
Bernoulli 23(2), 2017, 990–1021
DOI: 10.3150/15-BEJ767

Nonparametric regression on hidden
�-mixing variables: Identifiability and
consistency of a pseudo-likelihood based
estimation procedure
THIERRY DUMONT1 and SYLVAIN LE CORFF2

1MODAL’X, Université Paris-Ouest, Nanterre, France. E-mail: thierry.dumont@u-paris10.fr
2Laboratoire de Mathématiques d’Orsay, Univ. Paris-Sud, CNRS, Université Paris-Saclay, 91405 Orsay,
France. E-mail: sylvain.lecorff@math.u-psud.fr

This paper outlines a new nonparametric estimation procedure for unobserved �-mixing processes. It is
assumed that the only information on the stationary hidden states (Xk)k≥0 is given by the process (Yk)k≥0,
where Yk is a noisy observation of f�(Xk). The paper introduces a maximum pseudo-likelihood procedure
to estimate the function f� and the distribution νb,� of (X0, . . . ,Xb−1) using blocks of observations of
length b. The identifiability of the model is studied in the particular cases b = 1 and b = 2 and the consis-
tency of the estimators of f� and of νb,� as the number of observations grows to infinity is established.
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1. Introduction

The model considered in this paper consists of a bivariate stochastic process {(Xk,Yk)}k≥0 where
only the sequence (Yk)k≥0 is observed. These observations are given by

Yk = f�(Xk) + εk, (1.1)

where f� is a function defined on a space X and taking values in R
�. The measurement noise

(εk)k≥0 is an independent and identically distributed (i.i.d.) sequence of Gaussian random vec-
tors of R�. This paper proposes a new method to estimate the function f� and the distribution
of the hidden states using only the observations (Yk)k≥0. Nonparametric estimation with latent
random variables is a challenging task and most of the existing results in this context use ad-
ditional assumptions on the sequence (Xk)k≥0. For instance, in errors-in-variables models, the
random variables (Xk)k≥0 are observed through a sequence (Zk)k≥0, that is, Zk = Xk + ηk and
Yk = f�(Xk)+ εk , where the variables (ηk)k≥0 are i.i.d. with known distribution. Many solutions
have been proposed to solve this problem, see [12] and [15] for a ratio of deconvolution kernel
estimators, [17] for B-splines estimators and [5] for a procedure based on the minimization of
a penalized contrast. In the case where the hidden state is a Markov chain, [19,20] considered
the following observation model Yk = Xk + εk , where the random variables {εk}k≥0 are i.i.d.
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with known distribution. Lacour [19] (resp., [20]) proposed an estimator of the transition density
(resp., the stationary density and the transition density) of the Markov chain (Xk)k≥0 based on
the minimization of a penalized L2 contrast.

Recently, [10] used the model (1.1) for indoor simultaneous localization and mapping based on
WiFi signals. In this framework, the process (Xk)k≥0 is the position of a mobile device evolving
in a building and it is assumed to be a Markov chain with transition density depending only on
the distance between two consecutive states. Yk denotes the signal strengths measured by the
device at time step k. Only (Yk)k≥0 is observed and inference on the hidden positions (Xk)k≥0

(localization) requires an efficient estimation of f� (mapping).
In this paper, the random process (Xk)k≥0 is assumed to be �-mixing and stationary which

encompasses the i.i.d. case and the hidden Markov model setting of [10]. We propose a new ap-
proach to estimate the function f� and the distribution νb,� of the hidden states (X0, . . . ,Xb−1)

for a given b using only the observations (Yk)k≥0. The identifiability of the model is studied and
we show that for some particular cases, f� may be recovered up to an isometric transformation
of X. The observations are decomposed into non-overlapping blocks (Ykb, . . . , Y(k+1)b−1) to de-
fine a pseudo likelihood function. The estimator (f̂n, ν̂n) of (f�, νb,�) is defined as a maximizer
of a penalized version of the pseudo-likelihood of the observations (Y0, . . . , Ynb−1) over a class
of functions F and a class of densities Db on X

b . These estimators of f� and νb,� may then be
used to define an estimator p̂n of the density of the distribution of (Y0, . . . , Yb−1). It is proved
in Section 3 that the Hellinger distance between p̂n and the true distribution of a block of obser-
vations vanishes as the number of observations grows to infinity. This result is established using
few assumptions on the model: the penalization function needs only to be lower bounded by a
power of the supremum norm and no topological restrictions are made on X. Under compacity
assumptions on F and Db the consistency of (f̂n, ν̂n) is derived although the rate of convergence
of (f̂n, ν̂n) remains an open problem and seems to be very challenging.

In Section 4, we discuss the identifiability issues raised by the model (1.1). When b = 1, the
identifiability is studied in the particular case where X is a subset of Rm for some m > 0, f� is a
C1 diffeomorphism and F is a subset of continuously differentiable functions on X. We establish
that if X̃0 has a distribution with probability density ν and if f̃ ∈ F is such that f̃ (X̃0) and
f�(X0) have the same distribution then f̃ = f� ◦ φ and ν = |Jφ | · ν1,� ◦ φ where φ : X → X is
a bijective function (|Jφ | denotes the determinant of the Jacobian matrix of φ). This result only
requires regularity assumptions on the unknown function f� and not on the candidate function
f̃ , which in particular is not assumed to be one-to-one. This implies that the inference task
may be performed within a larger class of functions. A similar result is obtained when b = 2
to establish that the model is identifiable up to an isometric transformation of X in the context
of [10].

The consistency and identifiability results are applied in Section 5 when F is assumed to be
a Sobolev class of functions. In this setting, the supremum norm in F may be controlled by the
penalty term to ensure that p̂n is consistent. Moreover, this framework satisfies the compacity
assumption needed in Section 3 to derive the consistency of (f̂n, ν̂n). Section 6 provides numer-
ical experiments to illustrate our estimation approach and the identifiability results of Section 4.
Proofs and technical results are postponed to Section 7 and to the Appendices.
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2. Model and definitions

Let (	,E,P) be a probability space and (X,X ) be a general state-space endowed with a mea-
sure μ. Let (Xk)k≥0 be a stationary process defined on 	 and taking values in X. This process
is only partially observed through the sequence (Yk)k≥0 which takes values in R

�, � ≥ 1. In the
sequel, for any 0 ≤ k ≤ k′, the sequence (xk, . . . , x

′
k) is written xk:k′ . The observations (Yk)k≥0

are given by (1.1) where f� :X→ R
� is a measurable function and the random variables (εk)k≥0

are i.i.d. with density ϕ with respect to the Lebesgue measure λ of R�, given, for any z1:� ∈ R
�,

by:

ϕ(z1:�) := (2π)−�/2 exp

(
−1

2

�∑
j=1

z2
j

)
. (2.1)

In this paper, ε0 is assumed to be distributed according to a standard normal distribution. Note
that this setting is enough to deal with a known and nonsingular covariance matrix 
. In this case,
(Yk)k≥0 may be replaced by (
−1/2Yk)k≥0 and the modified noise 
−1/2ε0 is then a standard
normal random vector.

This paper proposes a method to estimate the target function f� ∈ F , where F is a set of func-
tions from X to R

�, and the distribution of the hidden states using only the observations (Yk)k≥0.
This problem could be interpreted as a deconvolution problem where it is usual to assume that
the noise distribution is known, see, for instance [3,16,18]. Here, the density ϕ is assumed to be
known to simplify the proof of identifiability (Section 4). This proof only needs the characteris-
tic function of ε0 to be known and non-zero. Note that the Gaussian assumption is only used to
establish the consistency result (Theorem 3.1) which relies on an entropy control written for this
particular choice of density function. A few authors have studied the deconvolution problem with
unknown noise distribution. In [4], the estimation of the density of X in the model Y = X + ε

is performed without knowing the distribution ε and under mild assumptions on the smoothness
of the underlying densities. However, [4] only considered real valued random variables and the
estimation based on Fourier transform and bandwidth selection is hardly relevant in our model.
The main difference between the model studied in this paper and classical convolution models is
that the random vector f�(Xk) does not necessarily have a density with respect to the Lebesgue
measure on R

�. As discussed in Section 5 (Corollary 5.2), under some assumptions on f�, if the
state-space X is a subset of Rm with m < �, f�(Xk) lies in a sub-manifold of dimension m in R

�

which has a null Lebesgue measure and then classical deconvolution tools do not apply here.
Let b be a positive integer. For any sequence (xk)k≥0, define xk := (xkb, . . . , x(k+1)b−1) and

for any function f :X →R
�, define f :Xb →R

b� by

x = (x0, . . . , xb−1) �→ f(x) := (
f (x0), . . . , f (xb−1)

)
.

The distribution of X0 is assumed to have a density νb,� with respect to the measure μ⊗b on X
b

which lies in a set of probability densities Db . For all f ∈F and ν ∈Db , let pf,ν be defined, for
all y ∈R

b�, by

pf,ν(y) :=
∫

ν(x)

b−1∏
k=0

ϕ
(
yk − f (xk)

)
μ⊗b(dx). (2.2)
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Note that pf�,νb,�
is the probability density of Y0 defined in (1.1): for all y ∈R

b�,

p�(y) := pf�,νb,�
(y) =

∫
νb,�(x)

b−1∏
k=0

ϕ
(
yk − f�(xk)

)
μ⊗b(dx). (2.3)

The function y0:nb−1 �→ ∑n−1
k=0 lnpf,ν(yk) is referred to as the pseudo log-likelihood of the ob-

servations up to time nb− 1. This paper introduces an estimation procedure based on the method
of M-estimation presented in [26] and [25]. Consider a function I : F → R

+ which character-
izes the complexity of functions in F and let δn and λn be some positive numbers. Define the
following δn-Maximum Pseudo–Likelihood Estimator (δn-MPLE) of (f�, νb,�):

(f̂n, ν̂n) := argmaxδn

f ∈F ,ν∈Db

{
n−1∑
k=0

lnpf,ν(Yk) − λnI (f )

}
, (2.4)

where argmaxδn
f ∈F ,ν∈Db

is one of the pairs (f ′, ν′) such that

n−1∑
k=0

lnpf ′,ν′(Yk) − λnI
(
f ′) ≥ sup

f ∈F ,ν∈Db

{
n−1∑
k=0

lnpf,ν(Yk) − λnI (f )

}
− δn.

The consistency of the estimators is established using a control for empirical processes associated
with mixing sequences. The �-mixing coefficient between two σ -fields U ,V ⊂ E is defined in
[7] by

�(U ,V) := sup
U∈U ,V ∈V,

P(U)>0

∣∣∣∣P(U ∩ V )

P(U)
− P(V )

∣∣∣∣.
The stationary process (Xk)k≥0 can be extended to a two-sided process (Xk)k∈Z which is said to
be �-mixing when limi→∞ �X

i = 0 where, for all i ≥ 1,

�X
i := �

(
σ(Xk; k ≤ 0), σ (Xk; k ≥ i)

)
, (2.5)

σ(Xk; k ∈ C) being the σ -field generated by (Xk)k∈C for any C ⊂ Z. As in [24], the required
concentration inequality for the empirical process is established under the following assumption
on the �-mixing coefficients of (Xk)k≥0.

H1 – The stationary process (Xk)k≥0 satisfies � := ∑∞
i=1(�

X
i )1/2 < ∞ where �X

i is given
by (2.5).

Remark 2.1. – If (Xk)k≥0 is i.i.d., then �X
i = 0 for all i ≥ 1 and H1 is satisfied.

– Assume (Xk)k≥0 is a stationary Markov chain with transition kernel Q and stationary dis-
tribution π such that there exist ε > 0 and a probability measure ϑ on X satisfying, for all x ∈ X

and all A ∈X ,

Q(x,A) ≥ εϑ(A).
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Then, by [22], Theorem 16.2.4, for all x ∈X and all A ∈ X ,∣∣Qn(x,A) − π(A)
∣∣ ≤ (1 − ε)n.

Therefore, for all n, k > 0 and A,B ∈ X such that π(A) > 0,∣∣P(Xk+n ∈ B|Xk ∈ A) − P(Xk+n ∈ B)
∣∣ = ∣∣P(Xk+n ∈ B|Xk ∈ A) − π(B)

∣∣
≤ 1

π(A)

∣∣∣∣∫
A

(
Qn(x,B) − π(B)

)
π(dx)

∣∣∣∣
≤ (1 − ε)n.

The �-mixing coefficients associated with (Xk)k≥0 decrease geometrically and H1 is satisfied.

3. General convergence results

Denote by p̂n the estimator of p� (defined in (2.3)), given by

p̂n := pf̂n,ν̂n
, (3.1)

where (f̂n, ν̂n) is defined in (2.4). The first step to prove the consistency of the estimators is
to establish the convergence of p̂n to p�. The only assumption required on the penalization
procedure is that the function I is lower bounded by a power of the supremum norm.

H2 – There exist C > 0 and υ > 0 such that for all f ∈ F ,

‖f ‖∞ ≤ CI (f )υ, (3.2)

with, for any f ∈ F , ‖f ‖∞ := max1≤j≤� ess supx∈X |fj (x)|.
Here, ess sup denotes the essential supremum with respect to the measure μ on X. Note that if
H2 holds, since I : F → R

+, for all f ∈ F , ‖f ‖∞ ≤ CI (f )υ < ∞. This is the only restrictive
assumption on the penalty I (f ) which may be chosen arbitrarily as long as H2 holds.

H3 – There exist 0 < ν− < ν+ < ∞ such that, for all ν ∈Db , ν− ≤ ν ≤ ν+.

The convergence of p̂n to p� is established using the Hellinger metric defined, for any probability
densities p1 and p2 on R

b�, by

h(p1,p2) :=
[

1

2

∫ (
p

1/2
1 (y) − p

1/2
2 (y)

)2 dy

]1/2

. (3.3)

Theorem 3.1 provides a rate of convergence of p̂n to p� and a bound for the complexity I (f̂n) of
the estimator f̂n.
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Theorem 3.1. Assume H1–H3 hold for some υ such that b�υ < 1. Assume also that λn and δn

satisfy

λnn
−1 −→

n→+∞ 0, λnn
−1/2 −→

n→+∞+∞ and δn = O

(
λn

n

)
. (3.4)

Then,

h2(p̂n,p�) = OP

(
λn

n

)
and I (f̂n) = OP(1). (3.5)

Condition (3.4) implies that the rate of convergence of the Hellinger distance between p̂n and
the true density p� is slower than n−1/4. The proof of the consistency of p̂n relies on the control
of the empirical process:

sup
f,ν

∫
1

2
ln

[
(pf,ν + p�)/(2p�)

]
d(Pn − P�),

where P� is the law of Y0 and Pn is the empirical distribution of the observations {Yk}n−1
k=0, given

for any measurable set A of Rb� by

Pn(A) := 1

n

n−1∑
k=0

1A(Yk).

A weaker condition on λn could be obtained with a sharper deviation inequality on the em-
pirical process. For instance, [25], Theorem 10.6, estimates the density of a random vari-
able Y using i.i.d. samples and the penalized loglikelihood p �→ ∫

logp dPn − λnI (p), where
I (p) = ∫

R
(p(m)(y))2 dy penalizes the mth derivative of p. The proof of [25], equation (10.34),

establishes that

sup
p∈An(p�)

∫
ln[(p + p�)/(2p�)]d(Pn − P�)

1 + I (p) + I (p�)
= OP

(
n−2m/(2m+1)

)
,

where

An(p�) := {
p;h(p,p�) ≤ n−m/(2m+1)

[
1 + I (p) + I (p�)

]}
to obtain n−m/(2m+1) as rate of convergence for h(p̂n,p�). Gassiat and van Handel[13] also use
a localization technique to derive the minimal penalty which ensures the convergence of the
estimate of the number of components in a general mixture model. In our case, Proposition 3.2
establishes a deviation result on the empirical process on the whole class of functions {pf,ν;f ∈
F, ν ∈ Db}. We consider a general setting where F , Db and the complexity function I (f ) are all
non-specified. Theorem 3.1 is established under the relatively mild assumptions H1–H3. Hence,
the rate n−1/4 corresponds to the “worst case” rate. However, even in a less general context such
as in Section 5, controlling a localized version of the empirical process in order to improve the
rate of convergence of p̂n remains a difficult problem.
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The proof of Theorem 3.1 relies on a basic inequality which provides a simultaneous control
of the Hellinger risk h2(p̂n,p�) and of I (f̂n). Define for any density function p on R

b�,

gp := 1

2
ln

p + p�

2p�

. (3.6)

By (2.4) and (3.1), following the proof of [25], Lemma 10.5:

h2(p̂n,p�) + 4λnn
−1I (f̂n) ≤ 16

∫
gp̂nd(Pn − P�) + 4λnn

−1I (f�) + δn. (3.7)

Therefore, a control of
∫

gp̂nd(Pn −P�) in the right-hand side of (3.7) provides upper bounds for
both h2(p̂n,p�) and I (f̂n). This control is given in Proposition 3.2.

Proposition 3.2. Assume H1–H3 hold. There exists a positive constant c such that, for any η > 0,
there exist A and N such that for any n ≥ N and any x > 0,

P

[
sup

f ∈F ,ν∈Db

| ∫ gpf,ν
d(Pn − P�)|

1 ∨ I (f )γ
≥ c� ×

(√
x

n
+ x

n

)
+ A√

n

]
≤ 2e−αx

1 − e−αx
,

where γ := b�υ + η and α := 2−2γ (γ − υ) log(2) = 2−2(b�υ+η)[(b� − 1)υ + η] log(2).

Proposition 3.2 is proven in Section 7.1.

Proof of Theorem 3.1. Since υ−1 > b�, η > 0 in Proposition 3.2 can be chosen such that γ =
b�υ + η = 1. For this choice of η, Proposition 3.2 implies that∫

gp̂nd(Pn − P�)

1 ∨ I (f̂n)
= OP

(
n−1/2).

Combined with (3.7), this yields

h2(p̂n,p�) + 4λnn
−1I (f̂n) ≤ (

1 ∨ I (f̂n)
)
OP

(
n−1/2) + 4λnn

−1I (f�) + δn. (3.8)

Then, (3.8) directly implies that

4I (f̂n) ≤ (
1 ∨ I (f̂n)

)
OP

(
n1/2λ−1

n

) + 4I (f�) + δnnλ−1
n ,

which, together with (3.4), gives

I (f̂n) = OP(1).

Combining this result with (3.8) again leads to

h2(p̂n,p�) + OP

(
λnn

−1) ≤ OP

(
n−1/2) + 4λnn

−1I (f�) + δn.

This concludes the proof of Theorem 3.1. �
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Theorem 3.1 shows that h2(p̂n,p�) vanishes as n goes to infinity. However, this does not imply
the convergence of (f̂n, ν̂n) to (f�, νb,�). The convergence of the estimators (f̂n, ν̂n) is addressed
in the case where the set Db may be written as

Db = {νa;a ∈A}, (3.9)

where A is a parameter set not necessarily of finite dimension. The δn-MPLE is then given by:

(f̂n, ân) := argmaxδn

f ∈F ,a∈A

{
n−1∑
k=0

lnpf,νa (Yk) − λnI (f )

}
.

H4 – (a) A is endowed with a distance dA such that A is compact with respect to the topology
defined by dA,

(b) F is endowed with a metric dF such that FM := {f ∈ F; I (f ) ≤ M} is compact
for all M > 0 with respect to the topology defined by dF ,

(c) the function (f, a) �→ h2(pf,νa ,p�) is continuous with respect to the topology on
F ×A induced by the product distance d on F ×A.

Corollary 3.3 establishes the convergence of (f̂n, ân) to the set E� defined as:

E� := {
(f, a) ∈F ×A;pf,νa = pf�,νa�

}
. (3.10)

Define for all (f, a) ∈ F ×A,

d
(
(f, a),E�

) = inf
(f ′,a′)∈E�

d
(
(f, a),

(
f ′, a′)).

Corollary 3.3. Assume H1–H4 hold for some υ such that υb� < 1. Assume also that λn and δn

satisfy

λnn
−1 −→

n→+∞ 0, λnn
−1/2 −→

n→+∞+∞ and δn = O

(
λn

n

)
.

Then,

d
(
(f̂n, ân),E�

) = oP(1).

Corollary 3.3 is a direct consequence of Theorem 3.1 and of the properties of dA and dF
and its proof is therefore omitted. The few assumptions on the model allow only to establish the
convergence of the estimators (f̂n, ân) to the set E� in Corollary 3.3.

4. Identifiability when X is a subset of Rm

The aim of this section is to characterize the set E� given by (3.10) when b = 1 and when b = 2
(the characterization of E� when b > 2 follows the same lines) with some additional assumptions
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on the model, on F and on Db . In the sequel, νb,� must satisfy 0 < ν− ≤ νb,� ≤ ν+ for some
constants ν− and ν+. It is assumed that X is a subset of Rm for some m ≥ 1 and that μ is the
Lebesgue measure. For any subset A of Rm,

◦
A stands for the interior of A and A for the closure

of A. Consider the following assumptions on the state-space X.

H5 – (a) X is nonempty, compact and
◦
X=X,

(b) X is arcwise and simply connected.

The compactness implies that X is closed and that continuous functions on X are bounded. By
the last assumption of H5(a), the interior of X is not empty and any element in X is the limit of
elements of the interior of X. Finally, X is arcwise and simply connected to ensure topological
properties used in the proofs of the identifiability results below.

A function f : U → f (U) ⊂ R
� defined on an open subset U of Rm is a C1-diffeomorphism if

its differential function x �→ Dxf is continuous and if, for all x in U , rank(Dxf ) = m. A func-
tion f : X → f (X) is said to be C1 (resp., a C1-diffeomorphism) if f is the restriction to X of a
C1 function (resp., a C1-diffeomorphism) defined on an open neighborhood of X in R

m.

H6 – f� is a C1-diffeomorphism from X to f�(X).

H6 might be seen as a restrictive assumption. Nevertheless, when � ≥ 2m + 1, by Whitney’s
embedding theorem [27] every continuous function from X to R

� can be approximated by a
smooth embedding. In the case b = 1, Proposition 4.1 discusses the identifiability when F is a
subset of C1. For all differential function φ : X → X, let Jφ be the determinant of the Jacobian
matrix of φ: Jφ(x) := det(Dxφ).

Proposition 4.1 (b = 1). Assume that H3–H6 hold. Let f ∈ C1 and let ν ∈ Db. Then, pf,ν =
pf�,ν1,�

if and only if f� and f have the same image in R
�, φ = f −1

� ◦ f is bijective and, for μ

almost every x ∈X,

ν(x) = ∣∣Jφ(x)
∣∣ν1,�

(
φ(x)

)
.

The proof of Proposition 4.1 is given in Section 7.2.

Remark 4.2. Proposition 4.1 states that (f, ν) is related to (f�, ν1,�) through the bijective state-
space transformation φ. In the particular case where X = [0,1] (m = 1), Proposition 4.1 implies
a sharper result. Assume that D1 = {ν1,� = 1} (ν1,� is the uniform distribution density and is
known). Then, Proposition 4.1 implies the existence of a C1 and bijective function φ satisfying
f = f� ◦ φ and |Jφ | = 1. Hence, φ : x �→ x or φ : x �→ 1 − x which are the two isometric
transformations of [0,1]. This cannot be extended to the case m > 1 where |Jφ | = 1 does not
necessarily imply that φ is isometric but only that φ preserves volumes.

Proposition 4.3 establishes the identifiability of the model when b = 2. In this case, ν2,� can
be written ν2,�(x, x′) = ν�(x)q�(x, x′) where q� is a transition density with (unique) stationary
probability density ν�. For any transition density q on X

2 satisfying

for all x, x′ ∈X, 0 < q− ≤ q
(
x, x′) ≤ q+, (4.1)
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there exists a stationary density ν associated with q satisfying, for all x ∈ X, q− ≤ ν(x) ≤ q+.
Denote by νq this density.

Proposition 4.3 (b = 2). Assume that H5 and H6 hold. Let f ∈ C1 and q be a transition density
satisfying (4.1). Let ν2(x, x′) = νq(x)q(x, x′). Then, pf,ν2 = pf�,ν2,�

if and only if f� and f have
the same image in R

�, φ = f −1
� ◦ f is bijective and μ ⊗ μ almost everywhere in X

2,

q
(
x, x′) = ∣∣Jφ

(
x′)∣∣q�

(
φ(x),φ

(
x′)). (4.2)

Proposition 4.3 is proved in Section 7.3.

Corollary 4.4. Assume that the same assumptions as in Proposition 4.3 hold. Assume in addition
that q� and q are of the form:

q�

(
x, x′) = c�(x)ρ�

(∥∥x − x′∥∥)
, q

(
x, x′) = c(x)ρ

(∥∥x − x′∥∥)
,

where ρ and ρ� are two continuous functions defined on R+. If in addition ρ� is one-to-one then,
pf,ν2 = pf�,ν2,�

if and only if f� and f have the same image in R
�, φ = f −1

� ◦ f is an isometry
on X and q = q�.

5. Application when F is a Sobolev class of functions

In this section, X is a subset of Rm, m ≥ 1 and the results of Section 3 and Section 4 are applied
to a specific class of functions F with an example of complexity function I satisfying H2 and
the compacity assumption H4(b). Let p ≥ 1, define

Lp :=
{
f :X→ R

�; ‖f ‖p
Lp =

∫
X

∥∥f (x)
∥∥p

μ(dx) < ∞
}
.

For any f : X → R
� and any j ∈ {1, . . . , �}, the j th component of f is denoted by fj . For any

vector α := {αi}mi=1 of nonnegative integers, we write |α| := ∑m
i=1 αi and Dαf :X→ R

� for the
vector of partial derivatives of order α of f in the sense of distributions. Let s ∈ N and Ws,p be
the Sobolev space on X with parameters s and p, that is,

Ws,p := {
f ∈ Lp;Dαf ∈ Lp,α ∈N

m and |α| ≤ s
}
. (5.1)

Ws,p is endowed with the norm ‖ · ‖Ws,p defined, for any f ∈ Ws,p , by

‖f ‖Ws,p :=
( ∑

0≤|α|≤s

∥∥Dαf
∥∥p

Lp

)1/p

. (5.2)

For any j ∈ {1, . . . , �} and f ∈ Ws,p , fj belongs to Ws,p(X,R), the Sobolev space of real-valued
functions with parameters s and p. For all k, q ≥ 0, define Ck(X,Rq), the set of functions f :
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X → R
q which, together with all their partial derivatives Dαf of orders |α| ≤ k are continuous

on X. For any f ∈ Ck(X,Rq) define

‖f ‖Ck(X,Rq ) := max
0≤|α|≤k

sup
x∈X

∣∣Dαf (x)
∣∣.

In the particular case q = �, write Ck := Ck(X,R�). The results of Section 3 and Section 4 can
be applied to the class F = Ws,p under the following assumption.

H7 – X has a locally Lipschitz boundary.

H7 means that all x on the boundary of X has a neighbourhood whose intersection with the
boundary of X is the graph of a Lipschitz function.

Let k ≥ 0, by [1], Theorem 6.3, if s > m/p + k and if H5(a) and H7 hold, Ws,p(X,R) is
compactly embedded into (Ck(X,R),‖ · ‖Ck(X,R)). Arguing component by component, Ws,p is
compactly embedded into Ck . Moreover, the identity function id : Ws,p → Ck being linear and
continuous, there exists a positive coefficient κ such that, for any f ∈ Ws,p ,

‖f ‖Ck ≤ κ‖f ‖Ws,p . (5.3)

Then, if s > m/p + k, for any f ∈F = Ws,p ,

‖f ‖∞ ≤ κ‖f ‖Ws,p . (5.4)

In the following, dCk is the usual distance on Ck associated with ‖ · ‖Ck . If F = Ws,p and if the
complexity function is defined by I (f ) = ‖f ‖1/υ

Ws,p with υb� < 1, then H2 holds and Theorem 3.1
can be applied. Moreover, by [1], Theorem 6.3, the subspace FM , M ≥ 1 are quasi-compact in
Ck and H4(b) holds. Let dA be a metric on the space A introduced in (3.9) such that H4(a) holds
and that, for μ ⊗ μ almost every (x, x′) ∈ X

2, a �→ νa(x, x′) is continuous. By the dominated
convergence theorem, this implies that H4(c) holds. Define

F� := {
f ∈ Ws,p; there exists a ∈A such that (f, a) ∈ E�

}
.

Then, Proposition 5.1 is a direct application of Corollary 3.3.

Proposition 5.1 (F = Ws,p, s > m/p + k, k ≥ 0). Assume that H1, H3, H5(a) and H7 hold.
Assume also that I (f ) = ‖f ‖1/υ

Ws,p for some υ such that υb� < 1 and that λn and δn satisfy

λnn
−1 −→

n→+∞ 0, λnn
−1/2 −→

n→+∞+∞ and δn = O

(
λn

n

)
.

Then,

dCk (f̂n,F�) = oP(1).

Moreover, as shown in Section 7.2, the assumption
◦
X = X together with the continuity of the

functions in F provided by (5.3) imply that for any f in F�, f (X) = f�(X) (see the proof in
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Section 7.2). Define the Hausdorff distance dH(A,B) between two compact subsets A and B of
R

� as

dH(A,B) := max
(

sup
a∈A

inf
b∈B

‖a − b‖R� , sup
b∈B

inf
a∈A

‖a − b‖R�

)
.

Proposition 5.1 implies Corollary 5.2.

Corollary 5.2 (F = Ws,p, s > m/p). Assume that H1, H3, H5(a) and H7 hold. Assume also
that I (f ) = ‖f ‖1/υ

Ws,p for some υ such that υb� < 1 and that λn and δn satisfy

λnn
−1 −→

n→+∞ 0, λnn
−1/2 −→

n→+∞+∞ and δn = O

(
λn

n

)
.

Then,

dH
(
f̂n(X), f�(X)

) = oP(1).

Corollary 5.2 establishes the consistency of the estimator f̂n(X) of the image of f� in R
�.

This result is particularly interesting since f�(X) is a manifold of dimension smaller than �

in R
�. The proposed estimation procedure allows to approximate such manifolds of possibly

low dimensions and only observed with additive noise in R
�. Moreover, this result holds under

relatively weak assumptions on the manifold. Since the identifiability of f� is not necessary to
have the identifiability of f�(X), f� is not assumed to be bijective to establish this result.

Proposition 5.3 below states the consistency of the estimators (f̂n, ân) in the case b = 2 and
F = Ws,p . Assume that for any a in A, νa ∈D2 is of the form

νa

(
x, x′) = νqa (x)qa

(
x, x′) with qa

(
x, x′) = ca(x)ρa

(∥∥x − x′∥∥)
,

where ρ− ≤ ρa ≤ ρ+. It is also assumed that there exists a unique a� ∈ A such that ν2,� =
νa� and that ρa� is one-to-one. Proposition 5.3 is a direct application of Corollary 3.3 and of
Proposition 4.3 and is stated without proof.

Proposition 5.3 (F = Ws,p, s > m/p + k, k ≥ 1, b = 2). Assume that H1, H3 and H5–H7 hold.
Assume also that I (f ) = ‖f ‖1/υ

Ws,p for some υ such that 2υ� < 1 and that λn and δn satisfy

λnn
−1 −→

n→+∞ 0, λnn
−1/2 −→

n→+∞+∞ and δn = O

(
λn

n

)
.

Then,

F� = {f� ◦ φ;φ is an isometry of X},
and

dCk (f̂n,F�) = oP(1) and dA(̂an, a�) = oP(1).
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6. Numerical experiments

This section provides a practical implementation of the estimation procedure proposed in Sec-
tion 2. The algorithm is applied in the cases b = 1 and b = 2 to assess the consistency and iden-
tifiability results with simulated data. When b = 2, the hidden chain is assumed to be a Markov
chain with a parametric transition kernel of the form q�(x, x′) = Ca�(x) exp(−‖x′ −x‖/a�). This
particular case is motivated by the recent work of [10] where the same assumption on the hidden
chain is made to perform indoor simultaneous localization and mapping based on WiFi signals.
The process (Xk)k≥0 is the position of a mobile evolving in a building and receiving the signal
strengths Yk which satisfy (1.1) at each time step k.

In Section 6.1, a generic EM based procedure is introduced to solve the inference problem
detailed in Section 2. In Section 6.2, we intend to apply this algorithm in the Sobolev setting of
Section 5 with a penalization function I (f ) based on the Sobolev norm ‖ · ‖W 2,2 . The assump-
tions required to obtain the identifiability and consistency results lead to a penalization term of
the form I (f ) = ‖f ‖ϑ

W 2,2 where ϑ > 2b. As explained in Section 6.2, the M-step of the EM al-
gorithm is intractable in this case while it can be efficiently performed under weaker assumptions
(e.g., when I (f ) is based on the L2 norm of f ′′). Therefore, the proposed procedure weakens
this assumption to illustrate the identifiability and consistency results. In particular, the conver-
gence observed in the simulations of Section 6.2 seems to indicate that assumption H2 could be
weakened.

6.1. Proposed Expectation Maximization algorithm

This section introduces a practical algorithm to compute the estimators defined in (2.4) when δn

is set to zero. It is assumed that the maximizer in (2.4) exists which is the case, for instance, in the
Sobolev framework of Section 5 and if Db is compact. This proposed Expectation–Maximization
(EM) based procedure iteratively produces a sequence of estimates ν̂t , f̂ t , t ≥ 0, see [8]. Assume
that the current parameter estimates are given by ν̂t and f̂ t . The estimates ν̂t+1 and f̂ t+1 are
defined as one of the maximizers of the function Q:

(ν, f ) �→ Q
(
(ν, f ),

(̂
νt , f̂ t

)) :=
n−1∑
k=0

Eν̂t ,f̂ t

[
lnpf,ν(Xk,Yk)|Yk

] − λnI (f ),

where Eν̂t ,f̂ t [·] denotes the conditional expectation under the model parameterized by ν̂t and f̂ t

and where, for any x = (x0, . . . , xb−1) ∈ X
b and any y = (y0, . . . , yb−1) ∈ R

�b,

pf,ν(x,y) := ν(x)

b−1∏
i=0

ϕ
(
yi − f (xi)

)
.

Note that the intermediate quantity Q((ν,f ), (̂νt , f̂ t )) can be written:

Q
(
(ν, f ),

(̂
νt , f̂ t

)) = Q1
t (ν) + Q2

t (f ),
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where

Q1
t (ν) :=

n−1∑
k=0

Eν̂t ,f̂ t

[
ln

{
ν(Xk)

}|Yk

]
, (6.1)

Q2
t (f ) :=

n−1∑
k=0

Eν̂t ,f̂ t

[
ln

{
b−1∏
i=0

ϕ
(
Ybk+i − f (Xbk+i )

)}|Yk

]
− λnI (f ). (6.2)

Therefore, ν̂t+1 is obtained by maximizing the function ν �→ Q1
t (ν) and f̂ t+1 by maximizing the

function f �→ Q2
t (f ). Lemma 6.1 proves that the penalized pseudo-likelihood increases at each

iteration of this EM based algorithm. Its proof is postponed to Appendix C.

Lemma 6.1. The sequences ν̂t and f̂ t satisfy

n−1∑
k=0

lnpf̂ t+1 ,̂νt+1(Yk) − λnI
(
f̂ t+1) ≥

n−1∑
k=0

lnpf̂ t ,̂νt (Yk) − λnI
(
f̂ t

)
.

Remark 6.1. Like for all EM or gradient based procedures, there is no guarantee that the se-
quence (f̂ t , ν̂t )t≥0 converges, when t grows to infinity, towards the target estimate:

(f̂n, ν̂n) = argmax
f,ν

{
n−1∑
k=0

lnpf,ν(Yk) − λnI (f )

}
.

Lemma 6.1 only ensures that (f̂ t , ν̂t )t≥0 converges towards a local maximum of the penalized
pseudo likelihood. This limitation is proper to models with hidden data.

6.2. Experimental results

This section illustrates the convergence of the estimates (2.4) using the EM procedure of Sec-
tion 6.1. The state-space is X= [0,1] and the unknown function f� is given by

f� : [0,1] → R
2,

x �→ (
cos(πx), sin(πx)

)
.

Therefore, throughout this section m = 1 and � = 2. As shown in Section 4, the identifiability of
f� up to an isometric function of [0,1] can be obtained:

– In the case b = 1 when ν1,� is assumed to be known.
– In the case b = 2 when D2 is the set of probability densities defined on X

2 and of the form
ν(x, x′) = c(x)ρ(‖x − x′‖).

The performance of the algorithm is assessed with two numerical experiments.
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– First, (Xk)k≥0 is assumed to be i.i.d. uniformly distributed on [0,1] and only f� is estimated
using b = 1 in (2.4).

– Then, (Xk)k≥0 is assumed to be a Markov chain with density kernel given by

q�

(
x, x′) = qa�

(
x, x′) := Ca�(x) exp

(
−‖x′ − x‖

a�

)
and a� and f� are estimated using b = 2 in (2.4).

In both cases, we wish to use the Sobolev setting of Section 5 with λn such that λn ∝ log(n)n1/2

and I (f ) = ‖f ‖1/v

W 2,2 with 1/v > b� = 2b so that the hypothesis of Propositions 5.1 and 5.3
are fulfilled. However, as discussed in the next section, such a complexity function I may be
intractable for the optimization problem.

6.2.1. Approximations

The computation of the intermediate quantities (6.1) and (6.2) requires an approximation of the
conditional expectations Eν̂t ,f̂ t [h(Xk,Yk)|Yk]. For each 0 ≤ k ≤ n − 1, the approximation of

the distribution of Xk conditionally on Yk when the parameters are (̂νt , f̂ t ) is dealt with Monte
Carlo simulations. For each t ≥ 0 and each 0 ≤ k ≤ n − 1, the Monte Carlo approximation is
based on a set of particles {�t,j

k }Nmc

j=1, where �
t,j
k = (ξ

t,j

k,0, . . . , ξ
t,j

k,b−1), associated with weights

{ωt,j
k }Nmc

j=1 such that for any bounded function h:

Eν̂t ,f̂ t

[
h(Xk,Yk)|Yk

] ≈
Nmc∑
j=1

ω
t,j
k h

(
�

t,j
k ,Yk

)
.

Therefore, (6.1) and (6.2) are approximated by:

Q1
t (ν) ≈

n−1∑
k=0

Nmc∑
j=1

ω
t,j
k ln

{
ν
(
�

t,j
k

)}
, (6.3)

Q2
t (f ) ≈ −1

2

n−1∑
k=0

Nmc∑
j=1

ω
t,j
k

b−1∑
i=0

∥∥Ybk+i − f
(
ξ

t,j
k,i

)∥∥2 − λn‖f ‖1/v

W 2,2 . (6.4)

However, the maximization of (6.4) when 1/v > 2b may be complex. Relaxing the hypothesis
1/v > 2b by choosing I (f ) = ‖f ‖2

W 2,2 (1/v = 2) allows to compute the maximizer of (6.4) as in

[6] where the setting is similar except that I (f ) = ‖f ′′‖2
L2 . de Boor and Lynch [6] shows that the

optimization problem can be written as an orthogonal projection in a Hilbert space. Nevertheless,
using 1/v > 2b (where 2b = 2 in the first study and 2b = 4 in the second one) as requested by
Propositions 5.1 and 5.3 leads to a much more complicated optimization problem since it cannot
be interpreted as an orthogonal projection in a Hilbert space. Moreover, the maximization of (6.4)
has been widely studied when I (f ) = ‖f ‖1/v

W 2,2 is replaced by I (f ) = ‖f ′′‖2
L2 . In this setting,

f̂ p+1 is then a regression spline (see, e.g., [6,14]). Therefore, the constraints on I (f ) required by
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Propositions 5.1 and 5.3 are relaxed in the simulations below where I (f ) = ‖f ′′‖2
L2 and where

pre-built optimized routines1 are used to compute f̂ t+1 given f̂ t .

6.2.2. Experiment 1: (Xk)k≥0 i.i.d.

In this section, b = 1 and ν1,� = 1 is assumed to be known. The estimation of f� is performed
with Nmc = 100. In this case, for each t ≥ 0, 0 ≤ k ≤ n − 1 and 1 ≤ j ≤ Nmc,

ξ
t,j

k,0 = ξ
t,j
k ∼ ν1,� and ω

t,j
k ∝ ϕ

(
Yk − f̂ t

(
ξ

t,j
k

))
.

Figure 1 displays the L2 error of the estimation of f� after 100 iterations as a function of the
number of observations. The L2 estimation error decreases quickly for small values of n (lower
than 5000) and then goes on decreasing at a lower rate as n increases. It can be seen that even
with a great number of observations, a small bias still remains for both functions (with a mean a
bit lower than 0.05). Indeed, there are always small errors in the estimation of f� around x = 0
and x = 1.

Figure 2 shows the estimates after 100 iterations when n = 25.000. We observe on this Monte
Carlo study that all the runs converge towards the isometric transformation x �→ f�(1 − x). This
can be explained by the choice of the starting point of the EM algorithm. The isometry is used in
Figure 1 to compute the L2 error. This simulation illustrates the identifiability results obtained in
Section 4.

6.2.3. Experiment 2: (Xk)k≥0 Markov chain

In this section, b = 2 and a� and f� are estimated. Define for any a > 0,

νa

(
x, x′) = ν1,a(x) · ca(x) exp

(
−|x − x′|

a

)
,

ν1,a(x) ∝ c−1
a (x) =

∫
[0,1]

exp

(
−|x − x′|

a

)
dx′.

ν̂t+1 is given by νât+1 where ât+1 is computed by maximizing the function

a �→ log
(
a + a2(exp(−1/a) − 1

)) + 1

na

n−1∑
k=0

Nmc∑
j=1

ω
t,j
k

∣∣ξ t,j

k,0 − ξ
t,j

k,1

∣∣,
where, for all 0 ≤ k ≤ n−1, (ξ t,j

k,0, ξ
t,j

k,1)
Nmc

j=1 are independently sampled uniformly in [0,1]×[0,1]
and associated with the importance weights:

ω
t,j
k ∝ νât

(
ξ

t,j

k,0

)
qât

(
ξ

t,j

k,0, ξ
t,j

k,1

)
ϕ
(
Y2k − f̂ t

(
ξ

t,j

k,0

))
ϕ
(
Y2k+1 − f̂ t

(
ξ

t,j

k,1

))
. (6.5)

1In the following simulations, we use the csaps Matlab function from the Curve Fitting Toolbox to perform the M-step
based on smoothing splines.
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Figure 1. L2 error after 100 iterations over 100 Monte Carlo runs.
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Figure 2. True functions (bold lines) and estimates after 100 iterations (vertical lines) over 100 Monte
Carlo runs (n = 25.000).
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Figure 3. Estimation of a� as a function of the number of iterations of the EM algorithm. The true value is
a� = 1. Median (bold line) and upper and lower quartiles (dotted line) over 50 Monte Carlo runs.

The Monte Carlo approximations are computed using Nmc = 200 and 20.000 observations (i.e.,
n = 10.000) are sampled. Figure 3 displays the estimation a� as a function of the number of
iterations of the EM algorithm over 50 independent Monte Carlo runs. The estimates converge
to the true value of a� after few iterations (about 25).

Figure 4 illustrates Corollary 5.2. It displays the estimation of f�([0,1]) after 100 iterations
for several Monte Carlo runs. It shows that despite the variability of the estimation, the image is
well estimated with few observations.

7. Proofs

7.1. Proof of Proposition 3.2

Recall that for any probability density function p on R
b�, gp is defined in (3.6) by

gp := 1

2
ln

p + p�

2p�

.

The proof relies on the application of Proposition A.1 and Proposition A.2 to obtain first a con-
centration inequality for the class of functions GM , where M ≥ 1, defined as:

GM := {
gpf,ν

;ν ∈ Db, f ∈ F and I (f ) ≤ M
}
,

where pf,ν is defined by (2.2). For any p > 0, denote by Lp(P�) the set of functions g :Rb� →R

such that E[|g(Y0)|p] < +∞. For any κ > 0 and any set G of functions from R
b� to R,
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Figure 4. True image f�([0,1]) (red) and estimates after 100 iterations of the algorithm over 100 Monte
Carlo runs (grey).

let N[](κ,G,‖ · ‖Lp(P�)) be the smallest integer N such that there exists a set of functions
{(gL

i , gU
i )}Ni=1 for which:

(a) ‖gU
i − gL

i ‖Lp(P�) ≤ κ for all i ∈ {1, . . . ,N};
(b) for any g in G, there exists i ∈ {1, . . . ,N} such that

gL
i ≤ g ≤ gU

i .

N[](κ,G,‖ · ‖Lp(P�)) is the κ-number with bracketing of G, and H[](κ,G,‖ · ‖Lp(P�)) :=
lnN[](κ,G,‖ · ‖Lp(P�)) is the κ-entropy with bracketing of G. For any bounded function g, define

Sn(g) := n

∫
g d(Pn − P�) =

n−1∑
k=0

g(Yk) − nE
[
g(Y0)

]
. (7.1)

Application of Proposition A.1

Proposition A.1 is applied to the class of functions GM defined as

GM := {
g −E

[
g(Y0)

];g ∈ GM

}
.

– By H2, there exists C > 0 such that for any i ≥ 0, and any g ∈ GM ,∣∣g(Yi )
∣∣ ≤ CMυ

(
1 + ‖Yi‖

) ≤ CMυ
(
1 + ∥∥f�(Xi )

∥∥ + ‖εi‖
)

≤ CMυ
(
1 + ‖f�‖∞ + ‖εi‖

) ≤ CMυ
(
1 + ‖εi‖

)
.
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Define Ui := CMυ(1+‖εi‖). Then, the random variables (Ui )i≥0 are i.i.d. and for all i ≥ 0,
|g(Yi ) −E[g(Y0)]| ≤ Ui +E[U0]. Furthermore,

E
[(

Ui +E[U0]
)2k] ≤ k!νck−1 with ν := CM2υ and c := CM2υ.

– On the other hand, since the random variables (εk)k≥0 are i.i.d. and (Xk)k≥0 is �-mixing,
(Yk)k≥0 is also �-mixing with mixing coefficients (φY

i )i≥0 satisfying, for all i ≥ 1, φY
i ≤

φX
i = φX

(i−1)b+1. Therefore �Y = ∑
i≥1(φ

Y
i )1/2 < ∞.

By Proposition A.1, there exists a positive constant C such that for any positive x,

P

[
sup

g∈GM

∣∣Sn(g)
∣∣ ≥ E

[
sup

g∈GM

∣∣Sn(g)
∣∣] + C�Y × (

√
nx + x)Mυ

]
≤ e−x. (7.2)

Application of Proposition A.2

Proposition A.2 is used to control the inner expectation in (7.2). Let r > 1. By [21], Lemma 7.26
and since the Hellinger distance is bounded by 1, there exists a constant δ such that for any
g = gpf,ν

∈ GM .

‖g‖2r
L2r (P�)

≤ δ.

By Lemma B.1, for any q > 1, any s > b�/q and any β > s +b�(1−1/q), there exists a constant
c such that, for all u > 0,

H[]
(
u,‖ · ‖L2r (P�)

,GM

) ≤ c

(
Mυ(s+β+b�/q)

u2r

)b�/s

(7.3)

and

ϕ(δ) :=
∫ δ

0
H

1/2
[]

(
u,‖ · ‖L2r (P�)

,GM

)
du ≤ cM(s+β+b�/q)b�υ/(2s)

∫ δ

0
u−rb�/s du.

Choosing β ≤ s + b�(1 − 1/q) + 2, if s goes to +∞ then the last integral is finite, and (s + β +
b�/q)b�υ/(2s) converges to b�υ , so that for any η > 0 there exists a positive constant c such
that

ϕ(δ) ≤ cMb�υ+η.

Finally, by Proposition A.2 for any η > 0, there exists a constant A such that for n large enough

E

[
sup

g∈GM

∣∣Sn(g)
∣∣] ≤ A

√
nMb�υ+η.

Then, by (7.2), this yields

P

[
sup

g∈GM

∣∣Sn(g)
∣∣ ≥ c�Y × (

√
nx + x)Mυ + A

√
nMb�υ+η

]
≤ e−x. (7.4)
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Proposition 3.2 is then proved using a peeling argument. By (7.1) and (7.4), for any M ≥ 1, any
large enough n and any x > 0, if γ = b�υ + η,

P

[
sup

g∈GM

| ∫ g d(Pn − P�)|
Mγ

≥ c�Y ×
(√

x

n
+ x

n

)
+ A√

n

]
≤ e−Mγ−υx . (7.5)

We can write

P

[
sup

f ∈F ,ν∈Db

| ∫ gpf,ν
d(Pn − P�)|

1 ∨ I (f )γ
≥ c�Y ×

(√
x

n
+ x

n

)
+ 2γ A√

n

]
≤ P1 +

+∞∑
k=0

Tk,

where

P1 := P

[
sup

f ∈F;I (f )≤1,

ν∈Db

| ∫ gpf,ν
d(Pn − P�)|

1 ∨ I (f )γ
≥ c�Y ×

(√
x

n
+ x

n

)
+ 2γ A√

n

]
,

Tk := P

[
sup

f ∈F;2k<I (f )≤2k+1,

ν∈Db

| ∫ gpf,ν
d(Pn − P�)|

1 ∨ I (f )γ
≥ c�Y ×

(√
x

n
+ x

n

)
+ 2γ A√

n

]
.

By (7.5),

P1 ≤ P

[
sup
g∈G1

∣∣∣∣∫ g d(Pn − P�)

∣∣∣∣ ≥ c�Y ×
(√

x

n
+ x

n

)
+ 2γ A√

n

]

≤ P

[
sup
g∈G1

∣∣∣∣∫ g d(Pn − P�)

∣∣∣∣ ≥ c�Y ×
(√

x

n
+

√
cx

n

)
+ A√

n

]
≤ e−x

and for all k ≥ 0,

Tk ≤ P

[
sup

g∈G2k+1

| ∫ g d(Pn − P�)|
2γ (k+1)

≥ c

2γ
�Y ×

(√
x

n
+ x

n

)
+ A√

n

]

≤ P

[
sup

g∈G2k+1

| ∫ g d(Pn − P�)|
2γ (k+1)

≥ c�Y ×
(√

x

22γ n
+ x

22γ n

)
+ A√

n

]
≤ e−2(γ−υ)(k+1)x/22γ

.

Using (7.5),

P

[
sup

f ∈F ,ν∈Db

| ∫ gpf,ν
d(Pn − P�)|

1 ∨ I (f )γ
≥ c�Y ×

(√
x

n
+ x

n

)
+ 2γ A√

n

]

≤ e−x +
∞∑

k=0

e−2(γ−υ)(k+1)x/22γ

≤ e−x +
∞∑

k=0

e−(k+1)x log(2)(γ−υ)/22γ ≤ e−x + e−αx

1 − e−αx
,
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which concludes the proof of Proposition 3.2.

7.2. Proof of Proposition 4.1

Assume that h(pf,ν,pf�,ν1,�
) = 0 (the proof of the converse proposition is straightforward). Let

X′
0 be a random variable on X with distribution ν(x)μ(dx). Since ε0 is a Gaussian random

variable, h(pf,ν,pf�,ν1,�
) = 0 implies that f (X′

0) has the same distribution as f�(X0).

Proof that f and f� have the same image in R
�

Let y ∈ f (X), n ≥ 1 and B(y,n−1) be the open Euclidean ball in R
� centered at y with radius

n−1. As y ∈ f (X) and f is continuous, there exists a nonempty open subset O of Rm such that

f −1(B(y,n−1)) =O∩X. Since
◦
X=X,

◦
X is not empty and so is the interior of f −1(B(y,n−1))

(which is equal to O∩ ◦
X). Therefore, μ{f −1(B(y,n−1))} > 0. Then, using that ν ≥ ν− and that

f (X′
0) has the same distribution as f�(X0),

P
{
X0 ∈ f −1

�

(
B

(
y,n−1))} = P

{
X′

0 ∈ f −1(B(
y,n−1))} ≥ ν−μ

{
f −1(B(

y,n−1))} > 0.

Hence, f −1
� (B(y,n−1)) is nonempty and for all n ≥ 1, there exists xn ∈ X such that ‖y −

f�(xn)‖ < n−1. Moreover, for all n ≥ 1, f�(xn) lies in the compact set f�(X). This implies that
y ∈ f�(X). The proof of the converse inclusion follows the same lines.

Proof that φ is bijective

Since f (X′
0) has the same distribution as f�(X0), X0 has the same distribution as φ(X′

0) where
φ := f −1

� ◦ f . By H6 φ exists and is C1. We prove that |Jφ | > 0 using the following result due
to [11], Theorem 2, page 99.

Lemma 7.1. If φ :X→ X is Lipschitz then, for any integrable function g,∫
X

g(x)
∣∣Jφ(x)

∣∣μ(dx) =
∫
X

∑
x∈φ−1({y})

g(x)μ(dy).

Define A := {x ∈X; ∀x′ ∈ φ−1({x}), |Jφ(x′)| > 0}. Let h1 be a bounded measurable real func-
tion on X and define h := 1Ah1. By Lemma 7.1,

E
[
h ◦ φ

(
X′

0

)] =
∫
X

h1
(
φ
(
x′))1A

(
φ
(
x′))ν(

x′)μ(
dx′)

=
∫
X

h1
(
φ
(
x′))1A

(
φ
(
x′)) ν(x′)

|Jφ(x′)|
∣∣Jφ

(
x′)∣∣μ(

dx′)
=

∫
X

h1(x)1A(x)
∑

x′∈φ−1({x})

ν(x′)
|Jφ(x′)|μ(dx).
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Since X0 has the same distribution as φ(X′
0),∫

X

h1(x)1A(x)ν1,�(x)μ(dx) =
∫
X

h1(x)1A(x)
∑

x′∈φ−1({x})

ν(x′)
|Jφ(x′)|μ(dx).

Applying Lemma 7.1 with g := 1|Jφ |=0 implies that 1A = 1 μ-a.s. in X and, μ-a.s.,

ν1,�(x) =
∑

x′∈φ−1({x})

ν(x′)
|Jφ(x′)| . (7.6)

Therefore, for μ almost every x ∈X and for all x′ ∈ φ−1({x}),∣∣Jφ

(
x′)∣∣ ≥ ν−

ν+
.

By continuity of Jφ and using that
◦
X = X, |Jφ(x)| > 0 for all x ∈ X. Therefore, φ is locally

invertible and, since X is compact, simply connected and arcwise connected, φ is bijective by
[2], Theorem 1.8, page 47. Then (7.6) ensures that for μ almost every x ∈ X,

ν1,�

(
φ(x)

) = ν(x)

|Jφ(x)| ,

which concludes the proof of Proposition 4.1.

7.3. Proof of Proposition 4.3 and Corollary 4.4

Proof of Proposition 4.3

The proof of (4.2) follows the same lines as the proof of Proposition 4.1. Let (X′
0,X

′
1) be a

random variable on X
2 with probability density ν(x)q(x, x′) on X

2. h(pf,ν2 ,pf�,ν2,�
) = 0 im-

plies that h(pf,ν,pf�,ν�) = 0 and, by Proposition 4.1, f (X) = f�(X) and φ = f −1
� ◦ f is bi-

jective. Moreover, since (ε0, ε1) has a Gaussian distribution, h(pf,ν2 ,pf�,ν2
�
) = 0 implies that

(φ(X′
0),φ(X′

1)) has the same distribution as (X0,X1) so that for any x in X and any bounded
measurable function f on X,

E
[
φ
(
X′

1

)|X′
0 = φ−1(x)

] = E[X1|X0 = x].
Following the proof of Proposition 4.1, this gives (4.2).

Proof of Corollary 4.4

Assume that

q�

(
x, x′) = c�(x)ρ�

(∥∥x − x′∥∥)
and q

(
x, x′) = c(x)ρ

(∥∥x − x′∥∥)
.
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By (4.2),

c(x)ρ
(∥∥x − x′∥∥) = ∣∣Jφ

(
x′)∣∣c�

(
φ(x)

)
ρ�

(∥∥φ(x) − φ
(
x′)∥∥)

. (7.7)

Applying (7.7) with x = x′ implies |Jφ(x)| = ρ(0)
ρ�(0)

c(x)
c�(φ(x))

. Therefore,

|Jφ(x)|
|Jφ(x′)| = c(x)c�(φ(x′))

c(x′)c�(φ(x))
= |Jφ(x′)|

|Jφ(x)|
and then, there exists a constant C such that for all x ∈X, |Jφ(x)| = C. As φ is bijective we may
write

μ(X) = μ
(
φ(X)

) =
∫

φ(X)

μ(dx) =
∫
X

∣∣Jφ(x)
∣∣μ(dx) = Cμ(X),

which leads to C = 1 since 0 < μ(X) < ∞. By (7.7), for any x and x′ in X,

ρ
(∥∥x − x′∥∥) = ρ�

(∥∥φ(x) − φ
(
x′)∥∥)

. (7.8)

Let x0 ∈ ◦
X, y0 = φ(x0) and d0, d

′
0 > 0 be such that B(x0, d0) := {x ∈ R

m,‖x0 − x‖ < d0} ⊂ X

and φ(B(x0, d0)) ⊂ B(y0, d
′
0).

Let d < d0 and denote by S(x0, d) the set S(x0, d) := {x ∈ R
m,‖x0 − x‖ = d}. As ρ� is one-

to-one, write F = ρ−1
� ◦ ρ. (7.8) implies that φ(S(x0, d)) ⊂ S(y0,F (d)). Furthermore, using the

compactness and the connectivity of S(x0, d), φ(S(x0, d)) = S(y0,F (d)) which, together with
the continuity of φ, guarantees that φ(B(x0, d)) = B(y0,F (d)). Finally, because φ preserves
the volumes, for any d < d0, F(d) = d and for any x ∈ X and any x′ ∈ B(x, d0), ‖x − x′‖ =
‖φ(x) − φ(x′)‖. The proof is concluded using the connectivity of X.

Appendix A: Concentration results for the empirical process of
unbounded functions

Proposition A.1 provides a concentration inequality on the empirical process over a class of
functions G for which |g(Zi)| can be bounded uniformly in g ∈ G by an independent process
Ui with bounded moments. This unusual condition is more general than [24], Theorem 3, which
considered a uniformly bounded class of functions.

Proposition A.1. Let (Zn)n≥0 be a �-mixing process taking values in a set Z . Assume that the
�-mixing coefficients associated with (Zn)n≥0 satisfy:

� :=
∞∑
i=1

φ
1/2
i < ∞.

Let G be some countable class of real valued measurable functions defined on Z . Assume that
there exists a sequence of independent random variables (Ui)i≥0 such that:
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– for any g in G, ∣∣g(Zi)
∣∣ ≤ Ui a.s.; (A.1)

– there exists some positive numbers ν and c such that, for any k ≥ 1:

n−1∑
i=0

E
[
U2k

i

] ≤ k!nνck−1. (A.2)

Then, for any positive x,

P
[
Sn ≥ 2� × (2

√
nνx + √

cx)
] ≤ e−x,

where

Sn = sup
g∈G

∣∣∣∣∣
n−1∑
i=0

g(Zi)

∣∣∣∣∣ −E

[
sup
g∈G

∣∣∣∣∣
n−1∑
i=0

g(Zi)

∣∣∣∣∣
]
.

Proof. For any real valued random variable and for any real random variable X, define ψX(λ) :=
ln(E[exp(λX)]). Following the proof of [24], Theorem 3, together with the discussion about the
dependence structure in [24], Section 2, we have

exp

(
ψSn

(
λ

4

))
≤ E

[
exp

[
λ2 �2

4
V 2

]]1/2

exp

[
λ2 �2

8
E

[
V 2]], (A.3)

where V 2 := ∑n
i=1 U2

i . Using (A.1) and by independence of the (Ui)i≥0,

exp

(
ψSn

(
λ

4

))
≤ E

[
exp

[
λ2 �2

4

n∑
i=1

U2
i

]]1/2

exp

[
λ2 �2

8

n∑
i=1

E
[
U2

i

]]

≤
n∏

i=1

E

[
exp

[
λ2 �2

4
U2

i

]]1/2

exp

[
λ2 �2

8

n∑
i=1

E
[
U2

i

]]
.

Thus,

ψSn(λ/4) ≤ 1

2

n∑
i=1

ln

{
E

[
exp

(
λ2 �2

4
U2

i

)]}
+ λ2 �2

8

n∑
i=1

E
[
U2

i

]
.

Since for any u > 0, ln(u) ≤ u − 1, this yields

ψSn(λ/4) ≤ 1

2

∞∑
k=1

1

k!
[
λ2 �2

4

]k n∑
i=1

E
[
U2k

i

] + λ2 �2

8

n∑
i=1

E
[
U2

i

]
.
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Then, by (A.2),

ψSn(λ/4) ≤ nν

[
λ2 �2

4

]
1

2

∞∑
k=0

[
λ2 �2

4
c

]k

+
[
λ2 �2

8
ν

]
.

If 0 < λ2�2c/4 < 1,

ψSn(λ/4) ≤ nνλ2 �2

8

1

1 − λ2(�2/4)c
+ nνλ2 �2

8

≤ nνλ2 �2

4

1

1 − λ2(�2/4)c
.

Define ν′ := 8nν�2 and c′ := 2�
√

c. Therefore,

ψSn(λ/4) ≤ ν′(λ/4)2

2(1 − c′(λ/4))
. (A.4)

Hence, for all 0 < λ < 1/c′,

ψSn(λ) ≤ ν′λ2

2(1 − c′λ)
. (A.5)

By the Bernstein type inequality (A.5), [21], Lemma 2.3, gives, for any measurable set A ⊂ 	

with P(A) > 0,

E[Sn|A] ≤
√

2ν′ ln

(
1

P(A)

)
+ c′ ln

(
1

P(A)

)
.

Hence, by [21], Lemma 2.4, for any positive x,

P
[
Sn ≥ √

2ν′x + c′x
] ≤ e−x. �

Proposition A.2 below provides a control on the expectation of the empirical process. It intro-
duces a β-mixing condition (see [7]) which is weaker than the �-mixing condition considered
in Proposition A.1. The β-mixing coefficient between two σ -fields U ,V ⊂ E is defined in [7] by

β(U ,V) := 1

2
sup

∑
(i,j)∈I×J

∣∣P(Ui ∩ Vj ) − P(Ui)P(Vj )
∣∣,

where the supremum is taken over all finite partitions (Ui)i∈I and (Vj )j∈J respectively U and
V measurable. The corresponding mixing coefficients (βi)i≥0 associated with a process (Xk)k≥0

satisfy βi < φi for all i ≥ 1.
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Proposition A.2. Let (Zi)i≥0 be a stationary process taking values in a Polish space Z and let
P� be the distribution of Z0. Assume that the sequence (Zi)i≥0 is β-mixing and that

∞∑
i=1

βi < ∞.

Let G be a countable class of functions on Z . Assume that there exist r > 1 and δ > 0 such that
for any g ∈ G,

‖g‖L2r (P�)
:= E

[
g(Z0)

2r
]1/2r ≤ δ.

Assume also that the bracketing function satisfies∫ 1

0

√
H[]

(
u,‖ · ‖L2r (P�)

,G
)

du < ∞.

Then,

ϕ(δ) :=
∫ δ

0

√
H[]

(
u,‖ · ‖L2r (P�)

,G
)

du

is finite and there exists a constant A such that for n big enough

E

[
sup
g∈G

∣∣Sn(g)
∣∣] ≤ √

nAϕ(δ), (A.6)

where, for all g ∈ G, Sn(g) = ∑n−1
i=0 g(Zi) − nE[g(Z0)].

Proof. This is a direct application of the remark following [9], Theorem 3. �

Appendix B: Entropy of the class GM

Lemma B.1. For any q > 1, any s > b�/q and any even integer β , provided that β > s +b�(1−
1/q), there exists a constant C such that for all u > 0,

H[]
(
u,‖ · ‖L2r (P�)

,GM

) ≤ C

(
Mυ(s+β+b�/q)

u2r

)b�/s

. (B.1)

Proof. By [21], Lemma 7.26, for any probability densities p1 and p2 on R
b�,

‖gp2 − gp1‖2r
L2r (P�)

≤ C‖√p2 − √
p1‖2

L2(Rb�)
.

Since ‖√p2 − √
p1‖2

L2(Rb�)
≤ ‖p2 − p1‖L1(Rb�), this yields, for any u > 0,

H[]
(
u,‖ · ‖L2r (P�)

,GM

) ≤ H[]
(
u2r/C,‖ · ‖L1(Rb�),PM

)
, (B.2)
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where PM := {pf,ν;ν ∈ Db, f ∈ F and I (f ) ≤ M}. Thus, it remains to bound the entropy with
bracketing of PM associated with ‖ · ‖L1(Rb�) to control the entropy with bracketing of GM asso-
ciated with ‖ · ‖L2r (P�)

. For any q > 1 and s ≥ 0, define the Sobolev space on R
b�:

Ws,q
(
R

b�,R
) := {

h : Rb� →R;Dαh ∈ Lq,α ∈ N
b� and 0 ≤ |α| ≤ s

}
.

For any β > 0, let 〈·〉β be the polynomial function on R
b� given by y �→ 〈y〉β := (1 + ‖y‖2)β/2

and Ws,q(Rb�, 〈·〉β) be the corresponding weighted Sobolev space:

Ws,q
(
R

b�, 〈·〉β) := {
h :Rb� →R;y �→ 〈y〉βh(y) ∈ Ws,q

(
R

b�,R
)}

.

Lemma B.2 establishes that, for any M ≥ 1, q > 1, s > b�/q and even integer β , the normalized
classes of functions PM/Mυ(s+β+b�/q) are in the same bounded subspace of Ws,q(Rb�, 〈y〉β).
By [23], Corollary 4, for any q > 1, and any s > b�/q , provided that β > s + b�(1 − 1/q), there
exists a constant C such that, for all ε > 0,

H[]
(
ε,‖ · ‖L1(Rb�),PM/Mυ(s+β+b�/q)

) ≤ Cε−b�/s .

The proof is concluded by (B.2). �

Lemma B.2. Assume that H2 holds for some υ > 0. Then, for any q > 1, s > b�/q and any even
β > 0, there exists C > 0 such that for any f ∈F and any ν ∈ Db ,∥∥y �→ 〈y〉βpf,ν(y)

∥∥
Ws,q (Rb�,R)

≤ C
(
1 ∨ I (f )υ

)s+β+b�/q
.

Proof. Let f be a function in F , for any ν ∈ Db,∥∥y �→ 〈y〉βpf,ν(y)
∥∥q

Ws,q (Rb�,R)
=

∑
|α|≤s

∥∥Dα
(〈y〉βpf,ν(y)

)∥∥q

Lq .

Applying the general Leibniz rule component by component yields, for any α ∈N
b�,

Dα
(〈y〉βpf,ν(y)

) =
∑
α′≤α

b�∏
j=1

(
αj

α′
j

)
Dα′(〈y〉β)

Dα−α′(
pf,ν(y)

)
. (B.3)

Then, Lemma B.2 requires to control ‖Dα(1)
(〈y〉β)Dα(2)

(pf,ν)‖Lp′ for any given α(1) and α(2)

in N
b�. For any α in N

b�, there exists a polynomial function Pα with degree lower than |α| such
that, for any y ∈R

b�,

Dαpf,ν(y) =
∫

x∈Xb

Pα

(
f(x) − y

)
exp

{
−1

2

∥∥f(x) − y
∥∥2

}
ν(x)μ⊗b(dx). (B.4)

Moreover, since β is an even number, for any α ∈ N
b� such that |α| ≤ β , Dα(〈y〉β) is a poly-

nomial function denoted by Pβ,α with degree lower than β − |α|. In the case where |α| > β ,
Dα(〈y〉β) = 0. Define κ(υ,f ) := 1 ∨ I (f )υ . By H2, there exists a constant C > 0 such that, for
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any x ∈ X
b , ‖f(x)‖ ≤ CI (f )υ ≤ Cκ(υ,f ). Since Pα(2) and Pβ,α(1) are both polynomial func-

tions, there exists a constant C depending on α(1), α(2) and β such that, for any y ∈ R
b� and any

x ∈X
b ,∣∣Pβ,α(1) (y)Pα(2)

(
f(x) − y

)∣∣ ≤ 1|α(1)|≤β

[
C

(
1 + ‖y‖)β−|α(1)| × (

κ(υ,f ) + ‖y‖)|α(2)|]
.

Define the following subset of Rb�

Af := {
y ∈ R

b�; ‖y‖ ≤ Cκ(υ,f )
}
.

‖f(x) − y‖ can be lower bounded by 0 when y ∈ Af and by ‖y‖ − Cκ(υ,f ) when y ∈ Ac
f .

Therefore, uniformly in x ∈ X
b,

exp
{−∥∥f(x) − y

∥∥2
/2

} ≤ 1Af
(y) + 1Ac

f
(y) exp

{−(
Cκ(υ,f ) − ‖y‖)2

/2
}
.

Then, there exists a constant C > 0, such that for any q > 1,∥∥Dα(1)(〈y〉β)
Dα(2)

(pf,ν)
∥∥q

Lq
≤ 1|α(1)|≤β

[
Cκ(υ,f )q|α(2)|(I1 + I2)

]
,

where,

I1 :=
∫

Af

(
1 + ‖y‖)q(β−|α(1)|)

(
1 + ‖y‖

κ(υ,f )

)q|α(2)|
λ⊗b(dy),

I2 :=
∫

Ac
f

(
1 + ‖y‖)q(β−|α(1)|)

(
1 + ‖y‖

κ(υ,f )

)q|α(2)|
e−q(Cκ(υ,f )−‖y‖)2/2λ⊗b(dy).

By the change of variables z′ = (κ(υ,f ))−1y in I1 and I2, there exists a constant C such that∥∥Dα(1)(〈y〉β)
Dα(2)

(pf,ν)
∥∥q

Lq
≤ Cκ(υ,f )q(|α(2)|−|α(1)|+β)+b�. (B.5)

Using (B.5) in (B.3) with α(1) = α′ and α(2) = α − α′ for any |α| ≤ s and α′ ≤ α concludes the
proof of Lemma B.2. �

Appendix C: Proof of Lemma 6.1

The proof follows the same lines as the one for the usual EM algorithm. For all 0 ≤ k ≤ n − 1,
all f ∈ F and all a ∈ A

ln
[
pf,a(Yk)e

−λnI (f )/n
] = ln

[∫
pf,a(x,Yk)e

−λnI (f )/nμ⊗2(dx)

]

= ln

[∫
pf,a(x,Yk)e

−λnI (f )/n
pf̂ p,̂ap (x|Yk)

pf̂ p,̂ap (x|Yk)
μ⊗2(dx)

]
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= ln

[∫
pf̂ p,̂ap (x|Yk)

pf,a(x,Yk)e−λnI (f )/n

pf̂ p,̂ap (x|Yk)
μ⊗2(dx)

]

≥
∫

pf̂ p,̂ap (x|Yk) ln

[
pf,a(x,Yk)e−λnI (f )/n

pf̂ p,̂ap (x|Yk)

]
μ⊗2(dx),

where the last inequality comes from the concavity of x �→ logx. Then,

ln
[
pf,a(Yk)e

−λnI (f )/n
] − ln

[
pf̂ p,̂ap (Yk)e

−λnI (f̂ p)/n
]

≥ Eâp,f̂ p

[
lnpf,a(Xk,Yk) − lnpf̂ p,̂ap (Xk,Yk)|Yk

] − λn

n

(
I (f ) − I

(
f̂ p

))
.

The proof is concluded by definition of âp+1 and f̂ p+1.
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