
Bernoulli 23(2), 2017, 863–883
DOI: 10.3150/15-BEJ762

Type II chain graph models for categorical
data: A smooth subclass
FEDERICA NICOLUSSI1 and ROBERTO COLOMBI2

1Dip. Discipline matematiche, finanza matematica e econometria, Catholic University of Milan, largo
A. Gemelli, 1-20213 Milano, Italy. E-mail: federica.nicolussi@unimib.it
2Dip. di Ingegneria gestionale, dell’informazione e della produzione, University of Bergamo, viale Marconi
5-24044 Dalmine (BG), Italy. E-mail: roberto.colombi@unibg.it

The Probabilistic Graphical Models use graphs in order to represent the joint distribution of q variables.
These models are useful for their ability to capture and represent the system of independence relationships
among the variables involved, even when complex. This work concerns categorical variables and the possi-
bility to represent symmetric and asymmetric dependences among categorical variables. For this reason we
use the Chain Graphical Models proposed by Andersson, Madigan and Perlman (Scand. J. Stat. 28 (2001)
33–85), also known as Chain Graphical Models of type II (GMs II). The GMs II allow for symmetric rela-
tionships typical of log-linear models and, at the same time, asymmetric dependences typical of Graphical
Models for Directed Acyclic Graphs. In general, GMs II are not smooth, however this work provides a
subclass of smooth GMs II by parametrizing the probability function through marginal log-linear models.
Furthermore, the proposed models are applied to a data-set from the European Value Study for the year
2008 (EVS (2010)).
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1. Introduction

The increasing use of graphical models is due to their ability to represent complex phenomena.
The Probabilistic Graphical Models represent the joint probability function of q variables through
a graph where each vertex of the graph corresponds to one variable and the arcs are indicators
of dependences. Chain Graph Models use both directed and undirected arcs, thus are able to
represent symmetrical or directional relationships simultaneously. This topic is largely discussed
in literature, see, for instance [10,15].

With the aim to represent simultaneous independence relationships among a collection of cat-
egorical variables, we use the Chain Graph Models proposed by [1] also known as Graphical
Models of type II (GMs II), see [6]. In a GM II, the variables are partitioned into different
sets. Independences typical of log-linear models hold among the variables in the same set, while
asymmetrical independences typical of DAG (Directed Acyclic Graph) hold among variables in
different sets. It is important to observe that, the dependence between response and explanatory
variables is studied marginally compared to other response variables.

A useful way to parametrize the joint distribution of categorical variables is given by the
marginal log-linear models [3]; these models have been used to parametrize different types of
chain graphical models, see, for instance, [12,14] and [8], but this parametrization, unfortunately,
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does not exist for the sub-class of GMs II which are non-smooth models [6]. As the parametric
marginal models for categorical data have useful properties for the asymptotic theory of the ML
estimators, we are interested in investigating the sub-class of GMs II’s that can be parametrized
by marginal models. A preliminary study of these models was debated in [13].

The work is organized as follows: Section 2 introduces the marginal log-linear models with
their properties; Section 3 is dedicated to the GMs II and, after an introduction on basic notation,
it proposes new equivalent Markov properties. Section 4 describes the smooth subclass of GMs II
which is representable with marginal log-linear models. Finally, Section 5 presents an application
on EVS data to illustrate the results obtained in this work.

2. Marginal log-linear models

Here we give only a brief introduction to the marginal log-linear models; for more details, specific
to the context of chain graphical models see, for instance, [12] and [8].

Let us consider q categorical variables V = {X1,X2, . . . ,Xq}, with levels d1, d2, . . . , dq , re-
spectively. The marginal log-linear models are models where log-linear interaction parameters
are defined on marginal distributions. We will refer to these interactions, that are contrasts of
logarithms of sum of probabilities, as marginal parameters, [3]. Any marginal parameter is dis-
tinguished by a pair of sets (M;L), where L ⊆M ⊆ V . The so-called marginal set M specifies
the marginal distribution where the parameter is evaluated. The so-called interaction set L, is the
set of variables involved in the interaction. The collection of interactions defined in M concern-
ing the interaction set L are staked in the vector:

ηML = CM
L log MM

L π , (2.1)

where CM
L , MM

L are a contrast and a marginalization matrix and π is the vector of strictly
positive joint probabilities of the q variables [2].

All the marginal parameters are collected in the vector η obtained stacking all the previ-
ous ηML .

Definition 1. A class H = {M1, . . . ,Ms} of marginal sets, where Ms = V and Mi �Mj if
j < i, ∀i, j = 1, . . . , s, is called hierarchical family of marginal set.

Definition 2. Given a hierarchical family of marginal sets, the vector of parameters η is complete
if there is exactly one ηML for all L ⊆ V ; it is hierarchical if the marginal set M of ηML is the
first in H which contains the variables in L.

A marginal model is characterized by a vector of hierarchical and complete parameters η and
a remarkable property is that η is a smooth parametrization of the probability function of the
variables in V (see [3], Theorem 2). On the other hand, marginal models are not able to repre-
sent all lists of conditional independences {Ai ⊥ Bi |Ci, i = 1, . . . , k}. Concerning this problem,
[14], gave a sufficient condition according to which a list of independences is representable by a
marginal model. The contribution of this paper is founded on this result reported by the following
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Theorem 2.1. Let us consider, for each independence Ai ⊥ Bi |Ci , the subclass Di of interaction
sets

Di =P(Ai ∪ Bi ∪ Ci) \ (
P(Ai ∪ Ci) ∪P(Bi ∪ Ci)

)
, (2.2)

where P(S) is the power set of S. The elements of this class contain at least one element of Ai ,
at least one element of Bi and possibly elements of Ci . Let M(L) be the first marginal set in the
hierarchical class H = {M1, . . . ,Mm} which contains the interaction L, ∀L ⊆ V .

Theorem 2.1. Let us consider q variables, a hierarchical class of marginal sets H and the con-
ditional independences list {Ai ⊥ Bi |Ci, i = 1, . . . , k}. The class of probability distribution func-
tions of the q variables that satisfies the previous conditional independence system is equivalent
to the marginal model where

η
M(L)

L = 0, ∀L ∈
k⋃

i=1

Di and M(L) ∈ H (2.3)

if the next condition is satisfied

Ci ⊆M(L) ⊆ (Ai ∪ Bi ∪ Ci) ∀L ∈ Di, i = 1, . . . , k. (2.4)

In this work marginal sets, interaction sets and, more generally, sets of nodes will be denoted
by enclosing the list of elements in round brackets while the members of a family of sets will be
enclosed in curly brackets.

Example 1. Let us consider a collection of four variables V1, V2, V3, V4 and the independences
V1 ⊥ V3|V4 and V4 ⊥ V1,V2|V3. Let us take a hierarchical class of marginal sets, for instance,
H = {(V1,V3,V4); (V1,V2,V3,V4)}. In order to verify the condition (2.4), we need the classes
Di , i = 1,2. Thus, from the independence V1 ⊥ V3|V4, we have D1 = {(V1,V3); (V1,V3,V4)},
and from independence V4 ⊥ V1,V2|V3 we have D2 = {(V1,V4); (V2,V4); (V1,V2,V4);
(V1,V3,V4); (V2,V3,V4); (V1,V2,V3,V4)}, see formula (2.2). In the first case, the condi-
tion (2.4) becomes (V4) ⊆ M(L) ⊆ (V1,V3,V4) that always holds since M(L) = (V1,V3,V4)

for all L ∈ D1. Thus, the vectors of parameters to constrain to zero are η134
13 , η134

134. According to
the second independence the condition (2.4) becomes (V3) ⊆M(L) ⊆ (V1,V2,V3,V4). Even in
this case, the condition holds for all L ∈ D2 thus the second independence is represented by an-
nulling the vectors η134

14 , η134
134, η1234

24 , η1234
234 , η1234

124 , η1234
1234. Note that, if we introduce the statement

V4 ⊥ V1|V2,V3 which is implied by V4 ⊥ V1,V2|V3, the interaction referring to L = (V1,V3,V4)

must be set to zero also to satisfy this last independence. But, this time the condition (2.4) does
not hold since (V2,V3) �M(L) = (V1,V3,V4). Thus, if we take into account the third indepen-
dence statement (i.e., unnecessary) we can not tell if the list of independences is parametrizable
by a marginal model.

A closely related result, about the equivalence of conditional independence statements and
constraints on marginal log-linear parameters, that does not require the specification of H, is
given by [9].
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3. Graphical models of type II

Section 3.1 introduces the main notation and definitions on graph theory useful to understand
the graphical models of type II described in Section 3.2; for a more general treatment see [10].
Section 3.3 introduces a new equivalent formulation of the Markov properties of the GMs II.

3.1. Graph theory

Graphs are mathematical objects defined by two sets G = {V,E}, where V = {V1, . . . , Vq} is the
set of vertices and E ⊆ V × V is the set of edges or arcs that can be both directed or undirected.
Two vertices are adjacent if they are joined by an undirected edge. Given a subset A of V , the
set of all vertices both not included in A and adjacent to at least one of the vertices in A, is called
set of neighbours of A, nb(A). The neighbourhood of A is defined by Nb(A) = nb(A) ∪ A.

On the other hand, when there is a directed arc from a vertex Vi to a vertex Vj , the first vertex
is called parent of Vj and Vj is called child. Given a subset A of V , the set pa(A) of parents of
A is the collection of all vertices with at least one child in A. We define the set ch(A) of children
of A as the set of all vertices with at least one parent included in A.

A directed cycle is an ordered sequence of vertices, all joined by direction preserving directed
arcs (directed-path), starting and ending in the same vertex. A semi-directed cycle is an ordered
sequence of vertices, joined by both direction preserving directed and undirected arcs (semi-
directed path), which starts and ends in the same vertex.

A Chain Graph (CG) is a graph that can include both directed and undirected arcs without
any directed or semi-directed cycle. A CG is decomposable into Chain Components, denoted by
T1, . . . , Ts . Within these connected chain components, there are only undirected arcs and between
two components there are only directed arcs in the same direction.

Given a CG, the associated Directed Graph is a directed acyclic graph where the components
T1, T2, . . . act for the vertices, and there is a direct arc linking Tj to Th if at least an element
of Th is a child of an element of Tj . The definition of parents and children also applies to the
associated Directed Graph. Thus, for instance, for a component Th, the parent paD(Th) is the set
of the chain components having as children Th, h = 1, . . . , s. The chain components are ordered
in such way that if j < h there is not any directed arc from Th to Tj .

Example 2. An example of chain graphs is represented in Figure 1 where we can recognize three
components: T1 = (1), T2 = (2,3) and T3 = (4,5,6). Within the component T3, the vertices 4
and 5 are adjacent and the set of neighbours of 5 is nb(5) = (4,6). The vertex 2 is child of 1
and parent of 4. The set of parents of (4,6) is pa(4,6) = (2,3) and the set of parents of the
component T3 is paD(T3) = T2 = (2,3).

Any component Th can be partitioned in two subsets, respectively, the set CHh of children and
the set NCh of vertices that are not children. In the first set, there are the vertices Vj ∈ Th such
that pa(Vj ) �=∅ while in NCh there are the Vj ∈ Th \ CHh.

Example 3 (Continuation of Example 2). In the component T1, the set CH1 is empty and NC1 =
(1). In the component T2 the set of children is CH2 = (2,3) and NC2 is empty. Finally, in the
component T3 we have CH3 = (4,6) and NC3 = (5).
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Figure 1. Chain graphs with set of vertex V = (1,2,3,4,5,6) and set of edges E = {(1,2); (1,3); (2,3);
(3,2); (2,4); (3,6); (4,5); (5,4); (5,6); (6,5)}.

A subset A of V is complete if every pair of vertices of A is connected by an undirected
edge. A complete subset A of V is a clique if it is maximal, that is if there are no complete sets
containing it. We denote the family of complete subsets of a component Th by Ch and the family
of cliques by Clh.

Example 4 (Continuation of Example 2). As the component T1 has only one vertex, C1 =
Cl1 = {(1)}. The two vertices of T2 are adjacent, so C2 = {(2); (3); (2,3)} and the family
of cliques of T2 is C2 = {(2,3)}. For the component T3, the class of complete sets is C3 =
{(4); (5); (6); (4,5); (5,6)} and the family of cliques is Cl3 = {(4,5); (5,6)}.

3.2. Graphical models of type II

Graphical models (GMs) use graphs to represent multidimensional dependence structures among
variables. There are four types of GMs for chain graphs (CG), listed in [6], each of which rep-
resents different dependence systems. The Drton’s GMs use the CG where the vertices act for
the variables and the possible edges act for dependence relationships. When two vertices are
connected by an undirected edge, it is possible to assume that the two linked variables are associ-
ated. On the other hand, when there is a directed arc, a dependence relationship among the linked
variables can be assumed. Since their desirable features, in what follows we will use the Graph-
ical models of type II (GMs II), introduced by [1] as generalization of both GMs for undirected
graphs (UG) and GMs for directed acyclic graphs (DAG), for details see [10]. First, the grouping
of variables in components allows to split the variables in “purely explicative” variables, “purely
response” variables and “intervening” variables. Second, in the GMs II, the relationship among
a variable and its explicative variables is considered marginally with respect to the variables in
the same component. Finally, the association between the variables, within the same component,
is modeled as it is done by log-linear models in contingency table analysis. The rules to read a
list of conditional independences from a graph are called Markov properties and, for the GM II
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are the following three:

(C1) Th ⊥
(⋃

i<h

Ti

∖
paD(Th)

)∣∣∣paD(Th),

(C2a) A ⊥ Th \ Nb(A)|paD(Th) ∪ nb(A) ∀A ⊂ Th,
(3.1)

(C3b) A ⊥ paD(Th) \ pa(A)|pa(A) ∀A ⊆ Th,

h = 1, . . . , s.

The first Markov property, (C1), describes the independences between the chain components; the
second, (C2a), reads the conditional independences within the components, and the third, (C3b)
interprets the lack of directed arcs between variables in different components. The labels (C1),
(C2a) and (C3b) are the same used in [6].

Example 5. Applying the Markov properties in formula (3.1) to the graph in Figure 1, we get,
respectively, from the (C1) 4,5,6 ⊥ 1|2,3, from the (C2a) 4 ⊥ 6|2,3,5 and from the (C3b) 5 ⊥
2,3; 4 ⊥ 3|2; 6 ⊥ 2|3; 4,5 ⊥ 3|2 and 5,6 ⊥ 2|3. Note that, the first three (C3b) independences
are implied by the last two and so 5 ⊥ 2,3; 4 ⊥ 3|2; 6 ⊥ 2|3; can be deleted from the list without
loss of information.

Unfortunately, when the variables involved are categorical, these models are not necessarily
smooth [6]. This means that the probability function of the q variables under the constraints given
by the removed arcs does not always belong to a curved exponential family. Since the parametric
marginal models introduced in Section 2 are smooth, in Section 4 we will propose a subclass of
GMs II that can be parametrized as marginal models. In order to do this, it is convenient to use the
equivalent lists of independences introduced in Section 3.3 in order to remove the statements that
can lead to a “wrong” inconclusive declaration, as it is shown by Example 1 and more generally
by [9]. Remind that two lists of independences are equivalent if all independences of one list can
be obtained from the other list.

3.3. Alternative Markov properties for GMs II

In this section, we introduce two alternative Markov properties useful to introduce the results of
Section 4. The Markov properties (C2*a), equivalent to the condition (C2a), have the property
that children with complete neighbourhood do not belong to any conditioning set. In the Markov
properties (C3*a), equivalent to the (C3a), the conditional independences are between sets of a
partition of paD(Th) and sub-sets of Th that contain all the non-children. These properties will
play a key role in the main theorems of Section 4.

An alternative condition for (C2a)

Let us consider the family Clh of the rh cliques of the hth component and split the elements Ci,h

of Clh in two sets Ci,h = B1i,h ∪ B2i,h, for i = 1, . . . , rh, in such way that: if B1i,h is not empty,



Type II chain graph models 869

Figure 2. Chain graphs with set of vertices V = (1,2,3,4,5) and set of edges E = {(1,2); (1,3); (1,4);
(2,3); (3,2); (3,4); (4,3); (4,5); (5,4)}.

CHh ∩B1i,h �= ∅ and Vj ∈ B1i,h if and only if Nb(Vj ) = Ci,h, while B2i,h = Ci,h \ B1i,h. Below
we report an example which shows how to decompose the cliques Ci,h.

Example 6. Let us consider the graph in Figure 2. In the component T2 = (2,3,4,5), we have
the family of the cliques Cl2 = {(2,3); (3,4); (4,5)}. In the Table 1, we list elements of Cl2 split
according to the previous rules.

Definition 3. The condition (C2*a) is described by the following list of independences:

B1i,h ⊥ Th \ Ci,h|paD(Th) ∪ B2i,h (3.2)

∀i = 1, . . . , rh and h = 1, . . . , s.

(Vj ∪ B1,Vj ,h) ⊥ Th \ Nb(Vj ∪ B1,Vj ,h)|paD(Th) ∪ nb(Vj ∪ B1,Vj ,h), (3.3)

∀Vj ∈ ⋃rh
i=1 B2i,h and h = 1, . . . , s where B1,Vj ,h = nb(Vj ) ∩ (

⋃rh
i=1 B1i,h).

By definition the conditioning set paD(Th) ∪ B2i,h of (3.2) can not contain children of Th with
complete neighbourhood. The following lemma shows that the same holds for the conditioning
set of (3.3).

Table 1. List of the cliques Ci,2 with the respective par-
tition (given by B1i,2 and B2i,2 sets) concerning the
component 2 for the graph in Figure 2

Ci,2 B1i,2 B2i,2

2,3 2 3
3,4 ∅ 3,4
4,5 ∅ 4,5
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Lemma 1. For all vertices Vj ∈ ⋃rh
i=1 B2i,h, the set of vertices nb(Vj ∪ B1,Vj ,h) is a subset of⋃rh

i=1 B2i,h.

The proof is reported in Appendix A.
While the conditions (3.2) and (3.3) are a clear consequence of the condition (C2a) in the

formula (3.1), the following theorem shows that these conditions are equivalent to the condi-
tion (C2a).

Theorem 3.1. The (C2*a) is a list of independences that is equivalent to the list of independences
given by (C2a).

The proof of this theorem is reported in Appendix A.

Example 7. For the graph in Figure 1, the list of conditional independences (3.2) is the single
statement 4 ⊥ 6|2,3,5, while the (3.3) gives no independence statement.

Example 8 (Continuation of Example 6). Applying (3.2), to the graph in Figure 2, we get
2 ⊥ 4,5|1,3. Applying (3.3) we get 2,3 ⊥ 5|1,4; 4 ⊥ 2|1,3,5 and 5 ⊥ 2,3|1,4.

An alternative condition for (C3b)

The condition (C3b) expresses the relationship between a set of vertices and its parents. On the
other hand, the alternative condition, (C3*b), focuses on the relationships between a vertex and
its children. Therefore, we define the class PAh of sets composed by elements having the same
children in Th. Note that, the elements of PAh are a partition of paD(Th).

Definition 4. The class PAh of elements with same children in Th, is

PAh = {
A : ch(Vi) ∩ Th = ch(Vj ) ∩ Th,∀Vi,Vj ∈A

}
. (3.4)

Let us consider the elements of this class partially ordered according to the following rule:
∀A,B ∈ PAh if | ch(B)| < | ch(A)| then A ≺ B.

Definition 5. The new condition (C3*b) is defined by the following list of conditional indepen-
dences.

A⊥ [
Th \ ch(A)

]|(paD(Th) \A)
, ∀A ∈ PAh,h = 1, . . . , s. (3.5)

Theorem 3.2. The list of independences (C3*b) is equivalent to the list (C3b).

The proof of this theorem is given in the Appendix A.

Example 9. Referring to the graph in Figure 1, the PA1 class is empty, since T1 has no parents.
The family PA2, referring to the component T2, is composed by the only set (1). Finally, the
third component has parent set paD(T3) = (2,3). Since ch(2) = (4) �= ch(3) = (5), the class of
parents with common children is PA3 = {(2); (3)}. So from the (C3*b), we have 2 ⊥ 5,6|3 and
3 ⊥ 4,5|2.
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4. A smooth subclass of GMs II

This section introduces a smooth subclass of GMs II. In order to define this new subclass,
we benefit from the known smoothness property of marginal models. In fact, with the help of
Theorem 2.1, we study which graphs yield lists of independences that can be represented with
marginal models. For this purpose, we follow the next 4 steps:

(1) a class of hierarchical marginal sets H is introduced;
(2) the list of hierarchical and complete marginal parameters associated to the previous

marginal sets is defined;
(3) the list of parameters to set equal to zero according to the formula (2.3) of Theorem 2.1 is

given;
(4) the condition (2.4) of Theorem 2.1 is checked.

In the step one, we define a hierarchical class of marginal sets. For every three sets Ai , Bi and
Ci associated to an independence Ai ⊥ Bi |Ci derived from (C1), (C2*a) and (C3*b), the hierar-
chical class of marginal sets must contain at least the elements (Ai ∪ Bi ∪ Ci). Thus, according
to (C1) the marginal sets:

M1
h =

⋃
j≤h

Tj , h = 1,2, . . . , s, (4.1)

are introduced. According to (C2*a) the marginal sets:

M2∗a
h = Th ∪ paD(Th), h = 1,2, . . . , s, (4.2)

are defined. Finally, according to the third condition (C3*b) the following marginal sets are used:

M3∗b
h,A = paD(Th) ∪ NCh ∪A ∀A ∈ Gh,h = 1,2, . . . , s, (4.3)

where Gh includes the sets CHh \ ch(A), for every A ∈ PAh, and all the intersections of these
sets.

Note that, by definition, the following relationships always hold:

M3∗b
h,A ⊆M2∗a

h ⊆M1
h ∀A ∈ Gh,h = 1, . . . , s. (4.4)

The hierarchical class of marginal sets, for each h, first contains all sets M3∗b
h,A, sorted accord-

ing to the hierarchical principle (see Definition 1), then it contains the set M2∗a
h and finally the

set M1
h. Thus, for each component h, we have the following class:

Hh
II = {{

M3∗b
h,A,∀A ∈ Gh

}
,M2∗a

h ,M1
h

}
. (4.5)

Lastly, the family of all marginal sets of the chain graph is given by the following ordered col-
lection:

HII = {
Hh

II, h = 1, . . . , s
}
. (4.6)

Note that, it may occur that some of the previous sets match. For example, for a given h and A,
it could happen that M2∗a

h is equal to M3∗b
h,A, or that M2∗a

h is equal to M1
h.
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Example 10. Let us consider the graph in Figure 1. From the (C1), we have the marginal sets
M1

1 = (1), M1
2 = (1,2,3) and M1

3 = (1,2,3,4,5,6). From the (C2*a), we get the marginal
sets M2∗a

1 = (1), M2∗a
2 = (1,2,3) and M2∗a

3 = (2,3,4,5,6). Finally, let us define the classes
PA3 as {(2); (3)} and G3 as {(6); (4);∅}. Thus, from the (C3*b) we get M3∗b

1,1 = (1), M3∗b
3,6 =

(2,3,5,6), M3∗b
3,4 = (2,3,4,5) and their intersection M3∗b

3,∅ = (2,3,5). The hierarchical class is
HII = {(1); (1,2,3); (2,3,5); (2,3,4,5); (2,3,5,6); (2,3,4,5,6); (1,2,3,4,5,6)}.

Once the class of marginal sets is defined, we can determine the hierarchical and complete
parameters, η

M(L)

L , ∀L ∈ P(V ), where M(L) is the first marginal set in HII containing the
set L. At this point, we must select the parameters to constrain to zero. On the basis of (2.3)
of Theorem 2.1, these parameters are η

M(L)

L where L ∈ D1
h according to the (C1), L ∈ D2∗a

h ,

according to the (C2*a) and L ∈ D3∗b
h according to the (C3*b). The classes D1

h, D2∗a
h and D3∗b

h

depend on the alternative Markov properties defined in the Section 3.3. The definition of these
classes are in Appendix B and here we report only an example.

Example 11 (Continuation Examples 5, 7, 9 and 10). Applying the formula (2.2) to the
(C1) independence (in the Example 5), the (C2*a) independence, listed in the Example 7 and
the (C3*b) independences (in Example 9), the following classes of interactions, concerning
null parameters. are obtained: D1

1 = ∅, D1
2 = ∅ and D1

3 = {(1,4); (1,5); (1,6); (1,4,5);
(1,4,6); (1,5,6); (1,4,5,6); (1,2,4); (1,2,5); (1,2,6); (1,2,4,5); (1,2,4,6); (1,2,5,6);
(1,2,4,5,6); (1,3,4); (1,3,5); (1,3,6); (1,3,4,5); (1,3,4,6); (1,3,5,6); (1,3,4,5,6);
(1,2,3,4); (1,2,3,5); (1,2,3,6); (1,2,3,4,5); (1,2,3,4,6); (1,2,3,5,6); (1,2,3,4,5,6)}.
D2∗a

1 = {∅}, D2∗a
2 = {∅}, D2∗a

3 = {(4,6); (2,4,6); (3,4,6); (4,5,6); (2,3,4,6); (2,4,5,6);
(3,4,5,6); (2,3,4,5,6)}. Finally, D3∗b

1 = {∅}, D3∗b
2 = ∅ and D3∗b

3 = {(2,5); (2,6); (2,5,6);
(2,3,5); (2,3,6); (2,3,5,6); (3,4); (3,5); (3,4,5); (2,3,4); (2,3,5); (2,3,4,5)}.

By using Theorem 2.1, we obtain the class of GMs II which is parametrizable with marginal
models. In particular, Theorem 4.1 shows when condition (2.4) of Theorem 2.1 is satisfied by the
family HII of marginal sets and the sets D1

h, D2∗a
h and D3∗b

h .

Theorem 4.1. A graphical model of type II is a marginal model with parameters{
ηML : L ∈P(V )

∖ s⋃
h=1

(D1
h ∪ D2∗a

h ∪ D3∗b
h ),M ∈ HII

}

if:

(i) nb(Vi) ∈ Ch for all Vi ∈ CHh, or if
(ii) for all Vi ∈ CHh such that nb(Vi) /∈ Ch, all sets K, such that K /∈ Ch and K ∩ nb(Vi) �=∅,

satisfy pa(K) ⊇ pa(Vi), h = 1,2, . . . , s.

This theorem shows that the smoothness problem can only arise when there are vertices in the
children set CHh with non-complete neighbourhood and that the smoothness property is assured
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Figure 3. Chain graphs.

if all non-complete sets containing at least one neighbour of a child Vi , such that nb(Vi) /∈ Ch,
have parent set containing pa(Vi). The proof of this theorem is in Appendix C.

Example 12. The graph in Figure 3(a) represents the following list of independences (C2*a) and
(C3*b): 3 ⊥ 4,6|1,2,5; 4 ⊥ 3,6|1,2,5; 6 ⊥ 3,4|1,2,5; 1 ⊥ 4,5,6|2; 2 ⊥ 5,6|1. The marginal
class referring to this graph is HII = {(1,2); (1,2,5,6); (1,2,4,5,6); (1,2,3,4,5,6)}. Since
any vertex in CH2 = (3;4) has a complete set of neighbours the Theorem 4.1 holds.

Example 13. The list of conditional independences (C1), (C2*a) and (C3*b) represented in the
graph in Figure 3(b) is 1 ⊥ 2; 3 ⊥ 5|1,2,4,6; 4 ⊥ 6|1,2,3,5; 1 ⊥ 5,6|2 and 2 ⊥ 3,6|1. The class
of marginal sets is HII = {(1); (2); (1,2); (1,2,6); (1,2,3,6); (1,2,5,6); (1,2,3,4,5,6)}. Note
that each vertex in CH2 = {3,4,5} has a non-complete set of neighbours thus it is necessary to
take into account the class of non-complete sets K , K ⊂ T2, with at least one neighbour of a
child. When Vi = 3, for every K ∈ {(4,6), (4,5,6), (3,4,6), (3,4,5), (3,5,6), (3,4,5,6)}, it is
pa(K) = (1,2) and pa(3) = (1) ⊆ pa(K). The same holds when Vi = 5. Finally, when Vi = 4, for
every K ∈ {(3,5), (4,5,6), (3,4,6), (3,4,5), (3,5,6), (3,4,5,6)} it is pa(K) = pa(4) = (1,2).
Thus the condition (ii) of Theorem 4.1 holds.

Example 14. The graph in Figure 3(c) represents the following list of independences (C2*a)
and (C3*b): 3 ⊥ 5|1,2,4, 4 ⊥ 5|1,2,3, 5 ⊥ 3,4|1,2 and 1 ⊥ 3,4,5. The class of marginal sets
referring to this graph is HII = {(1); (1,3,4,5); (1,2,3,4,5)}. Since CH2 = (2) has the non-
complete set of neighbours nb(2) = (3,4,5), and since the non-complete set (3,4,5), have parent
set pa(K) =∅ the conditions of the Theorem 4.1 are not satisfied.

The following example shows that a GM II that satisfies the conditions of Theorem 4.1 is not
necessarily equivalent to a GM I.

Example 15. The GM II associated with the graphs in Figure 4 represents the following sys-
tem of independences (C2*a) and (C3*b): 3 ⊥ 5|1,2,4;1 ⊥ 5|2;2 ⊥ 3|1. The class of marginal
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Figure 4. Chain graphs with set of vertices V = {1,2,3,4,5} and set of edges E = {(1,2); (2,1); (1,3);
(1,4); (2,4); (2,5); (3,4); (4,3); (4,5); (5,4)}.

sets is HII = {(1,2); (1,2,5); (1,2,3); (1,2,3,4,5)}. The vertex 4 is in CH2 and the set if its
neighbours is not complete. As the non-complete sets K in {(3,5), (3,4,5)}, have parent set
pa(K) = (1,2) = pa(4), Theorem 4.1 assures that the GM II is a marginal model. The graph in
Figure 4 is an example of a biflag, thus, according to Theorem 6 of [1] there is no GM I which
represents the same structure of relationships.

In Theorem 4.1, we introduced a smooth subclass of GMs II which is parametrizable with
marginal models. It is legitimate to ask if a chain graph model of type II, that does not satisfy the
condition of the Theorem 4.1, can be a smooth model not parametrizable by a marginal model.
The following theorem is an answer to the previous question.

Theorem 4.2. A graphical model of type II, that does not satisfy the condition of the Theo-
rem 4.1, is not smooth.

The proof of this theorem is in Appendix C. From this theorem, it trivially follows that the
only GM II models, that admit a marginal parametrization, are the ones that satisfy the condition
of Theorem 4.1.

5. Smooth GMs II applied to a real dataset

We used a data-set from the European Values Study-EVS-(2008) [7] in order to show the ability
of the GMs II, parametrizable according to the marginal models, to represent a system of condi-
tional independences of categorical variables. The EVS is a research project on human values in
Europe. In particular, the research involves what Europeans think about family, work, religion,
politics and society. We used the GMs II to highlight the dependence of some variables classi-
fied as personal variables and opinion variables on gender. To this aim, we used the following
variables:

G: Gender (“Female”, “Male”);
E: Employed (“Yes”, “No”);
C: Children (“Yes”, “No”);
T: Trust in people (“Yes”, “No”);
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Figure 5. Chain Graph representing the variables in the Northern Islands Case.

O: Opinion on society (“High”, “Mean”, “Low”);
W: Personal perceived well-being level (“High”, “Low”).

We divided the variables in three groups, each one corresponding to a component in the chain
graph. In the first group, we placed only Gender. In the second group, there are variables concern-
ing the status of the respondents (Employed, Children). Finally, the last group regards the vari-
ables that consider the opinion of the respondents concerning specific topics (Personal perceived
well-being level, Opinion about the society, Trust in people). We represented each group of vari-
ables with a component in the chain graph. We fitted GMs II for different European Countries.
The two most interesting cases, concerning the Northern Islands (i.e., Ireland, United Kingdom
and Island) and Italy are reported below. In both cases, we fitted the saturated marginal model
(unconstrained model) corresponding to the complete chain graphical model. We proceeded test-
ing the smooth GMs II obtained by removing arcs from the complete chain graphical model. All
models were tested using the Likelihood Ratio test which compares the saturated model with
the chosen model. In both cases, we chose the simplest model, with fewer number of arcs, still
able to represent the data. For the Northern Islands dataset, we chose the graph in Figure 5. The
marginal model corresponding to this graph has a Likelihood ratio test statistic Gsq = 53.19302
with 51 degree of freedom and the model displayed in Figure 5 can be retained with a p-value of
0.38976. The Italian case is well described by the graph in Figure 6. Here, the statics test Gsq is
68.84138, with 55 degree of freedom and a p-value equal to 0.0935.

Figure 6. Chain Graph representing the variables in the Italian Case.
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Table 2. List of nonredundant conditional indepen-
dences obtained from the condition (C1), (C2*a) and
(C3*b) for the two cases

Northern Islands Italy

G ⊥ T,W,O|C,E G ⊥ T,W,O|C,E
W ⊥ C,E W ⊥ C,E
O ⊥ C|E O ⊥ T|C,E,W

Note that the graphs in both Figures 5 and 6 satisfy the conditions of Theorem 4.1.
Let us analyse the chosen models. Table 2 on page 876 reports the non-redundant lists of

conditional independences obtained from the condition (C1), (C2*a) and (C3*b) for the two
models, while Table 3 on page 877 reports the non null parameters describing the relationships
among the variables.

In both models, we observe the independence of the opinion variables T, O, W from gen-
der given personal variables C and E. Furthermore, we see that variables referring to personal
perceived well-being level (W) is jointly independent of both Employment (E) and Children (C).

In the Northern Islands Case (Figure 5), the last independence concerns Opinion on the society
(O) that is independent of Children (C) given Employment (E). Instead, in the Italian case the
Opinion on society (O) is independent of Trust in people (T) given the Personal perceived well-
being level (W), Employment (E) and Children variable (C).

Furthermore, looking at the non-null parameters in Table 3 on page 877, it is possible to say
that both the relationships between Trust in people T and Children C and the relationship between
Trust in people T and Employment E in the Northern Islands case are stronger than in the Italian
case.

The study of these two datasets clarifies the advantages of CG models of type II. In particular,
with reference to the graph in Figure 5, according to the (C3b), we model the independence
of W from C and E, without conditioning on the response variables O and T, analogously the
independence of O from C is conditional only on the explicative variable E. The same figure,
according to the chain graph models of type I (GMs I) proposed by [11], provides independence
statements involving all the other variables in the same component such as W ⊥ E,C|O,T and
O ⊥ C|W,T ,E. Thus, GMs II allow to study the effect of explicative variables on some response
variables independently from the other response variables.

The graph in Figure 6 shows the differences between the GMs II and the chain graph models
of type IV (GMs IV) proposed by [5]. In this case, the GMs II, according to the (C2a), model the
independences between response variables by conditioning on the explicative variables and the
remaining response variables, thus we have O ⊥ T |C,E,W , while according to the GMs IV we
will have O ⊥ T |C,E. In this case, the GMs II use log-linear models for the joint distribution
of the variables within the same component. In our opinion, the GMs II combine the advantages
of both GMs I and GMs IV. First of all, they describe the associations in a chain component in
a sensible way as the GMs I do and the GMs IV do not. Moreover, the effects of independent
variables are modeled according to the GMs IV way, which is a more natural approach than the
one followed by the GMs I.

All the analysis were carried out with the software R with the help of the hmmm package, [4].
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Table 3. Nonnull parameters concerning the two marginal models

Northern Islands Italy

M L ηML M L ηML

G G −0.0449 G G 0.0152
CEG C 0.6361 CEG C 0.6434
CEG E 0.6491 CEG E 0.7051
CEG CE 0.0207 CEG CE −0.0410
CEG CG 0.9245 CEG CG 0.4120
CEG EG −0.1460 CEG EG −0.6676
CEG CEG −0.6237 CEG CEG −0.3566
WCE W 1.5997 WCE W 0.6695
WOCE O [1.6709;−1.5237] WOTCE O [1.4606;−3.1637]
WOCE WO [−0.0045;−0.1318] WOTCE T −0.6910
WOCE OE [−0.7183;−0.2680] WOTCE WO [0.6394;−0.4189]
WOCE WOC [0.3076;−0.0108] WOTCE WT −0.0988
WOCE WOE [0.9925;−0.4202] WOTCE OC [1.1911;1.3128]
WOCE WOCE [−0.3958;0.1132] WOTCE TC −0.6064
WOTCE T −1.5630 WOTCE OE [−0.6684;1.6665]
WOTCE WT 0.5808 WOTCE TE −1.1285
WOTCE OT [0.3687;0.5243] WOTCE WOC [−0.3753;−0.1285]
WOTCE TC −21.9010 WOTCE WTC 0.0500
WOTCE TE −19.3440 WOTCE WOE [0.4847;−0.6825]
WOTCE WOT 0.2704 WOTCE WTE 1.3874
WOTCE WTC 21.8659 WOTCE OTC [0.7660;−0.9532]
WOTCE WTC [21.8395;−0.3217] WOTCE OCE [−0.1567;−2.4855]
WOTCE WTE 20.0330 WOTCE TCE 0.8888
WOTCE OTE [1.5645;−1.4979] WOTCE WOTC [0.9136;−0.4878]
WOTCE TCE 42.4563 WOTCE WOTE [−0.0037;1.6923]
WOTCE WOTC [−21.9093;1.1838] WOTCE WOTCE −0.5678
WOTCE WOTC [−20.3008;20.3660]
WOTCE WTCE −42.6677
WOTCE OTCE [−42.5531;21.0933]
WOTCE WOTCE [43.0787;−21.6751]

Appendix A

Proof of Markov equivalences

Proof of Lemma 1

By definition, nb(B1i,h) = B2ih, ∀i = 1, . . . , rh, so nb(B1,Vj ,h) ⊆ ⋃rh
i=1 B2i,h and consequently

even nb(B1,Vj ,h) \ Vj ⊆ ⋃rh
i=1 B2i,h.
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Since the set B1,Vj ,h, by definition, is equal to nb(Vj ) ∩ ⋃rh
i=1 B1i,h, then in the set nb(Vj ) \

B1,Vj ,h there is no vertex belonging to
⋃rh

i=1 B1,i , thus nb(Vj ) \ B1,Vj ,h ⊆ ⋃rh
i=1 B2,i .

The lemma follows by noting that nb(Vj ∪ B1,Vj ,h) = (nb(Vj ) \ B1,Vj ,h) ∪ (nb(B1,Vj ,h) \ Vj ).

Proof of Theorem 3.1

We prove that the independences (C2*a) follow from the list of independences (C2a). When A =
B1i,h, B1i,h ⊂ Ci,h ∈ Clh, the set of neighbours of A is nb(A) = nb(B1i,h) = Ci,h \B1i,h = B2i,h.
The neighbourhood of A is Nb(A) = Ci,h and from (C2a) we get B1i,h ⊥ Th \ Ci,h|paD(Th) ∪
B2i,h, which is a (3.2) independence. On the other hand, when A is equal to Vj ∪ (B1,Vj ,h), where
B1,Vj ,h = nb(Vj )∩ (

⋃rh
i=1 B1i,h), the set of neighbours of A is nb(A) = nb(Vj ∪ B1,Vj ,h) and the

neighbourhood is Nb(A) = Nb(Vj ∪ (nb(Vj ) ∩ B1,Vj ,h)), so the (C2a) implies (3.3).
Now we prove that from the (C2*a) we get the (C2a). For this purpose, we use the equivalence

between the (C2a) and the following statement [10]:

Vj ⊥ Th \ Nb(Vj )|paD(Th) ∪ nb(Vj ), Vj ∈ Th. (A.1)

Thus, it is sufficient to prove that the (C2*a) implies (A.1). From (3.2), applying the properties
of the conditional independences [10], we have:

Vj ⊥ Th \ Ci,h|paD(Th) ∪ B2i,h ∪ B1i,h \ (Vj ), Vj ∈ B1i,h.

If Vj ∈ B1i,h, it holds that Nb(Vj ) = Ci,h, B2i,h ∪ B1i,h \ (Vj ) = Ci,h \ (Vj ) = nb(Vj ). Thus the
previous formula becomes:

Vj ⊥ Th \ Nb(Vj )|paD(Th) ∪ nb(Vj ), Vj ∈ B1i,h,

that is the formula in (A.1). This relationship holds for all Vj ∈ ⋃rh
i=1 B1i,h. The remaining ver-

tices of Th are considered in the statement (3.3) from which we get:

Vj ⊥ Th \ Nb(Vj ∪ B1,Vj ,h)|
(
paD(Th) ∪ nb(Vj ∪ B1,Vj ,h) ∪ B1,Vj ,h

)
, Vj ∈ B2i,h. (A.2)

Note that, by definition, B1,Vj ,h ⊂ nb(Vj ) and, for every B1i,h ⊆ B1,Vj ,h, the vertex Vj , Vj ∈
B2i,h, is adjacent to each vertex in nb(B1i,h) = B2i,h, since these are complete sets. Thus it is
nb(B1,Vj ,h) \ (Vj ) ⊂ nb(Vj ). From the previous two inclusion relations it follows that

nb(Vj ∪ B1,Vj ,h) ∪ B1,Vj ,h = [
nb(Vj ) ∪ nb(B1,Vj ,h)

] \ (Vj ∪ B1,Vj ,h) ∪ B1,Vj ,h

= [
nb(Vj ) \ B1,Vj ,h ∪ B1,Vj ,h

] ∪ [
nb(B1,Vj ,h) \ (Vj )

]
(A.3)

= nb(Vj ) ∪ [
nb(B1,Vj ,h) \ (Vj )

] = nb(Vj ),

and that Nb(Vj ∪ B1,Vj ,h) ∪ B1,Vj ,h = Nb(Vj ). The two equalities above and (A.2) imply that

Vj ⊥ Th \ Nb(Vj )|
(
paD(Th) ∪ nb(Vj )

)
that is the (A.1), for all Vj ∈ ⋃r

i=1 B2i,h.
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Proof of Theorem 3.2

The list of independences from the (C3b) implies the list from the (C3*b). Applying the statement
(C3b) to Th \ ch(A), we get

Th \ ch(A) ⊥ paD(Th) \ pa
(
Th \ ch(A)

)|pa
(
Th \ ch(A)

)
.

Since A⊆ paD(Th) \ pa(Th \ ch(A)), from the properties of conditional independence it follows
Th \ ch(A) ⊥A|paD(Th) \A, that is the conditional independence (C3*b) for the set A.

The conditional independences (C3*b) imply the (C3b) ones. Given a set A ⊆ Th, let
{A1,A2, . . . ,Aw} be the collection of sets of PAh having A ⊆ Th \ ch(Ai ). Now we consider
independences related to these sets:⎧⎨

⎩
A1 ⊥ Th \ ch(A1)|

(
paD(Th) \A1

)
,

. . .

Aw ⊥ Th \ ch(Aw)|(paD(Th) \Aw

)
.

Since A ⊆ Th \ ch(Ai ), i = 1, . . . ,w, we get:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

A1 ⊥ A

∣∣∣
(

paD(Th)
∖ w⋃

i=1

Ai

)
∪

(
w⋃

i=1

Ai

∖
A1

)
,

. . .

Aw ⊥ A

∣∣∣
(

paD(Th)
∖ w⋃

i=1

Ai

)
∪

(
w⋃

i=1

Ai

∖
Aw

)
.

Using the intersection property of conditional independence, property (P5) of Lauritzen [10],
we obtain

⋃w
i=1 Ai ⊥ A|paD(Th) \ ⋃w

i=1 Ai which is the conditional independence (C3b): A ⊥
paD(Th) \ pa(A)|pa(A).

Appendix B

Family of interaction sets concerning null parameters

In this Appendix, we define for all the Markov properties (C1), (C2*a) and (C3*b), respectively,
the classes of interaction D1

h, D2∗a
h and D3∗b

h , h = 1, . . . , s. Applying formula (2.2) to the previ-
ous Markov properties we get the following classes:

D1
h = P

(
h⋃

j=1

Tj

) ∖ (
P

(
Th ∪ paD(Th)

) ∪P
(

h−1⋃
j=1

Tj

))
; (B.1)

D2∗a
h =

(
rh⋃

i=1

D2∗a
h,B1i,h

)
∪

( ⋃
Vj ∈⋃rh

i=1 B2i,h

D2∗a
h,Vj

)
, ∀h = 1, . . . , s, (B.2)
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where D2∗a
h,B1i,h

is:

P
(
Th ∪ paD(Th)

) \ (
P

(
Ci,h ∪ paD(Th)

) ∪P
(
Th \ (

B1i,h ∪ paD(Th)
)))

(B.3)

and D2∗a
h,Vj

is:

P
(
Th ∪ paD(Th)

)
(B.4)

\ (
P

(
Nb(Vj ∪ B1,Vj ,h) ∪ paD(Th)

) ∪P
(
Th \ (Vj ∪ B1,Vj ,h) ∪ paD(Th)

))
and finally

D3∗b
h =

⋃
A∈PAh

D3∗b
h,A, ∀h = 1, . . . , s, (B.5)

where D3∗b
h,A is:

P
(
Th \ ch(A) ∪ paD(Th)

) \ (
P

(
paD(Th)

) ∪P
(
Th \ ch(A) ∪ paD(Th) \A))

. (B.6)

Appendix C

Proof of the main results

The proof of Theorem 4.1 is greatly simplified by the following lemmas.

Lemma 2. Given the vertex Vi ∈ CHh and the set K ⊆ Th, such that pa(Vi) ⊆ pa(K), if K ⊆ A,
with A ∈ Gh, then Vi ∈ A.

Proof. The class Gh is composed by the sets CHh \ ch(A) and by their intersections. Thus, for
every A ∈ Gh there is a family of sets PA ⊂ PAh such that A = CHh \⋃

A∈PA
ch(A) and pa(A)∩

(
⋃

A∈PA
A) =∅.

By the assumption of Lemma 2, it follows that pa(Vi) ⊆ pa(K) ⊆ pa(A) ⊆ ⋃
A/∈PA

A. If Vi /∈
A, it would be Vi ∈ ch(A) for a set A ∈ PA and pa(Vi) �

⋃
A/∈PA

A which is a contradiction. �

Lemma 3. A graphical model of type II is a marginal model with parameters {ηML : L ∈ P(V ) \⋃s
h=1(D

1
h ∪ D2∗a

h ∪ D3∗b
h ),M ∈HII}, if nb(Vi) ∈ Ch for all Vi ∈ CHh.

Proof. In order to prove this lemma, we apply Theorem 2.1 to the parametrization {ηML : L ∈
P(V ),M ∈ HII}.

According to the condition (C1), the parameters to constrain to zero are η
M(L)

L , L ∈ ⋃s
h=1 D1

h.
We must check if the marginals M(L) satisfy the condition (2.4) of the Theorem 2.1, that is to say
if paD(Th) ⊆ M(L) ⊆ ⋃

j≤h Th, for L ∈ D1
h, h = 1,2, . . . , s. It is easy to see that each element

L ∈ D1
h has at least one vertex in Th and one vertex in

⋃h−1
j=1 Tj \ paD(Th). Since for a given h
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the only marginal set containing these subsets of vertices is M1
h = ⋃

j≤h Tj , the condition (2.4)
of the Theorem 2.1 always holds for the independences following from (C1) property.

Regarding the (C2*a), each vector of parameters ηML , with L ∈ ⋃s
h=1 D2∗a

h , must be con-

strained to zero. In this case, the condition (2.4) of Theorem 2.1 holds if for every L ∈ D2∗a
h,B1i,h

,
h = 1,2, . . . , s, i = 1,2, . . . , rh, M(L) satisfies the condition:

paD(Th) ∪ B2i,h ⊆M(L) ⊆ Th ∪ paD(Th), (C.1)

and, for every L ∈ D2∗a
h,Vj

, Vj ∈ ⋃rh
i=1 B2i,h, h = 1,2, . . . , s, the condition:

paD(Th) ∪ nb(Vj ∪ B1,Vj ,h) ⊆M(L) ⊆ Th ∪ paD(Th). (C.2)

When L ⊇ CHh or the set Th ∩ L has parent set equal to paD(Th), M(L) is equal to M2∗a
h and

the conditions (C.1) and (C.2) are both trivially satisfied.
In general, there will be a set A ∈ Gh, such that M(L) = M3∗b

h,A, where A ⊇ L∩ CHh and the
right inclusions in (C.1) and (C.2) still hold.

If
⋃rh

i=1 B2i,h is contained in NCh, also the left inclusions in (C.1) and (C.2) are satisfied
because, according Lemma 1, the conditional set paD(Th) ∪ nb(Vj ∪ B1,Vj ,h) in (3.3) is a subset
of paD(Th) ∪ (

⋃rh
i=1 B2i,h). But this is the case, because by the hypothesis it is nb(Vi) ∈ Ch, for

all Vi ∈ CHh or equivalently CHh belongs to
⋃rh

i=1 B1i,h, h = 1, . . . , s.
Finally, regarding (C3*b), the relationship

paD(Th) \A⊆M(L) ⊆ Th \ ch(A) ∪ paD(Th) (C.3)

must hold for every L belonging to
⋃

A∈PAh
D3∗b

h,A. The left inclusion in (C.3) holds since
paD(Th) is a subset of each marginal set.

To check the right inclusion in (C.3) note that every L ∈ D3∗b
h,A is the union L = P ∪ B ∪ R

of three sets such that: P ⊆ paD(Th), P ∩ A �= ∅, B ⊆ CHh \ ch(A) and R ⊆ NCh. It follows
that M(L) = paD(Th) ∪ A ∪ NCh, where A is the smallest set of Gh containing B . The right
inclusion in (C.3) is satisfied because it is A ⊆ CHh \ ch(A). �

Remark 1. Note that the assumption, nb(Vj ) ∈ Ch if Vj ∈ CHh, is used to assure that the list of
conditional independences (C2*a) satisfies the condition (2.4) of Theorem 2.1, but is not needed
for the independences (C1) and (C3*b).

Proof of Theorem 4.1

According Lemma 3 and Remark 1, we need only to prove that the left inclusions in (C.1) and
(C.2) are satisfied if there are children Vi with non-complete set of neighbours. More precisely,
the marginal set M(L) in (C.1) and (C.2) must contain all children with non-complete neigh-
bours set that belongs to the conditioning set.

With respect to a (3.2) independence, the sets K = L ∩ Th, L ∈ D2∗a
h,B1x,h

are non-complete

sets such that K ∩ B1x,h �= ∅. If pa(K) = paD(Th) then M(L) = M2∗a
h and the left inclusion

of (C.1) holds. Otherwise, let A, K ⊆ A, the set of Gh such that M(L) = M3∗b
h,A. We must show
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that A contains all the children Vi ∈ B2x,h. For every child Vi ∈ B2x,h, its neighbours set nb(Vi)

is not complete and K ∩ nb(Vi) �= ∅ because nb(Vi) ⊃ B1x,h. By assumption, if nb(Vi) /∈ Ch,
pa(Vi) ⊆ pa(K) and by Lemma 2 it follows that Vi ∈ A.

With respect to a (3.3) type independence, the sets K = L ∩ Th, L ∈ D2∗a
h,Vj

are non-complete

sets such that K ∩ (Vj ∪ B1Vj ,h) �= ∅. If pa(K) = paD(Th) then M(L) = M2∗a
h and the left

inclusion of (C.2) holds. Otherwise, let A, K ⊆ A, be the set of Gh such that M(L) = M3∗b
h,A.

We must show that A contains all the children Vi ∈ nb(Vj ∪ B1Vj ,h).
According Lemma 1, every child Vi ∈ nb(Vj ∪ B1Vj ,h) has a non-complete set of neighbors

(nb(Vi) /∈ Ch), and if Vj ∈ K then K ∩ nb(Vi) �= ∅ because from nb(Vj ∪ B1,Vj ,h) ⊂ nb(Vj )

(see formula (A.3)) we have Vj ∈ nb(Vi). By assumption pa(Vi) ⊆ pa(K), if nb(Vi) /∈ Ch, and
by Lemma 2 it follows that Vi ∈ A.

If Vj /∈ K and Vj ∈ CHh, we use the property K ∩ nb(Vj ) �= ∅ which follows from B1Vj ,h ⊂
nb(Vj ). In this case, the assumption pa(Vj ) ⊆ pa(K) and the Lemma 2 imply that Vj ∈ A. As K∪
{Vj } is a non-complete subset of A, containing Vj , the previous argument, in the case Vj ∈ K ,
proves that Vi ∈ A.

Finally, when Vj /∈ CHh and Vj /∈ K , we consider a vertex Vl ∈ K such that Vl ∈ Th \Nb(Vj ∪
B1Vj ,h). If Vl ∈ nb(Vi), then K ∩ nb(Vi) �= ∅ and pa(Vi) ⊆ pa(K) imply Vi ∈ A according to
Lemma 2 (remember that Vi ∈ nb(Vj ∪ B1Vj ,h) and Vi is a child such that nb(Vi) /∈ Ch). When
Vl /∈ nb(Vi) and it is adjacent to a vertex Vm in nb(Vi), we use the property K ∩ nb(Vm) �= ∅.
Note that, as Vj /∈ CHh, it must be Vm ∈ CHh because (Vj ,Vm) is a non-complete set with one
element of nb(Vi) and by hypothesis it must be pa(Vj ,Vm) ⊇ pa(Vi). Since the non-complete
set (Vl,Vi) ⊆ nb(Vm), nb(Vm) is not complete. Thus, the assumption pa(Vm) ⊆ pa(K) and the
Lemma 2 imply that Vm ∈ A. Because K ∪ {Vm} is a non-complete set containing Vm and Vm ∈
nb(Vi), according Lemma 2 it must be Vi ∈ A.

This argument can be extended to any vertex Vl ∈ (Th \ Nb(Vj ∪ B1,Vj ,h)) ∩ K linked by a
path to Vi .

Proof of Theorem 4.2

By hypothesis, there exist a vertex Vj , nb(Vj ) /∈ Ch, and an incomplete set N such that N ∩
nb(Vj ) �= ∅, pa(N) ∩ pa(Vj ) �= pa(Vj ). Thus if L = (N ∪ NCh) \ (Vj ), paD(Th) \ pa(L) �= ∅.
To satisfy the (C3b) condition L ⊥ paD(Th) \ pa(L)|pa(L), the interaction ηML∪paD(Th)

must be
null in a marginal pa(L) ⊆ M(L ∪ paD(Th)) ⊆ L ∪ paD(Th). As N is not complete, there is
a set A, A ⊂ L, such that Vj ∈ nb(A), Nb(A) ⊂ Th. To satisfy the (C2a) condition A ⊥ Th \
Nb(A)|paD(Th) ∪ nb(A), the interaction ηML∪paD(Th)

must be null in a marginal M ⊃ paD(Th) ∪
nb(A). As Vj ∈ nb(A) it must be Vj ∈M. From Vj /∈M, it follows that the marginal parameters
pertaining to the interaction set L must be null in two different marginal distributions and the
non-smoothness property follows from Theorem 3 of [3].
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