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With any max-stable random process η on X = Z
d or Rd , we associate a random tessellation of the param-

eter space X . The construction relies on the Poisson point process representation of the max-stable process
η which is seen as the pointwise maximum of a random collection of functions � = {φi, i ≥ 1}. The tessel-
lation is constructed as follows: two points x, y ∈X are in the same cell if and only if there exists a function
φ ∈ � that realizes the maximum η at both points x and y, that is, φ(x) = η(x) and φ(y) = η(y). We char-
acterize the distribution of cells in terms of coverage and inclusion probabilities. Most interesting is the
stationary case where the asymptotic properties of the cells are strongly related to the ergodic and mixing
properties of the max-stable process η and to its conservative/dissipative and positive/null decompositions.

Keywords: ergodic properties; max-stable random field; non-singular flow representation; random
tessellation

1. Introduction

Max-stable random fields provide popular and meaningful models for spatial extremes, see, for
example, de Haan and Ferreira [2]. The reason is that they appear as the only possible non-
degenerate limits for normalized pointwise maxima of independent and identically distributed
random fields. The one-dimensional marginal distributions of max-stable fields belong to the
parametric class of Generalized Extreme Value distributions. Being interested mostly in the de-
pendence structure, we will restrict our attention to max-stable fields η = (η(x))x∈X on X ⊂R

d

with standard unit Fréchet margins, that is, satisfying

P
[
η(x) ≤ z

] = exp(−1/z) for all x ∈X and z > 0. (1)

The max-stability property has then the simple form

n−1
n∨

i=1

ηi
d= η for all n ≥ 1,

where (ηi)1≤i≤n are i.i.d. copies of η,
∨

is the pointwise maximum, and
d= denotes the equality

of finite-dimensional distributions.
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A fundamental tool in the study of max-stable processes is their spectral representation (see,
e.g., de Haan [1], Giné et al. [7]): any stochastically continuous max-stable process η can be
written as

η(x) =
∨
i≥1

UiYi(x), x ∈ X , (2)

where

– (Ui)i≥1 is the decreasing enumeration of the points of a Poisson point process on (0,+∞)

with intensity measure u−2 du,
– (Yi)i≥1 are i.i.d. copies of a non-negative stochastic process Y on X such that E[Y(x)] = 1

for all x ∈X ,
– the sequences (Ui)i≥1 and (Yi)i≥1 are independent.

In this paper, we focus on max-stable random fields defined on X = Z
d or Rd . In the case X =

R
d , we always assume that η has continuous sample paths. Equivalently, the spectral process Y

has continuous sample paths and

E

[
sup
x∈K

Y(x)
]

< ∞ for every compact set K ⊂R
d . (3)

Note that the equivalence follows for instance from de Haan and Ferreira [2], Corollary 9.4.5.
Representation (2) has a nice interpretation pointed out by Smith [23], Resnick and Roy [15]

or Schlather [21]. In the context of a rainfall model, we can interpret each index i ≥ 1 as a storm
event, where Ui stands for the intensity of the storm and Yi stands for its shape; then UiYi(x)

represents the amount of precipitation due to the storm event i at point x ∈ X , and η(x) is
the maximal precipitation over all storm events at this point. This interpretation raises a natural
question: what is the shape of the region Ci ⊂ X where the storm i is extremal? More formally,
we define the cell associated with the storm event i ≥ 1 by Ci = {x ∈ X ;UiYi(x) = η(x)}. It is
a (possibly empty) random closed subset of X and each point x ∈ X belongs almost surely to a
unique cell (the point process {UiYi(x)}i≥1 is a Poisson point process with intensity u−2 du so
that the maximum η(x) is almost surely attained for unique i).

A drawback of this approach is that the distribution of the cell Ci depends on the specific
representation (2). For instance, with the convention that the sequence (Ui)i≥1 is decreasing, the
cell C1 is stochastically larger than the other cells. To avoid this, we introduce a canonical way
to define the tessellation.

Definition 1. For x ∈X , the cell of x is the random closed subset

C(x) = {
y ∈X ; ∃i ≥ 1,UiYi(x) = η(x) and UiYi(y) = η(y)

}
. (4)

The cell C(x) is non-empty since it contains x. In the case X = Z
d , for any two points x1, x2 ∈

Z
d , the cells C(x1) and C(x2) are almost surely either equal or disjoint. In the case X =R

d , for
any two points x1, x2 ∈ R

d , the cells C(x1) and C(x2) are almost surely either equal or have
disjoint interiors.
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The purpose of this paper is to study some properties of the random tessellation (C(x))x∈X .
Let us stress that in this paper the terms cell and tessellation are meant in a broader sense than
in stochastic geometry where they originated. Here, a cell is a general (not necessarily convex or
connected) random closed set and a tessellation is a random covering of X by closed sets with
pairwise disjoint interiors. The following lemma provides a first simple but important observa-
tion.

Lemma 2. The distribution of the tessellation (C(x))x∈X depends on the distribution of the
max-stable process η only and not on the specific representation (2).

To prove the lemma, introduce the functional point process (which will play a key role in the
sequel)

� = {φi, i ≥ 1} where φi = UiYi, i ≥ 1. (5)

Note that φi are elements of F0 = F(X , [0,+∞)) \ {0}, the set of non-negative and continuous
functions on X excluding the zero function. (We may assume without loss of generality that Y

does not vanish identically.) The set F0 is endowed with the σ -algebra generated by the coordi-
nate mappings. It follows from the transformation theorem that � is a Poisson point process on
F0 with intensity measure μ given by

μ(A) =
∫ ∞

0
P[uY ∈ A]u−2 du, A ⊂F0 Borel. (6)

The measure μ is called the exponent measure or Lévy measure and is related to the multivariate
cumulative distribution functions of η by

P
[
η(xj ) ≤ zj , j = 1, . . . , n

]
= exp

(−μ
({

f ∈F0;f (xj ) > zj for some j = 1, . . . , n
}))

for all n ≥ 1, x1, . . . , xn ∈ X and z1, . . . , zn > 0. In particular, this shows that μ depends on the
distribution of η only and does not depend on the specific representation (2). Now, Lemma 2
follows easily since the tessellation (C(x))x∈X is a functional of the Poisson point process �

with intensity μ.
The aim of this paper is to study some properties of the tessellation (C(x))x∈X and to re-

late them to the properties of the max-stable random field (η(x))x∈X . It is worth noting that
some well-known tessellations like the Laguerre and some Johnson–Mehl tessellations (see,
e.g., Møller [14]) are particular cases of this setting (see Examples 8 and 9 below). Further-
more, thanks to the Poisson point process representation by Giné et al. [7], the results from
the present paper could presumably be extended to the more general framework of upper semi-
continuous max-infinitely divisible processes. The connection with stochastic geometry would
even be stronger via the notion of hypograph: the hypograph of an upper semi-continuous max-
infinitely divisible process can be represented as the union of random closed sets from a Poisson
point process. However, for the sake of simplicity, we consider only the case of continuous max-
stable processes for which more results are available from the literature.
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The paper is structured as follows. In Section 2, we study the law of the cell C(x) and pro-
vide some formulas for the inclusion and coverage probabilities as well as some examples. In
Section 3, we focus on the stationary case and establish strong connections between asymptotic
properties of C(0) and properties of the max-stable random field η such as ergodicity, mixing
and decompositions of the non-singular flow associated with η. Theorem 19 relates the bounded-
ness of the cell to the conservative/dissipative decomposition. Theorem 22 links the asymptotic
density of the cell with the positive/null decomposition. Proofs are collected in Sections 4 and 5.

2. Basic properties

Our first result is a simple characterization of the distribution of the cells of the tessellation.

Theorem 3. Consider a sample continuous max-stable random field η given by representa-
tion (2). For every x ∈X and every measurable set K ⊂X ,

P
[
K ⊂ C(x)

] = E

[
inf

y∈K∪{x}
Y(y)

η(y)

]
(7)

and

P
[
C(x) ⊂ K

] = E

[(
Y(x)

η(x)
− sup

y∈Kc

Y (y)

η(y)

)+]
, (8)

where Y is independent of η, Kc =X \ K is the complement of the set K , and (z)+ = max(z,0)

is the positive part of z.

It is well known that the distribution of a random closed set C ⊂ X is completely determined
by its capacity functional

XC(K) = P[C ∩ K 
=∅], K ⊂X compact,

see, for example, Molchanov [13], Chapter 1. Clearly, Theorem 3 implies that for all x ∈ X the
capacity functional of the cell C(x) is given by

XC(x)(K) = 1 −E

[(
Y(x)

η(x)
− sup

y∈K

Y(y)

η(y)

)+]
.

Proof of Theorem 3. We first prove (7). For f,g :X →R and K ⊂X , we use the notation

f >K g if and only if f (x) > g(x) for all x ∈ K.

For i ≥ 1, we write mi = ∨
j 
=i φj where φi = UiYi is defined by (5). Fix some x ∈ X . Note that

x ∈ Ci if and only if φi(x) ≥ mi(x), whence (modulo null sets){
K ⊂ C(x)

} = {∃i ≥ 1, φi(x) > mi(x) and ∀y ∈ K,φi(y) > mi(y)
}

= {∃i ≥ 1, φi >K∪{x} mi}.
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The events {φi >K∪{x} mi}, i ≥ 1, are pairwise disjoint so that

1{K⊂C(x)} =
∑
i≥1

1{φi>K∪{x}mi } a.s.

Hence, we obtain

P
[
K ⊂ C(x)

] = E

[∑
i≥1

1{φi>K∪{x}mi }
]
.

This expectation can be computed thanks to the Slivnyak–Mecke formula (see, e.g., Schneider
and Weil [22], page 68). Recall from (5) and (6) that � = {φi, i ≥ 1} is a Poisson point process
with intensity μ and that mi is a functional of � \ {φi}. The Slivnyak–Mecke formula implies
that

P
[
K ⊂ C(x)

] =
∫
F0

E[1{f >K∪{x}η}]μ(df ).

Using (6), we compute∫
F0

E[1{f >K∪{x}η}]μ(df ) =
∫ ∞

0
E[1{uY>K∪{x}η}]u−2 du

= E

[∫ ∞

0
1{u>supK∪{x} η/Y }u−2 du

]

= E

[
inf

K∪{x}Y/η
]
.

This proves (7).
In the same spirit as in the proof of (7), we have

{
C(x) ⊂ K

} = {∃i ≥ 1, φi(x) > mi(x) and φi <Kc mi

}
whence we deduce

P
[
C(x) ⊂ K

] = E

[∑
i≥1

1{φi(x)>mi(x)}1{φi<Kcmi }
]
.

We obtain (8) thanks to the Slivnyak–Mecke and straightforward computations. �

Remark 4. It is worth noting that Weintraub [28] introduced (with a different terminology) the
probability that two points x and y are in the same cell as a measure of dependence between η(x)

and η(y). More precisely, he considered

π(x, y) = P
[
y ∈ C(x)

] = E

[
Y(x)

η(x)
∧ Y(y)

η(y)

]
, x, y ∈X .
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Clearly, π(x, y) ∈ [0,1]. One can prove easily that π(x, y) = 0 holds if and only if η(x) and η(y)

are independent, while π(x, y) = 1 if and only if η(x) = η(y) almost surely. Moreover, π(x, y)

can be compared to the extremal coefficient θ(x, y) which is another well-known measure of
dependence for max-stable processes defined by

θ(x, y) = − logP
[
η(x) ∨ η(y) ≤ 1

] ∈ [1,2]. (9)

According to Stoev [24], Proposition 5.1, we have

1

2

(
2 − θ(x, y)

) ≤ π(x, y) ≤ 2
(
2 − θ(x, y)

)
. (10)

In the case of stationary max-stable random fields, we use the notation θ(h) = θ(0, h) and π(h) =
π(0, h).

As a by-product of Theorem 3, we can provide an explicit expression for the mean volume
of the cells. Denote by λ the discrete counting measure when X = Z

d or the Lebesgue measure
when X = R

d . The volume of C(x) is defined by Vol(C(x)) = λ(C(x)). In the discrete case,
Vol(C(x)) is the cardinality of C(x).

Corollary 5. Let x ∈ X . The cell C(x) has expected volume

E
[
Vol

(
C(x)

)] =
∫
X
E

[
Y(x)

η(x)
∧ Y(y)

η(y)

]
λ(dy).

Proof. By Fubini’s theorem, the expected volume of the cell C(x) is equal to

E
[
Vol

(
C(x)

)] = E

[∫
X

1{y∈C(x)}λ(dy)

]
=

∫
X
P
[
y ∈ C(x)

]
λ(dy)

and, according to Theorem 3,

P
[
y ∈ C(x)

] = E

[
Y(x)

η(x)
∧ Y(y)

η(y)

]
. �

This together with (10) implies that the cell C(x) has finite expected volume if and only
if

∫
X (2 − θ(x, y))λ(dy) < +∞. Another consequence of Theorem 3 is an expression for the

probability that the cell C(x) is bounded.

Corollary 6. Let x ∈ X . The cell C(x) is bounded with probability

P
[
C(x) is bounded

] = E

[(
Y(x)

η(x)
− lim sup

y→∞
Y(y)

η(y)

)+]
.

Furthermore, the following statements are equivalent:

(i) the cell C(x) is bounded a.s.;
(ii) limy→∞ Y(y)

η(y)
= 0 a.e. on the event {Y(x) 
= 0}.
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Proof. For n ≥ 1, we recall that Bn = [−n,n]d ∩X . The sequence of events {C(x) ⊂ Bn}, n ≥ 1,
is non-decreasing and we have{

C(x) bounded
} =

⋃
n≥1

{
C(x) ⊂ Bn

}
,

whence

P
[
C(x) bounded

] = lim
n→∞P

[
C(x) ⊂ Bn

]
.

Using (8), we get

P
[
C(x) ⊂ Bn

] = E

[(
Y(x)

η(x)
− sup

Bc
n

Y

η

)+]
.

As n → +∞, the sequence supBc
n
Y/η decreases to lim supy→∞ Y(y)/η(y). The monotone con-

vergence theorem entails that

lim
n→∞E

[(
Y(x)

η(x)
− sup

Bc
n

Y

η

)+]
= E

[(
Y(x)

η(x)
− lim sup

y→∞
Y(y)

η(y)

)+]
,

whence we deduce

P
[
C(x) bounded

] = E

[(
Y(x)

η(x)
− lim sup

y→∞
Y(y)

η(y)

)+]
.

In order to prove the equivalence of the statements (i) and (ii), we note that

0 ≤
(

Y(x)

η(x)
− lim sup

y→∞
Y(y)

η(y)

)+
≤ Y(x)

η(x)
.

Note also that E[Y(x)/η(x)] = 1 since Y(x) is independent of 1/η(x) ∼ Exp(1). Using the fact
that (a − b)+ = a (for a, b ≥ 0) if and only if a = 0 or b = 0, we can deduce that the equality

E

[(
Y(x)

η(x)
− lim sup

y→∞
Y(y)

η(y)

)+]
= 1

occurs if and only if lim supy→∞ Y(y)/η(y) = 0 a.e. on the event {Y(x) 
= 0}. This proves the
equivalence of (i) and (ii). �

Remark 7. In the case when the max-stable process η is stationary, we will see in Section 6
below that condition (ii) can be replaced by the following one: Y(y) → 0 a.s. as y → ∞.

3. Examples

As an illustration and to get some intuition, we provide several examples. Simulations of the max-
stable processes together with the associated tessellations are available on the personal webpage
of the first author.



Random tessellations associated with max-stable random fields 37

Example 8. The isotropic Smith process [23] is defined by

η(x) =
∨
i≥1

Uih(x − Xi), x ∈R
d,

where {(Ui,Xi), i ≥ 1} is a Poisson point process on (0,∞) ×R
d with intensity u−2 dudx and

h(x) = (2π)−d/2 exp(−‖x‖2/2) is the standard Gaussian d-variate density function. The Smith
process is a stationary max-stable process that belongs to the class of moving maximum processes
and is hence mixing. Surprisingly, the associated tessellation is exactly the so-called Laguerre
tessellation studied in great detail by Lautensack and Zuyev [12]. Indeed, the cell Ci is given by

Ci = {
x ∈ R

d; ‖x − Xi‖2 − 2 ln(Ui) ≤ ‖x − Xj‖2 − 2 ln(Uj ), j 
= i
}
.

In this very specific example, the cells are convex bounded polygons.

Example 9. Consider a moving maximum process of the same form as in the previous example,
but with h(x) = exp{−‖x‖/v}, x ∈ R

d , where v > 0 is a parameter. Then, the cell Ci is given by

Ci = {
x ∈R

d; ‖x − Xi‖/v − ln(Ui) ≤ ‖x − Xj‖/v − ln(Uj ), j 
= i
}
,

and we recover a special case of the Johnson–Mehl tessellation; see Møller [14].

Example 10. The stationary extremal Gaussian process originally introduced by Schlather [21]
corresponds to the case when the spectral process Y in representation (2) is given by

Y(x) =
√

π

2
max

(
W(x),0

)
, x ∈ R

d,

where W is a stationary Gaussian process on R
d with zero mean, unit variance and correlation

function ρ(h) = E[W(0)W(h)], h ∈R
d . The extremal coefficient function is given by

θ(h) = 2T2

[√
2

1 − ρ(h)2
−

√
1 − ρ(h)2

2
ρ(h)

]
, h ∈R

d ,

where T2 is the cumulative distribution function of a Student distribution with 2 degrees of free-
dom. Typically, ρ(h) → 0 as h → ∞, so that θ(h) → 2T2(

√
2) < 2 and η is neither mixing

nor ergodic (see Stoev [24] or Kabluchko and Schlather [9]). The inequalities in (10) entail that
lim infP[h ∈ C(0)] > 0 as h → ∞. This suggests that the cells are not bounded which is consis-
tent with the simulations available on the first author personal webpage. Note that the cells are
neither convex nor connected and have a pretty regular shape due to the particular choice of the
correlation function ρ(h) = exp(−‖h‖2/2) that yields smooth Gaussian sample paths.

Example 11. Brown–Resnick processes [10] form a flexible class of max-stable processes. They
are given by (2) with the spectral process of the form

Y(x) = exp

(
W(x) − 1

2
σ 2(x)

)
, x ∈R

d ,
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where W is a stationary increment centered Gaussian process on R
d , and σ 2(x) = VarW(x).

Surprisingly, the process η is stationary [10]. Its distribution is completely characterized by the
variogram

γ (h) = Var
(
W(x + h) − W(x)

)
, h ∈R

d .

The extremal coefficient function is given by ([10], page 2063)

θ(h) = 2G

(
1

2

√
γ (h)

)
, h ∈R

d,

where G is the cumulative distribution function of the standard normal distribution. Typically,
γ (h) → ∞ as h → ∞, so that θ(h) → 2 and η is mixing [9,24]. The inequalities in (10) entail
that limP[h ∈ C(0)] = 0 as h → ∞ suggesting that the cells become asymptotically independent
at large distances. Since 1 − G(u) ∼ 1/(

√
2πu)e−u2/2, u → +∞, Corollary 5 implies that the

cell C(0) has finite expected volume (and hence, is a.s. bounded) provided that the following
condition is satisfied:

lim inf
h→∞

γ (h)

log‖h‖ > 8d.

Simulations with the variogram γ (h) = 2‖h‖ are available on the first author’s personal web-
page. They show that the cells may have a very rough shape, due to the particular choice of the
variogram that yields rough Gaussian paths.

4. Ergodic and mixing properties

In the sequel, we focus on the case when η is a stationary sample continuous max-stable random
field on X = Z

d or Rd . We show strong connections between the ergodic and mixing properties
of the random field η and the geometry of the cells.

Ergodic and mixing properties of max-stable random fields have been studied intensively by
Stoev [24,25] and Kabluchko and Schlather [9]. A simple characterization using the extremal
coefficient is known (see, e.g., [9], Theorems 1.1 and 1.2, where the more general case of max-
infinitely divisible processes is considered).

Theorem 12 (Stoev [24], Kabluchko and Schlather [9]). Let η be a stationary max-stable
random field on X = Z

d or Rd .

– η is ergodic if and only if θ(h) → 2 in Cesàro mean as h → ∞;
– η is mixing if and only if θ(h) → 2 as h → ∞.

Interestingly, these results can be reinterpreted in terms of the geometric properties of the
tessellation. For r > 0, we write Br = [−r, r]d ∩ X . We equip X with a measure λ which is
either the counting or the Lebesgue measure, when X = Z

d or X =R
d , respectively.

Proposition 13. Let η be a stationary, sample continuous max-stable random field on X = Z
d

or Rd .
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1. The following statements are equivalent:
(1.a) η is ergodic,
(1.b) limr→+∞ E[λ(C(0)∩Br )

λ(Br )
] = 0.

2. The following statements are equivalent:
(2.a) η is mixing,
(2.b) limx→∞ P[x ∈ C(0)] = 0.

Proof. According to Theorem 12, η is ergodic if and only if

lim
r→+∞

1

λ(Br)

∫
Br

(
2 − θ(h)

)
λ(dh) = 0, (11)

and η is mixing if and only if

lim
h→∞

(
2 − θ(h)

) = 0. (12)

Clearly, in view of the inequalities (10), (11) is equivalent to

lim
r→+∞

1

λ(Br)

∫
Br

P
[
h ∈ C(0)

]
λ(dh) = lim

r→+∞E

[
λ(C(0) ∩ Br)

λ(Br)

]
= 0

and (12) is equivalent to limh→∞ P[h ∈ C(0)] = 0. �

Next, we focus on strong mixing properties of max-stable processes, see Dombry and Eyi-
Minko [4]. The β-mixing coefficients of the random process η are defined as follows: for disjoint
closed subsets S1, S2 ⊂X , we define

β(S1, S2) = sup
{∣∣PS1∪S2(C) − (PS1 ⊗PS2)(C)

∣∣;C ∈ BS1∪S2

}
, (13)

where PS is the distribution (on the space R
S+) of the restriction of η to the set S, and BS is the

product σ -algebra on the space R
S+. Given a closed subset S ⊂X and r > 0, we define

βr(S) = β
(
S,Sc

r

)
with Sc

r = {
x ∈ S;d(x,S) ≥ r

}
,

where d(x,S) denotes the distance between the point x and the set S. We say that η is strongly
β-mixing if for all compact sets S ⊂X ,

lim
r→+∞βr(S) = 0.

Proposition 14. If η is a stationary max-stable random field such that C(0) is almost surely
bounded, then η is strongly β-mixing.

Proof. We use here an upper bound for the β-mixing coefficient provided by Dombry and Eyi-
Minko [4], Theorem 3.1: the β-mixing coefficient β(S1, S2) defined by (13) satisfies

β(S1, S2) ≤ 2P
[
A(S1, S2)

]
,
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where A(S1, S2) denotes the event

{∃i ≥ 1,∃(s1, s2) ∈ S1 × S2,UiYi(s1) = η(s1) and UiYi(s2) = η(s2)
}
.

Introducing the cells C(s1) with s1 ∈ S1, we have

A(S1, S2) = {∃(s1, s2) ∈ S1 × S2, s2 ∈ C(s1)
}

=
{ ⋃

s1∈S1

C(s1) ∩ S2 
=∅

}

and

β(S1, S2) ≤ 2P

[ ⋃
s1∈S1

C(s1) ∩ S2 
=∅

]
.

We deduce that, for all compact set K ⊂X and for all r > 0,

βr(K) ≤ 2P

[
∃x ∈X , d(x,K) ≥ r and x ∈

⋃
s∈K

C(s)

]
.

We prove below that if C(0) is bounded a.s., then so is
⋃

s∈K C(s), whence the right-hand
side in the above inequality converges to 0 (by the dominated convergence theorem), and
limr→∞ βr(K) = 0.

Suppose now that C(0) is bounded a.s. In the discrete case X = Z
d , the compact set K is finite

and
⋃

s∈K C(s) is a.s. bounded as a finite union of bounded sets. In the continuous case X =R
d ,

K may be infinite but it is known that there are a.s. only finitely many indices i ≥ 1 such that
UiYi(s) = η(s) for some s ∈ K (see Dombry and Eyi-Minko [5], Proposition 2.3). Hence, we
can extract a finite covering

⋃
s∈K C(s) = ⋃k

j=1 C(sj ) and
⋃

s∈K C(s) is a.s. bounded as a finite
union of bounded sets. �

We conjecture that the converse implication in Proposition 14 is also true:

Conjecture 15. If η is a strongly β-mixing stationary max-stable random field, then C(0) is
almost surely bounded.

We were not able to prove the conjecture, mainly because we lack a lower bound for the β-
mixing coefficient β(S1, S2) (only an upper bound is given in [4]). The intuition is relatively
clear though: if the cell remains unbounded with positive probability, then the value η(0) of the
random field at the origin may have an impact at infinity via the unbounded cell C(0). In view
of Corollary 20, see below, the conjecture can also be stated as follows: a stationary max-stable
field η is strongly β-mixing if and only if η is purely dissipative.
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5. Cone decompositions

In this section, we introduce some technical material on cone decompositions of stationary max-
stable processes that will be useful in the sequel. The structure of stationary max-stable processes
was first investigated by de Haan and Pickands [3]. Recently, further results were obtained by
exploiting the analogy between the theory of max-stable and sum-stable processes. Inspired by
the works of Rosiński [16,17], Rosiński and Samorodnitsky [18] and Samorodnitsky [19,20],
the representation theory of stationary max-stable random fields via non-singular flows was de-
veloped independently by Kabluchko [8], Wang and Stoev [27] and Wang et al. [26]. See also
Kabluchko and Stoev [11] for an extension to sum- and max-infinitely divisible processes. In
these works, the conservative/dissipative and positive/null decompositions of the non-singular
flow play a major role.

To avoid technical details of non-singular ergodic theory, we use a naive approach based on
cone decompositions of max-stable processes (see, e.g., Wang and Stoev [27], Theorem 5.2).
The links between this approach and the non-singular ergodic theory are explored in Dombry
and Kabluchko [6].

The following simple lemma about cone decompositions of max-stable processes will be use-
ful. Recall that F0 =F(X , [0,+∞)) \ {0} denotes the set of continuous, non-negative functions
on X excluding the zero function. A measurable subset C ⊂ F0 is called a cone if for all f ∈ C
and u > 0, uf ∈ C. The cone C is said to be shift-invariant if for all f ∈ C and x ∈ X , we have
f (· + x) ∈ C.

Lemma 16. Let C1 and C2 be two measurable, shift-invariant cones such that F0 = C1 ∪ C2 and
C1 ∩ C2 = ∅. Let η be a stationary max-stable process given by representation (2). Consider the
decomposition η = η1 ∨ η2 with

η1(x) =
∨
i≥1

UiYi(x)1{Yi∈C1} and η2(x) =
∨
i≥1

UiYi(x)1{Yi∈C2}.

Then, η1 and η2 are stationary and independent max-stable processes1 whose distribution de-
pends only on the distribution of η and not on the specific representation (2).

Proof. By the uniqueness of the Lévy measure, the max-stable process η is stationary if and only
if its Lévy measure μ is stationary. By the properties of Poisson point processes, �∩Ci , i = 1,2,
are independent Poisson point processes with intensity measures dμi = 1Ci

dμ. The max-stable
processes η1 and η2 are hence independent with exponent measures μ1 and μ2, respectively.
Since the cone Ci is shift-invariant, so is the measure μi . Hence, the process ηi is stationary.
Finally, the distribution of ηi is characterized by the Lévy measure dμi = 1Ci

dμ and does not
depend on the representation (2). �

The notion of Brown–Resnick stationarity introduced in Kabluchko et al. [10] will be use-
ful.

1With margins differing from the standardized form (1) by a multiplicative constant.
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Definition 17. We say that the process Y = (Y (x))x∈X is Brown–Resnick stationary if the asso-
ciated max-stable process η defined by (2) is stationary.

For future reference, we gather in the next lemma several properties of Brown-Resnick sta-
tionary processes. A shift-invariant cone FL is said to be localizable if there exist mappings
L1 : FL → X and L2 :FL → (0,+∞) such that for all f ∈FL, x ∈ X and u > 0,

– L1(f (· + x)) = L1(f ) − x and L1(uf ) = L1(f ),
– L2(f (· + x)) = L2(f ) and L2(uf ) = uL2(f ).

A typical example of localizable cone is the cone {f ∈ F0; lim∞ f = 0} with L1(f ) =
arg maxf and L2(f ) = maxf (if the maximum is attained at several points, we define the
arg max as the smallest such point with respect to the lexicographic order).

Lemma 18. Let Y and Y ′ be independent Brown–Resnick stationary processes. In the case X =
R

d , we assume for statements (iii) and (iv) that the associated max-stable process has continuous
sample paths.

(i) The product YY ′ is also Brown–Resnick stationary.
(ii) Let C be a shift-invariant cone, then Y1{Y∈C} is Brown–Resnick stationary.

(iii) Let K ⊂ X be compact. In the case X = R
d , we suppose that the interior of K is non-

empty. Then, modulo null sets,

{
lim

x→∞Y(x) = 0
}

=
{∫

X
sup
y∈K

Y(x + y)λ(dx) < ∞
}
.

(iv) The cone FL = {f ∈ F0; supx∈X f (x) > lim supx→∞ f (x)} is localizable and, modulo
null sets,

{Y ∈FL} ⊂
{

lim
x→∞Y(x) = 0

}
.

In fact, the latter inclusion holds for any localizable cone.

Statement (i) is due to Kabluchko et al. [10], Corollary 8, statement (ii) is a by-product of
Lemma 16 and its proof. Statements (iii) and (iv) are closely related to Proposition 10 and its
proof in Kabluchko and Dombry [6]. In the proof of [6], Proposition 10, we show that FD =
F ′

D = F̃D wich implies (iii).

Proof of Lemma 18(iv). To check that FL is localizable, take L1(f ) = arg max(f ) and
L2(f ) = max(f ) in the definition of a localizable cone (note that we are working with con-
tinuous functions so that the supremum is a maximum).

For the proof of the inclusion {Y ∈ FL} ⊂ {limx→∞ Y(x) = 0}, we prove that ηL =∨
i≥1 UiYi1{Yi∈FL} admits a mixed moving maximum representation. According to [6], Propo-

sition 10, this implies that YL ∈ F̃D almost surely and hence the inclusion {Y ∈ FL} ⊂
{limx→∞ Y(x) = 0} modulo null sets. For simplicity, we omit the subscript L and assume that
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Y ∈ FL almost surely. We prove that η = ∨
i≥1 UiYi admits a mixed moving maximum repre-

sentation. In fact, the proof works if FL is replaced by any localizable cone. We follow the proof
of Theorem 14 in Kabluchko et al. [10] and we sketch only the main lines. We introduce the
random variables

Xi = arg max
x∈X

Yi(x), Zi(·) = Yi(Xi + ·)
maxx∈X Yi(x)

, Vi = Ui max
x∈X

Yi(x).

Note that Xi is well-defined because of the definition of FL. If the maximum is attained at several
points, we take the lexicographically smallest one. Clearly, we have UiYi(x) = ViZi(x −Xi) for
all x ∈ X so that

η(x) =
∨
i≥1

ViZi(x − Xi).

It remains to check that (Vi,Xi,Zi)i≥1 is a Poisson point process with intensity measure
u−2 duλ(dx)Q(df ), where Q is a probability measure on F0. Clearly, (Vi,Xi,Zi)i≥1 is a Pois-
son point process as the image of the original point process (Ui, Yi)i≥1. Its intensity is the image
of the intensity of the original point process. With a straightforward transposition of the argu-
ments of [10], Theorem 14, one can check that it has the required form. �

6. Boundedness of cells

We prove that the boundedness of the cell C(x), x ∈ X , is strongly connected with the con-
servative/dissipative decomposition of the max-stable process η. Introduce the following shift-
invariant cones of functions:

FC =
{
f ∈F0; lim sup

x→∞
f (x) > 0

}
, (14)

FD =
{
f ∈F0; lim

x→∞f (x) = 0
}
. (15)

The conservative/dissipative decomposition of η is given by

ηC(x) =
∨
i≥1

UiYi(x)1{Yi∈FC }, (16)

ηD(x) =
∨
i≥1

UiYi(x)1{Yi∈FD}. (17)

According to Lemma 16, the processes ηC and ηD are independent stationary max-stable pro-
cesses such that η = ηC ∨ ηD . It is proved in Dombry and Kabluchko [6] that this cone decom-
position is equal to the conservative/dissipative decomposition based on non-singular ergodic
theory.
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Theorem 19. Let x ∈X . The following events are equal modulo null sets:

{
C(x) is unbounded

} = {
ηC(x) > ηD(x)

}
, (18){

C(x) is bounded
} = {

ηD(x) > ηC(x)
}
. (19)

We denote by αC and αD the scale parameters of the 1-Fréchet random variables ηC(x) and
ηD(x) respectively, that is, for all z > 0,

P
[
ηC(x) ≤ z

] = exp(−αC/z),

P
[
ηD(x) ≤ z

] = exp(−αD/z).
(20)

Note that αD + αC = 1 and that αC and αD do not depend on x ∈ X . We say that η is purely
conservative (resp. purely dissipative) if αC = 1 (resp. αD = 1).

Corollary 20. Let x ∈X . We have:

(i) P[C(x) is unbounded] = αC and P[C(x) is bounded] = αD ,
(ii) C(x) is unbounded a.s. if and only if η is purely conservative,

(iii) C(x) is bounded a.s. if and only if η is purely dissipative.

In the next lemma, we gather some preliminary computations needed for the proof of Theo-
rem 19.

Lemma 21. Let x ∈ X . We have:

(i) αC = E[Y(x)1{Y∈FC }] and αD = E[Y(x)1{Y∈FD}],
(ii) P[ηC(x) > ηD(x)] = αC and P[ηD(x) > ηC(x)] = αD ,

(iii) P[C(x) is bounded, ηC(x) > ηD(x)] = E[(Y (x)
η(x)

− lim sup∞ Y
η
)+1{Y∈FC}],

(iv) P[C(x) is bounded, ηD(x) > ηC(x)] = E[(Y (x)
η(x)

− lim sup∞ Y
η
)+1{Y∈FD}].

Proof. (i) From (16) we get

P
[
ηC(x) ≤ y

] = P

[∨
i≥1

UiYi(x)1{Yi∈FC } ≤ y

]

= exp

(
−

∫ ∞

0
P
[
uY(x)1{Y∈FC } > y

]
u−2 du

)

= exp
(−E

[
Y(x)1{Y∈FC }

]
/y

)
,

whence we deduce that αC = E[Y(x)1{Y∈FC }]. The formula for αD is obtained in the same way.
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(ii) The random variables ηC(x) and ηD(x) are independent and have Fréchet distribution with
parameters αC and αD , respectively. Hence,

P
[
ηC(x) > ηD(x)

] = E
[
exp

(−αD/ηC(x)
)]

=
∫ +∞

0
exp(−αD/u)d

(
e−αC/u

)
= αC.

For the last equality, we use αC + αD = 1. Similarly, P[ηD(x) > ηC(x)] = αD .
(iii) This statement is a variation of Corollary 6 and we give only the main lines of its proof.

We first prove the following version of (8): for all compact sets K ⊂X ,

P
[
C(x) ⊂ K,ηC(x) > ηD(x)

]
= E

[(
Y(x)

η(x)
− sup

y∈Kc

Y (y)

η(y)

)+
1{Y∈FC }

]
.

(21)

Indeed, with the same notation as in the proof of (8), we have{
C(x) ⊂ K,ηC(x) > ηD(x)

}
= {∃i ≥ 1, φi(x) > mi(x),φi <Kc mi and φi ∈FC

}
and the Slivnyak–Mecke formula entails that

P
[
C(x) ⊂ K,ηC(x) > ηD(x)

]
= E

[∑
i≥1

1{φi(x)>mi(x)}1{φi<Kcmi }1{φi∈FC }
]

=
∫
F0

E[1{f (x)>η(x)}1{f <Kcη}1{f ∈FC }]μ(df ).

With similar computations as in the proof of (8), (21) is easily deduced. Then statement (iii)
follows from (21) exactly in the same way as Corollary 6 follows from (8).

(iv) The proof is similar and is omitted. �

Proof of Theorem 19. Since {ηD(x) = ηC(x)} is a null set, it suffices to prove the following
two inclusions (modulo null sets):{

ηD(x) > ηC(x)
} ⊂ {

C(x) is bounded
}
, (22){

ηC(x) > ηD(x)
} ⊂ {

C(x) is unbounded
}
. (23)

Proof of (22). We first reduce the proof of (22) to the proof of

lim
y→∞

Y(y)

η(y)
1{Y∈FD} = 0 a.s. (24)
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Indeed, (24) and statements (i), (ii) and (iv) of Lemma 21 entail that

P
[
C(x) is bounded, ηD(x) > ηC(x)

]
= E

[(
Y(x)

η(x)
− lim sup

∞
Y

η

)+
1{Y∈FD}

]

= E

[
Y(x)

η(x)
1{Y∈FD}

]

= αD

= P
[
ηD(x) > ηC(x)

]
,

and we deduce (22).
It remains to prove (24). Statements (i) and (iii) of Lemma 18 imply that Y1{Y∈FD} is Brown–

Resnick stationary and such that∫
X

sup
y∈K

Y(x + y)1{Y∈FD}λ(dx) < ∞ a.s.

On the other hand, let us consider the process Z = Y
η

1{Y∈FD}. Since Y and 1/η are Brown–
Resnick stationary and since the cone FD is shift invariant, statements (i) and (ii) of Lemma 18
imply that Z = Y

η
1{Y∈FD} is Brown–Resnick stationary. Furthermore, for any compact set

K ⊂X ,

E

[∫
X

sup
y∈K

Z(x + y)λ(dx)

∣∣∣ Y

]

≤ E

[∫
X

supy∈K Y(x + y)

infy∈K η(x + y)
1{Y∈FD}λ(dx)

∣∣∣ Y

]

= E

[
sup
y∈K

η−1(y)
]∫

X
sup
y∈K

Y(x + y)1{Y∈FD}λ(dx) < ∞ a.s.

In the last equation, we used the independence of Y and η, the stationarity of η and the fact that
E[supy∈K η−1(y)] < ∞ (see Dombry and Eyi-Minko [4], Theorem 2.2). As a consequence,

∫
X

sup
y∈K

Z(x + y)λ(dx) < ∞ a.s.

and Lemma 18(iii) implies that limx→∞ Z(x) = 0 a.s., thus proving (24).

Proof of (23). We consider the shift-invariant cone

FL =
{
f ∈F0; sup

X
f > lim sup

∞
f

}
.
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We will prove that the process Z = Y
η

1{Y∈FC } is Brown–Resnick stationary and satisfies

P[Z ∈ FL] = 0. (25)

After this has been done, (23) can be deduced as follows: (25) implies that

Y(x)

η(x)
1{Y∈FC} ≤ sup

X

(
Y

η
1{Y∈FC}

)
≤

(
lim sup

∞
Y

η
1{Y∈FC }

)
a.s.,

whence (
Y(x)

η(x)
− lim sup

∞
Y

η

)+
1{Y∈FC } = 0 a.s.

According to Lemma 21, statement (iii), we obtain that

P
[
C(x) is bounded, ηC(x) > ηD(x)

]
= E

[(
Y(x)

η(x)
− lim sup

∞
Y

η

)+
1{Y∈FC }

]

= 0,

and this implies (23).

We now consider (25). Statements (i) and (ii) of Lemma 18 imply that the process Z is
Brown–Resnick stationary. Lemma 18(iv) entails that P[Z ∈ FL] ≤ P[Z ∈ FD]. So, it suffices
to prove that P[Z ∈ FD] = 0. Suppose by contradiction that P[Z ∈ FD] > 0. Recalling that
Z = Y

η
1{Y∈FC }, we see that

{Z ∈FD} = {Y ∈ FC} ∩ {Y/η ∈ FD}.

On the set {Y ∈ FC} = {lim sup∞ Y > 0}, one can construct a σ(Y )-measurable random se-
quence xn → ∞ such that Y(xn) ≥ 1

2 lim sup∞ Y > 0. Then, on {Z ∈ FD} ⊂ {Y/η ∈ FD} =
{lim∞ Y/η = 0}, we have necessarily η(xn) → +∞. But η is stationary and independent of Y ,
so that η(xn) has a unit Fréchet distribution that does not depend on n. This leads to a contradic-
tion and we must hence have P[Z ∈ FD] = 0. This concludes the proof of (25). �

Proof of Corollary 20. Theorem 19 and Lemma 21(ii) together yield

P
[
C(x) is unbounded

] = P
[
ηC(x) > ηD(x)

] = αC,

proving statement (i). Furthermore, η is purely dissipative if ηC = 0, which is equivalent to
αC = 0. We deduce easily that η is purely dissipative if and only if C(x) is bounded a.s. and this
proves (ii). The proof of (iii) is similar. �
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7. Asymptotic density of cells

Next, we consider the decomposition of η into positive and null components and relate it to the
asymptotic density of the cell C(x). For this purpose, we introduce a new construction of the pos-
itive/null decomposition of max-stable processes which simplifies and extends to the dimension
d ≥ 1 the construction from Samorodnitsky [20] and Wang and Stoev [27], Example 5.4.

Recall that we write Br = [−r, r]d ∩ X for r > 0 and that λ is either the counting or the
Lebesgue measure on X , when X = Z

d or X = R
d , respectively. Consider the shift-invariant

cones of functions

FP =
{
f ∈ F0; lim

r→∞
1

λ(Br)

∫
Br

f (x)λ(dx) > 0

}
, (26)

FN =
{
f ∈ F0; lim inf

r→∞
1

λ(Br)

∫
Br

f (x)λ(dx) = 0

}
. (27)

In the definition of FP , we assume that the limit exists. The stationarity of η implies that Y ∈
FP ∪ FN a.s.; see Dombry and Kabluchko [6]. According to Lemma 16, the corresponding
decomposition is

ηP (x) =
∨
i≥1

UiYi(x)1{Yi∈FP }, (28)

ηN(x) =
∨
i≥1

UiYi(x)1{Yi∈FN }, (29)

where the processes ηN and ηP are independent, stationary, max-stable and η = ηP ∨ ηN . This
decomposition based on cones is equal to the positive/null decomposition based on the underly-
ing non-singular flow (see, e.g., Wang and Stoev [27], Theorem 5.3, in dimension d = 1, Wang
et al. [26] in dimension d ≥ 1, Dombry and Kabluchko [6]).

Given a measurable subset C ⊂X , we define its lower and upper asymptotic densities by

δ−(C) = lim inf
r→+∞

λ(C ∩ Br)

λ(Br)
, δ+(C) = lim sup

r→+∞
λ(C ∩ Br)

λ(Br)
.

If δ−(C) = δ+(C), the common value is called the asymptotic density of C and denoted by δ(C).
The following theorem relates the positive/null decomposition of η to the asymptotic density of
the cell C(x).

Theorem 22. Let x ∈X . The following events are equal modulo null sets:{
δ
(
C(x)

)
> 0

} = {
ηP (x) > ηN(x)

}
, (30){

δ−(
C(x)

) = 0
} = {

ηN(x) > ηP (x)
}
, (31)

where the notation δ(C(x)) > 0 means that the asymptotic density δ(C(x)) exists and is positive.
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We denote by αP and αN the scale parameters of the 1-Fréchet random variables ηP (x) and
ηN(x) respectively, that is, for all z > 0,

P
[
ηP (x) ≤ z

] = exp(−αP /z) and P
[
ηN(x) ≤ z

] = exp(−αN/z).

Note that αP + αN = 1 and that αP and αN do not depend on x. We say that the max-stable
process η is generated by a positive (resp. null) flow if αP = 1 (resp. αN = 1).

Corollary 23. Let x ∈X . We have:

(i) P[δ(C(x)) > 0] = αP and P[δ−(C(x)) = 0] = αN ,
(ii) δ(C(x)) > 0 a.s. if and only if η is generated by a positive flow,

(iii) δ−(C(x)) = 0 a.s. if and only if η is generated by a null flow.

Proof of Theorem 22. It suffices to prove the following two inclusions (modulo null sets):{
ηN(x) > ηP (x)

} ⊂ {
δ−(

C(x)
) = 0

}
(32)

and {
ηP (x) > ηN(x)

} ⊂ {
δ
(
C(x)

)
> 0

}
. (33)

Proof of (32). Let us consider the cell of x with respect to the null component only. It is defined
by

CN(x) = {
y ∈ X ; ∃i ≥ 1, Yi ∈FN,UiYi(x) = ηN(x),UiYi(y) = ηN(y)

}
.

Clearly, ηN(x) > ηP (x) implies that C(x) ⊂ CN(x). We will prove that δ−(CN(x)) = 0 on
{ηN(x) > ηP (x)} and this implies (32).

We can suppose without loss of generality that η = ηN is generated by a null flow and prove
that the lower asymptotic density of C(x) = CN(x) is equal to zero. According to Wang et al.
[26], Theorem 4.1, or Kabluchko [8], Theorem 8, max-stable random fields generated by null
flows are ergodic, whence Proposition 13 implies

E

[
λ(C(0) ∩ Br)

λ(Br)

]
→ 0 as r → ∞.

This implies the convergence in probability

λ(C(0) ∩ Br)

λ(Br)

P−→ 0 as r → +∞

and hence almost sure converge to 0 along a subsequence. We deduce that δ−(C(0)) = 0 almost
surely and, by stationarity, the same holds true for C(x), x ∈ X .

Proof of (33). Possibly changing representation (2), we may suppose without loss of generality
that for any i ≥ 1, the random process Ỹi = Yi1{Yi∈P } is stationary. We consider the cells

C̃i = {
y ∈X ,UiỸi(y) = η(y)

}
, i ≥ 1.
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We will prove below that for every i ≥ 1 with probability one,

either δ(C̃i) > 0 or λ(C̃i) = 0. (34)

We show that this implies (33). On the event {ηP (x) > ηN(x)}, there is a random index i(x)

such that C(x) = C̃i(x). Furthermore, since x ∈ C(x), we have λ(C̃i(x)) > 0 (this is clear in the
discrete case, in the continuous case, C(x) contains a neighborhood of x). According to (34), we
obtain δ(Ci(x)) = δ(Cx) > 0, proving (33).

It remains to prove (34). Recall that the Ui ’s are arranged in the decreasing order. Fix i ≥ 1
and observe that the distribution of (Ui, Ỹi , η) is invariant under the shift

Tx(u,f1, f2) = (
u,f1(· + x), f2(· + x)

)
, u > 0, f1, f2 ∈F0.

Then we observe that

λ(C̃i ∩ Br)

λ(Br)
= 1

λ(Br)

∫
Br

1{x∈C̃i }λ(dx)

= 1

λ(Br)

∫
Br

1{UiỸi (x)=η(x)}λ(dx)

= 1

λ(Br)

∫
Br

1{Tx(Ui ,Ỹi ,η)∈A}λ(dx)

with A = {(u,f1, f2);uf1(0) = f2(0)}. We can then apply the multiparameter ergodic theorem
(see, e.g., [26], Theorem 2.8) and conclude that

lim
r→+∞

λ(C̃i ∩ Br)

λ(Br)
= E

[
1A(Ui, Ỹi , η) | I]

a.s.,

where I denotes the σ -algebra of shift-invariant sets. This shows that C̃i has an asymptotic
density,

δ(C̃i) = E[1{0∈C̃i } | I] a.s.

Furthermore, we observe that shift-invariance implies that

E[1{0∈C̃i } | I] = E[1{x∈C̃i } | I], x ∈X .

Using the fact that {δ(C̃i) = 0} ∈ I , we deduce that

E
[
λ(C̃i)1{δ(C̃i )=0} | I] = 1{δ(C̃i )=0}

∫
X
E[1{x∈C̃i } | I]λ(dx) = 0.

Taking the expectation, we obtain that

E
[
λ(C̃i)1{δ(C̃i )=0}

] = 0

and we conclude that λ(C̃i) = 0 on the event {δ(C̃i) = 0}, proving (34). �



Random tessellations associated with max-stable random fields 51

Proof of Corollary 23. For the sake of brevity, we omit the proof which is quite straightforward
from Theorem 22 and very similar to the proof of Corollary 20. �

Acknowledgements

The authors are grateful to the editor, the associate editor and two referees for their helpful
suggestions.

References

[1] de Haan, L. (1984). A spectral representation for max-stable processes. Ann. Probab. 12 1194–1204.
MR0757776

[2] de Haan, L. and Ferreira, A. (2006). Extreme Value Theory: An Introduction. Springer Series in Oper-
ations Research and Financial Engineering. New York: Springer. MR2234156

[3] de Haan, L. and Pickands, J. III (1986). Stationary min-stable stochastic processes. Probab. Theory
Related Fields 72 477–492.

[4] Dombry, C. and Eyi-Minko, F. (2012). Strong mixing properties of max-infinitely divisible random
fields. Stochastic Process. Appl. 122 3790–3811.

[5] Dombry, C. and Eyi-Minko, F. (2013). Regular conditional distributions of continuous max-infinitely
divisible random fields. Electron. J. Probab. 18 no. 7, 1–21. MR3024101

[6] Dombry, C. and Kabluchko, Z. (2016). Ergodic decompositions of stationary max-stable processes in
terms of their spectral functions. Preprint. Available at arXiv:1601.00792.

[7] Giné, E., Hahn, M.G. and Vatan, P. (1990). Max-infinitely divisible and max-stable sample continuous
processes. Probab. Theory Related Fields 87 139–165. MR1080487

[8] Kabluchko, Z. (2009). Spectral representations of sum- and max-stable processes. Extremes 12 401–
424.

[9] Kabluchko, Z. and Schlather, M. (2010). Ergodic properties of max-infinitely divisible processes.
Stochastic Process. Appl. 120 281–295.

[10] Kabluchko, Z., Schlather, M. and de Haan, L. (2009). Stationary max-stable fields associated to neg-
ative definite functions. Ann. Probab. 37 2042–2065. MR2561440

[11] Kabluchko, Z. and Stoev, S. (2016). Stochastic integral representations and classification of sum- and
max-infinitely divisible processes. Bernoulli 22 107–142. MR3449778

[12] Lautensack, C. and Zuyev, S. (2008). Random Laguerre tessellations. Adv. in Appl. Probab. 40 630–
650. MR2454026

[13] Molchanov, I. (2005). Theory of Random Sets. Probability and Its Applications (New York). London:
Springer London Ltd.

[14] Møller, J. (1992). Random Johnson–Mehl tessellations. Adv. in Appl. Probab. 24 814–844.
[15] Resnick, S.I. and Roy, R. (1991). Random usc functions, max-stable processes and continuous choice.

Ann. Appl. Probab. 1 267–292. MR1102320
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