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Let {X(t) = (X1(t),X2(t))T , t ∈ R
N } be an R

2-valued continuous locally stationary Gaussian random
field with E[X(t)] = 0. For any compact sets A1,A2 ⊂ R

N , precise asymptotic behavior of the excursion
probability

P

(
max
s∈A1

X1(s) > u, max
t∈A2

X2(t) > u
)

as u → ∞

is investigated by applying the double sum method. The explicit results depend not only on the smoothness
parameters of the coordinate fields X1 and X2, but also on their maximum correlation ρ.

Keywords: bivariate Gaussian field; bivariate Matérn field; double extremes; double sum method;
excursion probability

1. Introduction

For a real-valued Gaussian random field X = {X(t), t ∈ T }, where T is the parameter set, defined
on probability space (�,F,P), the excursion probability P{supt∈T X(t) > u} has been studied
extensively. Extending the seminal work of Pickands [22], Piterbarg [23] developed a systematic
theory on asymptotics of the aforementioned excursion probability for a broad class of Gaussian
random fields. Their method, which is called the double sum method, has been further extended
by Chan and Lai [9] to non-Gaussian random fields and, recently, by Dębicki et al. [11] to
a non-stationary Gaussian random field {X(s, t), (s, t) ∈ R

2} whose variance function attains its
maximum on a finite number of disjoint line segments. For smooth Gaussian random fields, more
accurate approximation results have been established by using integral and differential-geometric
methods (see, e.g., Adler [3], Adler and Taylor [4], Azaïs and Wschebor [7] and the references
therein). For Gaussian and asymptotically Gaussian random fields, the change of measure method
was developed by Nardi, Siegmund and Yakir [21] and Yakir [27]. Many of the results in the
aforementioned references have found important applications in statistics and other scientific
areas. We refer to Adler, Taylor and Worsley [2] and Yakir [27] for further information.

However, only a few authors have studied the excursion probability of multivariate random
fields. Piterbarg and Stamatovich [24] and Dębicki et al. [12] established large deviation re-
sults for the excursion probability in multivariate case. Anshin [5] obtained precise asymptotics
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for a special class of nonstationary bivariate Gaussian processes, under quite restrictive condi-
tions. Hashorva and Ji [16] recently derived precise asymptotics for the excursion probability
of a bivariate fractional Brownian motion with constant cross correlation. The last two papers
only consider multivariate processes on the real line R with specific cross dependence structures.
Cheng and Xiao [10] established a precise approximation to the excursion probability by using
the mean Euler characteristics of the excursion set for a broad class of smooth bivariate Gaussian
random fields on R

N . In the present paper, we investigate asymptotics of the excursion prob-
ability of non-smooth bivariate Gaussian random fields on R

N , where the methods are totally
different from the smooth case.

Our work is also motivated by the recent increasing interest in using multivariate random
fields for modeling multivariate measurements obtained at spatial locations (see, e.g., Gelfand
et al. [14], Wackernagel [26]). Several classes of multivariate spatial models have been intro-
duced by Gneiting, Kleiber and Schlather [15], Apanasovich, Genton and Sun [6] and Kleiber
and Nychka [17]. We will show in Section 2 that the main results of this paper are applicable to
bivariate Gaussian random fields with Matérn cross-covariances introduced by Gneiting, Kleiber
and Schlather [15]. Furthermore, we expect that the excursion probabilities considered in this
paper will have interesting statistical applications.

Let {X(t), t ∈ R
N } be an R

2-valued (not-necessarily stationary) Gaussian random field with
E[X(t)] = 0. We write X(t) � (X1(t),X2(t))

T and define

rij (s, t) := E
[
Xi(s)Xj (t)

]
, i, j = 1,2. (1.1)

Let |t | :=
√∑N

j=1 t2
j be the l2-norm of a vector t ∈ R

N . Throughout this paper, we impose the
following assumptions.

(i) rii(s, t) = 1 − ci |t − s|αi + o(|t − s|αi ), where αi ∈ (0,2) and ci > 0 (i = 1,2) are con-
stants.

(ii) |rii(s, t)| < 1 for all |t − s| > 0, i = 1,2.
(iii) r12(s, t) = r21(s, t) := r(|t − s|). Namely, the cross correlation is isotropic.
(iv) The function r(·) : [0,∞) → R attains maximum only at zero with r(0) = ρ ∈ (0,1), i.e.,

|r(t)| < ρ for all t > 0. Moreover, we assume r ′(0) = 0, r ′′(0) < 0 and there exists η > 0, for any
s ∈ [0, η], r ′′(s) exists and continuous.

The cross correlation defined here is meaningful and common in spatial statistics where it
is usually assumed that the correlation decreases as the distance between two observations in-
creases (see, e.g., Gelfand et al. [14], Gneiting, Kleiber and Schlather [15]). We only assume
that the cross correlation is twice continuously differentiable around the area where the maxi-
mum correlation is attained, which is a weaker assumption than that in Cheng and Xiao [10] who
considered smooth bivariate Gaussian fields.

For any compact sets A1,A2 ⊂ R
N , we investigate the asymptotic behavior of the following

excursion probability

P

(
max
s∈A1

X1(s) > u,max
t∈A2

X2(t) > u
)

as u → ∞. (1.2)
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The main results of this paper are Theorems 2.1 and 2.2 below, which demonstrate that the
excursion probability (1.2) depends not only on the smoothness parameters of the coordinate
fields X1 and X2, but also on their maximum correlation ρ. The proofs of our Theorems 2.1
and 2.2 will be based on the double sum method. Compared with the earlier works of Ladneva
and Piterbarg [18], Anshin [5] and Hashorva and Ji [16], the main difficulty in the present paper
is that the correlation function of X1 and X2 attains its maximum over the set D := {(s, s) : s ∈
A1 ∩ A2} which may have different geometric configurations. Several non-trivial modifications
for carrying out the arguments in the double sum method have to be made.

This paper raises several open questions. First, the cases of α1 = 2 or α2 = 2 have not been
considered in this paper. The main difficulty is that, when α1 = 2, the sample functions of X1

may either be differentiable or non-differentiable. In view of the method in this paper, the proof
of Lemma 4.1 on the uniform convergence of finite dimensional distributions for bivariate pro-
cess breaks down when α1 = 2 or α2 = 2. Studying the asymptotics of (1.2) when α1 = 2 or/and
α2 = 2 requires different methods for dealing with differentiable or non-differentiable cases.
When both X1 and X2 have twice continuously differentiable sample functions, this problem
has been studied by Cheng and Xiao [10]. The authors plan to study the remaining cases in
their future work. Second, it would be interesting to study the excursion probabilities when
{X(t), t ∈ R

N } is anisotropic or non-stationary, or taking values in R
d with d ≥ 3. In the last

problem, the covariance and cross-covariance structures become more complicated. We expect
that the pairwise maximum cross correlations and the size (e.g., the Lebesgue measure) of the set
where all the pairwise cross correlations attain their maximum values (if not empty) will play an
important role.

The rest of the paper is organized as follows. Section 2 states the main theorems with some
discussions and provides an application of the main theorems to the bivariate Gaussian fields
with Matérn cross-covariances introduced by Gneiting, Kleiber and Schlather [15]. We state the
key lemmas and provide proofs of our main theorems in Section 3. The proofs of the lemmas are
given in Section 4.

We end the Introduction with some notation. For any t ∈ R
N , |t | denotes its l2-norm. An

integer vector k ∈ Z
N is written as k = (k1, . . . , kN). For k ∈ Z

N and T ∈ R+ = [0,∞), we
define the cube [kT , (k + 1)T ] :=∏N

i=1[kiT , (ki + 1)T ]. For any integer n, mesn(·) denotes the
n-dimensional Lebesgue measure. An unspecified positive and finite constant will be denoted
by C0. More specific constants are numbered by C1,C2, . . . .

2. Main results and discussions

We recall the Pickands constant first (see, Pickands [22], Piterbarg [23], Dieker and Yakir [13]).
Let χ = {χ(t), t ∈R

N } be a (rescaled) fractional Brownian motion with Hurst index α/2 ∈ (0,1),
which is a centered Gaussian field with covariance function E[χ(t)χ(s)] = |t |α +|s|α −|t − s|α .

As in Ladneva and Piterbarg [18] and Anshin [5], we define for any compact sets S,T ⊂R
N ,

Hα(S,T) :=
∫ ∞

0
ex · P

(
sup
s∈S
(
χ(s) − |s|α)> x, sup

t∈T
(
χ(t) − |t |α)> x

)
dx. (2.1)
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Let Hα(T) = Hα(T,T). Then, the Pickands constant is defined as

Hα := lim
T →∞

Hα([0, T ]N)

T N
, (2.2)

which is positive and finite (cf. Piterbarg [23]).
Before moving to the tail probability of extremes of a bivariate Gaussian random field, let us

consider the tail probability of a standard bivariate Gaussian vector (ξ, η) with correlation ρ. It
is known that (see, e.g., Ladneva and Piterbarg [18])

P(ξ > u,η > u) = �(u,ρ)
(
1 + o(1)

)
as u → ∞,

where

�(u,ρ) := (1 + ρ)2

2πu2
√

1 − ρ2
exp

(
− u2

1 + ρ

)
.

The exponential part of the tail probability above is determined by the correlation ρ. As shown
by Theorems 2.1 and 2.2 below, similar phenomenon also happens for the tail probability of
double extremes of {X(t), t ∈ R

N }, where the exponential part is determined by the maximum
cross correlation of the coordinate fields X1 and X2.

We will study double extremes of X on the domain A1 ×A2 where A1,A2 are bounded Jordan
measurable sets in R

N . That is, the boundaries of A1 and A2 have N -dimensional Lebesgue
measure 0 (see, e.g., Piterbarg [23], page 105). We only consider the case when A1 ∩ A2 	=∅, in
which the maximum cross correlation ρ can be attained.

If mesN(A1 ∩ A2) 	= 0, we have the following theorem.

Theorem 2.1. Let {X(t), t ∈ R
N } be a bivariate Gaussian random field that satisfies the as-

sumptions in Section 1. If mesN(A1 ∩ A2) 	= 0, then as u → ∞,

P

(
max
s∈A1

X1(s) > u,max
t∈A2

X2(t) > u
)

= (2π)N/2(−r ′′(0)
)−N/2

c
N/α1
1 c

N/α2
2 mesN(A1 ∩ A2)Hα1Hα2 (2.3)

× (1 + ρ)−N(2/α1+2/α2−1)uN(2/α1+2/α2−1)�(u,ρ)
(
1 + o(1)

)
.

If mesN(A1 ∩ A2) = 0, the above theorem is not informative. We have not been able to obtain
a general explicit formula. Instead, we consider the special cases

A1 = A1,M ×
N∏

j=M+1

[Sj , Tj ] and A2 = A2,M ×
N∏

M+1

[Tj ,Rj ], (2.4)

where A1,M and A2,M are M dimensional Jordan sets with mesM(A1,M ∩ A2,M) 	= 0 and Sj ≤
Tj ≤ Rj , j = M + 1, . . . ,N,0 ≤ M ≤ N − 1. For simplicity of notation, let mes0(·) ≡ 1. Our
next theorem shows that the excursion probability is smaller than that in (2.3) by a factor of
uM−N .
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Theorem 2.2. Let {X(t), t ∈ R
N } be a bivariate Gaussian random field that satisfies the as-

sumptions in Section 1, and let A1,A2 be as in (2.4) such that mesM(A1,M ∩ A2,M) > 0. Then
as u → ∞,

P

(
max
s∈A1

X1(s) > u,max
t∈A2

X2(t) > u
)

= (2π)M/2(−r ′′(0)
)−(2N−M)/2

c
N/α1
1 c

N/α2
2 Hα1Hα2mesM(A1,M ∩ A2,M) (2.5)

× (1 + ρ)2N−M−2N/α1−2N/α2uM+N(2/α1+2/α2−2)�(u,ρ)
(
1 + o(1)

)
.

Remark 2.3. The following are some additional remarks about Theorems 2.1 and 2.2.

• The excursion probability in (1.2) depends on the region where the maximum cross cor-
relation is attained. In our setting, the maximum cross correlation ρ is attained on D :=
{(s, s)|s ∈ A1 ∩ A2}.

• For Theorem 2.2, let us consider the extreme case when M = 0, i.e., A1 ∩ A2 =
{(T1, . . . , TN)}. The exponential part still reaches − u2

1+ρ
, although the maximum cross cor-

relation ρ is attained at a single point.
• To compare our results with Anshin [5], we consider a centered Gaussian process {X(t) =

(X1(t),X2(t)), t ∈ R} and A1 = A2 = [0, T ]. In our setting, the cross correlation attains its
maximum on the line D = {(s, s)|s ∈ [0, T ]}, while in Anshin [5] it only attains at a unique
point in [0, T ] × [0, T ] because of the assumption C2. This is the reason why the power of
u in our settings is 2

α1
+ 2

α2
− 3 instead of 2

α1
+ 2

α2
− 4 in Anshin [5].

• Even though Theorem 2.2 only deals with a special case of A1, A2 with mesN(A1 ∩A2) = 0,
its method of proof can be applied to more general cases provided some information on A1
and A2 is specified. The key step is to reevaluate the infinite series in Lemma 3.5.

We end this section with an application of Theorems 2.1 and 2.2 to bivariate Gaussian random
fields with the Matérn correlation functions introduced by Gneiting, Kleiber and Schlather [15].

The Matérn correlation function M(h|ν, a), where a > 0, ν > 0 are scale and smoothness
parameters, is widely used to model covariance structures in spatial statistics. It is defined as

M(h|ν, a) := 21−ν

�(ν)

(
a|h|)νKν

(
a|h|), (2.6)

where Kν is a modified Bessel function of the second kind. In Gneiting, Kleiber and Schlather
[15], the authors introduce the full bivariate Matérn field X(s) = (X1(s),X2(s)), that is, an R

2-
valued Gaussian random field on R

N with zero mean and matrix-valued covariance functions:

C(h) =
(

C11(h) C12(h)

C21(h) C22(h)

)
, (2.7)

where Cij (h) := E[Xi(s + h)Xj (s)] are specified by

C11(h) = σ 2
1 M(h|ν1, a1), (2.8)
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C22(h) = σ 2
2 M(h|ν2, a2), (2.9)

C12(h) = C21(h) = ρσ1σ2M(h|ν12, a12). (2.10)

According to Gneiting, Kleiber and Schlather [15], the above model is valid if and only if

ρ2 ≤ �(ν1 + N/2)�(ν2 + N/2)

�(ν1)�(ν2)

�(ν12)
2

�(ν12 + N/2)2

a
2ν1
1 a

2ν2
2

a
4ν12
12

(2.11)

× inf
t≥0

(a2
12 + t2)2ν12+N

(a2
1 + t2)ν1+N/2(a2

2 + t2)ν2+N/2
.

Especially, when a1 = a2 = a12, condition (2.11) is reduced to

ρ2 ≤ �(ν1 + N/2)�(ν2 + N/2)

�(ν1)�(ν2)

�(ν12)
2

�(ν12 + N/2)2
, (2.12)

in which case the choice of ρ is fairly flexible.
Here we focus on a standardized bivariate Matérn field, that is, we assume σ1 = σ2 = 1, a1 =

a2 = a12 = 1 and ρ > 0. Moreover, we assume ν1, ν2 ∈ (0,1) and ν12 > 1. In this case, the
bivariate Matérn field {X(t), t ∈R

N } satisfies the assumptions in Section 1.
Indeed, assumption (i) in Section 1 is satisfied since

M(h|νi, a) = 1 − ci |t |2νi + o
(|t |2νi

)
,

where ci = �(1−νi )

22νi �(1+νi )
, i = 1,2 (see, e.g., Stein [25], page 32). Assumption (ii) holds immedi-

ately if we use the following integral representation of M(h|ν, a) (see, e.g., Abramowitz and
Stegun [1], Section 9.6)

M(h|ν, a) = 2�(ν + 1/2)√
π�(ν)

∫ ∞

0

cos(a|h|r)
(1 + r2)ν+1/2

dr. (2.13)

Assumption (iii) holds by the definition of cross correlation in (2.10). For assumption (iv), we
only need to check the smoothness of M(h|ν, a). By another integral representation of M(h|ν, a)

(see, e.g., Abramowitz and Stegun [1], Section 9.6), that is,

M(h|ν, a) = 21−2ν(a|h|)2ν

�(ν + 1/2)�(ν)

∫ ∞

1
e−a|h|r(r2 − 1

)ν−1/2
dr,

one can verify that M(h|ν, a) is infinitely differentiable when |h| 	= 0. Meanwhile, M ′′(0|ν, a)

exists and is continuous when ν > 1 which can be proven by taking twice derivatives to the
integral representation in (2.13) w.r.t. |h|. So assumption (iv) holds.
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Applying Theorem 2.1 to the double excursion probability of X(s) over [0,1]N , we have

P

(
max

s∈[0,1]N
X1(s) > u, max

t∈[0,1]N
X2(t) > u

)

= (2π)N/2(−C′′
12(0)

)−N/2
c
N/(2ν1)

1 c
N/(2ν2)

2 (1 + ρ)−N(1/ν1+1/ν2−1)H2ν1H2ν2

× uN(1/ν1+1/ν2−1)�(u,ρ)
(
1 + o(1)

)
as u → ∞.

Secondly, when the two measurements are observed on two regions which only share part of
boundaries, we use Theorem 2.2 to obtain the excursion probability. For example, if X1(s) are
observed on the region [0,1]N and X2(s) on [0,1]N−1 × [1,2], then as u → ∞,

P

(
max

s∈[0,1]N
X1(s) > u, max

t∈[0,1]N−1×[1,2]
X2(t) > u

)

= (2π)(N−1)/2(−C′′
12(0)

)−(N+1)/2
c
N/(2ν1)

1 c
N/(2ν2)

2 (1 + ρ)1−N(1/ν1+1/ν2−1)H2ν1H2ν2

× uN(1/ν1+1/ν2−1)−1�(u,ρ)
(
1 + o(1)

)
.

3. Proofs of the main results

The proofs of Theorems 2.1 and 2.2 are based on the double sum method (Piterbarg [23])
and the work of Ladneva and Piterbarg [18]. Since the latter deals with the tail probability
P(maxt∈[T1,T2] X(t) > u,maxt∈[T3,T4] X(t) > u) of a univariate Gaussian process {X(t), t ∈ R},
their method is not sufficient for carrying out the double sum method for a bivariate random field.

Lemmas 3.1 and 3.2 below extend Lemmas 1 and 9 in Ladneva and Piterbarg [18] to the bi-
variate random field {(X1(t),X2(t)), t ∈ R

N }. Moreover, we have strengthened the conclusions
by showing that the convergence is uniform in certain sense. This will be useful for dealing with
sums of local approximations around the regions where the maximum cross correlation is at-
tained. The details will be illustrated in the proof of Theorem 2.1 (see, e.g., (3.10), (3.21)). In the
following lemmas, {X(t), t ∈R

N } is a bivariate Gaussian random field as defined in Section 1.

Lemma 3.1. Let su and tu be two R
N -valued functions of u and let τu := tu − su. For any

compact sets S and T in R
N , we have

P

(
max

s∈su+u−2/α1S

X1(s) > u, max
t∈tu+u−2/α2T

X2(t) > u
)

= (1 + ρ)2

2π
√

1 − ρ2
Hα1

(
c

1/α1
1 S

(1 + ρ)2/α1

)
Hα2

(
c

1/α2
2 T

(1 + ρ)2/α2

)
(3.1)

× u−2 exp

(
− u2

1 + r(|τu|)
)(

1 + o(1)
)
,

where o(1) → 0 uniformly w.r.t. τu satisfying |τu| ≤ C0
√

logu/u as u → ∞.
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Lemma 3.2. Let su, tu and τu be the same as in Lemma 3.1. For all T > 0, m,n ∈ Z
N , we have

P

(
max

s∈su+u−2/α1 [0,T ]N
X1(s) > u, max

t∈tu+u−2/α2 [0,T ]N
X2(t) > u,

max
s∈su+u−2/α1 [mT ,(m+1)T ]

X1(s) > u, max
t∈tu+u−2/α2 [nT ,(n+1)T ]

X2(t) > u
)

(3.2)

= (1 + ρ)2

2π
√

1 − ρ2u2
e−u2/(1+r(|τu|))Hα1

(
c

1/α1
1 [0, T ]N
(1 + ρ)2/α1

,
c

1/α1
1 [mT , (m + 1)T ]

(1 + ρ)2/α1

)

× Hα2

(
c

1/α2
2 [0, T ]N
(1 + ρ)2/α2

,
c

1/α2
2 [nT , (n + 1)T ]

(1 + ρ)2/α2

)(
1 + o(1)

)
,

where Hα(·, ·) is defined in (2.1) and o(1) → 0 uniformly for all su and tu that satisfy |τu| ≤
C0

√
logu/u as u → ∞.

Proofs of Lemmas 3.1 and 3.2 will be given in Section 4. Now we proceed to prove our main
theorems.

Proof of Theorem 2.1. Let � = A1 × A2, δ(u) = C
√

logu/u, where C is a constant whose
value will be determined later. Let

D = {
(s, t) ∈ � : |t − s| ≤ δ(u)

}
. (3.3)

Since

P

( ⋃
(s,t)∈D

{
X1(s) > u,X2(t) > u

})

≤ P

(
max
s∈A1

X1(s) > u,max
t∈A2

X2(t) > u
)

≤ P

( ⋃
(s,t)∈D

{
X1(s) > u,X2(t) > u

})+ P

( ⋃
(s,t)∈�\D

{
X1(s) > u,X2(t) > u

})
,

it is sufficient to prove that, by choosing appropriate constant C, we have

P

( ⋃
(s,t)∈D

{
X1(s) > u,X2(t) > u

})

= (2π)N/2(−r ′′(0)
)−N/2

c
N/α1
1 c

N/α2
2 (1 + ρ)−N(2/α1+2/α2−1)mesN(A1 ∩ A2) (3.4)

× Hα1Hα2u
N(2/α1+2/α2−1)�(u,ρ)

(
1 + o(1)

)
as u → ∞

and

lim
u→∞

P(
⋃

(s,t)∈�\D{X1(s) > u,X2(t) > u})
P(
⋃

(s,t)∈D{X1(s) > u,X2(t) > u}) = 0. (3.5)
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We prove (3.4) first. For any fixed T > 0 and i = 1,2, let di(u) = T u−2/αi and, for any k =
(k1, . . . , kN) ∈ Z

N , define

�
(i)
k �

N∏
j=1

[
kjdi(u), (kj + 1)di(u)

]= [
kdi(u), (k + 1)di(u)

]
. (3.6)

Let

C = {
(k, l) : �(1)

k × �
(2)
l ∩D 	=∅

}
and C◦ = {

(k, l) : �(1)
k × �

(2)
l ⊆D

}
. (3.7)

It is easy to see that ⋃
(k,l)∈C◦

�
(1)
k × �

(2)
l ⊆D ⊆

⋃
(k,l)∈C

�
(1)
k × �

(2)
l .

Thus, the LHS of (3.4) is bounded above by

P

( ⋃
(s,t)∈D

{
X1(s) > u,X2(t) > u

})

≤
∑

(k,l)∈C
P

(
max

s∈�
(1)
k

X1(s) > u, max
t∈�

(2)
l

X2(t) > u
)

(3.8)

=
∑

(k,l)∈C
P

(
max

s∈kd1(u)+�
(1)
0

X1(s) > u, max
t∈ld2(u)+�

(2)
0

X2(t) > u
)
.

Let

τkl := ld2(u) − kd1(u) = (
l1d2(u) − k1d1(u), . . . , lNd2(u) − kNd1(u)

)
. (3.9)

For (k, l) ∈ C, |τkl| ≤ δ(u) + √
N(d1(u) + d2(u)) ≤ 2δ(u) for all u large enough, since d1(u) =

o(δ(u)) and d2(u) = o(δ(u)), as u → ∞. By applying Lemma 3.1 to the RHS of (3.8), we obtain

P

( ⋃
(s,t)∈D

{
X1(s) > u,X2(t) > u

})

≤ (1 + ρ)2(1 + γ (u))

2π
√

1 − ρ2u2
Hα1

(
c

1/α1
1 [0, T ]N
(1 + ρ)2/α1

)
Hα2

(
c

1/α2
2 [0, T ]N
(1 + ρ)2/α2

)

×
∑

(k,l)∈C
exp

(
− u2

1 + r(|τkl|)
)

(3.10)

= Hα1

(
c

1/α1
1 [0, T ]N
(1 + ρ)2/α1

)
Hα2

(
c

1/α2
2 [0, T ]N
(1 + ρ)2/α2

)
�(u,ρ)

(
1 + γ (u)

)

×
∑

(k,l)∈C
exp

{
−u2

(
1

1 + r(|τkl|) − 1

1 + ρ

)}
,
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where the global error function γ (u) → 0, as u → ∞. The uniform convergence of (3.1) in
Lemma 3.1 guarantees that the local error term o(1) for each pair (k, l) ∈ C is uniformly bounded
by γ (u).

The series in the last equality of (3.10) is dealt by the following key lemma, which gives the
power of the threshold u in (3.4).

Lemma 3.3. Recall the set C defined in (3.7). Let

h(u) :=
∑

(k,l)∈C
exp

{
−u2

(
1

1 + r(|τkl|) − 1

1 + ρ

)}
. (3.11)

Then, under the assumptions of Theorem 2.1, we have

h(u) = (2π)N/2(−r ′′(0)
)−N/2

(1 + ρ)NT −2N mesN(A1 ∩ A2)
(3.12)

× uN(2/α1+2/α2−1)
(
1 + o(1)

)
as u → ∞.

Moreover, if we replace C in (3.11) by C◦ defined in (3.7), then (3.12) still holds.

We defer the proof of Lemma 3.3 to Section 4 and continue with the proof of Theorem 2.1.
Applying (3.12) to (3.10), we obtain

P

( ⋃
(s,t)∈D

{
X1(s) > u,X2(t) > u

})

≤ (2π)N/2(−r ′′(0)
)−N/2

(1 + ρ)NT −2N mesN(A1 ∩ A2)Hα1

(
c

1/α1
1 [0, T ]N
(1 + ρ)2/α1

)
(3.13)

× Hα2

(
c

1/α2
2 [0, T ]N
(1 + ρ)2/α2

)
uN(2/α1+2/α2−1)�(u,ρ)

(
1 + γ1(u)

)
,

where γ1(u) → 0, as u → ∞. Hence,

lim sup
u→∞

P(
⋃

(s,t)∈D{X1(s) > u,X2(t) > u})
uN(2/α1+2/α2−1)�(u,ρ)

≤ (2π)N/2(−r ′′(0)
)−N/2

(1 + ρ)N mesN(A1 ∩ A2) (3.14)

× T −2NHα1

(
c

1/α1
1 [0, T ]N
(1 + ρ)2/α1

)
Hα2

(
c

1/α2
2 [0, T ]N
(1 + ρ)2/α2

)
.

The above inequality holds for every T > 0. Therefore, letting T → ∞, we have

lim sup
u→∞

P(
⋃

(s,t)∈D{X1(s) > u,X2(t) > u})
uN(2/α1+2/α2−1)�(u,ρ)

(3.15)
≤ (2π)N/2(−r ′′(0)

)−N/2
c
N/α1
1 c

N/α2
2 (1 + ρ)−N(2/α1+2/α2−1)mesN(A1 ∩ A2)Hα1Hα2 .
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On the other hand, the lower bound for LHS of (3.4) can be derived as follows. Let

B = {(
k, l,k′, l′

) : (k, l) 	= (
k′, l′

)
, (k, l),

(
k′, l′

) ∈ C
}
. (3.16)

By Bonferroni’s inequality and symmetric property of B, the LHS of (3.4) is bounded below by

P

( ⋃
(s,t)∈D

{
X1(s) > u,X2(t) > u

})

≥
∑

(k,l)∈C◦
P

(
max

s∈�
(1)
k

X1(s) > u, max
t∈�

(2)
l

X2(t) > u
)

− 1

2

∑
(k,l,k′,l′)∈B

P

(
max

s∈�
(1)
k

X1(s) > u, max
t∈�

(2)
l

X2(t) > u, (3.17)

max
s∈�

(1)

k′
X1(s) > u, max

t∈�
(2)

l′
X2(t) > u

)

� �1 − �2.

Since C◦ and C are almost the same, a similar argument as in (3.10)–(3.15) shows that �1 is
bounded below by

�1 ≥ (2π)N/2(−r ′′(0)
)−N/2

(1 + ρ)N mesN(A1 ∩ A2)T
−2NHα1

(
c

1/α1
1 [0, T ]N
(1 + ρ)2/α1

)
(3.18)

× Hα2

(
c

1/α2
2 [0, T ]N
(1 + ρ)2/α2

)
uN(2/α1+2/α2−1)�(u,ρ)

(
1 − γ2(u)

)
,

where γ2(u) → 0, as u → ∞. Hence, letting T → ∞, we have

lim inf
u→∞

�1

uN(2/α1+2/α2−1)�(u,ρ)
≥ (2π)N/2(−r ′′(0)

)−N/2
c
N/α1
1 c

N/α2
2

(3.19)
× (1 + ρ)−N(2/α1+2/α2−1)mesN(A1 ∩ A2)Hα1Hα2 .

Next, we consider �2 in (3.17). To simplify the notation, we let

I
(
k, l,k′, l′

) := P

(
max

s∈�
(1)
k

X1(s) > u, max
t∈�

(2)
l

X2(t) > u,

max
s∈�

(1)

k′
X1(s) > u, max

t∈�
(2)

l′
X2(t) > u

)
.

For m = (m1, . . . ,mN) ∈ Z
N , let

Hα,c(m) � Hα

(
c1/α[0, T ]N
(1 + ρ)2/α

,
c1/α[mT , (m + 1)T ]

(1 + ρ)2/α

)
. (3.20)
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Rewriting �2 and applying Lemma 3.2, we obtain

�2 = 1

2

∑
(k,l)∈C

( ∑
(k′,l′)∈C
k′=k,l′ 	=l

+
∑

(k′,l′)∈C
k′ 	=k,l′=l

+
∑

(k′,l′)∈C
k′ 	=k,l′ 	=l

)
I
(
k, l,k′, l′

)

= (1 + ρ)2(1 + γ3(u))

4π
√

1 − ρ2u2

∑
(k,l)∈C

e−u2/(1+r(|τkl|))
(
Hα1,c1(0)

∑
(k′,l′)∈C
k′=k,l′ 	=l

Hα2,c2

(
l′ − l

)

+Hα2,c2(0)
∑

(k′,l′)∈C
k′ 	=k,l′=l

Hα1,c1

(
k′ − k

)+
∑

(k′,l′)∈C
k′ 	=k,l′ 	=l

Hα1,c1

(
k′ − k

)
Hα2,c2

(
l′ − l

))
(3.21)

≤ (1 + ρ)2(1 + γ3(u))

4π
√

1 − ρ2u2

∑
(k,l)∈C

e−u2/(1+r(|τkl|))
(
Hα1,c1(0)

∑
n	=0

Hα2,c2(n)

+Hα2,c2(0)
∑
m	=0

Hα1,c1(m) +
∑

m	=0,n	=0

Hα1,c1(m)Hα2,c2(n)

)
,

where γ3(u) → 0, as u → ∞. According to the uniform convergence of (3.2), the local error
term o(1) for each pair (k′, l′) ∈ C is bounded above by γ3(u). To estimate Hα,c(·), we make use
of the following lemma, whose proof is again postponed to Section 4.

Lemma 3.4. Recall Hα,c(·) defined in (3.20). Let i0 = argmax1≤i≤N |mi |. Then there exist posi-
tive constants C1 and T0 such that for all T ≥ T0,

Hα,c(0) ≤ C1T
N ; (3.22)

Hα,c(m) ≤ C1T
N−1/2 when |mi0 | = 1; (3.23)

Hα,c(m) ≤ C1T
2Ne−c/(8(1+ρ)2)(|mi0 |−1)αT α

when |mi0 | ≥ 2. (3.24)

Consequently, ∑
m∈ZN\{0}

Hα,c(m) ≤ C1T
N−1/2. (3.25)

Applying Lemmas 3.3 and 3.4 to the RHS of (3.21), we obtain

�2 ≤ C0(1 + ρ)2(1 + γ3(u))

4π
√

1 − ρ2u2
T 2N−1/2

∑
(k,l)∈C

exp

(
− u2

1 + r(|τkl|)
)

≤ C0(2π)N/2(−r ′′(0)
)−N/2

(1 + ρ)N mesN(A1 ∩ A2)T
−1/2 (3.26)

× uN(2/α1+2/α2−1)�(u,ρ)
(
1 + γ4(u)

)
,
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where γ4(u) → 0, as u → ∞. By letting u → ∞ and T → ∞ successively, we have

lim sup
u→∞

�2

uN(2/α1+2/α2−1)�(u,ρ)
= 0. (3.27)

By combining (3.17), (3.19) and (3.27), we have

lim inf
u→∞

P(
⋃

(s,t)∈D{X1(s) > u,X2(t) > u})
uN(2/α1+2/α2−1)�(u,ρ)

≥ lim inf
u→∞

�1

uN(2/α1+2/α2−1)�(u,ρ)
− lim sup

u→∞
�2

uN(2/α1+2/α2−1)�(u,ρ)
(3.28)

≥ (2π)N/2(−r ′′(0)
)−N/2

c
N/α1
1 c

N/α2
2 (1 + ρ)−N(2/α1+2/α2−1)mesN(A1 ∩ A2)Hα1Hα2 .

It is now clear that (3.4) follows from (3.15) and (3.28).
Now we prove (3.5). Define

Y(s, t) := X1(s) + X2(t) for (s, t) ∈ � \D. (3.29)

For x = (s1, t1), y = (s2, t2) ∈ � \D, let |x − y| =√|s1 − s2|2 + |t1 − t2|2. Then we can verify
that

E
∣∣Y(x) − Y(y)

∣∣2 ≤ C0|x − y|min(α1,α2) ∀x, y ∈ � \D. (3.30)

By applying Theorem 8.1 in Piterbarg [23], we obtain that the numerator of (3.5) is bounded
above by

P

( ⋃
(s,t)∈�\D

{
X1(s) > u,X2(t) > u

})
(3.31)

≤ P

(
max

(s,t)∈�\D
Y(s, t) > 2u

)
≤ C0u

−1+2N/min(α1,α2) exp

(
− u2

1 + max(s,t)∈�\D r(|t − s|)
)

.

Since r(|t − s|) = ρ + 1
2 r ′′(0)|t − s|2(1 + o(1)) and r(·) attains maximum only at zero, we have

max
(s,t)∈�\D

r
(|t − s|)≤ ρ − 1

3

(−r ′′(0)
)
δ2(u) (3.32)

for u large enough. So (3.31) is at most

C0u
−1+2N/min(α1,α2) exp

(
− u2

1 + ρ − (1/3)(−r ′′(0))δ2(u)

)

≤ C0u
−1+2N/min(α1,α2) exp

(
− u2

1 + ρ

)
exp

(
− (1/3)(−r ′′(0))δ2(u)u2

(1 + ρ)2

)
(3.33)

= 2π
√

1 − ρ2C0

(1 + ρ)2
u1+(2N/min(α1,α2))−(−r ′′(0)/3(1+ρ)2)C2

�(u,ρ),
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where the inequality holds since 1
x−y

≥ 1
x

+ y

x2 ,∀x > y. Compare (3.33) with (3.4), it is easy to
see (3.5) holds if and only if

1 + 2N

min(α1, α2)
− −r ′′(0)

3(1 + ρ)2
C2 < N

(
2

α1
+ 2

α2
− 1

)
. (3.34)

Hence, by choosing the constant C satisfying

C >

[
3(1 + ρ)2

−r ′′(0)

(
N

(
2

min(α1, α2)
+ 1 − 2

α1
− 2

α2

)
+ 1

)
+

]1/2

, (3.35)

we conclude (3.5). �

Proof of Theorem 2.2. From the proof of Theorem 2.1, we see that the exponential decaying
rate of the excursion probability is only determined by the region where the maximum cross
correlation is attained. In the case of mesN(A1 ∩ A2) = 0 but A1 ∩ A2 	=∅, the exponential part,
e−u2/(1+ρ), remains the same. Yet, the dimension reduction of A1 ∩A2 does affect the polynomial
power of the excursion probability, which is determined by the quantity

h(u) =
∑

(k,l)∈C
exp

{
−u2

(
1

1 + r(|τkl|) − 1

1 + ρ

)}

in Lemma 3.3. Under the assumptions of Theorem 2.2, the set C and the behavior of h(u) change.
We will make use of the following lemma which plays the role of Lemma 3.3.

Lemma 3.5. Under the assumptions of Theorem 2.2, we have

h(u) = (2π)M/2(−r ′′(0)
)M/2−N

(1 + ρ)2N−MT −2NmesM(A1,M ∩ A2,M)

× uM+N(2/α1+2/α2−2)
(
1 + o(1)

)
as u → ∞. (3.36)

Moreover, if we replace C with C◦ defined in (3.7), then the above statement still holds.

The rest of the proof of Theorem 2.2 is the same as that of Theorem 2.1 and it is omitted
here. �

4. Proof of lemmas

For proving Lemma 3.1, we will make use of the following lemma.

Lemma 4.1. Let su and tu be two R
N -valued functions of u and let τu := tu − su. For any

compact rectangles S and T in R
N , define

ξu(s) := u
(
X1
(
su + u−2/α1s

)− u
)+ x ∀s ∈ S,

(4.1)
ηu(t) := u

(
X2
(
tu + u−2/α2 t

)− u
)+ y ∀t ∈ T
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and for any t ∈R
N , let

ξ(t) := √
c1χ1(t) − c1|t |α1

1 + ρ
,

(4.2)

η(t) := √
c2χ2(t) − c2|t |α2

1 + ρ
,

where χ1(t),χ2(t) are two independent fractional Brownian motions with indices α1/2 and
α2/2, respectively. Then, the finite dimensional distributions (abbr. f.d.d.) of (ξu(·), ηu(·)), given
X1(su) = u − x

u
,X2(tu) = u − y

u
, converge uniformly to the f.d.d. of (ξ(·), η(·)) for all su and tu

that satisfy |τu| ≤ C0
√

logu/u. Furthermore, as u → ∞,

P

(
max
s∈S

ξu(s) > x,max
t∈T

ηu(t) > y

∣∣∣X1(su) = u − x

u
,X2(tu) = u − y

u

)
(4.3)

→ P

(
max
s∈S

ξ(s) > x,max
t∈T

η(t) > y
)
,

where the convergence is uniform for all su and tu that satisfy |τu| ≤ C0
√

logu/u.

Proof. First, we prove the uniform convergence of finite dimensional distributions. Given
X1(su) = u − x

u
,X2(tu) = u − y

u
, the distribution of the bivariate random field (ξu(·), ηu(·))

is still Gaussian. Thanks to the following lemma (whose proof will be given at the end of this
section), it suffices to prove the uniform convergence of conditional mean and conditional vari-
ance.

Lemma 4.2. Let X(u, τu) = (X1(u, τu), . . . ,Xn(u, τu))
T be a Gaussian random vector with

mean μ(u, τu) = (μ1(u, τu), . . . ,μn(u, τu)
T and covariance matrix �(u, τu) with entries

σij (u, τu) = Cov(Xi(u, τu),Xj (u, τu)), i, j = 1,2, . . . , n. Similarly, let X = (X1, . . . ,Xn)
T be a

Gaussian random vector with mean μ = (μ1, . . . ,μn) and covariance matrix � = (σij )i,j=1,...,n.
Assume that � is non-singular. Let Fu(·) and F(·) be the distribution functions of X(u, τu) and
X respectively. If

lim
u→∞ max

τu

∣∣μj (u, τu) − μj

∣∣ = 0,

(4.4)
lim

u→∞ max
τu

∣∣σij (u, τu) − σij

∣∣ = 0, i, j = 1,2, . . . , n,

then for any x ∈ R
N ,

lim
u→∞ max

τu

∣∣Fu(x) − F(x)
∣∣= 0. (4.5)

We continue with the proof of Lemma 4.1 and postpone the proof of Lemma 4.2 to the end
of this section. Recall that, for two random vectors X,Y ∈ R

m, their covariance is defined as
Cov(X,Y ) := E[(X − EX)(Y − EY)T ] and the variance matrix of X is defined as Var(X) :=
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Cov(X,X). The conditional mean of (ξu(t), ηu(t))
T given X1(su) = u − x

u
,X2(tu) = u − y

u
, is

E

⎛
⎜⎝ξu(t)

ηu(t)

∣∣∣∣∣
X1(su) = u − x

u

X2(tu) = u − y

u

⎞
⎟⎠

= E

(
ξu(t)

ηu(t)

)

+ Cov

((
ξu(t)

ηu(t)

)
,

(
X1(su)

X2(tu)

))(
Var

(
X1(su)

X2(tu)

))−1
⎛
⎝u − x

u

u − y

u

⎞
⎠

=
(−u2 + x

−u2 + y

)
+ u

1 − r2(|τu|) (4.6)

×
(

r11
(
su + u−2/α1 t, su

)
r
(∣∣τu − u−2/α1 t

∣∣)
r
(∣∣τu + u−2/α2 t

∣∣) r22
(
tu + u−2/α2 t, tu

))

×
(

1 −r
(|τu|

)
−r
(|τu|

)
1

)⎛⎝u − x

u

u − y

u

⎞
⎠

�
(

a1(u)

a2(u)

)
,

where

a1(u) = −u2(1 − r11(su + u−2/α1 t, su)) − u2(r(|τu − u−2/α1 t |) − r(|τu|))
1 + r(|τu|)

+ (x − yr(|τu|))(1 − r11(su + u−2/α1 t, su))

1 − r2(|τu|) (4.7)

+ (y − xr(|τu|))(r(|τu|) − r(|τu − u−2/α1 t |))
1 − r2(|τu|)

and

a2(u) = −u2(1 − r22(tu + u−2/α2 t, tu)) − u2(r(|τu + u−2/α2 t |) − r(|τu|))
1 + r(|τu|)

+ (y − xr(|τu|))(1 − r22(tu + u−2/α1 t, tu))

1 − r2(|τu|) (4.8)

+ (x − yr(|τu|))(r(|τu|) − r(|τu + u−2/α2 t |))
1 − r2(|τu|) .



1582 Y. Zhou and Y. Xiao

Applying the mean value theorem twice, we see that for u large enough,∣∣r(∣∣τu + u−2/αt
∣∣)− r

(|τu|
)∣∣ ≤ ∣∣u−2/αt

∣∣ · max
s is between

|τu| and |τu+u−2/αt |

∣∣r ′(s)
∣∣

≤ ∣∣u−2/αt
∣∣ · max

|s|≤2C0
√

logu/u

∣∣r ′(s)
∣∣

≤ ∣∣u−2/αt
∣∣ · max

|s|≤2C0
√

logu/u

(
|s| · max|t |≤|s|

∣∣r ′′(t)
∣∣) (4.9)

≤ 2C0|t |
√

logu · u−1−2/α · max
|t |≤2C0

√
logu/u

∣∣r ′′(t)
∣∣

≤ 4C0
∣∣r ′′(0)

∣∣|t |√logu · u−1−2/α,

where the second inequality holds because of u−2/α = o(
√

logu/u), as u → ∞ and the last
inequality holds since r ′′(·) is continuous in a neighborhood of zero. Thus, (4.9) implies that, as
u → ∞,

u2
∣∣r(∣∣τu + u−2/αt

∣∣)− r
(|τu|

)∣∣≤ 4C0
∣∣r ′′(0)

∣∣|t |√logu · u1−2/α → 0, (4.10)

where the convergence is uniform for all su and tu that satisfy |τu| ≤ C0
√

logu/u. We also notice
that for i = 1,2 and all s ∈ R

N ,

1 − rii
(
s + u−2/αt, s

)= ciu
−2|t |αi + o

(
u−2) as u → ∞. (4.11)

By (4.6), (4.10), and (4.11), we conclude that, as u → ∞,

E

⎛
⎜⎝ξu(t)

ηu(t)

∣∣∣∣∣
X1(su) = u − x

u

X2(tu) = u − y

u

⎞
⎟⎠→

⎛
⎜⎝−c1|t |α1

1 + ρ

−c2|t |α2

1 + ρ

⎞
⎟⎠ , (4.12)

where the convergence is uniform w.r.t. su and tu satisfying |τu| ≤ C0
√

logu/u.
Next, we consider the conditional covariance matrix of (ξu(t) − ξu(s), ηu(t) − ηu(s))

T .

Var

((
ξu(t) − ξu(s)

ηu(t) − ηu(s)

)∣∣∣∣∣X1(su)

X2(tu)

)

= Var

(
ξu(t) − ξu(s)

ηu(t) − ηu(s)

)
(4.13)

− Cov

((
ξu(t) − ξu(s)

ηu(t) − ηu(s)

)
,

(
X1(su)

X2(tu)

))

× Var

(
X1(su)

X2(tu)

)−1

Cov

((
ξu(t) − ξu(s)

ηu(t) − ηu(s)

)
,

(
X1(su)

X2(tu)

))T

.
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Let hu(t, s) := r(|τu + u−2/α2 t − u−2/α1s|). Applying (4.10) and (4.11), we obtain

Var

(
ξu(t) − ξu(s)

ηu(t) − ηu(s)

)

=

⎛
⎜⎜⎜⎝

2u2
(
1 − r11

(
su u2

(
hu(t, t) − hu(s, t)

+ u−2/α1s, su + u−2/α1 t
)) − hu(t, s) + hu(s, s)

)
u2
(
hu(t, t) − hu(s, t) 2u2

(
1 − r22

(
tu

− hu(t, s) + hu(s, s)
) + u−2/α2s, tu + u−2/α2 t

))

⎞
⎟⎟⎟⎠ (4.14)

=
(

2c1|t − s|α1
(
1 + o(1)

)
o(1)

o(1) 2c2|t − s|α2
(
1 + o(1)

)) ,

where o(1) converges to zero uniformly w.r.t. τu satisfying |τu| ≤ C0
√

logu/u, as u → ∞. Also,
we have

Cov

[(
ξu(t) − ξu(s)

ηu(t) − ηu(s)

)
,

(
X1(su)

X2(tu)

)]

=

⎛
⎜⎜⎝

u
(
r11
(
su + u−2/α1 t, su

)
u
(
r
(∣∣τu − u−2/α1 t

∣∣)
− r11

(
su + u−2/α1s, su

)) − r
(∣∣τu − u−2/α1s

∣∣))
u
(
r
(∣∣τu + u−2/α2 t

∣∣) u
(
r22
(
tu + u−2/α2 t, tu

)
− r

(∣∣τu + u−2/α2s
∣∣)) − r22

(
tu + u−2/α2s, tu

))
⎞
⎟⎟⎠ (4.15)

=
(

o(1) o(1)

o(1) o(1)

)
,

as u → ∞, and

Var

(
X1(su)

X2(tu)

)−1

= 1

1 − r2(|τu|)
(

1 −r
(|τu|

)
−r
(|τu|

)
1

)
. (4.16)

By (4.13)–(4.16), we conclude that as u → ∞,

Var

((
ξu(t) − ξu(s)

ηu(t) − ηu(s)

)∣∣∣∣X1(su)

X2(tu)

)
→
(

2c1|t − s|α1 0
0 2c2|t − s|α2

)
, (4.17)

where the convergence is uniform w.r.t. τu satisfying |τu| ≤ C0
√

logu/u. Hence, the uniform
convergence of f.d.d. in Lemma 4.1 follows from (4.12), (4.17) and Lemma 4.2.

Now we prove the second part of Lemma 4.1. The continuous mapping theorem (see, e.g.,
Billingsley [8], page 30) can be used to prove (4.3) holds when su and tu are fixed. Since we
need to prove uniform convergence w.r.t. su and tu, we use a discretization method instead. Let

f (u, x, y) := P

(
max
s∈S

ξu(s) > x,max
t∈T

ηu(t) > y

∣∣∣
(4.18)

X1(su) = u − x

u
,X2(tu) = u − y

u

)
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and

f (x, y) := P

(
max
s∈S

ξ(s) > x,max
t∈T

η(t) > y
)
. (4.19)

Without loss of generality, suppose that S = [a, b]N and T = [c, d]N , where a < b, c < d . For
any δ ∈ (0,1), let m = � b−a

δ
�, n = � d−c

δ
� and let

Sm := {
sk|sk = (xk1, . . . , xkN

),k = (k1, . . . , kN) ∈ {0,1, . . . ,m + 1}N},
Tn := {

tl|tl = (yl1, . . . , ylN ), l = (l1, . . . , lN ) ∈ {0,1, . . . , n + 1}N},
where xi, yi are defined as

a = x0 < x1 < · · · < xm ≤ xm+1 = b, xi = a + iδ, i = 0,1, . . . ,m,
(4.20)

c = y0 < y1 < · · · < yn ≤ yn+1 = d, yi = c + iδ, i = 0,1, . . . , n.

Then [a, b]N × [c, d]N can be divided into δ-cubes with vertices in Sm × Tn.
The function f (u, x, y) in (4.18) is bounded below by

fm,n(u, x, y) := P

(
max
s∈Sm

ξu(s) > x,max
t∈Tn

ηu(t) > y

∣∣∣
(4.21)

X1(su) = u − x

u
,X2(tu) = u − y

u

)

and is bounded above by gm,n(u, x, y) which is defined as

P

(
max
s∈Sm

ξu(s) > x − ε,max
t∈Tn

ηu(t) > y − ε

∣∣∣X1(su) = u − x

u
,X2(tu) = u − y

u

)

+ P

(
max
s∈S

ξu(s) > x, max
s∈Sm

ξu(s) ≤ x − ε

∣∣∣X1(su) = u − x

u
,X2(tu) = u − y

u

)
(4.22)

+ P

(
max
t∈T

ηu(t) > y,max
t∈Tn

ηu(t) ≤ y − ε
∣∣X1(su) = u − x

u
,X2(tu) = u − y

u

)

� fm,n(u, x − ε, y − ε) + sm,n(u, x, y) + tm,n(u, x, y),

where ε > 0 is any small constant. Let

fm,n(x, y) := P

(
max
s∈Sm

ξ(s) > x,max
t∈Tn

η(t) > y
)
. (4.23)

Since the finite dimensional distributions of (ξu(·), ηu(·)) converge uniformly to those of
(ξ(·), η(·)), we have

lim
u→∞ max

|τu|≤C0
√

logu/u

∣∣fm,n(u, x, y) − fm,n(x, y)
∣∣= 0. (4.24)
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The continuity of the trajectory of (ξ(·), η(·)) yields

lim
m→∞
n→∞

fm,n(x, y) = f (x, y). (4.25)

By (4.24) and (4.25), we conclude

lim
m→∞
n→∞

lim
u→∞ max

|τu|≤C0
√

logu/u

∣∣fm,n(u, x, y) − f (x, y)
∣∣= 0. (4.26)

Let us consider the conditional probability sm,n(u, x, y) in (4.22).

sm,n(u, x, y)

≤ P

(
max|s−t |≤δ

∣∣ξu(s) − ξu(t)
∣∣> ε

∣∣∣X1(su) = u − x

u
,X2(tu) = u − y

u

)
(4.27)

≤ 1

ε
E

(
max|s−t |≤δ

∣∣ξu(s) − ξu(t)
∣∣∣∣∣X1(su) = u − x

u
,X2(tu) = u − y

u

)

= 1

ε
EPu

(
max|s−t |≤δ

∣∣x(s) − x(t)
∣∣),

where Pu is the probability measure on (C(S),B(C(S)) defined as

Pu(A) := P

(
ξu(·) ∈ A

∣∣∣X1(su) = u − x

u
,X2(tu) = u − y

u

)
,

for all A ∈ B(C(S)) and x(·) is the coordinate random element on (C(S),B(C(S)), Pu), i.e.,
x(t,ω) = ω(t),∀ω ∈ C(S) and t ∈ S. Consider the canonical metric

du(s, t) := [
EPu

(∣∣x(s) − x(t)
∣∣2)]1/2

=
[
E

(∣∣ξu(s) − ξu(t)
∣∣2∣∣∣X1(su) = u − x

u
,X2(tu) = u − y

u

)]1/2

.

By (4.17), for u large enough and all su, tu such that |τu| ≤ C0
√

logu/u, we have

du(s, t) ≤ 2
√

c1|s − t |α1/2, (4.28)

which implies ∀s ∈ S,

{
t ∈ S||t − s| ≤ (ε/2

√
c1)

2/α1
}⊆ {

t ∈ S|du(s, t) ≤ ε
}
.

Hence

Ndu(S, ε) ≤ C0ε
−2N/α1, (4.29)
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where Ndu(S, ε) denotes the minimum number of du-balls with radius ε that are needed to cover
S. By Dudley’s theorem (see, e.g., Theorem 1.3.3 in Adler and Taylor [4]) and (4.28), we have

EPu

(
max|s−t |≤δ

∣∣x(s) − x(t)
∣∣)≤ K

∫ 2
√

c1δ
α1/2

0

√
logNdu(S, ε) dε, (4.30)

where K < ∞ is a constant (which does not depend on δ) and, thanks to (4.29), the last integral
goes to 0 as δ → 0 (or, equivalently, as m → ∞, n → ∞). By (4.27) and (4.30), we conclude
that

lim
m→∞
n→∞

lim sup
u→∞

max
|τu|≤C0

√
logu|/u

∣∣sm,n(u, x, y)
∣∣= 0. (4.31)

A similar argument shows that

lim
m→∞
n→∞

lim sup
u→∞

max
|τu|≤C0

√
logu|/u

∣∣tm,n(u, x, y)
∣∣= 0. (4.32)

Since ∣∣f (u, x, y) − f (x, y)
∣∣

≤ ∣∣fm,n(u, x, y) − f (x, y)
∣∣+ ∣∣gm,n(u, x, y) − f (x, y)

∣∣
(4.33)

≤ ∣∣fm,n(u, x, y) − f (x, y)
∣∣+ ∣∣fm,n(u, x − ε, y − ε) − f (x − ε, y − ε)

∣∣
+ ∣∣f (x − ε, y − ε) − f (x, y)

∣∣+ ∣∣sm,n(u, x, y)
∣∣+ ∣∣tm,n(u, x, y)

∣∣,
we combine (4.26), (4.31) and (4.32) to obtain

lim sup
u→∞

max
|τu|≤C0

√
logu|/u

∣∣f (u, x, y) − f (x, y)
∣∣

≤ ∣∣f (x − ε, y − ε) − f (x, y)
∣∣

+ lim
m→∞
n→∞

lim sup
u→∞

max
|τu|≤C0

√
logu/u

(∣∣fm,n(u, x, y) − f (x, y)
∣∣+ ∣∣sm,n(u, x, y)

∣∣
+ ∣∣tm,n(u, x, y)

∣∣+ ∣∣fm,n(u, x − ε, y − ε) − f (x − ε, y − ε)
∣∣)

= ∣∣f (x − ε, y − ε) − f (x, y)
∣∣.

Since the last term → 0 as ε ↓ 0, we have completed the proof of the second part of the lemma. �

Now we are ready to prove the main lemmas in Section 3.

Proof of Lemma 3.1. Let φ(a, b) be the density of (X1(su),X2(tu))
T , i.e.,

φ(a, b) = 1

2π
√

1 − r2(|τu|)
exp

{
−1

2

a2 − 2r(|τu|)ab + b2

1 − r2(|τu|)
}
. (4.34)
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By conditioning and a change of variables, the LHS of (3.1) becomes

P

(
max

s∈su+u−2/α1S

X1(s) > u, max
t∈tu+u−2/α2T

X2(t) > u
)

=
∫
R2

P

(
max

s∈su+u−2/α1S

X1(s) > u, max
t∈tu+u−2/α2T

X2(t) > u

∣∣∣X1(su) = u − x

u
,

(4.35)

X2(tu) = u − y

u

)
φ

(
u − x

u
,u − y

u

)
u−2 dx dy

= 1

2π
√

1 − r2(|τu|)u2
exp

(
− u2

1 + r(|τu|)
)∫

R2
f (u, x, y)φ̃(u, x, y) dx dy,

where f (u, x, y) is defined in (4.18) with ξu(·), ηu(·) in (4.1), and where

φ̃(u, x, y)

:= exp

{
− 1

2(1 − r2(|τu|))
(

x2 + y2

u2
− 2

(
1 − r

(|τu|
))

(x + y) − 2r
(|τu|

)xy

u2

)}
.

Since max|τu|≤C0
√

logu/u |r(|τu|) − ρ| → 0 as u → ∞, it is easy to check that

max
|τu|≤C0

√
logu/u

∣∣φ̃(u, x, y) − e(x+y)/(1+ρ)
∣∣→ 0 as u → ∞. (4.36)

Recall Hα(·) in (2.1) and f (x, y) in (4.19). Since ξ(·), η(·) are independent, and

{
ξ(t), t ∈R

N
} d=

{
(1 + ρ)

[
χ1

(( √
c1

1 + ρ

)2/(α1)

t

)
−
∣∣∣∣
( √

c1

1 + ρ

)2/α1

t

∣∣∣∣
α1
]
, t ∈R

N

}
,

{
η(t), t ∈R

N
} d=

{
(1 + ρ)

[
χ2

(( √
c2

1 + ρ

)2/α2

t

)
−
∣∣∣∣
( √

c2

1 + ρ

)2/α2

t

∣∣∣∣
α2
]
, t ∈R

N

}
,

where
d= means equality of all finite dimensional distributions, we have∫

R2
f (x, y)e(x+y)/(1+ρ) dx dy

=
∫
R

ex/(1+ρ)
P

(
max
s∈S

ξ(s) > x
)

dx

∫
R

ey/(1+ρ)
P

(
max
t∈T

η(t) > y
)

dy (4.37)

= (1 + ρ)2Hα1

(
c

1/α1
1 S

(1 + ρ)2/α1

)
Hα2

(
c

1/α2
2 T

(1 + ρ)2/α2

)
.

By (4.35) and (4.37), to conclude the lemma, it suffices to prove

lim
u→∞

∫
R2

max
|τu|≤C0

√
logu/u

∣∣f (u, x, y)φ̃(u, x, y) − f (x, y)e(x+y)/(1+ρ)
∣∣dx dy = 0. (4.38)
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First, applying Lemma 4.1 together with (4.36), we have

max
|τu|≤C0

√
logu/u

∣∣f (u, x, y)φ̃(u, x, y) − f (x, y)e(x+y)/(1+ρ)
∣∣→ 0 as u → ∞. (4.39)

Second, as in Ladneva and Piterbarg [18], we can find an integrable dominating function g ∈
L(R2) such that for u large enough,

max
|τu|≤C0

√
logu/u

∣∣f (u, x, y)φ̃(u, x, y) − f (x, y)e(x+y)/(1+ρ)
∣∣≤ g(x, y). (4.40)

Therefore, (4.38) follows from the dominated convergence theorem. This finishes the proof. �

Proof of Lemma 3.2. We first claim that for any compact sets S and T, the identity

Hα(S) + Hα(T) − Hα(S∪T) = Hα(S,T) (4.41)

holds. Indeed, if we let X = supt∈S(χ(t) − |t |α) and Y = supt∈T(χ(t) − |t |α), then

Hα(S) + Hα(T) − Hα(S∪T) = E
(
eX
)+E

(
eY
)−E

(
emax(X,Y )

)
= E

(
eX1{X<Y }

)+E
(
eY 1{X≥Y }

)= E
(
emin(X,Y )

)= Hα(S,T).

Now let T1 = [0, T ]N , T2 = [mT , (m + 1)T ] and T3 = [nT , (n + 1)T ]. Consider the events

A =
{

max
s∈su+u−2/α1T1

X1(s) > u
}
, B =

{
max

s∈su+u−2/α1T2

X1(s) > u
}
,

C =
{

max
t∈tu+u−2/α2T1

X2(t) > u
}
, D =

{
max

t∈tu+u−2/α2T3

X2(t) > u
}
.

It is easy to check that the LHS of (3.2) is equal to

P(A ∩ B ∩ C ∩ D)

= [
P(A ∩ C) + P(B ∩ C) − P

(
(A ∪ B) ∩ C

)]
(4.42)

+ [
P(A ∩ D) + P(B ∩ D) − P

(
(A ∪ B) ∩ D

)]
− [

P
(
A ∩ (C ∪ D)

)+ P
(
B ∩ (C ∪ D)

)− P
(
(A ∪ B) ∩ (C ∪ D)

)]
.

Let R(u) = (1+ρ)2

2π
√

1−ρ2
u−2 exp(− u2

1+r(|τu|) ) and qα,c = (1+ρ)2/α

c1/α . By Lemma 3.1, we have

P(A ∩ C) = R(u)Hα1

(
T1

qα1,c1

)
Hα2

(
T1

qα2,c2

)(
1 + γ1(u)

)
,

P(B ∩ C) = R(u)Hα1

(
T2

qα1,c1

)
Hα2

(
T1

qα2,c2

)(
1 + γ2(u)

)
,

P
(
(A ∪ B) ∩ C

) = R(u)Hα1

(
T1 ∪T2

qα1,c1

)
Hα2

(
T1

qα2,c2

)(
1 + γ3(u)

)
,
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where, for i = 1,2,3, γi(u) → 0 uniformly w.r.t. τu satisfying |τu| ≤ C0
√

logu/u, as u → ∞.
These, together with (4.41), imply

P(A ∩ C) + P(B ∩ C) − P
(
(A ∪ B) ∩ C

)
(4.43)

= R(u)Hα2

(
T1

qα2,c2

)
Hα1

(
T1

qα1,c1

,
T2

qα1,c1

)(
1 + o(1)

)
.

Similarly, we have

P(A ∩ D) + P(B ∩ D) − P
(
(A ∪ B) ∩ D

)
(4.44)

= R(u)Hα2

(
T3

qα2,c2

)
Hα1

(
T1

qα1,c1

,
T2

qα1,c1

)(
1 + o(1)

)
and

P
(
A ∩ (C ∪ D)

)+ P
(
B ∩ (C ∪ D)

)− P
(
(A ∪ B) ∩ (C ∪ D)

)
(4.45)

= R(u)Hα2

(
T1 ∪T3

qα2,c2

)
Hα1

(
T1

qα1,c1

,
T2

qα1,c1

)(
1 + o(1)

)
.

By (4.42)–(4.45), we have

P(A ∩ B ∩ C ∩ D)

= R(u)Hα1

(
T1

qα1,c1

,
T2

qα1,c1

)
Hα2,c2

(
T1

qα2,c2

,
T3

qα2,c2

)(
1 + o(1)

)
,

which concludes the lemma. �

Proof of Lemma 3.3. Let f (|t |) = 1
1+r(|t |) . Recall τkl defined in (3.9) and |τkl| ≤ 2δ(u), when

u is large. By Taylor’s expansion,

f
(|τkl|

)= f (0) + 1
2f ′′(0)|τkl|2

(
1 + γkl(u)

)
,

where f (0) = 1
1+ρ

, f ′′(0) = −r ′′(0)

(1+ρ)2 and, as u → ∞, γkl(u) converges to zero uniformly w.r.t. all
(k, l) ∈ C. Therefore, for any ε > 0, we have

∑
(k,l)∈C

e−(1/2)f ′′(0)(1+ε)u2|τkl|2 ≤ h(u) ≤
∑

(k,l)∈C
e−(1/2)f ′′(0)(1−ε)u2|τkl|2 (4.46)

when u is large enough. For a > 0, let

h(u, a) :=
∑

(k,l)∈C
e−au2|τkl|2 . (4.47)
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In order to prove (3.12), it suffices to prove that

lim
u→∞uNdN

1 (u)dN
2 (u)h(u, a) =

(
π

a

)N/2

mesN(A1 ∩ A2). (4.48)

To this end, we write

uNdN
1 (u)dN

2 (u)h(u, a)
(4.49)

= 1

uN

∑
(k,l)∈C

e
−a

∑N
j=1(lj ud2(u)−kj ud1(u))2 · (ud1(u)

)N (
ud2(u)

)N
.

Let

p(u) := 1

uN

∑
(k,l)∈C

min
(s,t)∈u�

(1)
k ×u�

(2)
l

e−a|t−s|2 · (ud1(u)
)N (

ud2(u)
)N

,

q(u) := 1

uN

∑
(k,l)∈C

max
(s,t)∈u�

(1)
k ×u�

(2)
l

e−a|t−s|2 · (ud1(u)
)N (

ud2(u)
)N

.

It follows from (4.49) that

p(u) ≤ uNdN
1 (u)dN

2 (u)h(u, a) ≤ q(u) (4.50)

and

p(u) ≤ 1

uN

∫
s∈uA1,t∈uA2

|t−s|≤C
√

logu

e−a|t−s|2 dt ds ≤ q(u). (4.51)

Observe that

1

uN

∫ ∫
s∈uA1,t∈uA2

|t−s|≤C
√

logu

e−a|t−s|2 dt ds

= 1

uN

∫ ∫
y∈uA1,x+y∈uA2
|x|≤C

√
logu

e−a|x|2 dx dy

= 1

uN

∫
|x|≤C

√
logu

e−a|x|2 dx

∫
RN

1{y∈uA1∩(uA2−x)} dy (4.52)

=
∫

|x|≤C
√

logu

e−a|x|2 dx

∫
RN

1{z∈A1∩(A2−x/u)} dz

→ mesN(A1 ∩ A2)

∫
RN

e−a|x|2 dx =
(

π

a

)N/2

mesN(A1 ∩ A2),
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as u → ∞, where the convergence holds by the dominated convergence theorem. Indeed,∫
RN 1{z∈A1∩(A2−x/u)} dz is bounded by max|ε|<1 mesN(A1 ∩ (A2 − ε)) uniformly for |x| ≤

C
√

logu when u is large enough.
It follows from (4.50)–(4.50) that, for concluding (4.48), it remains to verify

D(u) := q(u) − p(u) → 0 as u → ∞. (4.53)

Define

D̂ := {
(s, t) ∈ A1 × A2 : |t − s| ≤ δ(u) + √

Nd1(u) + √
Nd2(u)

}
. (4.54)

By the definition of C in (3.7), we see that D ⊆⋃
(k,l)∈C �

(1)
k ×�

(2)
l ⊆ D̂. Since d1(u) = o(δ(u))

and d2(u) = o(δ(u)) as u → ∞, the set D̂ is a subset of D̃ := {(s, t) ∈ A1 ×A2 : |t − s| ≤ 2δ(u)}
when u is large.

Write D(u) in (4.53) as a sum over (k, l) ∈ C. To estimate the cardinality of C, we notice that

mes2N(D̃) =
∫ ∫

s∈A1,t∈A2

1{|t−s|≤2δ(u)} ds dt (4.55)

=
∫

|x|≤2δ(u)

∫
y∈A1∩(A2−x)

dy dx ≤ Kδ(u)N , (4.56)

for all u large enough, where K = 2N+1πN/2�−1(N/2)max|ε|≤1 mesN(A1 ∩ (A2 − ε)). Hence,
for large u, the number of summands in (4.49) is bounded by

#
{
(k, l)|(k, l) ∈ C

}≤ mes2N(D̃)

mes2N(�
(1)
k × �

(2)
l )

≤ Kδ(u)N

dN
1 (u)dN

2 (u)
. (4.57)

Next, by applying the inequality e−x − e−y ≤ y − x for y ≥ x > 0 to each summand in D(u),
we obtain

max
(s,t)∈u�

(1)
k ×u�

(2)
l

e−a|t−s|2 − min
(s,t)∈u�

(1)
k ×u�

(2)
l

e−a|t−s|2

≤ a
(

max
(s,t)∈u�

(1)
k ×u�

(2)
l

|t − s|2 − min
(s,t)∈u�

(1)
k ×u�

(2)
l

|t − s|2
)

(4.58)

= a max
(|t − s| + |t1 − s1|

)(|t − s| − |t1 − s1|
)
,

where the last maximum is taken over (s, t, s1, t1) ∈ u�
(1)
k × u�

(2)
l × u�

(1)
k × u�

(2)
l .

Since |t − s| ≤ 2δ(u) for all (t, s) ∈ u�
(1)
k × u�

(2)
l when u is large, the inequality ||t − s| −

|t1 − s1|| ≤ |t − t1| + |s − s1| implies that (4.58) is at most

4a
√

Nu2δ(u)
(
d1(u) + d2(u)

)
(4.59)
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when u is large enough. By (4.59) and (4.57), we can verify that

D(u) ≤ 1

uN

K(δ(u))N

dN
1 (u)dN

2 (u)
4a

√
Nu2δ(u)

(
d1(u) + d2(u)

)(
ud1(u)

)N (
ud2(u)

)N
≤ C0(logu)(N+1)/2(u1−2/α1 + u1−2/α2

)→ 0 as u → ∞.

Therefore (4.48) holds. Similarly, we can check that the same statement holds while changing
the set C to C◦. �

Proof of Lemma 3.4. Inequality (3.22) holds immediately by Lemma 6.2 in Piterbarg [23].
Hence, we only consider the case when m 	= 0. Suppose that {X(t), t ∈ R

N } is a real valued
continuous Gaussian process with E[X(t)] = 0 and covariance function r(t) satisfying r(t) =
1 − |t |α + o(|t |α) for a constant α ∈ (0,2). Applying Lemma 6.1 in Piterbarg [23], we see that
for any S > 0,

P

(
max

t∈u−2/α[0,S]N
X(t) > u, max

t∈u−2/α[mS,(m+1)S]
X(t) > u

)

= P

(
max

t∈u−2/α[0,S]N
X(t) > u

)
+ P

(
max

t∈u−2/α[mS,(m+1)S]
X(t) > u

)

− P

(
max

t∈u−2/α([0,S]N∪[mS,(m+1)S])
X(t) > u

)
(4.60)

= (
Hα

([0, S]N )+ Hα

([
mS, (m + 1)S

])− Hα

([0, S]N ∪ [mS, (m + 1)S
]))

× 1√
2πu

e−(1/2)u2(
1 + o(1)

)

= Hα

([0, S]N,
[
mS, (m + 1)S

]) 1√
2πu

e−(1/2)u2(
1 + o(1)

)
as u → ∞,

where the last equality holds thanks to (4.41).
On the other hand, by applying Lemma 6.3 in Piterbarg [23] and the inequality

infs∈[0,1]N ,t∈[m,m+1] |s − t | ≥ |mi0 | − 1 (recall that i0 is defined in Lemma 3.4), we have

P

(
max

t∈u−2/α[0,S]N
X(t) > u, max

t∈u−2/α[mS,(m+1)S]
X(t) > u

)
(4.61)

≤ C0S
2N 1√

2πu
e−(1/2)u2

exp

(
−1

8

(|mi0 | − 1
)α

Sα

)

for all u large enough. It follows from (4.60) and (4.61) that

Hα

([0, S]N,
[
mS, (m + 1)S

])≤ C0S
2N exp

(− 1
8

(|mi0 | − 1
)α

Sα
)
, (4.62)

which implies (3.24) by letting S = c1/αT

(1+ρ)2/α .
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When |mi0 | = 1, the above upper bound is not sharp. Instead, we derive (3.23) in Lemma 3.4
as follows. For concreteness, suppose that i0 = N and mN = 1. By applying Lemmas 6.1–6.3 in
Piterbarg [23], we have

P

(
max

t∈u−2/α[0,S]N
X(t) > u, max

t∈u−2/α[mS,(m+1)S]
X(t) > u

)

≤ P

(
max

t∈u−2/α(
∏N−1

j=1 [mj S,(mj +1)S]×[S,S+√
S])

X(t) > u
)

(4.63)

+ P

(
max

t∈u−2/α[0,S]N
X(t) > u, max

t∈u−2/α(
∏N−1

j=1 [mj S,(mj +1)S]×[S+√
S,2S+√

S])
X(t) > u

)

≤ C0S
N−1/2 1√

2πu
e−(1/2)u2 + C0S

2N 1√
2πu

e−(1/2)u2
e−(1/8)Sα/2

≤ C0S
N−1/2 1√

2πu
e−(1/2)u2

for u and S large. Hence, when |mi0 | = 1, we have

Hα

([0, S]N,
[
mS, (m + 1)S

])≤ C0S
N−1/2 (4.64)

for large S. This implies (3.23) by letting S = c1/αT

(1+ρ)2/α .
Notice that

#
{
m ∈ Z

N
∣∣ max

1≤i≤N
|mi | = k

}
= (2k + 1)N − (2k − 1)N , k = 1,2, . . . . (4.65)

By (3.23), (3.24) and the fact that
∫∞
T

xN−1e−axα
dx ∼ 1

aα
T N−αe−aT α

as T → ∞, we have

∑
m	=0

Hα,c(m) =
∞∑

k=1

∑
|mi0 |=k

Hα,c(m)

≤ C0
(
3N − 1

)
T N−1/2

+ C0

∞∑
k=2

[
(2k + 1)N − (2k − 1)N

]
T 2Ne−(c/(8(1+ρ)2))(k−1)αT α

≤ C0
(
3N − 1

)
T N−1/2 + C0T

2N

∫ ∞

1
xN−1e−(c/(8(1+ρ)2))xαT α

dx ≤ C0T
N−1/2

for T large enough. This completes the proof of Lemma 3.4. �

Proof of Lemma 3.5. The proof is similar to that of Lemma 3.3. Indeed, we only need to modify
(4.49) and (4.55) in the proof of Lemma 3.3. For any y = (y1, . . . , yN) ∈R

N and 1 ≤ i ≤ j ≤ N ,
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let yi:j = (yi, . . . , yj ). On one hand, with a different scaling, h(u, a) in (4.49) has the following
asymptotics:

u2N−MdN
1 (u)dN

2 (u)h(u, a)

≈ 1

uM

∫ ∫
y∈uA1,x+y∈uA2
|x|≤C

√
logu

e−a|x|2 dx dy

= 1

uM

∫
|x|≤C

√
logu

e−a|x|2
(∫

RM

1{y1:M∈uA1,M∩(uA2,M−x1:M)} dy1:M

×
N∏

j=M+1

∫
R

1{yj ∈[uSj ,uTj ]∩[uTj −xj ,uRj −xj ]} dyj

)
dx (4.66)

=
∫

|x|≤C
√

logu

e−a|x|2
N∏

j=M+1

xj 1{xj >0}
(∫

RM

1{z1:M∈A1,M∩(A2,M−x1:M/u)} dz1:M
)

dx

→ mesM(A1,M ∩ A2,M)

∫
RM

e−a|x1:M |2 dx1:M
N∏

j=M+1

∫ ∞

0
xj e

−ax2
j dxj

= 2M−NπM/2aM/2−N mesM(A1,M ∩ A2,M),

as u → ∞. On the other hand, when u is large enough, mes2N(D̃) defined in (4.55) can be
bounded above by

mes2N(D̃) =
∫ ∫

s∈A1,t∈A2

1{|t−s|≤2δ(u)} ds dt

=
∫

|x|≤2δ(u)

(∫
y1:M∈A1,M∩(A2,M−x1:M)

dy1:M
) N∏

j=M+1

xj 1{xj >0} dx

(4.67)

= δ(u)2N−M

∫
|z|≤2

(∫
y1:M∈A1,M∩(A2,M−z1:Mδ(u))

dy1:M
) N∏

j=M+1

zj 1{zj >0} dz

≤ Kδ(u)2N−M,

where K = max|ε|≤1 mesM(A1,M ∩ (A2,M − ε))
∫
|z|≤2

∏N
j=M+1 zj 1{zj >0} dz.

By (4.66) and (4.67), (3.36) can be obtained through the same argument in the proof of
Lemma 3.3. We omit the details. �

We end this section with the proof of Lemma 4.2.
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Proof of Lemma 4.2. Let fu,τu(·) and f (·) be the density function of X(u, τu) and X, respec-
tively. It suffices to prove that for all x ∈R

N ,∫
{y≤x}

f (y)max
τu

∣∣∣∣fu,τu(y)

f (y)
− 1

∣∣∣∣dy → 0 as u → ∞, (4.68)

where {y ≤ x} =∏N
i=1(−∞, xi].

First, we will find an upper bound for maxτu |fu,τu(y)/f (y) − 1|. For any ε > 0, define

�(u, τu) = (
γij (u, τu)

)
i,j=1,...,n

:= 1

ε

(
�(u, τu) − �

)
,

e(u, τu) = (
ei(u, τu)

)
i=1,...,n

:= 1

ε

(
μ(u, τu) − μ

)
.

By assumption (4.4), there exists a constant U > 0 such that for all u > U ,

max
τu

∣∣μj (u, τu) − μj

∣∣< ε, max
τu

∣∣σij (u, τu) − σij

∣∣< ε, i, j = 1, . . . , n,

which implies |γij (u, τu)| ≤ 1 and |ei(u, τu)| ≤ 1 for u > U .
Let �−1 = (vij )i,j=1,...,n be the inverse of �. When ε is small, the determinant of �(u, τu)

satisfies ∣∣�(u, τu)
∣∣= ∣∣� + ε�(u, τu)

∣∣= |�|(1 + ε tr
(
�−1�(u, τu)

)+ O
(
ε2)),

where O(ε2)/ε2 is uniformly bounded w.r.t. τu for large u (see, e.g., Magnus and Neudecker [19],
page 169). Hence, when ε is small enough, we have∣∣∣∣ |�(u, τu)|

|�| − 1

∣∣∣∣≤ 2ε
∣∣tr(�−1�(u, τu)

)∣∣≤ 2ε
∑
i,j

|vij |. (4.69)

Since |γij (u, τu)| ≤ 1,∀i, j = 1, . . . , n,∀τu for large u, as ε → 0, the inverse of �(u, τu) can be
written as

�(u, τu)
−1 = �−1 − ε�−1�(u, τu)�

−1 + O
(
ε2),

where O(ε2)/ε2 is a matrix whose entries are uniformly bounded and independent of τu for large
u (see, e.g., Meyer [20], page 618). Hence,

du,τu(y) := − 1
2

[(
y − μ(u, τu)

)T
�−1(u, τu)

(
y − μ(u, τu)

)− (y − μ)T �−1(y − μ)
]

= − 1
2 (y − μ)T

(−ε�−1�(u, τu)�
−1 + O

(
ε2))(y − μ)

+ εeT (u, τu)
(
�−1 − ε�−1�(u, τu)�

−1 + O
(
ε2))(y − μ)

− 1
2ε2eT (u, τu)

(
�−1 − ε�−1�(u, τu)�

−1 + O
(
ε2))e(u, τu).
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Since |γij (u, τu)| and |ei(u, τu)| are uniformly bounded by 1 w.r.t. τu for all u > U , we derive
that for any y ∈R

N ,

max
τu

∣∣du,τu(y)
∣∣→ 0 as u → ∞. (4.70)

By (4.69) and (4.70), for y ∈ R
N ,

max
τu

∣∣∣∣fu,τu(y)

f (y)
− 1

∣∣∣∣= max
τu

∣∣∣∣edu,τu (y) |�(u, τu)|−1/2

|�|−1/2
− 1

∣∣∣∣→ 0 as u → ∞. (4.71)

If we could further find an integrable function g(y) on R
N ,

f (y)max
τu

∣∣∣∣fu,τu(y)

f (y)
− 1

∣∣∣∣≤ g(y), (4.72)

then (4.68) holds by the dominated convergence theorem.
Given a constant C0, let AI := {(aij )

n
i,j=1 ∈ R

N×N |maxi,j |ai,j | ≤ C0}, bI := {(bi)
n
i=1 ∈

R
N |maxi |bi | ≤ C0}. Then there exist constants C2,C3, such that∣∣xT Ax

∣∣≤ C2x
T x,

∣∣bT x
∣∣≤ C3 + xT x ∀x ∈R

N,∀A ∈ AI ,∀b ∈ bI .

Hence, there exists a constant C4 > 0 such that∣∣du,τu(y)
∣∣≤ C4ε(y − μ)T (y − μ) + C4ε. (4.73)

By (4.69) and (4.73), for small ε and large u, there exists a constant K such that

max
τu

∣∣∣∣fu,τu(y)

f (y)
− 1

∣∣∣∣≤ KeC4ε(y−μ)T (y−μ) + 1.

On the other hand, for all y ∈R
N ,

f (y) ≤ (2π)−n/2|�|−1/2e−(λ/2)(y−μ)T (y−μ),

where λ is the minimum eigenvalue of �−1. If we choose ε < λ
2C4

and define

g(y) := (2π)−n/2|�|−1/2e−(λ/2)(y−μ)T (y−μ)
(
KeC4ε(y−μ)T (y−μ) + 1

)
,

then (4.72) holds and hence we have completed the proof. �
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