(
q

∫ ∞

0

(
tpP

(|X| > t
))q/p dt

t

)1/q

< ∞
}
,

where (�,F,P) is the underlying probability space (see Ledoux and Talagrand [19], page 10).
Note that X ∈ Lp,q if and only if X fulfills the integrability condition �p,q(X) < ∞, where �p,q

is the functional given by

�p,q(X) :=
∫ ∞

0
tq−1(P

(|X| > t
))q/p dt.

In particular, Lp,p ≡ Lp is the usual space of random variables on (�,F,P) such that E|X|p <

∞. It can also be shown that Lp,q1 ⊂ Lp,q2 , whenever q1 ≤ q2 (see Grafakos [11], Section 1.4).
Further, it is easy to check that Lp+ε ⊂ Lp,q , for all ε > 0. Observe additionally that X ∈ Lpr,qr

if and only if |X|r ∈ Lp,q , for all r > 0.
For 1 ≤ p < ∞ and r ≥ 0, we introduce the following space of equivalence classes of measur-

able functions f : [0,∞) −→R given by

Wp,r :=
{
f : ‖f ‖Wp,r :=

(∫ ∞

0
tpr

∣∣f (t)
∣∣p dt

)1/p

< ∞
}
. (7)

Observe that Wp,r is a weighted Lp space and Wp,0 ≡ Lp .
We define the linear map ξr : Wp,r −→ Lp given by

ξr (f )(t) := 1

�(r)

∫ ∞

t

(x − t)r−1f (x)dx, t ≥ 0, r ≥ 1. (8)

The map ξr connects I
[r]
n with the empirical process as ξr (En) = I

[r]
n (and ξr (BF ) = I

[r]
F ). It is

easy to see that ξr is a continuous mapping from Wp,r to Lp using the following lemma, a direct
consequence of an inequality by G.H. Hardy (see Bennett and Sharpley [3], equation (3.19),
page 124).
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Lemma 1. For 1 ≤ p < ∞, the following inequality holds∫ ∞

0

(∫ ∞

t

∣∣f (x)
∣∣dx

)p

dt ≤ pp

∫ ∞

0
xp

∣∣f (x)
∣∣p dx. (9)

We also specify that if S and Sn (n ∈ N) are stochastic processes taking values in Lp (with
1 ≤ p < ∞), it is said that Sn converges in distribution to S in Lp if limn→∞ Ef (Sn) = Ef (S),
for all continuous and bounded functions f : Lp −→ R. Observe that if S and Sn are jointly
measurable and have almost all their trajectories in Lp , then they can be identified with Borel-
measurable random elements in Lp (see Byczkowski [4]). Therefore, the previous expectations
are well-defined.

The case p = ∞ is different because L∞ is not separable. The separability assumption is
convenient to avoid a number of measurability problems. Therefore, in general, the expectations
have to be substituted by outer expectations in the definition of weak convergence in L∞ (see,
for instance, van der Vaart and Wellner [32]). However, note that I[r]n and I

[r]
F actually take values

in the separable space C0, the space of all continuous functions f : [0,∞) −→ R such that
limt→∞ f (t) = 0. The weak convergence of I[r]n in L∞ is hence equivalent to the convergence
in C0 (with the sup-norm) (see van der Vaart [31], Lemma 18.13), and the previous definition of
convergence in distribution in Lp is still valid for p = ∞ and the processes I[r]n and I

[r]
F .

In the following, we denote the weak convergence of probability measures in the space Lp by
Sn →w S in Lp (1 ≤ p ≤ ∞).

Remark 1. For the process I[r]n in (2), by inequality (9), and for 1 ≤ p < ∞, we obtain that

∥∥I[r]n

∥∥p

p
≤ np/2

�(r)p

[∫ ∞

0

(∫ ∞

t

xr−1(1 − F(x)
)

dx

)p

dt

+
∫ ∞

0

(∫ ∞

t

xr−1(1 − Fn(x)
)

dx

)p

dt

]

≤ np/2pp

�(r)p

[
�r+1/p,rp+1(X) + 1

(rp + 1)

1

n

n∑
i=1

X
rp+1
i

]
.

Hence, if X ∈ Lr+1/p,rp+1, the trajectories of I[r]n belong to Lp a.s. Actually, it is readily checked
that X ∈ Lr+1 if and only if I

[r]
n ∈ L1 a.s. (and, consequently, I[r]n ∈ Lp a.s., for all p ≥ 1).

Analogously, it can be seen that X ∈ Lr if and only if I[r]n ∈ L∞ a.s.

To analyze the convergence of I[r]n in Lp in the case 1 ≤ p < ∞, we first need to discuss the
convergence of En in the space Wp,r defined in (7). Observe that Wp,r = Lp([0,∞),A,μp,r ),
where dμp,r (t) = tpr dm(t), with A and m the Lebesgue σ -algebra and measure on [0,∞),
respectively. For this reason, next we briefly review previous well-known results on the CLT in
Lp spaces.

We recall that a Borel random variable X taking values in a separable Banach space B is said
to satisfy the CLT if the sequence (Sn/

√
n) converges weakly in B to a (necessarily) Gaussian
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random variable, where Sn := X1 + · · · +Xn and X1, . . . ,Xn are n independent copies of X. For
1 ≤ p < ∞, the CLT in Lp-spaces is completely understood. For 1 ≤ p ≤ 2, the Banach space
Lp has cotype 2 (and type p), and, for 2 < p < ∞, Lp has type 2 (and cotype p) (see Albiac and
Kalton [1]). The case p = 2 is special because L2 is both type 2 and cotype 2 (Hilbert space),
and the results in this paper adopt a simpler form in L2. The different geometric properties of
cotype 2 and type 2 spaces lead to different characterizations of the CLT in Lp , according to
1 ≤ p ≤ 2 or 2 < p < ∞. The next lemma summarizes previous results in this direction. Part (i)
can be found in Araujo and Giné [2], page 205, whereas part (ii) can be traced back to Pisier and
Zinn [25], Theorem 5.1 (see also Ledoux and Talagrand [19], Theorem 10.10).

Lemma 2. Let (S,F,μ) be a σ -finite measure space and let X be a centered process taking
values in Lp(μ) ≡ Lp(S,F,μ).

(i) For 1 ≤ p ≤ 2, X satisfies the CLT in Lp(S,F,μ) if and only if

∫
S

(
EX2(t)

)p/2 dμ(t) < ∞. (10)

(ii) For 2 < p < ∞, X satisfies the CLT in Lp(S,F,μ) if and only if (10) holds and

lim
t→∞ t2P

(‖X‖Lp(μ) ≥ t
) = 0. (11)

Condition (10) amounts to saying that X is pre-Gaussian, that is, there is a Gaussian Radon
measure with the same covariance as X. Obviously, this is always a necessary condition.

To discuss the weak convergence in L∞, we will use the following result which shows that
weak convergence in L∞ can be characterized as asymptotic tightness plus convergence of
marginals (see van der Vaart and Wellner [32], Theorems 1.5.4 and 1.5.6, or van der Vaart [31],
Theorem 18.14). For any set T , the space L∞(T ) is defined as the set of all uniformly bounded,
real functions on T with the sup-norm.

Lemma 3. Let T be an arbitrary set and let Xn : �n → L∞(T ) be a sequence of maps.

(i) If Xn is asymptotically tight and for every finite set of points t1, . . . , tk in T , the marginals
(Xn(t1), . . . ,Xn(tk)) converge in distribution in Rk to the marginals (X(t1), . . . ,X(tk)) of a
stochastic process X, then there exists a version of X with uniformly bounded sample paths
and Xn →w X in L∞(T ).

(ii) The sequence Xn is asymptotically tight if and only if for every ε, δ > 0, there exists a
partition of T into finitely many sets T1, . . . , Tk such that

lim sup
n→∞

P∗(sup
i

sup
s,t∈Ti

∣∣Xn(s) − Xn(t)
∣∣ ≥ ε

)
≤ δ,

where P∗ stands for the outer probability.
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3. Integrated empirical processes in Lp

As mentioned in the Introduction, the results in this section are divided in two groups according
to 1 ≤ p < ∞ or p = ∞. If p is finite, we will apply the CLT in Lp spaces summarized in
Lemma 2. When p = ∞, we will show the asymptotic tightness of I[r]n using Lemma 3.

3.1. The case 1 ≤ p < ∞
The following theorem characterizes the weak convergence of I[r]n in Lp when 1 ≤ p < ∞ by
means of several equivalent integrability conditions. We recall that the space Wp,r is defined
in (7).

Theorem 1. For 1 ≤ p < ∞ and r ≥ 1, the following assertions are mutually equivalent.

(a) X ∈ L2(r+1/p),pr+1.
(b) En →w BF in Wp,r .
(c) I

[r]
n →w I

[r]
F in Lp .

(d)
∫ ∞

0 (Var(X − t)r+)p/2 dt < ∞.
(e)

∫ ∞
0 (E(X − t)2r+ ))p/2 dt < ∞.

Moreover, I[r]F is a centered Gaussian process.

Proof. Let us fix 1 ≤ p < ∞ and r ≥ 1. We assume first that (a) is satisfied. To begin, we can
write

En = 1√
n

n∑
i=1

Xi ,

where X1, . . . ,Xn are independent copies of the process

X(t) := P(X > t) − I{X>t}, t ≥ 0. (12)

As Wp,r = Lp([0,∞),A,μp,r ), where dμp,r(t) = tpr dm(t), with m and A the Lebesgue mea-
sure and σ -algebra on [0,∞), respectively, we can apply Lemma 2 to the process X in (12).
When 1 ≤ p ≤ 2, from Lemma 2(i), we have that X satisfies the CLT in Wp,r if and only if

∫ ∞

0

(
EX2(t)

)p/2 dμp,r(t)

=
∫ ∞

0
tpr

(
F(t)

(
1 − F(t)

))p/2 dt < ∞,

which is equivalent to �2(r+1/p),pr+1(X) < ∞. Further, the limiting Gaussian process of En is
BF because they have the same covariance. We thus see that (a) is equivalent to (b).
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When 2 < p < ∞, by Lemma 2(ii), it suffices to show that (a) implies that X in (12) satis-
fies (11) (for the norm of the space Wp,r ). We have that

‖X‖p
Wp,r =

∫ X

0
tpr

(
P(X ≤ t)

)p dt +
∫ ∞

X

tpr
(
P(X > t)

)p dt

≤ Xpr+1

pr + 1
+ �r+1/p,pr+1(X) (13)

≤ Xpr+1 + �2(r+1/p),pr+1(X).

From (13), and taking into account that (a) means that �2(r+1/p),pr+1(X) < ∞, we obtain that

lim sup
t→∞

t2P
(‖X‖Wp,r ≥ t

) ≤ lim sup
t→∞

t2P
(
Xpr+1 ≥ tp

) = lim sup
t→∞

t2(r+1/p)P(X ≥ t). (14)

Finally, condition �2(r+1/p),pr+1(X) < ∞ implies that

tpr+1(P(X ≥ t)
)p/2 = (

t2(r+1/p)P(X ≥ t)
)p/2 → 0 as t → ∞.

We thus obtain that limt→∞ t2(r+1/p)P(X > t) = 0 and, from (14) and Lemma 2(ii), we conclude
that (a) and (b) are equivalent.

Next, we assume that (b) holds. By inequality (9), the linear mapping ξr : Wp,r −→ Lp de-
fined in (8) satisfies ∥∥ξr (f )

∥∥
p

≤ p

�(r)
‖f ‖Wp,r ,

and it is therefore continuous. Thus, by (b) and the continuous mapping theorem (see for instance
van der Vaart [31], Theorem 18.11), we obtain that

I
[r]
n = ξr (En) →w ξr (BF ) = I

[r]
F in Lp,

and (c) holds.
Assume now that (c) is fulfilled. Taking into account the equality

EFY
(Y − t)r+ = r

∫ ∞

t

(x − t)r−1(1 − FY (x)
)

dx, t ≥ 0, (15)

which holds for any random variable Y with distribution function FY , we have that

I
[r]
n (t) =

√
n

�(r)

[∫ ∞

t

(x − t)r−1(1 − F(x)
)

dx −
∫ ∞

t

(x − t)r−1(1 − Fn(x)
)

dx

]

=
√

n

�(r + 1)

[
EF (X − t)r+ − EFn

(X − t)r+
]

(16)

= 1

�(r + 1)

1√
n

n∑
i=1

[
E(Xi − t)r+ − (Xi − t)r+

]
.
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Therefore, the centered process Y(t) := (X − t)r+ − E(X − t)r+ (t ≥ 0) satisfies the CLT in Lp .

In particular (see Lemma 2), Y fulfills (10), and (d) is therefore satisfied. It also follows that I[r]F

is a centered Gaussian process.
Let us assume that (d) holds. Let us consider first the case r = 1. From equality (15), it is

readily checked that

d

dt
Var(X − t)+ = −2F(t)E(X − t)+, t > 0. (17)

Therefore, by (17), (15), and Fubini’s theorem, we have that

Var(X − t)+ =
∫ ∞

t

2F(x)E(X − x)+dx

=
∫ ∞

t

(
1 − F(s)

)(∫ s

t

2F(x)dx

)
ds.

In particular, for t ≥ Me(X) (the median of X), we obtain

Var(X − t)+ ≥
∫ ∞

t

(s − t)
(
1 − F(s)

)
ds = 1

2
E(X − t)2+.

This shows that (d) implies (e) when r = 1.
Now, we fix r > 1. Condition (d) implies that X ∈ L2r (i.e., EX2r < ∞). By dominated con-

vergence, we see that E(X − t)r+ → 0, as t → ∞. In particular, there exists T > 0 such that, for
all t ≥ T ,

Var(X − t)r+ ≥ E(X − t)2r+ − E(X − t)r+

=
∫ ∞

t

r
(
2(x − t)2r−1 − (x − t)r−1)(1 − F(x)

)
dx

≥
∫ ∞

t+2
2r(x − t − 2)2r−1(1 − F(x)

)
dx −

∫ t+2

t

r
(
1 − F(x)

)
dx,

where for the second inequality we have used the fact that 2x2r−1 − xr−1 ≥ 2(x − 2)2r−1, for
x ≥ 2 and r ≥ 1, and 2x2r−1 − xr−1 ≥ −1, for 0 ≤ x ≤ 2 and r ≥ 1. Therefore, we conclude that

E
(
X − (t + 2)

)2r

+ ≤ Var(X − t)r+ + 2rP(X > t), t ≥ T . (18)

Now, when 1 ≤ p ≤ 2, the function given by x �→ xp/2 is subadditive. Hence, from (18), we have
that∫ ∞

T +2

(
E(X − t)2r+

)p/2 dt ≤
∫ ∞

T

(
Var(X − t)r+

)p/2 dt + (2r)p/2
∫ ∞

T

(
P(X > t)

)p/2 dt. (19)
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In the case 2 < p < ∞, we use Minkowski’s inequality, and, from (18), we obtain that(∫ ∞

T +2

(
E(X − t)2r+

)p/2 dt

)2/p

≤
(∫ ∞

T

(
Var(X − t)r+

)p/2 dt

)2/p

(20)

+ 2r

(∫ ∞

T

(
P(X > t)

)p/2 dt

)2/p

.

To finish, it is enough to note that L2r ⊂ L2/p,1, and hence, if (d) holds, the integrals in the
right-hand side of (19)–(20) are finite. We thus see that (e) is satisfied.

Finally, it holds that

E(X − t)2r+ ≥
∫

{X−t>t}
(X − t)2r dP ≥ t2rP(X > 2t), t ≥ 0.

Therefore, we conclude that (e) implies (a), and the proof of the theorem is complete. �

Remark 2. Under the conditions in Theorem 1, we directly obtain that ‖I[r]n ‖p →d ‖I[r]F ‖p , where
“→d” stands for the usual convergence in distribution of random variables. In other words, when-
ever X ∈ L2(r+1/p),pr+1, we conclude that

√
ndr,p(Fn,F ) →d

∥∥I[r]F

∥∥
p
,

where dr,p is the stop-loss metric of order r in Lp defined in (5)–(6).

Remark 3. As mentioned in the Introduction, En →w BF in L1 is equivalent to the finiteness of
�2,1(X), which defines L2,1 (see del Barrio et al. [7]). The integrability requirement to obtain
I
[r]
n →w I

[r]
F in L1 is exactly (r + 1) times more demanding, as we need that X ∈ L2(r+1),r+1,

which amounts to saying that Xr+1 ∈ L2,1.
We believe that the case p = 2 should be emphasized because of its neatness and simplicity:

I
[r]
n →w I

[r]
F in L2 if and only if X ∈ L2r+1, i.e.,EX2r+1 < ∞.

Observe also that for 1 ≤ p < 2 and ε > 0, it holds that

L2(r+1/p)+ε ⊂ L2(r+1/p),pr+1 ⊂ L2(r+1/p)

(see Section 2). Therefore, condition (a) in Theorem 1, that is,

�2(r+1/p),pr+1(X) =
∫ ∞

0
tpr

(
P(X > t)

)p/2
dt < ∞,

is slightly stronger than EX2(r+1/p) < ∞.
However, when 2 < p < ∞, we have that

L2(r+1/p) ⊂ L2(r+1/p),pr+1.

Condition (a) in Theorem 1 is hence slightly weaker than EX2(r+1/p) < ∞.
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Remark 4. Theorem 1 provides a new characterization of Lorentz spaces of (positive) random
variables. For 2 < p < ∞ and 2 ≤ q < ∞, we actually have that X ∈ Lp,q if and only if∫ ∞

0

(
E(X − t)

p(1−1/q)
+

)q/p dt < ∞,

or, alternatively, if and only if∫ ∞

0

(
Var(X − t)

p(1−1/q)/2
+

)q/p dt < ∞.

Remark 5. Let us consider the process

Jn(t) :=
∫ t

0
En(x)dx, t ≥ 0.

We obviously have that limt→∞ Jn(t) = √
n(μ − μ̂), where μ and μ̂ are the population and

sample means, respectively. Hence Jn /∈ Lp (1 ≤ p < ∞) unless μ̂ = μ. Moreover, taking into
account that Jn = √

n(μ − μ̂) − In, by Remark 1 and the standard CLT, we actually obtain that
when X ∈ L2, limn→∞

∫ ∞
0 Jn(t)dt takes the values ±∞ with probability 1/2.

3.2. The case p = ∞
The following theorem provides a sufficient condition so that I[r]n converges weakly to I

[r]
F in L∞.

Theorem 2. Let r ≥ 1 and assume that X ∈ L2r,r . We have that I[r]n →w I
[r]
F in L∞.

Proof. We fix r ≥ 1. As the finite-dimensional distributions of I[r]n converge in distribution to
the corresponding marginals of I[r]F , by Lemma 3(i), it suffices to show that I[r]n is asymptotically
tight. We will show the equivalent condition of Lemma 3(ii). For η > 0 and m ∈ N, we consider
the finite partition of [0,∞) given by P(η,m) := {Ti : i = 1, . . . ,m + 1} with

Ti := [
(i − 1)η, iη

)
(i = 1, . . . ,m) and Tm+1 := [mη,∞).

We also denote

S[r]
n

(
P(η,m)

) := sup
1≤i≤m+1

sup
s,t∈Ti

∣∣I[r]n (s) − I
[r]
n (t)

∣∣. (21)

If 1 ≤ i ≤ m and s, t ∈ Ti with s < t , we have that

∣∣I[r]n (s) − I
[r]
n (t)

∣∣ ≤ 1

�(r)

∫ t

s

(x − s)r−1
∣∣En(x)

∣∣dx

+ 1

�(r)

∫ ∞

t

[
(x − s)r−1 − (x − t)r−1]∣∣En(x)

∣∣dx (22)

≤ ηr

�(r + 1)
‖En‖∞ + 1

�(r)

∫ ∞

t

[
(x − s)r−1 − (x − t)r−1]∣∣En(x)

∣∣dx.
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Now, to control the last integral in (22), we use the following inequality for x, γ ≥ 0,

(x + γ )r−1 − xr−1 ≤
{

γ r−1, if 1 < r < 2,

γ (r − 1)(x + γ )r−2, if r ≥ 2.
(23)

(Inequality (23) follows by subadditivity if 1 < r < 2, and by the mean value theorem when
r ≥ 2.) From (22)–(23), it is easy to see that

∣∣I[r]n (s) − I
[r]
n (t)

∣∣ ≤

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

η‖En‖∞, if r = 1,
ηr

�(r + 1)
‖En‖∞ + ηr−1

�(r)
‖En‖1, if 1 < r < 2,

ηr

�(r + 1)
‖En‖∞ + η

�(r − 1)
‖En‖W 1,r−2, if r ≥ 2.

(24)

(Recall the definition of the norm of Wp,r in (7).)
If s, t ∈ Tm+1, we have that

∣∣I[r]n (s) − I
[r]
n (t)

∣∣ ≤ 1

�(r)

∫ ∞

s

(x − s)r−1
∣∣En(x)

∣∣dx + 1

�(r)

∫ ∞

t

(x − t)r−1
∣∣En(x)

∣∣dx

≤ 2

�(r)

∫ ∞

mη

xr−1
∣∣En(x)

∣∣dx (25)

= 2

�(r)

∥∥EnI(mη,∞)

∥∥
W 1,r−1 .

From (24)–(25), we conclude that S
[r]
n (P (η,m)) in (21) can be bounded above by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

η‖En‖∞ + ‖EnI(mη,∞)‖1, if r = 1,

ηr

�(r + 1)
‖En‖∞ + ηr−1

�(r)
‖En‖1 + 2

�(r)
‖EnI(mη,∞)‖W 1,r−1, if 1 < r < 2,

ηr

�(r + 1)
‖En‖∞ + η

�(r − 1)
‖En‖W 1,r−2

+ 2

�(r)
‖EnI(mη,∞)‖W 1,r−1, if r ≥ 2.

(26)

Finally, let us fix ε, δ > 0. We assume first that r = 1. If X ∈ L2,1, we have that En →w BF

in L1. Therefore, from (26), we obtain that

lim sup
n→∞

P∗(S[1]
n

(
P(η,m)

) ≥ ε
) ≤ P

(
η‖BF ‖∞ ≥ ε/2

) + P
(‖BF I(mη,∞)‖1 ≥ ε/2

)
. (27)

We can take η0 = η0(ε, δ) > 0 small enough so that

P
(
η0‖BF ‖∞ ≥ ε/2

) ≤ δ/2. (28)
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Also, by dominated convergence, we have that ‖BF I(mη0,∞)‖1 → 0 a.s., as m → ∞. Hence, we
can select a large enough m0 = m0(ε, δ, η0) ∈ N so that

P
(‖BF I(m0η0,∞)‖1 ≥ ε/2

) ≤ δ/2. (29)

For such values η0 and m0, and from (27), (28) and (29), we obtain that

lim sup
n→∞

P∗(S[1]
n

(
P(η0,m0)

) ≥ ε
) ≤ δ.

By Lemma 3(ii), we conclude that I[1]
n is asymptotically tight.

When r > 1, by Theorem 1, we obtain that X ∈ L2r,r is equivalent to En →w BF in W 1,r−1

(and additionally, when r ≥ 2, X ∈ L2r,r also implies that En →w BF in W 1,r−2). Therefore, the
bounds in (26), and a similar reasoning as for the case r = 1, show that I[r]n is asymptotically
tight, and the proof of the theorem is complete. �

Remark 6. In contrast to Theorem 1, Theorem 2 provides only a sufficient condition so that I[r]n

converges in L∞. Therefore, the requirement X ∈ L2r,r in the statement of the previous theorem
may not be optimal. Note however that, from (16), the condition X ∈ L2r is necessary for I[r]n to
converge weakly in L∞.

It is also interesting to observe that by letting p → ∞ in Theorem 1(a), we obtain X ∈
L2r,∞, that is, X belongs to the weak-L2r space, the space of all random variables such that
supt≥0 t2rP(X > t) < ∞ (see Ledoux and Talagrand [19], page 9). Obviously, L2r,r ⊂ L2r ⊂
L2r,∞.

Remark 7. Theorem 2 implies that Remark 2 is still valid for p = ∞ (with the obvious modifi-
cations).

4. The integrated F -Brownian bridge

In this section, we briefly enumerate some properties of the process IF in (3). The corresponding
properties of I[r]F , for r > 1, are analogous.

We first point out that the trajectories of the centered Gaussian process IF belong to
C1([0,∞)) a.s. By Fubini’s theorem, the covariance function of IF is given by

γ (s, t) =
∫ ∞

s

∫ ∞

t

[
F(x) ∧ F(y) − F(x)F (y)

]
dx dy, s, t > 0. (30)

By (16), we also have that

γ (s, t) = E
[
(X − s)+(X − t)+

] − E(X − s)+E(X − t)+. (31)

From (17), we see that Var(IF (t)) = Var[(X − t)+] is a decreasing function of t ≥ 0. In fact, it
is also easy to check that γ (s, t) is decreasing in each argument.
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Figure 1. 30 trajectories of IF for two distribution functions.

Using (30) or (31), we can compute γ (s, t) in the usual examples. For instance, if X has
uniform distribution on the interval [0,1], we have that

γ (s, t) = 1

12
(1 − s ∨ t)2[1 + 2(s ∨ t) − 3(s ∧ t)2], s, t ∈ [0,1].

In the case that X has the exponential distribution of mean μ > 0, we obtain that

γ (s, t) = μe−(s+t)/μ
[
e(s∧t)/μ

(
2μ + |t − s|) − μ

]
, s, t ≥ 0.

The previous simple computations show that, in general, and as it is expected, the process IF
has no stationary, neither independent increments.

In Figure 1, we have displayed 30 trajectories of IF for two distribution functions. Note that,
from Theorems 1 and 2, when F(x) = 1 − x−4 (x ≥ 1), In →w IF in Lp for 1 < p ≤ ∞, but not
in L1. In Figure 2, 30 trajectories of In are also displayed for different values of n.

5. An application to estimate Zolotarev metrics

Here we show how Theorems 1 and 2 can be applied to derive the asymptotic distribution of an
estimator of the Zolotarev distance between two probability distributions.

Let X and Y be two random variables with distribution functions F and G, respectively. For
r ∈ N, and 1 ≤ p ≤ ∞, the Zolotarev metric of order r in Lp is defined by

ζr,p(F,G) := sup
{∣∣Ef (X) − Ef (Y )

∣∣ : f ∈Fr,p

}
,

where Fr,p is the set of functions f : R−→ R for which f (r+1) exists and satisfies ‖f (r+1)‖q ≤ 1
(q being the conjugate of p, that is, q is such that 1/p + 1/q = 1). We will indistinctly use the
notation ζr,p(X,Y ) ≡ ζr,p(F,G). The metric ζr,p is ideal of order r + 1/p, that is, for Z inde-
pendent of (X,Y ), it holds that:
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Figure 2. 30 trajectories of In for different values of n and two distribution functions.

(a) ζr,p(X + Z,Y + Z) ≤ ζr,p(X,Y ).
(b) ζr,p(cX, cY ) = |c|r+1/pζr,p(X,Y ), for c ∈ R.

Note that the finiteness of ζr,p(X,Y ) implies that X and Y have identical moments up to or-
der r . Further, when E|X|r+1 + E|Y |r+1 < ∞, we also have that ζr,p(X,Y ) < ∞. For a general
reference and properties of ζr,p(X,Y ), we refer to Rachev et al. [26].

The most important case corresponds to p = 1. In this situation, ζr+1 ≡ ζr,1 is the usual
Zolotarev ideal metric of order r +1. It can be seen that convergence in ζr+1-metric implies weak
convergence plus convergence of the (r + 1)th absolute moment. Zolotarev metrics have been
used in Rao [27] to obtain a CLT for independent, non-identically distributed random variables.
The metric ζ3 has also been applied in the context of distributional recurrences in Neininger and
Rüschendorf [23,24]. Further, several bounds (from above and below) with the Zolotarev metric
can be given for other probability metrics such as Kantorovich, Kolmogorov, Wasserstein and
Lévy metrics (see Rachev et al. [26]).

In the following, we assume that X and Y are positive. Whenever ζr,p(X,Y ) is finite, it can be
expressed as

ζr,p(X,Y ) = ‖Hr‖p, (32)

where

Hr(t) := 1

�(r)

∫ ∞

t

(x − t)r−1(F(x) − G(x)
)

dx, t ≥ 0. (33)
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(As mentioned in the Introduction, this quantity also corresponds to the stop-loss distance of
order r in Lp .) Therefore, given X1, . . . ,Xn and Y1, . . . , Ym two random samples from X and Y ,
respectively, we consider the plug-in estimator of (32), that is,

ζ̂r,p(X,Y ) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

�(r)

(∫ ∞

0

∣∣∣∣
∫ ∞

t

(x − t)r−1(
Fn(x) −Gm(x)

)
dx

∣∣∣∣
p

dt

)1/p

, if 1 ≤ p < ∞,

1

�(r)
sup
t≥0

∣∣∣∣
∫ ∞

t

(x − t)r−1(
Fn(x) −Gm(x)

)
dx

∣∣∣∣, if p = ∞,

where Fn and Gm are the empirical distribution functions of X and Y , respectively. Note however
that in general ζr,p(Fn,Gm) = ∞ a.s., as the corresponding sample moments are different.

We aim to analyze the asymptotic behavior of the normalized estimator of the Zolotarev dis-
tance of order r in Lp between X and Y , that is, the statistic given by

Zn,m(r,p) :=
√

nm

n + m

(
ζ̂r,p(X,Y ) − ζr,p(X,Y )

)
. (34)

The following representation of Zn,m(r,p) will be crucial:

Zn,m(r,p) =
∥∥∥∥
(√

m

n + m
I
[r]
n −

√
n

n + m
Ĩ
[r]
m

)
+

√
nm

n + m
Hr

∥∥∥∥
p

−
√

nm

n + m
‖Hr‖p, (35)

where I
[r]
n and Ĩ

[r]
m are (independent) r-fold integrated empirical processes (defined in (2)) asso-

ciated with X and Y , respectively, and Hr is given in (33).
From (35), to derive the asymptotic distribution of Zn,m(r,p), we first need to analyze the

continuity of the functional


p(f,g,λ) := ‖f + λg‖p − λ‖g‖p, 1 ≤ p ≤ ∞, (36)

where f,g ∈ Lp and λ → ∞. As in the previous section, there are substantial differences be-
tween the cases 1 ≤ p < ∞ and p = ∞.

In the following lemma, we determine the behavior (as λ → ∞) of 
p(f,g,λ) in (36) for
1 ≤ p < ∞. We use the notation sgn(·) for the sign function and Ac is the complement of the
set A.

Lemma 4. Let 1 ≤ p < ∞ and consider the functional 
p : Lp × Lp × [0,∞) −→ R defined
in (36). For f,g ∈ Lp , we have that limλ→∞ 
p(f,g,λ) = 
p(f,g), with


1(f, g) :=
∫

Ig

|f | +
∫

I c
g

f sgn(g), (37)

where Ig := {t : g(t) = 0}, and for 1 < p < ∞,


p(f,g) :=
⎧⎨
⎩

‖f ‖p, if g = 0 a.e.,
1

‖g‖p−1
p

∫
f |g|p−1 sgn(g), otherwise. (38)
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Moreover, if fn → f in Lp and λn → ∞, then 
p(fn, g,λn) → 
p(f,g).

Proof. Observe that we can always assume that g ≥ 0. If this is not the case, it is enough to write
g = |g| sgn(g).

We first consider the case p = 1. We have that


1(f, g,λ) =
∫

Ig

|f | +
∫

I c
g

(|f + λg| − λg
)

(39)

=
∫

Ig

|f | +
∫

I c
g∩{f +λg≥0}

f −
∫

I c
g∩{f +λg<0}

(f + 2λg).

By dominated convergence, the second integral in (39) converges to
∫
I c
g
f , as λ → ∞. For the

third integral in (39), we obtain that∫
I c
g∩{f +λg<0}

|f + 2λg| ≤ 2
∫

I c
g∩{f +λg<0}

|f + λg| +
∫

I c
g∩{f +λg<0}

|f |

≤ 3
∫

I c
g∩{f +λg<0}

|f |.

Hence, by dominated convergence, we conclude that this integral goes to 0, as λ → ∞. We
therefore obtain that 
1(f, g,λ) → 
1(f, g), when λ → ∞.

Now, let us fix 1 < p < ∞, and we assume that ‖g‖p �= 0. We can write


p(f,g,λ) =
(∫

Ig

|f |p +
∫

I c
g

(λg)p
∣∣∣∣1 + f

λg

∣∣∣∣
p)1/p

− λ‖g‖p

=
(∫

Ig

|f |p +
∫

I c
g

(λg)p
(

1 + p
f

λg
+ rp

(
f

λg

)))1/p

− λ‖g‖p,

where

rp(t) := |1 + t |p − (1 + pt), t ∈R. (40)

We conclude that


p(f,g,λ) = λ‖g‖p

(
1 + δp(f, g,λ)

)1/p − λ‖g‖p, (41)

with

δp(f, g,λ) := 1

λp‖g‖p
p

(∫
Ig

|f |p + pλp−1
∥∥fgp−1

∥∥
1 + λp

∫
I c
g

gprp

(
f

λg

))
. (42)

Using the integral form of the remainder in Taylor’s theorem, it is easy to check that the function
rp in (40) satisfies the bound

∣∣rp(t)
∣∣ ≤

{
Cpt2, if |t | ≤ 1,

Cp|t |p, if |t | > 1,
(43)
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where Cp > 0 is a constant depending only on p. When 1 ≤ p ≤ 2, from (43), we have that
|rp(t)| ≤ Cp|t |p (t ∈R). Using this inequality, it can be readily checked that

δp(f, g,λ) → 0 as λ → ∞. (44)

If 2 < p < ∞, we use (43) and Hölder’s inequality to obtain∣∣∣∣
∫

I c
g

gprp

(
f

λg

)∣∣∣∣ ≤
∫

I c
g∩{|f/(λg)|≤1}

gp

∣∣∣∣rp
(

f

λg

)∣∣∣∣ +
∫

I c
g∩{|f/(λg)|>1}

gp

∣∣∣∣rp
(

f

λg

)∣∣∣∣
≤ Cp

(
1

λ2

∫
I c
g

f 2gp−2 + 1

λp
‖f ‖p

p

)
(45)

≤ Cp

(
1

λ2
‖f ‖2

p‖g‖p−2
p + 1

λp
‖f ‖p

p

)
.

From (42) and (45), we conclude that (44) also holds for 2 < p < ∞. Now, from (41) and (44),
for 1 ≤ p < ∞, we obtain that


p(f,g,λ) ∼ λ‖g‖p

(
1 + 1

p
δp(f,g,λ)

)
− λ‖g‖p, λ → ∞,

where “∼” means asymptotically equivalent. Using again (43), and following a similar reasoning
as for the bounds in (45) for the case 2 < p < ∞, we can show that


p(f,g,λ) ∼ λ‖g‖p

p
δp(f,g,λ) → 
p(f,g), λ → ∞.

Finally, if fn → f in Lp (for 1 ≤ p < ∞) and λn → ∞, by Minkowski’s inequality, we have
that∣∣
p(fn, g,λn) − 
p(f,g)

∣∣ ≤ ∣∣
p(fn, g,λn) − 
p(f,g,λn)
∣∣ + ∣∣
p(f,g,λn) − 
p(f,g)

∣∣
≤ ‖fn − f ‖p + ∣∣
p(f,g,λn) − 
p(f,g)

∣∣.
Hence, we see that 
p(fn, g,λn) → 
p(f,g), as n → ∞, and the proof is complete. �

Remark 8. It is interesting to note that 
p(f,g) is not continuous at p = 1, as in general

1(f, g) �= limp→1 
p(f,g). Also, the limit for p = 2 is simply


2(f, g) = 1

‖g‖2

∫
fg.

We now consider the case p = ∞. First, it is important to observe that for f,g ∈ L∞ the
functional 
∞(f, g,λ) in (36) may have an oscillatory character when λ → ∞. Hence, there
is no hope to obtain an analogous result as Lemma 4 for p = ∞. This problem can be dodged
by noting that both I

[r]
n and I

[r]
F take values in the C0, the space of all continuous functions
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f : [0,∞) −→ R such that limt→∞ f (t) = 0. The behavior of 
∞(f, g,λ) when f,g ∈ C0 and
λ → ∞ is explained in the next lemma.

Lemma 5. Let us consider the space C0 with the norm ‖·‖∞ and let 
∞ : C0 ×C0 ×[0,∞) −→
R be the functional defined in (36). For f,g ∈ C0, we have that limλ→∞ 
∞(f, g,λ) =

∞(f, g), with


∞(f, g) :=
{‖f ‖∞, if g ≡ 0,

sup
Mg

f sgn(g), otherwise, (46)

where Mg := {t : |g(t)| = ‖g‖∞}.
Moreover, if fn → f in C0 and λn → ∞, then 
∞(fn, g,λn) → 
∞(f, g).

Proof. We can assume that ‖g‖∞ > 0. As g ∈ C0, Mg �=∅. Further, if t /∈ Mg , for each t0 ∈ Mg ,
we have that |g(t)| < |g(t0)|. Hence, for λ large enough, we obtain that∣∣f (t) + λg(t)

∣∣ ≤ ‖f ‖∞ + λ
∣∣g(t)

∣∣ ≤ ∣∣f (t0) + λg(t0)
∣∣.

Consequently, for λ large enough, we conclude that

‖f + λg‖∞ = sup
Mg

|f + λg|

= sup
Mg

∣∣f sgn(g) + λ‖g‖∞
∣∣ (47)

= λ‖g‖∞ + sup
Mg

f sgn(g).

Equalities in (47) imply that 
∞(f, g) in (46) is the limit of 
∞(f, g,λ) (as λ → ∞). The
last part of the lemma follows by the same argument as in the proof of Lemma 4. Details are
omitted. �

In the following result, we recall that the usual convergence in distribution of random variables
is denoted by “→d.”

Theorem 3. Let us consider a sampling scheme such that as n, m → ∞, n/(n + m) → λ,
with 0 < λ < 1. For r ≥ 1 and 1 ≤ p ≤ ∞, let us assume that ζr,p(X,Y ) < ∞ and X,Y ∈
L2(r+1/p),pr+1 or X,Y ∈ L2r,r , according to 1 ≤ p < ∞ or p = ∞. For Zn,m(r,p) in (34), we
have that

Zn,m(r,p) →d 
p

(
D

[r]
F,G,Hr

)
, as n,m → ∞, (48)

where 
p is defined in (37), (38) and (46), D[r]
F,G is a centered Gaussian process given by

D
[r]
F,G := √

1 − λI
[r]
F − √

λĨ
[r]
G (49)
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(I[r]F and Ĩ
[r]
G being two independent r-fold integrated Brownian bridges), and Hr is defined

in (33).

Proof. From (34)–(36), we see that

Zn,m(r,p) = 
p

(√
m

n + m
I
[r]
n −

√
n

n + m
Ĩ
[r]
m ,Hr,

√
nm

n + m

)
,

where I
[r]
n and Ĩ

[r]
m are r-fold integrated empirical processes associated with X and Y , respec-

tively. To obtain the result, it is enough to use Theorems 1 and 2, Lemmas 4 and 5, the inde-
pendence of the processes I[r]n and Ĩ

[r]
m , and the extended continuous mapping theorem (see van

der Vaart and Wellner [32], Theorem 1.11.1). (For p = ∞, note that I[r]n and I
[r]
F take values in

the C0 and the weak convergence in L∞ is equivalent to the weak convergence in C0 (see, for
instance, van der Vaart [31], Lemma 18.13).) �

Remark 9. The random variables X and Y have the same distribution if and only if Hr ≡ 0,
where Hr is defined in (33). In such a case, the limit of Zn,m(r,p) in (34) obtained in the previous
theorem is just ‖D[r]

F,G‖p . Also, note that the function Hr can be rewritten as

Hr(t) = 1

�(r + 1)

(
E(Y − t)r+ − E(X − t)r+

)
, t ≥ 0.

Taking into account the limiting distribution in Theorem 3, it can be guessed that a direct
approach to obtain the previous asymptotic result could be a difficult task. By contrast, using the
convergence of I[r]n in Lp , the problem reduces to analyze the continuity of the linking functional.

In the following corollary, we show that in some cases the limit of (48) is actually normally
distributed.

Corollary 1. In the conditions of Theorem 3, let us further assume that:

(i) If p = 1, the Lebesgue measure of the set IHr = {t : Hr(t) = 0} is zero.
(ii) If 1 < p < ∞, X and Y are not equally distributed.

(iii) If p = ∞, the set MHr = {t : |Hr(t)| = ‖Hr‖∞} contains exactly one point.

We have that, as n,m → ∞, Zn,m(r,p) in (34) converges in distribution to a zero mean normal
random variable.

Proof. Under the assumptions (i) or (ii), from Theorem 3 and for 1 ≤ p < ∞, we have that


p

(
D

[r]
F,G,Hr

) = 1

‖Hr‖p−1
p

∫
D

[r]
F,G|Hr |p−1 sgn(Hr),

where D
[r]
F,G and Hr are given in (49) and (33), respectively. The conclusion follows as D[r]

F,G is
a centered Gaussian process and Hr is smooth and nonrandom.

Finally, if p = ∞ and MHr = {t0}, observe that 
∞(D
[r]
F,G,Hr) = D

[r]
F,G(t0) sgn(Hr(t0)) is a

zero mean normal variable. �
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Remark 10. Corollary 1 reflects a different behavior of the limit in (48) for the cases p = 1,
1 < p < ∞ and p = ∞. When p = 1 or p = ∞, it is possible to obtain a non Gaussian limit
if the set IHr has a strictly positive Lebesgue measure or the set MHr has more than one point.
However, this cannot happen when 1 < p < ∞ if X and Y do not have the same distribution.

6. Concluding remarks

The results in the previous sections can be connected with equilibrium distributions and stochas-
tic integrals.

Equilibrium distributions: Given a positive random variable X such that 0 < EX < ∞, the
function G(t) := E(X − t)+/EX (t ≥ 0) is the survival function of a probability distribution
called the equilibrium distribution of X. This distribution is important in renewal theory (see,
for instance, Feller [9]) and in reliability theory (see Lai and Xie [18]). Higher order equilibrium
distributions can be defined recursively by

F̄1(t) := 1 − F(t), F̄r (t) := 1

μr

∫ ∞

t

F̄r−1(x)dx, t ≥ 0, r ≥ 2,

with μr := ∫ ∞
0 F̄r−1(x)dx. The function F̄r is the survival function of a random variable and it

is called the r th equilibrium distribution of X. Observe that when EXr−1 < ∞, we have that

F̄r (t) = E(X − t)r−1+
EXr−1

, t ≥ 0, r = 2,3, . . . .

Therefore, for r ≥ 1, condition (e) in Theorem 1 means that the random variable E2r+1 (with the
(2r + 1)th equilibrium distribution of X), belongs to L2/p,1. For p = 2, we obtain that I[r]n →w

I
[r]
F in L2 if and only if E2r+1 is integrable.

Stochastic integrals: Although IF is not a stochastic integral, it can be expressed in terms of
a stochastic integral. First, note that the standard Brownian bridge on [0,1], B, is a semimartin-
gale with respect to the induced filtration Ft (0 ≤ t ≤ 1) (see Kallenberg [17], page 294). As
semimartingales are closed under changes of time (see Jacod [16], Corollary 10.12), BF is also
a semimartingale with respect to Gt := FF(t) (t ≥ 0) and the integral with respect to BF is well
defined. Moreover, if F is continuous, then BF is a continuous semimartingale and hence Itô’s
formula is satisfied (see, for instance, Revuz and Yor [28], Theorem 3.3). That is, if f (s, x) is a
twice continuously differentiable function, for t ≥ 0, we have that

f
(
t,BF (t)

) = f
(
t,BF (0)

) +
∫ t

0

∂f

∂s

(
s,BF (s)

)
ds +

∫ t

0

∂f

∂x

(
s,BF (s)

)
dBF (s)

+
∫ t

0

∂2f

∂x2

(
s,BF (s)

)
d[BF ,BF ](s),

where [BF ,BF ] is the quadratic variation process. (If F is not continuous, additional terms ap-
pear in the previous formula to take into account the jumps of the process, BF (t) − BF (t−).) In
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particular, by choosing the function f (s, x) = sx, we obtain the next integration by parts formula∫ t

0
BF (x)dx = tBF (t) −

∫ t

0
x dBF (x), t ≥ 0.

From this equality, we directly obtain that

IF (t) = −tBF (t) −
∫ ∞

t

x dBF (x), t ≥ 0. (50)

This representation allows us to apply Theorem 1 to the stochastic integral
∫ ∞
t

x dBF (x).
Observe that the mapping f �→ tf (t) + ∫ ∞

t
f (x)dx (t ≥ 0) is continuous from Wp,1 to Lp .

Therefore, by (50) and Theorem 1, whenever X ∈ L2+2/p,p+1 (with 1 ≤ p < ∞), we have that

tEn(t) + In(t) →w −
∫ ∞

t

x dBF (x) in Lp.
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