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We investigate the large deviations of the shape of the random RSK Young diagrams associated with a
random word of size n whose letters are independently drawn from an alphabet of size m = m(n). When
the letters are drawn uniformly and when both n and m converge together to infinity, m not growing too fast
with respect to n, the large deviations of the shape of the Young diagrams are shown to be the same as that
of the spectrum of the traceless GUE. In the non-uniform case, a control of both highest probabilities will
ensure that the length of the top row of the diagram satisfies a large deviation principle. In either case, both
speeds and rate functions are identified. To complete our study, non-asymptotic concentration bounds for
the length of the top row of the diagrams, that is, for the length of the longest increasing subsequence of the
random word are also given for both models.

Keywords: large deviations; longest increasing subsequence; random matrices; random words; strong
approximation; Young diagrams

1. Introduction and results

Let Am = {α1 < α2 < · · · < αm} be an ordered alphabet of size m, and let a word be made of
the random letters Xm

1 ,Xm
2 , . . . ,Xm

n , independently drawn from Am. The Robinson–Schensted–
Knuth (RSK) correspondence associates with this random word a pair of Young diagrams, of
the same shape, having at most m rows. Now for i = 1,2, . . . ,m, let Ri(n,m) denote the length
of the ith row of the Young diagrams, and recall that R1(n,m), the length of the top row, coin-
cides with the length of the longest increasing subsequence of the random word Xm

1 Xm
2 · · ·Xm

n .
Appropriately renormalized, and for uniform draws, the shape (Ri(n,m))mi=1 of the Young dia-
grams converges, in law and with n, to the spectrum of an m × m element of the traceless GUE
([20,31]). In turn, any fixed size subset of this spectrum, also converges with m, and after proper
normalization, to a multidimensional Tracy–Widom distribution ([30,32]). These iterated con-
vergence results have further led (see [10]) to the study of the limiting shape when both the word
length and alphabet size simultaneously grow to infinity. This is briefly recalled next.

Let the random matrix X = (Xij )1≤i,j≤m be an element of the m × m GUE with rescaling
such that Re(Xij ) ∼ N(0,1/2) and Im(Xij ) ∼ N(0,1/2), for i �= j ; and Xii ∼ N(0,1) (see
[1] and [25] for background on random matrices). Let (λm

1 , λm
2 , . . . , λm

m) be the non-increasing

ordered spectrum of X, and let (λ
m,0
1 , λ

m,0
2 , . . . , λ

m,0
m ) be the corresponding ordered spectrum
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of an element of the traceless GUE (i.e., of X − tr(X)/m). An important fact (e.g., [5,6,14,15])
asserts that (

λ
m,0
1 , λ

m,0
2 , . . . , λm,0

m

)
(1.1)

L=
√

m − 1√
m

�−1
m

((
max
t∈Ik,m

k∑
j=1

m−k+j∑
l=j

(
B̃l

tj,l
− B̃l

tj,l−1

))
1≤k≤m

)
,

where �m :Rm → R
m is defined via (�m(x))j = ∑j

i=1 xi,1 ≤ j ≤ m, and where

(B̃
j
t )1≤j≤m,t∈[0,1] is a driftless m-dimensional Brownian motion with covariance matrix

t

⎛
⎜⎜⎝

1 ρ · · · ρ

ρ 1 · · · ρ
...

...
. . .

...

ρ ρ · · · 1

⎞
⎟⎟⎠ , (1.2)

with ρ = −1/(m − 1), and where for 1 ≤ k ≤ m,

Ik,m = {
t = (tj,l : 1 ≤ j ≤ k,0 ≤ l ≤ m) : tj,j−1 = 0, tj,m−k+j = 1,1 ≤ j ≤ k,

tj,l−1 ≤ tj,l ,1 ≤ j ≤ k,1 ≤ l ≤ m − 1; tj,l ≤ tj−1,l−1,2 ≤ j ≤ k,2 ≤ l ≤ m
}
.

By comparing the Brownian functionals in (1.1) with discrete functionals representing the
shape of the random Young diagrams, and via a KMT approximation, under some growth condi-
tions on m, the simultaneous asymptotic convergence of the shapes is obtained in [10].

A related strategy is pursued here in order to investigate the large deviations of the shape of
the RSK Young diagrams. More precisely, we obtain a large deviation principle (LDP) for the
length of the first r rows of the Young diagrams, when n and m simultaneously converge to
infinity and when the size m of the alphabet does not grow too fast. To achieve our goals, we
also rely on the techniques and results developed in [7] (see also [3]), where large deviations are
obtained for the largest (or the r th largest) eigenvalue of the GOE. These methodologies further
give the multidimensional large deviations for the first r eigenvalues of the ordered spectrum
of the traceless GUE. In turn, when combined with a KMT approximation, these lead to large
deviations for the shape of the diagrams. Clearly, the results presented below complement the
weak convergence ones of [10] and as any LDP results they allow to precisely quantify the
deviation from the typical (limiting) shape of Young diagrams.

Let us next put our work into context. For random permutations, the large deviations of the
length of the longest increasing subsequence are described in [13] and [29], while, moderate
deviations are given in [23] and [24]. Closer to our framework, in [18], following the comparison
method of [4] and [9], large deviations for the last-passage directed percolation model close to
the x-axis are mainly established for i.i.d. weights which are Gaussian or have finite exponential
moments. The study of the length of the top row of the diagrams also corresponds to a last-
passage percolation problem but with dependent (exchangeable in the uniform case) Bernoulli
weights (see (2.3)). For uniform draws, our framework also deals with the other rows of the
diagrams.

Here is one of our main results:
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Theorem 1.1. In the uniform case, let m and n simultaneously converge to infinity in such a way
that m(n) = o(n1/4). Then, for any r ≥ 1,(

R1(n,m(n)) − n/m(n)√
n

, . . . ,
Rr(n,m(n)) − n/m(n)√

n

)

satisfies a large deviation principle with speed m(n) and good rate function Ir on the space
Lr := {(x1, x2, . . . , xr ) ∈ R

r :x1 ≥ x2 ≥ · · · ≥ xr}, where

Ir (x1, x2, . . . , xr ) =

⎧⎪⎨
⎪⎩2

r∑
i=1

∫ xi

2

√
(z/2)2 − 1 dz, if x1 ≥ x2 ≥ · · · ≥ xr ≥ 2,

+∞, otherwise.

(1.3)

In other words, for all x1 ≥ x2 ≥ · · · ≥ xr ≥ 2,

lim
n→∞

1

m(n)
logP

(
R1(n,m(n)) − n/m(n)√

n
≥ x1, . . . ,

Rr(n,m(n)) − n/m(n)√
n

≥ xr

)
(1.4)

= −2
r∑

i=1

∫ xi

2

√
(z/2)2 − 1 dz,

while for any x < 2 and 1 ≤ i ≤ r ,

lim
n→∞

1

m(n)
logP

(
Ri(n,m(n)) − n/m(n)√

n
≤ x

)
= −∞. (1.5)

Remark 1.1. (i) The rate function Ir in (1.3) is a good rate function. Moreover, it is contin-
uous and increasing with respect to each individual variable on its effective domain DIr =
{(x1, x2, . . . , xr ) ∈ R

r :x1 ≥ x2 ≥ · · · ≥ xr ≥ 2}, given that the other variables are fixed. There-
fore, to prove a large deviation principle (LDP) as in Theorem 1.1, it is enough to prove a limiting
equality on rectangular subsets as in (1.4) or (1.5) instead of proving both the usual upper and
lower bounds, that is, that for any closed set F in Lr = {(x1, x2, . . . , xr ) ∈ R

r :x1 ≥ x2 ≥ · · · ≥
xr},

lim sup
n→∞

1

m(n)
logP

(
Xn

r ∈ F
)≤ − inf

F
Ir , (1.6)

and that for any open set O in Lr ,

lim inf
n→∞

1

m(n)
logP

(
Xn

r ∈ O
)≥ − inf

O
Ir , (1.7)

where

Xn
r =

(
Ri(n,m(n)) − n/m(n)√

n

)
1≤i≤r

.

(ii) The restriction m = o(n1/4) (or m = o(n1/6) below) is a technical one and there is no
reason to believe it is sharp. One can envision that our results continue to hold under at least a
condition such as m = o(

√
n).
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In Theorem 1.1, if at least one of the renormalized variables is on the left of its simultaneous
asymptotic mean, by changing the convergence speed from m to m2, a more accurate form of
(1.5) is valid. Below, the closed form expression obtained for K was found after Satya Majumdar
kindly suggested that the methodology developed in [26] would apply to our traceless GUE
framework.

Theorem 1.2. In the uniform case, let m and n simultaneously converge to infinity in such a way
that m(n) = o(n1/6). Then, for any r ≥ 1,

(
R1(n,m(n)) − n/m(n)√

n
, . . . ,

Rr(n,m(n)) − n/m(n)√
n

)

satisfies a large deviation principle with speed (m(n))2 and good rate function K(xr) on the
space Lr := {(x1, x2, . . . , xr ) ∈ R

r :x1 ≥ x2 ≥ · · · ≥ xr}, where K is the rate function in the
large deviation principle for the largest eigenvalue of the m×m traceless GUE, when on the left
of its asymptotic mean. It is given by

K(x) := inf
μ∈M0((−∞,x])

I (μ), (1.8)

where I (see (A.5)) is the rate function in the large deviation principle for the spectral measure of
the GUE, and M0((−∞, x]) is the set of zero mean probability measures supported on (−∞, x].
For x ≤ 0, K(x) = +∞, for x ≥ 2, K(x) = 0, and for 0 < x < 2,

K(x) = 1

48

(
3
(
9

3
√

232/3(√81x2 + 12 − 9x
)2/3 − 8

)
x2

+ 9
3
√

2 6
√

3
(√

81x2 + 12 − 9x
)1/3

× (√
27x2 + 4

(√
81x2 + 12 − 9x

)1/3 − 5
3
√

2 6
√

3
)
x

− 6
3
√

2 32/3(√81x2 + 12 − 9x
)2/3 (1.9)

− 3 22/335/6
√

27x2 + 4
(√

81x2 + 12 − 9x
)1/3

+ 16 log
(√

81x2 + 12 − 9x
)

− 48 log
(
2 3
√

3 − 3
√

2
(√

81x2 + 12 − 9x
)2/3)+ 60 + 32 log 6

)
.

In other words, for all xr ≤ xr−1 ≤ · · · ≤ x1, with xr ≤ 2,

lim
n→∞

1

(m(n))2
logP

(
R1(n,m(n)) − n/m(n)√

n
≤ x1, . . . ,

(1.10)
Rr(n,m(n)) − n/m(n)√

n
≤ xr

)
= −K(xr),
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while for all 2 ≤ xr ≤ xr−1 ≤ · · · ≤ x1,

lim
n→∞

1

(m(n))2
logP

(
R1(n,m(n)) − n/m(n)√

n
≤ x1, . . . ,

(1.11)
Rr(n,m(n)) − n/m(n)√

n
≤ xr

)
= 0.

The LDP for the longest increasing subsequence is now a simple consequence.

Corollary 1.1. Let m and n simultaneously converge to infinity in such a way that m(n) =
o(n1/4), then for any x ≥ 2,

lim
n→∞

1

m(n)
logP

(
R1(n,m(n)) − n/m(n)√

n
≥ x

)
= −2

∫ x

2

√
(z/2)2 − 1 dz,

and similarly, if m(n) = o(n1/6), for any x ≤ 2,

lim
n→∞

1

(m(n))2
logP

(
R1(n,m(n)) − n/m(n)√

n
≤ x

)
= −K(x).

Remark 1.2. The methodologies developed in this paper allow to derive LDPs in related prob-
lems. Such is the case for last-passage directed percolation close to the x-axis, or for the departure
time from many queues in series when the number of customers is a fractional power of the num-
ber of servers. In these two problems, similar (discrete) functional representations are available
but with i.i.d. weights, so the large deviations rate functions should be the corresponding rate
functions in the LDP for the largest eigenvalue of the GUE.

When the independent random letters are no longer uniformly drawn, let Xm
i ,1 ≤ i ≤ n, be

independently and identically distributed with P(Xm
1 = αj ) = pm

j , 1 ≤ j ≤ m. Moreover, let
pm

max = max1≤j≤m pm
j , let pm

2nd = max{pm
j < pm

max : 1 ≤ j ≤ m}, and let also J (m) = {j :pm
j =

pm
max}, where k(m) = card(J (m)), that is, k(m) is the multiplicity of pm

max.

Theorem 1.3. In the non-uniform case, let k(m(n)) and n simultaneously converge to infinity in
such a way that k(m(n))3/pm

max = o(n), and let

n(pm
2nd)

2

k(m(n))pm
max

= o
(
exp

(−k
(
m(n)

)α))
, for some α > 1, (1.12)

where p2nd is the second highest probability. Then,

R1(n,m(n)) − npm
max√

nk(m(n))pm
max

satisfies a LDP on R with speed k(m(n)) and good rate function I1.
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In other words, for any x ≥ 2,

lim
n→∞

1

k(m(n))
logP

(
R1(n,m(n)) − npm

max√
nk(m(n))pm

max

≥ x

)
= −2

∫ x

2

√
(z/2)2 − 1 dz, (1.13)

while for any x < 2,

lim
n→∞

1

k(m(n))
logP

(
R1(n,m(n)) − npm

max√
nk(m(n))pm

max

≤ x

)
= −∞. (1.14)

Remark 1.3. (i) Above, the condition k(m(n))3/pm
max = o(n) matches exactly the condition m =

o(n1/4) of Theorem 1.1, but the new condition (1.12) is not present there. A similar remark
applies to Theorem 1.2 and to Theorem 1.4.

(ii) In contrast to our first theorem, the one just stated is only for the first row of the diagrams
and not for the whole shape. For non-uniform draws, a LDP shape result is also possible under
conditions involving all the distinct probabilities and their respective multiplicity. These condi-
tions are rather involved and the corresponding proofs rather tedious; therefore only a first row
result is given above. A similar remark applies to Theorem 1.2 and to Theorem 1.4.

When the renormalized variable is on the left of its simultaneous asymptotic mean, again a
more accurate form of (1.14) is possible. Before presenting this statement, let us first recall a
few facts. For the alphabet Am with corresponding set of probabilities P = {pm

1 ,pm
2 , . . . , pm

m},
let p(1) > p(2) > · · · > p(l), 1 ≤ l ≤ m, be the distinct elements in P , and let d1, . . . , dl be
the corresponding multiplicities, with

∑l
i=1 di = m. Then p(1) = pm

max and d1 = k(m) as in
the previous notations. Let Gm(d1, . . . , dl) be the set of m × m random matrices X which are
direct sums of mutually independent elements of the di × di GUE, 1 ≤ i ≤ l. Moreover, let
p(1) ≥ p(2) ≥ · · · ≥ p(m) be the non-increasing rearrangement of P . The “generalized” m × m

traceless GUE associated with P is the set, denoted by G0(pm
1 ,pm

2 , . . . , pm
m), of m × m random

matrices X0, of the form

X0
i,j =

⎧⎪⎨
⎪⎩

Xi,i − √
p(i)

m∑
h=1

√
p(h) Xh,h, if i = j ,

Xi,j , otherwise,

(1.15)

where X ∈ Gm(d1, . . . , dl). Finally, let λ̃0
1 be the largest eigenvalue of the diagonal block corre-

sponding to p(1) = pm
max in X0.

Theorem 1.4. Let k(m(n)) and n simultaneously converge to infinity in such a way that
k(m(n))5/pm

max = o(n), let also

n(pm
2nd)

2

k(m(n))pm
max

= o
(
exp

(−k
(
m(n)

)α))
, for some α > 2, (1.16)
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where p2nd is the second highest probability, and let,

lim
n→∞k

(
m(n)

)
pm

max = η, (1.17)

for some 0 ≤ η ≤ 1. Then,

R1(n,m(n)) − npm
max√

nk(m(n))pm
max

satisfies a LDP on R with speed (k(m(n)))2 and good rate function Kη , where Kη is the rate
function of λ̃0

1 when on the left of its asymptotic mean.
In other words, for any x ≤ 2,

lim
n→∞

1

(k(m(n)))2
logP

(
R1(n,m(n)) − npm

max√
nk(m(n))pm

max

≤ x

)
= −Kη(x), (1.18)

while for any x ≥ 2,

lim
n→∞

1

(k(m(n)))2
logP

(
R1(n,m(n)) − npm

max√
nk(m(n))pm

max

≤ x

)
= 0. (1.19)

Remark 1.4. The rate function Kη is given by

Kη(x) = sup
y≤0

(
xy − yS(y) + J

(
S(y)

)+ ηy2

2

)
,

where J is the rate function (with speed m2) of the largest eigenvalue of the m × m GUE, and
for each y ≤ 0, S(y) is the unique solution to J ′(t) = y with t ≤ 2. For x ≥ 2, J (x) = 0, while
for x ≤ 2, the following closed form expression for J is obtained in [11],

J (x) = 1

216

(
−x

(−72x + x3 + 30
√

12 + x2 + x2
√

12 + x2
)

(1.20)

− 216 log

(
1

6

(
x +

√
12 + x2

)))
.

In particular, K0 = J and K1 = K . In fact the relationship between the spectrum of GUE and
traceless GUE implies that

K(x) = sup
y≤0

(
xy − J ∗(y) + y2

2

)
,

where ∗ denotes the Legendre transform. For any 0 ≤ η ≤ 1, Kη(x) = 0, when x ≥ 2, while for
0 ≤ η < 1 and x ∈ (−∞,2), Kη(x) > 0 and is asymptotically equivalent to

x2

2(1 − η)
+ log

(
− x

1 − η

)
,
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as x → −∞. For η = 1, when 0 < x < 2, K1(x) = K(x) is positive and finite. As x → 0,
K(x) ∼ − logx, while as x → 2, K(x) ∼ C(2 − x)3, for some positive constant C.

To complement the previous results, we provide corresponding concentration results. These
rely in part on deviations inequalities for the largest eigenvalue of the m × m GUE matrix, ob-
tained respectively, in [2] and [21]. Comparing the forthcoming result with Corollary 1.1, we see
that, in this case, the deviation rates match the fluctuation results. In turn these rates match the
order of the tails of the Tracy–Widom distribution. Our results are only stated for the top row of
the diagrams, but the techniques easily apply to the whole shape when combined with deviation
inequalities for the whole spectrum of the GUE.

Theorem 1.5. In the uniform model, let 0 < α < 1/4, and let m ≤ Anα , for some A > 0. Then,
for any 0 < ε < 1,

P

(
R1(n,m) − n/m√

n/m
≥ 2

√
m(1 + ε)

)
≤ C(A,α) exp

(
− mε3/2

C(A,α)

)
, (1.21)

where

C(A,α) = C max
(
A10/3,1

) 1 + α

1 − 4α
exp

(
1 + α

1 − 4α

)
,

for some absolute constant C > 0.
Likewise, let 0 < α < 1/6, and let m ≤ Anα , for some A > 0. Then, for any 0 < ε < 1,

P

(
R1(n,m) − n/m√

n/m
≤ 2

√
m(1 − ε)

)
≤ C̄(A,α) exp

(
− m2ε3

C̄(A,α)

)
, (1.22)

where

C̄(A,α) = C max
(
A4,1

) 1 + α

1 − 6α
exp

(
1 + α

1 − 6α

)
,

for some absolute constant C > 0.

Again, in the non-uniform case, similar results hold but under a further control of the second
highest probability.

Theorem 1.6. In the non-uniform model, let α > 3, let k(m(n))α/pm
max ≤ An, for some A > 0

and let

n(pm
2nd)

2

k(m(n))pm
max

≤ B exp
(−k

(
m(n)

))
, (1.23)

for some B > 0. Then, for any 0 < ε < 1,

P

(
R1(n,m) − npm

max√
nk(m)pm

max

≥ 2(1 + ε)

)
≤ C(A,B,α) exp

(
− k(m)ε3/2

C(A,B,α)

)
, (1.24)
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where

C(A,B,α) = C max
(
A10/3α,1

)
max(

√
B,1)

α + 2

α − 3
exp

(
α + 2

α − 3

)
,

for some absolute constant C > 0.
Likewise, let α > 5, let k(m(n))α/pm

max ≤ An, for some A > 0, and let

n(pm
2nd)

2

k(m(n))pm
max

≤ B exp
(−k

(
m(n)

)2)
, (1.25)

for some B > 0. Then, for any 0 < ε < 1,

P

(
R1(n,m) − npm

max√
nk(m)pm

max

≤ 2(1 − ε)

)
≤ C̄(A,B,α) exp

(
− k(m)2ε3

C̄(A,B,α)

)
, (1.26)

where

C̄(A,B,α) = C max
(
A4/α,1

)
max(

√
B,1)

α + 2

α − 5
exp

(
α + 2

α − 5

)
,

for some absolute constant C > 0.

2. Proof of Theorem 1.1 and Theorem 1.2

As in [10], let

Xm
i,j =

{
1, if Xm

i = αj ,
0, otherwise,

(2.1)

be Bernoulli random variables with parameter 1/m. For a fixed j , 1 ≤ j ≤ m, the Xm
i,j ’s are i.i.d.

while for j �= j ′, (Xm
1,j , . . . ,X

m
n,j ) and (Xm

1,j ′ , . . . ,Xm
n,j ′) are identically distributed but no longer

independent.
Let S

m,j
k = ∑k

i=1 Xm
i,j be the number of occurrences of αj among (Xm

i )1≤i≤k . Since for 1 ≤
k < l ≤ n, the number of occurrences of αj among (Xm

i )k+1≤i≤l is S
m,j
l − S

m,j
k ,

R1(n,m) = sup
0=l0≤l1≤···≤lm=n

m∑
j=1

(
S

m,j
lj

− S
m,j
lj−1

)
,

with the convention that S
m,j

0 = 0.

Moreover, letting Vk(n,m) = ∑k
i=1 Ri(n,m), combinatorial arguments yield (see Theo-

rem 3.1 in [15])

Vk(n,m) = sup
t∈Ik,m(n)

k∑
j=1

m−k+j∑
l=j

(
S

m,l
[tj,l ] − S

m,l
[tj,l−1]

)
, 1 ≤ k ≤ m, (2.2)
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where

Ik,m(n) = {
t = (tj,l : 1 ≤ j ≤ k,0 ≤ l ≤ m) : tj,j−1 = 0, tj,m−k+j = n,

1 ≤ j ≤ k; tj,l−1 ≤ tj,l ,1 ≤ j ≤ k,1 ≤ l ≤ m − 1;
tj,l ≤ tj−1,l−1,2 ≤ j ≤ k,2 ≤ l ≤ m

}
.

Let X̃m
i,j = (Xm

i,j −1/m)/σm, with σ 2
m = (1/m)(1−1/m), let S̃

m,j
k =∑k

i=1 X̃m
i,j . Similarly define

Ṽk(n,m),1 ≤ k ≤ m and let R̃k(n,m) = Ṽk(n,m) − Ṽk−1(n,m), 2 ≤ k ≤ m, while R̃1(n,m) =
Ṽ1(n,m). Clearly Vk(n,m) = σmṼk(n,m) + kn/m, and

Rk(n,m) − n/m√
n

=
√

1 − 1

m

R̃k(n,m)√
nm

.

Let

Ṽk(n,m) = sup
t∈Ik,m(n)

k∑
j=1

m−k+j∑
l=j

(
S̃

m,l
[tj,l ] − S̃

m,l
[tj,l−1]

)
, 1 ≤ k ≤ m, (2.3)

with

Cov
(
S̃

m,i
� , S̃

m,j

�

)=
{

�, if i = j ,
ρ�, otherwise,

(2.4)

and ρ = −1/(m − 1).
Next, Ṽk(n,m) can be approximated by

L̃k(n,m) = sup
t∈Ik,m(n)

k∑
j=1

m−k+j∑
l=j

(
B̃l

tj,l
− B̃l

tj,l−1

)
, 1 ≤ k ≤ m, (2.5)

where (B̃j )1≤j≤m is a driftless m-dimensional Brownian motion with covariance matrix given
in (1.2), and

L̃k(n,m)
L= √

nL̃k(1,m).

More precisely, inspired by [9],

∣∣Ṽk(n,m) − L̃k(n,m)
∣∣≤ 2k

m∑
l=1

(
Ym,l

n + Wl
n

)
, (2.6)

where

Ym,l
n = max

1≤i≤n

∣∣S̃m,l
i − B̃l

i

∣∣ and Wl
n = sup

0≤s,t≤n

|s−t |≤1

∣∣B̃l
s − B̃l

t

∣∣.
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Since (
R̃k(n,m)

)
1≤k≤m

= �−1
m

((
Ṽk(n,m)

)
1≤k≤m

)
,

for any ε > 0, and from (2.6),

P
(∣∣R̃k(n,m) − (

L̃k(n,m) − L̃k−1(n,m)
)∣∣≥ √

mnε
)

≤ P

(
2(2k − 1)

m∑
l=1

(
Ym,l

n + Wl
n

)≥ √
mnε

)

≤ P

(
m∑

l=1

Ym,l
n ≥

√
mnε

4(2k − 1)

)
+ P

(
m∑

l=1

Wl
n ≥

√
mnε

4(2k − 1)

)
(2.7)

≤
m∑

l=1

(
P

(
Ym,l

n ≥
√

mnε

m(8k − 4)

)
+ P

(
Wl

n ≥
√

mnε

m(8k − 4)

))

= mP

(
Ym,1

n ≥
√

nε√
m(8k − 4)

)
+ mP

(
W 1

n ≥
√

nε√
m(8k − 4)

)
,

for 1 ≤ k ≤ m, and with the convention that L̃0(n,m) = 0.
From Sakhanenko’s version of the KMT inequality as stated, for example, in Theorem 2.1 and

Corollary 3.2 of [22],

P

(
Ym,1

n ≥
√

nε√
m(8k − 4)

)
≤ (

1 + c2(m)
√

n
)

exp

(
−c1(m)

√
nε√

m(8k − 4)

)
, (2.8)

where, as m → +∞, c1(m) ∼ C1/
√

m and c2(m) ∼ C2/
√

m, for some absolute constants C1 > 0
and C2 > 0. Moreover,

P

(
W 1

n ≥
√

nε√
m(8k − 4)

)
≤ 2nP

(∣∣B̃1
2

∣∣≥ √
nε√

m(16k − 8)

)

= 4nP

(
B̃1

2 ≥
√

nε√
m(16k − 8)

)
(2.9)

≤ 4en exp

(
− nε2

4em(16k − 8)2

)
.

Combining (2.8) and (2.9), letting ε < 1, and since m(n) = o(n1/4) (or simply, m(n) = o(
√

n),
to get a meaningful bound),

P
(∣∣R̃k(n,m) − (

L̃k(n,m) − L̃k−1(n,m)
)∣∣≥ √

mnε
)≤ C3

√
mn exp

(
−

√
nε

C3m

)
, (2.10)
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for 1 ≤ k ≤ r , and where C3 is a positive constant depending on k, which for fixed r can be
chosen only depending on r . For any x1 ≥ x2 ≥ · · · ≥ xr > 2, r ≥ 1, and 0 < ε < min(1, xr − 2),

P

(
R̃1(n,m)√

mn
≥ x1,

R̃2(n,m)√
mn

≥ x2, . . . ,
R̃r (n,m)√

mn
≥ xr

)

≤ P

(
L̃1(n,m) − L̃0(n,m)√

mn
≥ x1 − ε, . . . ,

L̃r (n,m) − L̃r−1(n,m)√
mn

≥ xr − ε

)
(2.11)

+
r∑

i=1

P

(
R̃i(n,m) − (L̃i(n,m) − L̃i−1(n,m))√

mn
≥ ε

)

and

P

(
R̃1(n,m)√

mn
≥ x1,

R̃2(n,m)√
mn

≥ x2, . . . ,
R̃r (n,m)√

mn
≥ xr

)

≥ P

(
L̃1(n,m) − L̃0(n,m)√

mn
≥ x1 + ε, . . . ,

L̃r (n,m) − L̃r−1(n,m)√
mn

≥ xr + ε

)
(2.12)

−
r∑

i=1

P

(
(L̃i(n,m) − L̃i−1(n,m)) − R̃i(n,m)√

mn
≥ ε

)
,

with again the convention that L̃0(n,m) = 0.
Combining (1.1) with Theorem A.1 of the Appendix, when m and n simultaneously converge

to infinity, the large deviations for (L̃k(n,m))1≤k≤r are then given by:

lim
n→∞

1

m(n)
logP

(
L̃1(n,m(n))√

m(n)n
≥ x1, . . . ,

L̃r (n,m(n)) − L̃r−1(n,m(n))√
m(n)n

≥ xr

)
(2.13)

= −2
r∑

i=1

∫ xi

2

√
(z/2)2 − 1 dz,

for all x1 ≥ x2 ≥ · · · ≥ xr > 2, while for any x < 2 and 1 ≤ k ≤ r ,

lim
n→∞

1

m(n)
logP

(
L̃k(n,m(n)) − L̃k−1(n,m(n))√

m(n)n
≤ x

)
= −∞. (2.14)

This implies that,

P

(
L̃1(n,m(n))√

m(n)n
≥ x1 ± ε, . . . ,

L̃r (n,m(n)) − L̃r−1(n,m(n))√
m(n)n

≥ xr ± ε

)

= exp
(−m(n)

(
Ir (x1 ± ε, . . . , xr ± ε) + o(1)

))
,
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where o(1) indicates a quantity converging to zero as n converges to infinity. Combining this fact
with (2.10), for any 1 ≤ k ≤ r ,

P(|R̃k(n,m) − (L̃k(n,m) − L̃k−1(n,m))| ≥ √
mnε)

P(L̃1(n,m) ≥ √
mn(x1 ± ε), . . . , L̃r (n,m) − L̃r−1(n,m) ≥ √

mn(xr ± ε))

≤ C3
√

mn exp

(
−

√
nε

C3m
+ m

(
Ir (x1 ± ε, . . . , xr ± ε) + o(1)

))
(2.15)

= C3
√

mn exp

(√
n

m

(
− ε

C3
+ m2

√
n

(
Ir(x1 ± ε, . . . , xr ± ε) + o(1)

)))−→ 0,

as m,n → ∞, m = o(n1/4). From (2.11) and (2.15), and since m = o(n1/4),

lim sup
n→∞

1

m(n)
logP

(
R̃1(n,m(n))√

m(n)n
≥ x1, . . . ,

R̃r (n,m(n))√
m(n)n

≥ xr

)

≤ lim sup
n→∞

1

m(n)
log 2P

(
L̃1(n,m(n))√

m(n)n
≥ x1 − ε, . . . ,

(2.16)
L̃r (n,m(n)) − L̃r (n,m(n))√

m(n)n
≥ xr − ε

)

= −Ir(x1 − ε, . . . , xr − ε).

Likewise, from (2.12) and (2.15),

lim inf
n→∞

1

m(n)
logP

(
R̃1(n,m(n))√

m(n)n
≥ x1, . . . ,

R̃r (n,m(n))√
m(n)n

≥ xr

)

≥ lim inf
n→∞

1

m(n)
log

1

2
P

(
L̃1(n,m(n))√

m(n)n
≥ x1 + ε, . . . ,

(2.17)
L̃r (n,m(n)) − L̃r (n,m(n))√

m(n)n
≥ xr + ε

)

= −Ir (x1 + ε, . . . , xr + ε).

Now letting ε → 0,

lim
n→∞

1

m(n)
logP

(
R̃1(n,m(n))√

m(n)n
≥ x1, . . . ,

R̃r (n,m(n))√
m(n)n

≥ xr

)

= −2
r∑

i=1

∫ xi

2

√
(z/2)2 − 1 dz,
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for any x1 ≥ x2 ≥ · · · ≥ xr > 2. Next, assume that x1 ≥ x2 ≥ · · · ≥ xk > xk+1 = · · · = xr = 2,
1 ≤ k ≤ r , with the convention that k = r corresponds to x1 ≥ x2 ≥ · · · ≥ xr > 2. Under the
conditions given in Theorem 1.1, for any ε > 0,

lim inf
n→∞

1

m(n)
logP

(
R̃1(n,m(n))√

m(n)n
≥ x1, . . . ,

R̃r (n,m(n))√
m(n)n

≥ xr

)

≥ −2
k∑

i=1

∫ xi

2

√
(z/2)2 − 1 dz − 2

r∑
i=k+1

∫ 2+ε

2

√
(z/2)2 − 1 dz.

Letting ε → 0, gives

lim inf
n→∞

1

m(n)
logP

(
R̃1(n,m(n))√

m(n)n
≥ x1, . . . ,

R̃r (n,m(n))√
m(n)n

≥ xr

)
(2.18)

≥ −2
r∑

i=1

∫ xi

2

√
(z/2)2 − 1 dz,

while,

lim sup
n→∞

1

m(n)
logP

(
R̃1(n,m(n))√

m(n)n
≥ x1, . . . ,

R̃r (n,m(n))√
m(n)n

≥ xr

)

≤ lim sup
n→∞

1

m(n)
logP

(
R̃1(n,m(n))√

m(n)n
≥ x1, . . . ,

R̃k(n,m(n))√
m(n)n

≥ xk

)
(2.19)

= −2
r∑

i=1

∫ xi

2

√
(z/2)2 − 1 dz.

Combining (2.18) and (2.19) proves (1.4).

Fix x < 2 and let 0 < ε < min(1,2 − x), then

P

(
R̃k(n,m)√

mn
≤ x

)
≤ P

(
L̃k(n,m) − L̃k−1(n,m)√

mn
≤ x + ε

)
(2.20)

+ P

( |R̃k(n,m) − (L̃k(n,m) − L̃k−1(n,m))|√
mn

≥ ε

)
,

for any 1 ≤ k ≤ r . From (2.14),

1

m
logP

(
L̃k(n,m) − L̃k−1(n,m)√

mn
≤ x + ε

)
−→ −∞,
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and from (2.10),

1

m
logP

( |R̃k(n,m) − (L̃k(n,m) − L̃k−1(n,m))|√
mn

≥ ε

)
(2.21)

≤ log(C3
√

mn)

m
−

√
nε

C3m2
−→ −∞,

as m,n → ∞, m = o(n1/4). Thus for any x < 2 and 1 ≤ k ≤ r ,

lim
n→∞

1

m(n)
logP

(
R̃k(n,m(n))√

m(n)n
≤ x

)
= −∞, (2.22)

which proves (1.5) in Theorem 1.1.

Proof of Theorem 1.2. First, (1.11) is just a direct consequence of (1.4). Next, we prove (1.10).
Fix y1 ≥ y2 ≥ · · · ≥ yr , with yr < 2. If K(yr) < +∞, then there exists δ > 0 such that K(yr −
δ) < +∞ and such that for any 0 < ε < min(1, δ,2 − yr),

P

(
R̃1(n,m)√

mn
≤ y1, . . . ,

R̃r (n,m)√
mn

≤ yr

)

≤ P

(
L̃1(n,m) − L̃0(n,m)√

mn
≤ y1 + ε, . . . ,

L̃r (n,m) − L̃r−1(n,m)√
mn

≤ yr + ε

)
(2.23)

+
r∑

i=1

P

( |R̃i(n,m) − (L̃i(n,m) − L̃i−1(n,m))|√
mn

≥ ε

)

and

P

(
R̃1(n,m)√

mn
≤ y1, . . . ,

R̃r (n,m)√
mn

≤ yr

)

≥ P

(
L̃1(n,m) − L̃0(n,m)√

mn
≤ y1 − ε, . . . ,

L̃r (n,m) − L̃r−1(n,m)√
mn

≤ yr − ε

)
(2.24)

−
r∑

i=1

P

( |R̃i(n,m) − (L̃i(n,m) − L̃i−1(n,m))|√
mn

≥ ε

)
,

with once more the convention that L̃0(n,m) = 0.
Combining (1.1) with Corollary A.1, when m and n simultaneously converge to infinity,

lim
n→∞

1

m(n)2
logP

(
L̃1(n,m(n))√

m(n)n
≤ y1, . . . ,

L̃r (n,m(n)) − L̃r−1(n,m(n))√
m(n)n

≤ yr

)
(2.25)

= −K(yr),
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for all yr ≤ yr−1 ≤ · · · ≤ y1 with yr < 2. Thus

P

(
L̃1(n,m(n))√

m(n)n
≤ y1 ± ε, . . . ,

L̃r (n,m(n)) − L̃r−1(n,m(n))√
m(n)n

≤ yr ± ε

)

= exp
(−m(n)2(K(yr ± ε) + o(1)

))
,

where o(1) is meant for an expression converging to zero as n converges to infinity. Combining
this last fact with (2.10), for any 1 ≤ k ≤ r ,

P(|R̃k(n,m) − (L̃k(n,m) − L̃k−1(n,m))| ≥ √
mnε)

P(L̃1(n,m) ≤ √
mn(y1 ± ε), . . . , L̃r (n,m) − L̃r−1(n,m) ≤ √

mn(yr ± ε))
(2.26)

≤ C3
√

mn exp

{√
n

m

(
− ε

C3
+ m3

√
n

(
K(yr ± ε) + o(1)

))}−→ 0,

as m,n → ∞, m = o(n1/6). Repeating previous arguments, letting ε → 0, and since m =
o(n1/6),

lim
n→∞

1

m(n)2
logP

(
R̃1(n,m(n))√

m(n)n
≤ y1, . . . ,

R̃r (n,m(n))√
m(n)n

≤ yr

)
= −K(yr), (2.27)

for yr ≤ yr−1 ≤ · · · ≤ y1, with yr < 2 and K(yr) < +∞.
Now for fixed y1 ≥ y2 ≥ · · · ≥ yr , yr < 2, let us tackle the case K(yr) = +∞. Then,

P

(
R̃1(n,m)√

mn
≤ y1, . . . ,

R̃r (n,m)√
mn

≤ yr

)

≤ P

(
L̃r (n,m) − L̃r−1(n,m)√

mn
≤ yr + ε

)
(2.28)

+ P

( |R̃r (n,m) − (L̃r (n,m) − L̃r−1(n,m))|√
mn

≥ ε

)
.

As m and n simultaneously converge to infinity with m = o(n1/6), the second term on the right
of (2.28) is exponentially negligible with speed m2, that is,

1

m2
logP

( |R̃k(n,m) − (L̃k(n,m) − L̃k−1(n,m))|√
mn

≥ ε

)
(2.29)

≤ log(C3
√

mn)

m2
−

√
nε

C3m3
−→ −∞,

while the first term is, from (2.25), dominated by e−m(n)2K(yr+ε). Thus (2.27), in this case, fol-
lows by letting ε → 0.
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Now let 2 = yr ≤ yr−1 ≤ · · · ≤ y1, then for any ε > 0,

lim inf
n→∞

1

m(n)2
logP

(
R̃1(n,m(n))√

m(n)n
≤ y1, . . . ,

R̃r (n,m(n))√
m(n)n

≤ yr

)

≥ lim inf
n→∞

1

m(n)2
logP

(
R̃1(n,m(n))√

m(n)n
≤ y1, . . . ,

R̃r (n,m(n))√
m(n)n

≤ 2 − ε

)
(2.30)

= −K(2 − ε).

Again, letting ε → 0, and since K is continuous (see the Appendix for a proof),

lim inf
n→∞

1

m(n)2
logP

(
R̃1(n,m(n))√

m(n)n
≤ y1, . . . ,

R̃r (n,m(n))√
m(n)n

≤ yr

)
≥ −K(2) = 0.

Clearly,

lim sup
n→∞

1

m(n)2
logP

(
R̃1(n,m(n))√

m(n)n
≤ y1, . . . ,

R̃r (n,m(n))√
m(n)n

≤ yr

)
≤ 0,

which proves the case yr = 2, and finishes the proof of the first part of Theorem 1.2. Lemma A.1
of the Appendix gives a proof of (1.8).

When x ≤ 0, M0((−∞, x]) is empty so K(x) = +∞ and when x ≥ 2, the semicircular prob-
ability measure belongs to M0((−∞, x]), thus K(x) = 0. When 0 < x < 2, the closed form
expression of K given via (1.9) can indeed be derived using the techniques developed in [26].
Denote by μ0 the zero mean probability measure supported on (−∞, x], minimizing

I (μ) = 1

2

∫
y2μ(dy) −

∫ ∫
log |t − y|μ(dt)μ(dy) − 3

4
(2.31)

(the existence and uniqueness of μ0 follows from Theorem 1.3 of Chapter 1 of [28]. Moreover, in
view of Theorem 2.5 of Chapter IV of [28], μ0 is absolutely continuous with continuous density
ρ0, while from Theorem 1.10 and Theorem 1.11 of Chapter IV in [28], its support is a finite
interval). Let us now proceed to explicitly find ρ0. To do so, consider the Lagrange function

E(μ) = I (μ) + c1

(∫
μ(dy) − 1

)
+ c2

∫
yμ(dy),

where the Lagrange multipliers c1 and c2 correspond to the constraints that μ is a zero mean
probability measure. Let [L′, x] be the support of ρ0, and for any continuous function h supported
on [L′, x] such that h(y) ≥ −ρ0(y), let

E(ρ0 + εh) = 1

2

∫
y2(ρ0(y) + εh(y)

)
dy

−
∫ ∫

log |t − y|(ρ0(t) + εh(t)
)(

ρ0(y) + εh(y)
)

dt dy − 3

4
(2.32)

+ c1

(∫ (
ρ0(y) + εh(y)

)
dy − 1

)
+ c2

∫
y
(
ρ0(y) + εh(y)

)
dy.
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Thus

dE(ρ0 + εh)

dε

∣∣∣∣
ε=0

= 0,

gives ∫ (
y2

2
− 2

∫
log |t − y|ρ0(t)dt + c1 + c2y

)
h(y)dy = 0, (2.33)

for any continuous function h such that h(y) ≥ −ρ0(y). Let

g(y) = y2

2
− 2

∫
log |t − y|ρ0(t)dt + c1 + c2y,

which is a continuous function on [L′, x]. Let h(y) = g+(y), then (2.33) yields∫
g(y)≥0

g(y)2 dy = 0,

thus g(y) ≤ 0 for y ∈ [L′, x]. Likewise, letting

h(y) =
{0, if g(y) > 0,

g(y), if −ρ0(y) ≤ g(y) ≤ 0,
−ρ0(y), if g(y) < −ρ0(y),

(2.34)

then (2.33) yields g(y) ≥ 0 for y ∈ [L′, x]. Thus,

y2

2
− 2

∫
log |t − y|ρ0(t)dt + c1 + c2y = 0, (2.35)

for any y ∈ [L′, x]. In turn, differentiating (2.35) with respect to y further gives,

y − 2 p.v.
∫

ρ0(t)

y − t
dt + c2 = 0, (2.36)

where p.v. denotes the Cauchy principal value.
Let L = L′ − x and fx(t) = ρ0(t + x) be supported on [L,0], then the finite Hilbert transform

1

π
p.v.

∫ x

L′
ρ0(t)

y − t
dt = y + c2

2π
,

becomes

1

π
p.v.

∫ 0

L

fx(t)

y − t
dt = x + y + c2

2π
,

for any y ∈ [L,0]. From Section 4.3 of [33], this finite Hilbert transform can be inverted as

fx(y) = 1

π
√

(y − L)(−y)

(
p.v.

∫ 0

L

√
(t − L)(−t)

t − y

x + t + c2

2π
dt + c3

)
, (2.37)



1512 C. Houdré and J. Ma

where L ≤ y ≤ 0. Moreover,

p.v.
∫ 0

L

√
(t − L)(−t)

t − y

x + t + c2

2π
dt

(2.38)

= 1

16

(
4c2(L − 2y) + L2 + 4L(x + y) − 8y(x + y)

)
.

Since fx(L) = 0,

c3 = 1
16

(
4L(c2 + x) + 3L2),

which when plugged into (2.37) yields

fx(y) =
√

y(L − y)(2c2 + L + 2(x + y))

4πy
.

Now, the two constraints
∫

dμ0(y) = 1 and
∫

y dμ0(y) = 0, yield∫ 0

L

yfx(y)dy + x = 0,

∫ 0

L

fx(y)dy = 1,

leading to

L = 2 22/3(
√

81x2 + 12 − 9x)2/3 − 4 61/3

32/3(
√

81x2 + 12 − 9x)1/3
(2.39)

and

c2 = 2 32/3 − 3
√

6(
√

81x2 + 12 − 9x)2/3

22/3(
√

81x2 + 12 − 9x)1/3
(2.40)

−
3
√

2 32/3(
√

81x2 + 12 − 9x)2/3 + (6 22/3 3
√

3/(
√

81x2 + 12 − 9x)2/3) + 6

18x
− x.

Integrate (2.35) with respect to μ0 to get∫ ∫
log |y − t |μ0(dt)μ0(dy) = 1

4

∫
y2μ0(dy) + c1

2
,

while c1 is determined by substituting y = x in (2.35),

c1 = −x2

2
+ 2

∫
log |x − t |μ0(dt) − c2x.

Finally,

I (μ0) = 1

2

∫
y2μ0(dy) −

∫ ∫
log |t − y|μ0(dt)μ0(dy) − 3

4
(2.41)

= 1

4

∫ 0

L

(x + y)2fx(y)dy −
∫ 0

L

log(−y)fx(y)dy + x2

4
+ c2x

2
− 3

4
.
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Finally, inserting the above values of L and c2 into (2.41) provides the closed form expression
for K . �

3. Proof of Theorem 1.3 and Theorem 1.4

Recall, see (2.2), that

R1(n,m) = V1(n,m) = sup
0=l0≤l1≤···≤lm=n

m∑
j=1

(
S

m,j
lj

− S
m,j
lj−1

)

and let

V ′
1(n,m) = sup

0=l0≤l1≤···≤lm=n

lj−1=lj for j /∈J (m)

m∑
j=1

(
S

m,j
lj

− S
m,j
lj−1

)
,

where J (m) = {j :pm
j = pm

max} as defined before. Then, Lemma 9 in [10] asserts that:

E
∣∣V1(n,m) − V ′

1(n,m)
∣∣≤ Cnpm

2nd, (3.1)

where p2nd is the second highest probability and C > 0 some absolute constant.
In order to prove Theorem 1.3, we first need a lemma.

Lemma 3.1. Let k(m(n)) converge to infinity with n in such a way that k(m(n))3/pm
max = o(n),

then for any x ≥ 2,

lim
n→∞

1

k(m(n))
logP

(
V ′

1(n,m(n)) − npm
max√

nk(m(n))pm
max

≥ x

)
= −2

∫ x

2

√
(z/2)2 − 1 dz, (3.2)

and for any x < 2,

lim
n→∞

1

k(m(n))
logP

(
V ′

1(n,m(n)) − npm
max√

nk(m(n))pm
max

≤ x

)
= −∞. (3.3)

Proof. As in the proof of Theorem 1.1, for any j ∈ J (m), set X̃m
i,j = (Xm

i,j − pm
max)/σm, where

σ 2
m = pm

max(1 − pm
max), and set S̃

m,j
� =∑�

i=1 X̃m
i,j . Hence,

V ′
1(n,m) − npm

max√
nk(m(n))pm

max

=
(√

1 − pm
max

) Ṽ ′
1(n,m)√
nk(m(n))

,

with the obvious notation for Ṽ ′
1(n,m). Since k(m(n))pm

max ≤ 1, as n → ∞, pm
max → 0, so (3.2)

can be reduced to,

lim
n→∞

1

k(m(n))
logP

(
Ṽ ′

1(n,m(n))√
nk(m(n))

≥ x

)
= −I1(x), (3.4)
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for any x ≥ 2. Moreover, (3.3) can be reduced to,

lim
n→∞

1

k(m(n))
logP

(
Ṽ ′

1(n,m(n))√
nk(m(n))

≤ x

)
= −∞, (3.5)

for any x < 2. Now,

Ṽ ′
1(n,m) = sup

0=l0≤l1≤···≤lm=n

lj−1=lj for j /∈J (m)

m∑
j=1

(
S̃

m,j
lj

− S̃
m,j
lj−1

)
, (3.6)

where

Cov
(
S̃

m,i
� , S̃

m,j

�

)=
{

�, if i = j ,
ρ1�, otherwise,

(3.7)

where ρ1 = −pm
max/(1−pm

max). From its very definition, Ṽ ′
1(n,m) only depends on (S̃

m,j

� )j∈J (m)

and can thus be approximated, via KMT, by the Brownian functional F(n, k) with k =
card(J (m)) (from here onward, m is short for m(n) and k is short for k(m(n))), where

F(n, k) = sup
0=t0≤t1≤···≤tk=n

k∑
r=1

(
B̃

(r)
tr

− B̃
(r)
tr−1

)
, (3.8)

where (B̃(r))1≤r≤k is a centered k-dimensional Brownian motion with covariance matrix

⎛
⎜⎜⎝

1 ρ1 · · · ρ1
ρ1 1 · · · ρ1
...

...
. . .

...

ρ1 ρ1 · · · 1

⎞
⎟⎟⎠ t.

Moreover,

F(n, k)
L= √

nF(1, k), (3.9)

while from Corollary 3.2 and Corollary 3.3 in [16],

√
1 − pm

maxF(1, k)
L=
√

1 − kpm
max − 1

k

k∑
j=1

B
(j)

1

(3.10)

+ sup
0=t0≤t1≤···≤tk=1

k∑
r=1

(
B

(r)
tr

− B
(r)
tr−1

)
,

where (B(j))1≤j≤k is a standard k-dimensional Brownian motion on [0,1]. The first weighted
sum in (3.10) is a Gaussian random variable with variance at most 1/k, and as well known (see
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the introductory section and the cited references therein):

sup
0=t0≤t1≤···≤tk=1

k∑
r=1

(
B

(r)
tr

− B
(r)
tr−1

) L= λk
1, (3.11)

where λk
1 is the largest eigenvalue of a k × k element of the GUE. Next, since λk

1/
√

k satisfies a
LDP with rate function I1 and since the contribution of the Gaussian term is negligible, we get
via Theorem A.1 of the Appendix:

lim
k→∞

1

k
logP

(
F(1, k) ≥ √

kx
)= −I1(x). (3.12)

Now, as in the proof of Theorem 1.1,

P
(∣∣Ṽ ′

1(n,m) − F(n, k)
∣∣≥ √

nkε
)

(3.13)

≤ kP

(
Ym,l

n ≥
√

nε

4
√

k

)
+ kP

(
Wl

n ≥
√

nε

4
√

k

)
,

where l is any element of J (m) and where

Ym,l
n = max

1≤i≤n

∣∣S̃m,l
i − B̃

(l)
i

∣∣ and Wl
n = sup

0≤s,t≤n

|s−t |≤1

∣∣B̃(l)
s − B̃

(l)
t

∣∣.

As in getting (2.8),

P

(
Ym,1

n ≥
√

nε

4
√

k

)
≤ (

1 + c2
(
pm

max

)√
n
)

exp

(
−c1

(
pm

max

)√nε

4
√

k

)
, (3.14)

where c1(p
m
max) ∼ C1

√
pm

max and c2(p
m
max) ∼ C2

√
pm

max, for some constants C1 and C2, while
from (2.9),

P

(
W 1

n ≥
√

nε

4
√

k

)
≤ C3n exp

(
− nε2

C3k

)
, (3.15)

for some positive constant C3. Combining (3.14) and (3.15), letting ε < 1, and since k(m(n))3/

pm
max = o(n) (or simply, k(m(n))/pm

max = o(n), to get a meaningful bound),

P
(∣∣Ṽ ′

1(n,m) − F(n, k)
∣∣≥ √

nkε
)≤ C4k

√
npm

max exp

(
−
√

npm
maxε

C4
√

k

)
, (3.16)

for some positive constant C4. From (3.12), for any x > 2 and 0 < ε < min(1, x − 2),

P
(
F(n, k) ≥ √

nk(x ± ε)
)= exp

{−k
(
I1(x ± ε) + o(1)

)}
. (3.17)
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Hence,

P(|Ṽ ′
1(n,m) − F(n, k)| ≥ √

nkε)

P(F (n, k) ≥ √
nk(x ± ε))

≤ C4k
√

npm
max exp

(√
npm

max

k

(
− ε

C4
+
√

k3

npm
max

(
I1(x ± ε) + o(1)

)))−→ 0,

since k(m(n))3/pm
max = o(n), and, again, as in the proof of Theorem 1.1, this leads to (3.4) for

any x > 2. Arguments similar to those developed at the end of the proof of Theorem 1.1 show
that (3.4) is valid for any x ≥ 2.

The proof of (3.5) is similar to the uniform case. First, from (3.10) and (3.11), for any fixed
x < 2,

lim
k→∞

1

k
logP

(
F(1, k) ≤ √

kx
)= −∞. (3.18)

Moreover, for any 0 < ε < min(1,2 − x),

P
(
Ṽ ′

1(n,m) ≤ √
nkx

)
(3.19)

≤ P
(
F(n, k) ≤ √

nk(x + ε)
)+ P

(∣∣Ṽ ′
1(n,m) − F(n, k)

∣∣≥ √
nkε

)
,

while P(|Ṽ ′
1(n,m) − F(n, k)| ≥ √

nkε) is exponentially negligible with speed k(m). Therefore,
(3.5) holds true under the condition k(m(n))3/pm

max = o(n). �

Proof of Theorem 1.3. First, so as not to further burden the notations, below m is short for
m(n) and k is short for k(m(n)). Next, set X = (V1(n,m) − npm

max)/
√

nkpm
max, Y = (V1(n,m) −

V ′
1(n,m))/

√
nkpm

max and Z = (V ′
1(n,m) − npm

max)/
√

nkpm
max. Then, for any x > 2 and 0 < ε <

x − 2,

P(X ≥ x) ≤ P(Z ≥ x − ε) + P
(|Y | ≥ ε

)
(3.20)

and

P(X ≥ x) ≥ P(Z ≥ x + ε) − P
(|Y | ≥ ε

)
. (3.21)

Moreover, from (3.1),

P
(|Y | ≥ ε

)≤ Cpm
2nd

√
n

ε
√

kpm
max

, (3.22)

and from Lemma 3.1,

P(Z ≥ x ± ε) = exp
(−k

(
I1(x ± ε) + o(1)

))
.

Under the condition (1.12),

P(|Y | ≥ ε)

P(Z ≥ x ± ε)
≤ Cpm

2nd
√

n

ε
√

kpm
max

exp
(
k
(
I1(x ± ε) + o(1)

))→ 0, as n → ∞. (3.23)
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Letting ε go to 0, and repeating the arguments of the proof of Theorem 1.1, establishes (1.13),
for any x ≥ 2, under the conditions given in Theorem 1.3. For (1.14), for any x < 2 and 0 < ε <

2 − x,

P(X ≤ x) ≤ P(Z ≤ x + ε) + P
(|Y | ≥ ε

)
.

From (3.3), P(Z ≤ x + ε) is exponentially negligible with speed k(m), and from arguments as
in getting (3.23), P(|Y | ≥ ε) is also exponentially negligible with speed k(m), which proves
(1.14). �

Proof of Theorem 1.4 and Remark 1.4. Again, below, m is short for m(n) and k is short for
k(m(n)). First, (1.19) is a direct consequence of (1.13), so let us prove (1.18). When on the left of
its simultaneous asymptotic mean, V ′

1(n,m) can be approximated by F(n, k) (see (3.8)). Hence,
the rate function Kη should be the corresponding “left” rate function of the Brownian functional
F(1, k) (see (3.9)) with speed k2. From the right-hand side of (3.10), it is clear that this new rate
function depends on η = limn→∞ kpm

max; let us denote it by Kη . Moreover, for F(1, k), and from
[17] or [6],

√
1 − pm

maxF(1, k)
L= λ̃0

1,

where λ̃0
1 is the largest eigenvalue of the diagonal block corresponding to pm

max in X0, and where
X0 is an element of G0(pm

1 ,pm
2 , . . . , pm

m) (see (1.15)). So the rate function Kη should also be the
corresponding “left” rate function for λ̃0

1 with speed k2.
Again, from [17],

λk
1
L= λ̃0

1 +√
pm

maxg, (3.24)

where λk
1 is the largest eigenvalue of an element of the k × k GUE and where g is a standard

normal random variable which is independent of λ̃0
1.

Let

J (x) =
{ inf

μ∈M((−∞,x])
I (μ), if x ∈ (−∞,2],

0, if x ∈ [2,+∞),
(3.25)

Gη(x) =
⎧⎨
⎩

x2

2η
, if x ∈ (−∞,0],

0, if x ∈ [0,+∞),
(3.26)

be the respective rate function for λk
1, with speed k2 and with I (μ) given in (A.5), and for the

Gaussian term. Now, see [11], when x ≤ 2,

J (x) = 1
216

(−x
(−72x + x3 + 30

√
12 + x2 + x2

√
12 + x2

)
(3.27)

− 216 log
( 1

6

(
x +

√
12 + x2

)))
.
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Hence,

J ′(x) = 1
54

(−x3 + 36x − (
12 + x2)3/2)

, (3.28)

J ′′(x) = 1
18

(
12 − x2 − x

√
12 + x2

)
. (3.29)

Clearly, for x ∈ (−∞,2), 0 < J ′′(x) < 1 and by a Taylor expansions for J and J ′, and for
x < −5,

J (x) = x2

2
+ log(−x) + 3

4
+ e1(x), (3.30)

J ′(x) = x + 1

x
+ e2(x), (3.31)

with |e1(x)| ≤ 2/x2 and |e2(x)| ≤ 4/|x|3.
From (3.24), it is well known (see [12,27]) that,

J (x) = Kη �Gη(x) := inf
y∈R

(
Kη(y) + Gη(x − y)

)
, (3.32)

and taking Legendre transforms:

Kη(x) = (
J ∗(y) − G∗

η(y)
)∗

(x),

where

G∗(y) =
{

ηy2

2
, if y ≤ 0,

+∞, if y > 0,

so that

Kη(x) = sup
y≤0

(
xy − J ∗(y) + ηy2

2

)
. (3.33)

Therefore, for 0 < η < 1, Kη interpolates between K0 = J and K1 = K . From the very definition
of the Legendre transform,

J ∗(y) = sup
x∈R

(
xy − J (x)

)
,

there exists, for each y ≤ 0, a unique solution, denoted by S(y), to J ′(x) = y for x ∈ (−∞,2].
Clearly, the function S is increasing on (−∞,0], with S(0) = 2, limy→−∞ S(y) = −∞, and
with

S′(y) = 1

J ′′(S(y))
,

for y < 0. Thus, for y ≤ 2,

J ∗(y) = yS(y) − J
(
S(y)

)
,
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and,

Kη(x) = sup
y≤0

(
xy − yS(y) + J

(
S(y)

)+ ηy2

2

)
.

For y ≤ 0, let

Hx,η(y) := xy − yS(y) + J
(
S(y)

)+ ηy2

2
,

then

H ′
x,η(y) = x − S(y) + ηy, H ′′

x,η(y) = − 1

J ′′(S(y))
+ η,

so H ′′
x,η(y) < 0 for y ∈ (−∞,0), x ∈ R and 0 ≤ η ≤ 1. When x ≥ 2, for any 0 ≤ η ≤ 1,

H ′
x,η(y) > 0 for y < 0 with H ′

x,η(0) ≥ 0, thus Kη(x) = supy≤0 Hx,η(y) = Hx,η(0) = 0. Let us
now deal with x < 2. First, from (3.31), it can be shown that for y < −6,

y < S(y) < y + 1,

and thus since x − J ′(x) is increasing on (−∞,2],

S(y) − y = S(y) − J ′(S(y)
)
< y + 1 − J ′(y + 1) < − 2

y + 1
,

which further yields

y < S(y) < y − 2

y + 1
.

Moreover, when y < −6,∣∣∣∣Hx,η(y) −
(

xy − y2 + J (y) + ηy2

2

)∣∣∣∣ ≤ |y|∣∣S(y) − y
∣∣+ ∣∣J (S(y)

)− J (y)
∣∣

≤ 2

∣∣∣∣ y

y + 1

∣∣∣∣+ ∣∣J ′(y + 1)
∣∣∣∣S(y) − y

∣∣ (3.34)

≤ 3 + 3 = 6.

Combining (3.34) with (3.30), it follows that for y < −6,∣∣∣∣Hx,η(y) −
(

xy + log(−y) − 1 − η

2
y2
)∣∣∣∣≤ 7. (3.35)

When η = 1, for any x ≤ 0, H ′
x,1(y) < 0 for y ≤ 0, thus

K1(x) = lim
y→−∞Hx,1(y) = +∞.

For 0 < x < 2, since S(y) − y is increasing on (−∞,0] with a range of (0,2], there exists a
unique solution, denoted by T1(x), to H ′

x,1(y) = x − S(y) + y = 0. Note that y = T1(x) is the
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maximizer of Hx,1(y) and as x → 0, T1(x) → −∞, thus there exists δ > 0, such that for x < δ,

K1(x) = sup
y≤−6

Hx,1(y).

Since for x < 1/6,

sup
y≤−6

(
xy + log(−y)

)= −1 − logx,

when combined with (3.35), it follows that for x close enough to 0,∣∣K1(x) − (− logx)
∣∣≤ 8.

When 0 < η < 1, for any x < 2, there exists a unique solution, denoted by Tη(x), to H ′
x,η(y) =

x − S(y) + ηy = 0. Again, y = Tη(x) is the maximizer of Hx,η(y) and as x → −∞, Tη(x) →
−∞. Repeating the arguments of the case η = 1, gives as x → −∞,

Kη(x) ∼ x2

2(1 − η)
+ log

(
− x

1 − η

)
.

This last statement (clearly consistent with the case η = 0), finishes to prove the last assertions
of Remark 1.4. The rest of the proof of Theorem 1.4 follows along the lines of the proofs of
Lemma 3.1 and of Theorem 1.3, and is therefore left to the interested reader. �

4. Proof of Theorem 1.5 and Theorem 1.6

Left and right concentration inequalities for the largest eigenvalue λm
1 of an element of the m×m

GUE are respectively given in [2] and [21]. More precisely:

Proposition 4.1. Let m ≥ 1 and let ε > 0, then for some absolute constant C0 > 0,

P
(
λm

1 ≥ 2
√

m(1 + ε)
)≤ C0e−mε3/2/C0 . (4.1)

Likewise, for some absolute constant C̄0 > 0, and all m ≥ 1 and 0 < ε ≤ 1,

P
(
λm

1 ≤ 2
√

m(1 − ε)
)≤ C̄0e−m2ε3/C̄0 . (4.2)

Next, to prove (1.21), assume first that mε3/2 ≥ 1. Then for any 0 < ε < 1,

P

(
V1(n,m) − n/m√

n/m
≥ 2

√
m(1 + ε)

)

≤ P

(√
m − 1

m

L̃1(n,m)

2
√

mn
≥ 1 + ε

2

)
(4.3)

+ P

(√
m − 1

m

|Ṽ1(n,m) − L̃1(n,m)|
2
√

mn
≥ ε

2

)
.
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As before, √
m − 1

m

L̃1(n,m)√
n

L= λ
m,0
1

and

λm
1

L= λ
m,0
1 + gm,

where gm is a centered Gaussian random variable with variance 1/m, independent of λ
m,0
1 . So,

P

(√
m − 1

m

L̃1(n,m)

2
√

mn
≥ 1 + ε

2

)
≤ P

(
λm

1 ≥ 2
√

m

(
1 + ε

4

))
+ P

(
gm ≥

√
mε

2

)

≤ C1e−mε3/2/C1 + C1e−m2ε2/C1 ,

for some positive constant C1. Now from (2.7), (2.8) and (2.9), the second term on the right-hand
side of (4.3) is upper-bounded by:

P

( |Ṽ1(n,m) − L̃1(n,m)|
2
√

mn
≥ ε

2

)
≤ C2

√
mne−√

nε/C2m + C2mne−nε2/C2m.

In order to reach (1.21), we need to show that there exists a positive constant C(A,α), depending
only on A and α, such that

C(A,α)e−mε3/2/C(A,α) ≥ C1e−m2ε2/C1 , (4.4)

C(A,α)e−mε3/2/C(A,α) ≥ C2
√

mne−√
nε/C2m, (4.5)

C(A,α)e−mε3/2/C(A,α) ≥ C2mne−nε2/C2m. (4.6)

First, since mε3/2 ≥ 1, (4.4) is satisfied by choosing C(A,α) ≥ C1. Now taking logarithms in
(4.5), C(A,α) has to be such that:

log
C2

C(A,α)
+ 1

2
log(mn) ≤ mε3/2

(
− 1

C(A,α)
+

√
n

C2m2ε1/2

)
. (4.7)

Moreover, under the condition m ≤ Anα , we have:

√
n

C2m2ε1/2
≥

√
n

C2m2
≥ n(1/2)−2α

A2C2
.

Therefore, if α < 1/4, it is enough to choose C(A,α) satisfying

log

√
AC2

C(A,α)
+ 1

C(A,α)
≤ n(1/2)−2α

A2C2
− 1 + α

2
logn.
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Since for all integers n ≥ 1,

n1/2−2α

A2C2
− 1 + α

2
logn ≥ 1 + α

1 − 4α

(
1 − log

A2C2(1 + α)

1 − 4α

)
,

we just need to guarantee that

log

√
AC2

C(A,α)
+ 1

C(A,α)
≤ 1 + α

1 − 4α

(
1 − log

A2C2(1 + α)

1 − 4α

)
. (4.8)

But, from our choice of α, (1 + α)/(1 − 4α) > 1, so by choosing

C(A,α) ≥ C max
(
A5/2,1

) 1 + α

1 − 4α
exp

(
1 + α

1 − 4α

)
, (4.9)

for some large enough absolute constant C > 0, (4.8) and (4.5) are satisfied. Finally, by taking
logarithms, (4.6) becomes,

log
C2

C(A,α)
+ log(mn) ≤ mε3/2

(
− 1

C(A,α)
+ nε1/2

C2m2

)
. (4.10)

From the condition m ≤ Anα , we just need,

log
AC2

C(A,α)
+ 1

C(A,α)
≤ 1

A7/3C2
n1−7α/3 − (1 + α) logn. (4.11)

Now repeating the previous arguments, taking the minimum on the right-hand side of (4.11), it
follows that

log
AC2

C(A,α)
+ 1

C(A,α)
≤ 1 + α

1 − 7α/3

(
1 − log

A7/3C2(1 + α)

1 − 7α/3

)
. (4.12)

Again, for 0 < α < 1/4, 1 < (1 + α)/(1 − 7α/3) < 3, so as long as

C(A,α) ≥ C max
(
A10/3,1

) 1 + α

1 − 7α/3
exp

(
1 + α

1 − 7α/3

)
, (4.13)

for some large enough absolute constant C, then C(A,α) will also satisfy (4.12) and therefore
also (4.6).

Combining (4.9) and (4.13), if mε3/2 ≥ 1, and m ≤ Anα , with α < 1/4, there exist a positive
constant

C(A,α) = C max
(
A10/3,1

) 1 + α

1 − 4α
exp

(
1 + α

1 − 4α

)
, (4.14)

so that (1.21) holds true for all 0 < ε < 1. When mε3/2 < 1,

C(A,α)e−mε3/2/C(A,α) ≥ Ce−1/C ≥ 1,
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as C is large enough, and (1.21) follows. So combining these two cases, there exists C(A,α) as
in (4.14), with C large enough, such that (1.21) is satisfied.

Likewise, for the proof of (1.22), first assume that m2ε3 ≥ 1, and

P

(
V1(n,m) − n/m√

n/m
≥ 2

√
m(1 − ε)

)

≤ P

(√
m − 1

m

L̃1(n,m)

2
√

mn
≤ 1 − ε

2

)
(4.15)

+ P

(√
m − 1

m

|Ṽ1(n,m) − L̃1(n,m)|
2
√

mn
≥ ε

2

)

≤ C1e−m2ε3/C1 + C1e−m2ε2/C1 + C2
√

mne−√
nε/C2m + C2mne−nε2/C2m.

Repeating previous arguments, and as long as m ≤ Anα , with α < 1/6, there exists a positive
constant

C̄(A,α) = C̄ max
(
A4,1

) 1 + α

1 − 6α
exp

(
1 + α

1 − 6α

)
,

so that (1.22) is satisfied. Once more, taking C̄ large enough, the case m2ε3 < 1 follows, and
(1.22) is proved.

The proof for the non-uniform case is similar to the uniform one. For (1.24), assume at first
that kε3/2 ≥ 1, then

P

(
V1(n,m) − npm

max√
nkpm

max

≥ 2(1 + ε)

)

≤ P

(
V1(n,m) − V ′

1(n,m)

2
√

nkpm
max

≥ ε

3

)
+ P

(√
1 − pm

max
Ṽ ′

1(n,m) − F(n, k)

2
√

nk
≥ ε

3

)

+ P

(√
1 − pm

max
F(n, k)

2
√

nk
≥ 1 + ε

3

)
= A1 + A2 + A3.

From (3.22), (3.13) and (3.10),

A1 ≤ C1p
m
2nd

√
n

ε
√

kpm
max

,

A2 ≤ C2nk exp

(
− nε2

C2k

)
+ C2k

√
npm

max exp

(
−
√

npm
maxε

C2
√

k

)
,

A3 ≤ P

(
Zk ≥ ε

3

)
+ P

(
λk

1 ≥ 2

(
1 + ε

6

))

≤ C3 exp

(
−k2ε2

C3

)
+ C3 exp

(
−kε3/2

C3

)
.
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In order to reach (1.24), we need to show that there exists a positive constant C(A,B,α), de-
pending only on A, B and α, such that

C(A,B,α) exp

(
− kε3/2

C(A,B,α)

)
≥ C1p

m
2nd

√
n

ε
√

kpm
max

, (4.16)

C(A,B,α) exp

(
− kε3/2

C(A,B,α)

)
≥ C2nk exp

(
− nε2

C2k

)
, (4.17)

C(A,B,α) exp

(
− kε3/2

C(A,B,α)

)
≥ C2k

√
npm

max exp

(
−
√

npm
maxε

C2
√

k

)
, (4.18)

C(A,B,α) exp

(
− kε3/2

C(A,B,α)

)
≥ C3 exp

(
−k2ε2

C3

)
. (4.19)

First, taking logarithms in (4.18), gives:

log
C2

C(A,B,α)
+ logk + 1

2
log

(
npm

max

)≤ kε3/2
(

− 1

C(A,B,α)
+

√
npm

max

C2
√

εk3

)
.

Next, √
npm

max

C2
√

εk3
≥
√

(npm
max)

1−3/α

A3/2αC2
,

so if α > 3, then there exists a constant C(A,B,α) > 0, satisfying (4.18). In fact, here
C(A,B,α) just needs to be such that

log
A1/αC2

C(A,B,α)
+ 1

C(A,B,α)
≤ α + 2

α − 3

(
1 − log

A3/2αC2(α + 2)

α − 3

)
,

which forces

C(A,B,α) ≥ C max
(
A2/α,1

)α + 2

α − 3
exp

(
α + 2

α − 3

)
, (4.20)

for a large enough absolute constant C > 0.
Second, taking logarithms in (4.16), gives:

log
C1

C(A,B,α)
+ log

(
pm

2nd
√

n√
kpm

max

)
≤ − kε3/2

C(A,B,α)
+ log ε.

From (1.23) and the assumption kε3/2 ≥ 1, in order for (4.16) to hold true, C(A,B,α) needs to
satisfy

log
C1

√
B

C(A,B,α)
− k

2
≤ − k

C(A,B,α)
− 2

3
logk,
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which further forces

C(A,B,α) ≥ C max(
√

B,1), (4.21)

with the absolute constant C large enough.
For (4.17), as we did with (4.6), and under the condition kα/pm

max ≤ An with α > 3, we need:

C(A,B,α) ≥ C max
(
A10/3α,1

)3α + 3

3α − 7
exp

(
3α + 3

3α − 7

)
, (4.22)

with the absolute constant C large enough. Finally, (4.19) is easily satisfied since kε3/2 ≥ 1.
Moreover, when kε3/2 < 1, then (1.24) holds, given C > 0 large enough. Combining (4.20),
(4.21) and (4.22), choosing

C(A,B,α) = C max
(
A10/3α,1

)
max(

√
B,1)

α + 2

α − 3
exp

(
α + 2

α − 3

)
,

with C > 0, some large enough absolute constant, then (1.24) holds under the given conditions.
Likewise, we can prove (1.26).

Appendix: Large deviations for the spectrum of the traceless
GUE

For any integer m ≥ 2, let the random matrix X be an element of the m × m GUE. Let
(λ1, λ2, . . . , λm) be the spectrum of X, and let

(ξ1, ξ2, . . . , ξm) = 1√
m

(λ1, λ2, . . . , λm).

The joint probability density of (ξ1, ξ2, . . . , ξm) is given by

φm(ξ1, ξ2, . . . , ξm) = 1

Zm

exp

(
−m

2

m∑
i=1

ξ2
i

) ∏
1≤i<j≤m

(ξi − ξj )
2, (A.1)

where

Zm = (2π)m/2m−m2/2
m∏

j=1

j !, (A.2)

see Theorem 2.5.2 in [1] and also Theorem 3.3.1 in [25].
Let (λ0

1, λ
0
2, . . . , λ

0
m) be the spectrum of X− tr(X)/m, an element of the m×m traceless GUE,

and again, let

(
ξ0

1 , ξ0
2 , . . . , ξ0

m

)= 1√
m

(
λ0

1, λ
0
2, . . . , λ

0
m

)
.
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The joint distribution function of (ξ0
1 , ξ0

2 , . . . , ξ0
m) is given by

P
(
ξ0

1 ≤ s1, ξ
0
2 ≤ s2, . . . , ξ

0
m ≤ sm

)
(A.3)

= √
2π

∫
L(s1,...,sm)

φm(x1, x2, . . . , xm)dx1 · · · dxm−1,

where

L(s1, . . . , sm) :=
{

x = (x1, . . . , xm) ∈R
m :

m∑
i=1

xi = 0, and xi ≤ si ,

for each i = 1, . . . ,m

}
.

Let (ξm
1 , ξm

2 , . . . , ξm
m ) be the non-increasing rearrangement of (ξ1, ξ2, . . . , ξm), and let (ξ

m,0
1 ,

ξ
m,0
2 , . . . , ξ

m,0
m ) be the non-increasing rearrangement of (ξ0

1 , ξ0
2 , . . . , ξ0

m), then, for example,
see [17], (

ξm
1 , ξm

2 , . . . , ξm
m

) L= (
ξ

m,0
1 , ξ

m,0
2 , . . . , ξm,0

m

)+ gmem, (A.4)

where gm is a centered Gaussian random variable with variance 1/m2, independent of the vector
(ξ

m,0
1 , ξ

m,0
2 , . . . , ξ

m,0
m ), and where em = (1,1, . . . ,1).

As shown in [8], the law of the spectral measure μ̂m = 1
m

∑m
i=1 δξi

satisfies a large deviation
principle on the set P(R) of probability measures on R, and with good rate function I , in the
scale m2. Moreover, I is given by

I (μ) = 1

2

∫
x2μ(dx) −

∫ ∫
log |x − y|μ(dx)μ(dy) − 3

4
, (A.5)

and its unique minimizer is the semicircular probability measure

σ(dx) = 1

2π
1|x|≤2

√
4 − x2 dx.

Based on this LDP for μ̂m, the LDP for the largest (or r th largest) eigenvalue of the GOE
with an explicit rate function is obtained in [7] and [3] (see also [19] for generalizations). Fol-
lowing the approach and the techniques developed there, and taking into account (A.4), we get a
multidimensional LDP for the first r eigenvalues of the traceless GUE:

Theorem A.1. Let r ∈N, on Lr := {(x1, x2, . . . , xr ) ∈ R
r :x1 ≥ x2 ≥ · · · ≥ xr}, (ξ

m,0
1 , ξ

m,0
2 , . . . ,

ξ
m,0
r ) satisfies a LDP with speed m and a good rate function

Ir (x1, x2, . . . , xr ) =

⎧⎪⎨
⎪⎩2

r∑
i=1

∫ xi

2

√
(z/2)2 − 1 dz, if x1 ≥ x2 ≥ · · · ≥ xr ≥ 2,

+∞, otherwise.
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Proof. Let

Qm(dξ1,dξ2, . . . ,dξm) = 1

Zm

exp

(
−m

2

m∑
i=1

ξ2
i

) ∏
1≤i<j≤m

(ξi − ξj )
2

m∏
i=1

dξi .

From [7], (ξm
1 , ξm

2 , . . . , ξm
r ) satisfies a LDP with speed m and rate function Ir on Lr . To prove

the validity of the same results for (ξ
m,0
1 , ξ

m,0
2 , . . . , ξ

m,0
r ), it is enough to show that

lim sup
m→∞

1

m
logQm

(
ξm,0
r ≤ x

)= −∞, (A.6)

for any x < 2, and since Ir (x1, x2, . . . , xr ) is continuous, increasing in each individual variable,
on Lr ∩ [2,∞)r ,

lim
m→∞

1

m
logQm

(
ξ

m,0
1 ≥ x1, . . . , ξ

m,0
r ≥ xr

)= −2
r∑

i=1

∫ xi

2

√
(z/2)2 − 1 dz, (A.7)

for all x1 ≥ x2 ≥ · · · ≥ xr ≥ 2.
First, for x < 2, let δ = 2 − x, so

Qm

(
ξm,0
r ≤ x

) ≤ Qm

(
ξm,0
r + gm ≤ x + δ/2

)+ P(gm ≥ δ/2)
(A.8)

= Qm

(
ξm
r ≤ x + δ/2

)+ P(gm ≥ δ/2).

Since,

P(gm ≥ δ) ∼ 1√
2πmδ

e−m2δ2/2, as m → ∞, (A.9)

(A.6) follows. For (A.7), fix x1 ≥ x2 ≥ · · · ≥ xr ≥ 2, for any 0 < ε < xr , we have

lim sup
m→∞

1

m
logQm

(
ξ

m,0
1 ≥ x1, . . . , ξ

m,0
r ≥ xr

)

≤ lim sup
m→∞

1

m
log

(
Qm

(
ξm

1 ≥ x1 − ε, . . . , ξm
r ≥ xr − ε

)+ P(gm ≥ ε)
)
.

Moreover,

Qm

(
ξm

1 ≥ x1 − ε, . . . , ξm
r ≥ xr − ε

)= exp
{−m

(
Ir (x1 − ε, x2 − ε, . . . , xr − ε) + o(1)

)}
,

where o(1) goes to 0 as m goes to infinity. So for fixed 0 < ε < xr ,

P(gm ≥ ε)

Qm(ξm
1 ≥ x1 − ε, . . . , ξm

r ≥ xr − ε)
→ 0, m → ∞,
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hence,

lim sup
m→∞

1

m
logQm

(
ξ

m,0
1 ≥ x1, . . . , ξ

m,0
r ≥ xr

)≤ −Ir(x1 − ε, x2 − ε, . . . , xr − ε).

Likewise,

lim inf
m→∞

1

m
logQm

(
ξ

m,0
1 ≥ x1, . . . , ξ

m,0
r ≥ xr

)≥ −Ir(x1 + ε, x2 + ε, . . . , xr + ε),

and letting ε → 0, the continuity of the rate function leads to (A.7). �

For any μ ∈ P(R), construct a discrete approximation via

xm
i = inf

{
x ∈R :μ

(
(−∞, x])≥ i

m + 1

}
, 1 ≤ i ≤ m, (A.10)

and μm =∑m
i=1 δxm

i
/m (note that the choice of the length 1/(m + 1) of the intervals rather that

1/m is only made in order to ensure that xm
m is finite). Using these discrete constructions, set:

X =
{

μ ∈P(R) :
1√
m

m∑
i=1

xm
i → 0, as m → ∞

}
(A.11)

and

P0(R) =
{
μ ∈P(R) :

∫
xμ(dx) = 0

}
. (A.12)

Since the condition in (A.11) ensures that μ has mean zero, it is clear that X is a proper subset
of P0(R). With the above, and the arguments and results in [8], the large deviation principle for
the spectral measure of the traceless GUE follow:

Theorem A.2. The spectral measure μ̂m
0 =∑m

i=1 δξ0
i
/m satisfies a large deviation principle on

X in the scale m2 and with the good rate function I .

Proof. Since this proof closely follows [8], it is just sketched here. Write the density of the
eigenvalues as:

Qm

(
dξ0

1 ,dξ0
2 , . . . ,dξ0

m

)
=

√
2π

Zm

exp

(
−m2

∫ ∫
x �=y

f (x, y)μ̂m
0 (dx)μ̂m

0 (dy)

) m∏
i=1

e−ξ0
i

2
/2 dξ0

1 · · · dξ0
m−1,

where ξ0
m = −∑m−1

i=1 ξ0
i and

f (x, y) = 1
4

(
x2 + y2)− log |x − y|.
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Let Q̄m be the non-normalized positive measure Q̄m = ZmQm/
√

2π. Via Stirling’s formula,

lim
m→∞

1

m2
log

√
2π

Zm

= 1

2
−
∫ 1

0
x logx dx = 3

4
, (A.13)

so if under Q̄m, μ̂m
0 satisfies a large deviation with rate function

J (μ) =
∫ ∫

f (x, y)μ(dx)μ(dy), (A.14)

then combined with (A.13), this will lead to the statement of the theorem.
First, observe that for any Borel subset A ⊂X , any N ∈ R

+,

lim sup
m→∞

1

m2
log

(
Q̄m

(
μ̂m

0 ∈ A
))≤ − inf

μ∈A

(∫ ∫ (
f (x, y) ∧ N

)
μ(dx)μ(dy)

)
. (A.15)

Moreover, from arguments as in [8], the sequence (μ̂m
0 )m∈N is exponentially tight under Q̄m

on X . So we just need to prove that (μ̂m
0 )m∈N satisfies a weak large deviation principle with

rate function J (μ) under the measure Q̄m. The upper bound is clear. Indeed, μ → ∫∫
(f (x, y) ∧

N)μ(dx)μ(dy) is continuous on X , therefore (A.15) implies that for any μ ∈X ,

lim sup
δ→0

lim sup
m→∞

1

m2
log

(
Q̄m

(
μ̂m

0 ∈ B(μ, δ)
))≤ −

∫ ∫ (
f (x, y) ∧ N

)
μ(dx)μ(dy),

where B(μ, δ) is the open ball of center μ and radius δ, with respect to the distance given by

d(μ1,μ2) = sup
g∈Lipb(1)

∣∣∣∣
∫

g dμ1 −
∫

g dμ2

∣∣∣∣, μ1,μ2 ∈X ,

where for some fixed b > 0,

Lipb(1) = {
g :R → R :‖g‖Lip ≤ 1,‖g‖∞ ≤ b

}
,

are bounded Lipschitz functions. Then, by monotone convergence,

lim sup
δ→0

lim sup
m→∞

1

m2
log

(
Q̄m

(
μ̂m

0 ∈ B(μ, δ)
))≤ −

∫ ∫
f (x, y)μ(dx)μ(dy), (A.16)

finishing the proof of the upper bound.
To prove the lower bound, let ν ∈ X . Since I (ν) = +∞ if ν has an atom, assume without

loss of generality that ν is atomless. As in (A.10), let νm = ∑m
i=1 δxm

i
/m. Now, as m → ∞, νm

converges weakly, with probability one, towards ν. Hence, for any δ > 0 and m large enough,
setting 
m := {ξ0

1 ≤ ξ0
2 ≤ · · · ≤ ξ0

m},
Q̄m

(
μ̂m

0 ∈ B(ν, δ)
)

≥ Q̄m

({
max

1≤i≤m−1

∣∣ξ0
i − xm

i

∣∣< δ

2
√

m

}
∩ 
m

)
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≥
∫
T (ξ1,...,ξm)

exp

(
−m

2

m∑
i=1

(
ξi + xm

i

)2

) ∏
1≤i<j≤m

∣∣ξi − ξj + xm
i − xm

j

∣∣2 m−1∏
i=1

dξi

≥
∏

i+1<j

∣∣xm
i − xm

j

∣∣2 ×
m−1∏
i=1

∣∣xm
i+1 − xm

i

∣∣ exp

{
−m

2

m−1∑
i=1

(∣∣xm
i

∣∣+ δ√
m

)2
}

× ∣∣xm
m − xm

m−1

∣∣ exp

(
−m

(
m−1∑
i=1

xm
i

)2

− m2δ2

)∫
T (ξ1,...,ξm)

m−2∏
i=1

|ξi+1 − ξi |
m−1∏
i=1

dξi, (A.17)

where

T (ξ1, . . . , ξm)

:=
{

max
1≤i≤m−1

|ξi | < δ

2
√

m
,ξ1 ≤ ξ2 ≤ · · · ≤ ξm,

m∑
i=1

ξi +
m∑

i=1

xm
i = 0

}
.

The last term on the right-hand side of (A.17) can be lower-bounded by changing variables:
ξ1 = x1 and ξi − ξi−1 = xi,2 ≤ i ≤ m − 1. Next, let

R(x1, . . . , xm−1)

:=
{
− δ

2
√

m
≤ x1 ≤ − δ

4
√

m
,0 ≤ xi ≤ − δ

4m2
,2 ≤ i ≤ m − 1

}
.

Recalling that,
∑m

i=1 xm
i /m → 0,

∫
T (ξ1,...,ξm)

m−2∏
i=1

|ξi+1 − ξi |
m−1∏
i=1

dξi ≥
∫
R(x1,...,xm−1)

m−1∏
i=2

|xi |
m−1∏
i=1

dxi

(A.18)

≥ δ

4
√

m

(
1

2

(
δ

4m2

)2)m−2

.

Hence,

Q̄m

(
μ̂m

0 ∈ B(ν, δ)
)

≥
∏

i+1<j

∣∣xm
i − xm

j

∣∣2 m−1∏
i=1

∣∣xm
i+1 − xm

i

∣∣ exp

(
−m

2

m∑
i=1

(
xm
i

)2

)
(A.19)

× ∣∣xm
m − xm

m−1

∣∣ δ

4
√

m

(
1

2

(
δ

4m2

)2)m−2

exp

(
−√

mδ

m∑
i=1

∣∣xm
i

∣∣− δ2

)
.



Large deviations Young diagrams 1531

Now by arguments as in [8],

lim inf
δ→0

lim inf
m→∞

1

m2
log

(
Q̄m

(
μ̂m

0 ∈ B(ν, δ)
))≥ −

∫ ∫
f (x, y)ν(dx)ν(dy). (A.20)

Combining (A.16) and (A.20), establishes the weak large deviation principle, finishing the proof
of the theorem. �

We are now ready to give the large deviations for ξ
m,0
1 when on the left of its mean. To

do so, let us introduce some notations: Let M((−∞, x]) be the set of all probability mea-
sures on (−∞, x], x ∈ R, let MX ((−∞, x]) = M((−∞, x]) ∩ X , and let M0((−∞, x]) =
M((−∞, x]) ∩P0(R). Since {ξm,0

1 ≤ x} = {μ̂m
0 ∈MX ((−∞, x])}, then for any x ≤ 2,

lim
m→∞

1

m2
logP

(
ξ

m,0
1 ≤ x

)= − inf
μ∈MX ((−∞,x])

I (μ). (A.21)

For each x ∈R, let

K(x) = inf
μ∈M0((−∞,x])

I (μ). (A.22)

When x ≥ 2, the semicircular law σ is both in MX ((−∞, x]) and M0((−∞, x]), and so
infμ∈MX ((−∞,x]) I (μ) = K(x) = I (σ ) = 0. Moreover, when x ≤ 0, and since both MX ((−∞,

x]) and M0((−∞, x]) are empty, infμ∈MX ((−∞,x]) I (μ) = K(x) = I (σ ) = +∞.
When 0 < x ≤ 2, and from arguments as in [18], it is next shown that K is continuous. Indeed,

for any y < 0 and 0 < x ≤ 2, let

Jμ(y, x) = 1

2

∫ x

y

u2μ(du) −
∫ x

y

∫ x

y

log |u − t |μ(du)μ(dt) − 3

4
, (A.23)

and let νx be the minimizer of I (μ) on M0((−∞, x]). Then, for any 0 < ε < x,

K(x) ≤ K(x − ε) ≤ Jνx (yε, x − ε)

ν2
x([yε, x − ε]) , (A.24)

where yε is the value for which ∫ x−ε

yε

t dνx(t) = 0.

Since, as ε → 0, the right-hand side of (A.24) converges to K(x), K is left continuous.
To show the right continuity, note that by a simple change of variables,

K(x) = inf
μ∈M0((−∞,x+ε])

J ε
μ(x),

where

J ε
μ(x) = 1

2

∫ x+ε

−∞
(u − ε)2μ(du) −

∫ x+ε

−∞

∫ x+ε

−∞
log |u − t |μ(du)μ(dt) − 3

4
.
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Therefore,

0 ≤ K(x) − K(x + ε) ≤ J ε
νx+ε

(x) − K(x + ε) = ε2

2
,

and the right continuity of K follows. Likewise, infμ∈MX ((−∞,x]) I (μ) is right-continuous with
respect to x.

Next we need a result which, when combined with (A.21), gives

lim
m→∞

1

m2
logP

(
ξ

m,0
1 ≤ x

)= −K(x), (A.25)

for any x ≤ 2. This is the purpose of our next lemma whose statement as well as proof benefited
from Ionel Popescu help.

Lemma A.1. For any x ∈R,

inf
μ∈MX ((−∞,x])

I (μ) = K(x). (A.26)

Proof. For x ≥ 2, both sides of (A.26) are equal to zero and so we just need to consider the case
x < 2. First, since X is a proper subset of P0(R),

K(x) ≤ inf
μ∈MX ((−∞,x])

I (μ). (A.27)

Next, let us show that

K(x) ≥ inf
μ∈MX ((−∞,x])

I (μ). (A.28)

By Theorem 1.10 and Theorem 1.11 of Chapter IV of [28], there exists a unique probability mea-
sure, μ0, minimizing I (μ), for all μ ∈ M0((−∞, x]), and its support is an interval, [a, b], with
b ≤ x. Since μ0 is atomless, its distribution function F is continuous, increasing with F(a) = 0
and F(b) = 1. Moreover, since μ0 has mean zero,

∫ 1
0 F−1(x)dx = 0, where F−1, the inverse of

F , is continuous and increasing on [0,1], with F−1(0) = a and F−1(1) = b.
Now for any integer n ≥ 2, construct an approximation to F−1 as follows: For i/n ≤ x ≤

(i + 1)/n, let

G+
n (x) =

⎧⎪⎨
⎪⎩

n

(
F−1

(
i + 2

n

)(
x − i

n

)
+ F−1

(
i + 1

n

)(
i + 1

n
− x

))
, if 0 ≤ i ≤ n − 2,

b + x − i

n
, if i = n − 1,

and let,

G−
n (x) =

⎧⎪⎨
⎪⎩

n

(
F−1

(
i

n

)(
x − i

n

)
+ F−1

(
i − 1

n

)(
i + 1

n
− x

))
, if 1 ≤ i ≤ n − 1,

a + x − i + 1

n
, if i = 0.
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From this construction,
∫ 1

0 G+
n (x)dx > 0 and

∫ 1
0 G−

n (x)dx < 0. Next, let

γ +
n = − ∫ 1

0 G−
n (x)dx∫ 1

0 G+
n (x)dx − ∫ 1

0 G−
n (x)dx

, γ −
n =

∫ 1
0 G+

n (x)dx∫ 1
0 G+

n (x)dx − ∫ 1
0 G−

n (x)dx
,

and let

Gn(x) = γ +
n G+

n (x) + γ −
n G−

n (x).

Then, ∫ 1

0
Gn(x)dx = 0,

and since Gn is piece-wise linear, it is Lipschitz. Let μn be the probability measure whose distri-
bution function is G−1

n . The Lipschitz continuity of Gn yields that μn ∈ X , for any n ≥ 2. From
its very construction, μn is supported on [a − 1/n, b + 1/n], and μn converges to μ0 weakly, as
n → ∞, and thus

lim
n→∞

∫
x2μn(dx) =

∫
x2μ0(dx). (A.29)

For the second term on the right-hand side of (A.5),∫ ∫
log |x − y|μ(dx)μ(dy) = 2

∫ ∫
x<y

log(y − x)μ(dx)μ(dy), (A.30)

let

1

n2

∑
i<j

log

(
F−1

(
j + 1

n

)
− F−1

(
i

n

))
+ 1

2n2

n−1∑
i=0

log

(
F−1

(
i + 1

n

)
− F−1

(
i

n

))
(A.31)

and

1

n2

∑
i<j

log

(
Gn

(
j + 1

n

)
− Gn

(
i

n

))
+ 1

2n2

n−1∑
i=0

log

(
Gn

(
i + 1

n

)
− Gn

(
i

n

))
, (A.32)

be respectively Riemann sums approximations of
∫∫

x<y
log(y − x)μ0(dx)μ0(dy) and∫∫

x<y
log(y − x)μn(dx)μn(dy). For any 0 ≤ i ≤ j ≤ n − 1,

log

(
Gn

(
j + 1

n

)
− Gn

(
i

n

))
(A.33)

≥ γ +
n log

(
G+

n

(
j + 1

n

)
− G+

n

(
i

n

))
+ γ −

n log

(
G−

n

(
j + 1

n

)
− G−

n

(
i

n

))
,
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and moreover, for any 1 ≤ i ≤ j ≤ n − 2,

log

(
Gn

(
j + 1

n

)
− Gn

(
i

n

))

≥ γ +
n log

(
F−1

(
j + 2

n

)
− F−1

(
i + 1

n

))
(A.34)

+γ −
n log

(
F−1

(
j

n

)
− F−1

(
i − 1

n

))
.

If
∫∫

x<y
log(y −x)μ0(dx)μ0(dy) = −∞, (A.28) is trivially true, so let us assume that this last

integral is finite. Moreover, since γ +
n + γ −

n = 1,

lim inf
n→∞

(
−
∫ ∫

log |x − y|μn(dx)μn(dy)

)
≤ −

∫ ∫
log |x − y|μ0(dx)μ0(dy), (A.35)

and combining (A.29) and (A.35),

lim inf
n→∞ I (μn) ≤ I (μ0).

Since μn is supported on [a − 1/n, b + 1/n] and from the right continuity (in x) of
infμ∈MX ((−∞,x]) I (μ),

K(x) ≥ inf
μ∈MX ((−∞,x])

I (μ),

which finishes the proof. �

To finish this Appendix, the large deviations for the first r eigenvalues of the traceless GUE,
when at least one of them is on the left of the asymptotic mean, is established:

Corollary A.1. For xr ≤ xr−1 ≤ · · · ≤ x1, and xr ≤ 2,

lim
m→∞

1

m2
logP

(
ξ

m,0
1 ≤ x1, . . . , ξ

m,0
r ≤ xr

)= −K(xr).

Proof. Next, let (ξ
m,0
1 , ξ

m,0
2 , . . . , ξ

m,0
m ) be the non-increasing rearrangement of (ξ0

1 , ξ0
2 , . . . , ξ0

m),
and set

L := P
(
ξ

m,0
1 ≤ x1, . . . , ξ

m,0
r ≤ xr

)
,

M := P
(
ξ0

1 ≤ x1, . . . , ξ
0
r ≤ xr , ξ

0
r+1 ≤ xr , . . . , ξ

0
m ≤ xr

)
.

Then,

M ≤ L ≤ m!
(m − r + 1)!(r − 1)!B ≤ mrM, (A.36)
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and therefore,

lim
m→∞

1

m2
logL = lim

m→∞
1

m2
logM. (A.37)

Changing variables:

ξ0
i − (xi − xr) = ηi, for 1 ≤ i ≤ r − 1,

ξ0
i = ηi, for r ≤ i ≤ m,

and so,

M = P(ηi ≤ xr ,1 ≤ i ≤ m).

Considering the two measures
∑m

i=1 δξ0
i
/m and

∑m
i=1 δηi

/m, for any bounded Lipschitz function
g (with ‖g‖Lip ≤ 1), then as m → ∞,

1

m

∣∣∣∣∣
m∑

i=1

g
(
ξ0
i

)−
m∑

i=1

g(ηi)

∣∣∣∣∣≤ 1

m

m∑
i=1

∣∣ξ0
i − ηi

∣∣−→ 0.

Therefore,
∑m

i=1 δξ0
i
/m and

∑m
i=1 δηi

/m are exponentially equivalent, and Theorem A.2 also
applies to the latter (see Theorem 4.2.13 in [12]). So from (A.25), it follows that

lim
m→∞

1

m2
logM = −K(xr),

and (A.37) finishes the proof. �
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