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Ridge regression and asymptotic
minimax estimation over spheres of
growing dimension
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We study asymptotic minimax problems for estimating a d-dimensional regression parameter over spheres
of growing dimension (d → ∞). Assuming that the data follows a linear model with Gaussian predictors
and errors, we show that ridge regression is asymptotically minimax and derive new closed form expressions
for its asymptotic risk under squared-error loss. The asymptotic risk of ridge regression is closely related
to the Stieltjes transform of the Marčenko–Pastur distribution and the spectral distribution of the predictors
from the linear model. Adaptive ridge estimators are also proposed (which adapt to the unknown radius of
the sphere) and connections with equivariant estimation are highlighted. Our results are mostly relevant for
asymptotic settings where the number of observations, n, is proportional to the number of predictors, that
is, d/n → ρ ∈ (0,∞).
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1. Introduction

Consider a linear model where the observed data consists of outcomes y1, . . . , yn ∈ R and
d-dimensional predictors x1, . . . ,xn ∈R

d that are related via the equation

yi = xT
i β + εi, i = 1, . . . , n; (1)

the d-dimensional vector β = (β1, . . . , βd)T ∈ R
d is an unknown parameter and ε1, . . . , εn ∈ R

are unobserved errors. To simplify notation, let y = (y1, . . . , yn)
T ∈ R

n, X = (x1, . . . ,xn)
T , and

ε = (ε1, . . . , εn)
T ∈ R

n. Then (1) may be rewritten as y = Xβ + ε.
In this paper, we study asymptotic minimax estimation of β over spheres of growing dimen-

sion (i.e., d → ∞), under the assumption that the data (y,X) are jointly Gaussian. This is a
variant of a problem considered by Goldenshluger and Tsybakov [31,32]; it is closely related to
the fundamental work of Pinsker [43] and others, for example, Belitser and Levit [5], Beran [7],
Golubev [33], on sharp asymptotic minimax estimation in the Gaussian sequence model. Taken
together, the results in this paper provide a new example where sharp asymptotic minimax es-
timation is possible; an example that illustrates connections between linear models with many
predictors and now classical results on the spectral distribution of large random matrices.
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1.1. Statement of problem

Let Ik denote the k × k identity matrix. We assume throughout that

x1, . . . ,xn
i.i.d.∼ N(0, Id) and ε ∼ N(0, In) (2)

are independent. More general models, where one might allow for positive definite Cov(xi ) = Σ

and arbitrary Var(εi) = σ 2 > 0, are discussed in Section 1.4.
Given an estimator β̂ = β̂(y,X) of β , define the risk under squared-error loss

R(β̂,β) = Eβ

(‖β̂ − β‖2), (3)

where ‖ · ‖ denotes the �2-norm. The expectation in (3) is taken with respect to the joint distribu-
tion of (X,ε) and the subscript β in Eβ indicates that y = Xβ + ε (for expectations that do not
involve y, we will often omit the subscript). We emphasize that the expectation in (3) is taken
over the predictors X as well as the errors ε; in other words, rather than conditioning on X, (3) is
the unconditional risk under squared-error loss.

Let Sd−1(τ ) = {β ∈ R
d; ‖β‖ = τ } be the sphere of radius τ ≥ 0 in R

d centered at the origin.
The minimax risk for estimating β over Sd−1(τ ) is given by

r(τ ) = rd,n(τ ) = inf
β̂

sup
β∈Sd−1(τ )

R(β̂,β), (4)

where the infimum in (4) is taken over all measurable estimators β̂ = β̂(y,X).
The minimax problem determined by (4) is the main focus of this paper. Our analysis entails

(i) identifying and analyzing specific estimators β̂ such that supβ∈Sd−1(τ ) R(β̂,β) ≈ r(τ ), and
(ii) obtaining accurate closed-form approximations for r(τ ), while focusing on settings where d

is large.

1.2. Overview of results

To better orient the reader, we give a brief section-by-section overview of the paper. We conclude
this section with an additional comment on the nature of the asymptotic results derived herein.

Section 2: Ridge regression. Ridge regression (Hoerl and Kennard [35] and Tihonov [50]) is
a widely studied regularized estimation method whose use has been advocated in various set-
tings where d is large or X is ill-conditioned. Our analysis in Section 2 yields a simple formula
for the optimal ridge regularization parameter and a new closed-form expression for the asso-
ciated ridge estimator’s asymptotic risk. More specifically, we show that if d/n → ρ ∈ (0,∞),
then the asymptotic risk of the ridge estimator is closely related to the Stieltjes transform of
the Marčenko–Pastur distribution (Marčenko and Pastur [39]), which plays a prominent role
in random matrix theory, for example, Bai et al. [2], El Karoui [28], Silverstein [46]. Set-
tings where d/n → 0 and d/n → ∞ are also considered. Our results for ridge regression
immediately provide an upper bound on r(τ ), in the usual way: It is clear from (4) that
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r(τ ) ≤ supβ∈Sd−1(τ ) R(β̂,β) for all estimators β̂; taking β̂ to be the specified ridge estimator
gives the desired upper bound.

Section 3: An equivalent Bayes problem. An equivariance argument implies that r(τ ) is equal
to the Bayes risk for estimating β under the prior distribution β ∼ πSd−1(τ ), where πSd−1(τ ) de-
notes the uniform distribution on Sd−1(τ ) (this is an application of well-known results on equiv-
ariance, e.g., Chapter 6 of Berger [8], and is essentially an illustration of the Hunt–Stein theorem
(Bondar and Milnes [11])). Additionally, we argue that when d is large, the Bayes risk for es-
timating β under the prior distribution β ∼ πSd−1(τ ) is close to the Bayes risk for estimating β

under a normal prior distribution, which coincides with the risk of ridge regression. We conclude
that the risk of ridge regression is asymptotically equivalent to r(τ ) and that ridge regression is
asymptotically optimal for estimation over Sd−1(τ ).

Section 4: An adaptive ridge estimator. The ridge regression estimator β̂r (τ ) that is asymp-
totically optimal over Sd−1(τ ) depends on the radius τ = ‖β‖, which is typically unknown.
Replacing τ with an estimate, we obtain an adaptive ridge estimator that does not depend on τ ,
but is asymptotically equivalent to β̂r (τ ). It follows that the adaptive ridge estimator is adaptive
asymptotic minimax over spheres Sd−1(τ ), provided τ 2 
 n−1/2. Additionally, we show that the
adaptive ridge estimator is asymptotically optimal among the class of all estimators for β that
are equivariant with respect to orthogonal transformations of the predictors, as d → ∞.

Proofs may be found in the Appendices.
Note on asymptotics. Throughout the paper, our asymptotic analysis is focused on settings

where d → ∞. We typically assume that n → ∞ along with d and that d/n → ρ ∈ [0,∞]. It
will become apparent below that most of the “action” occurs when 0 < ρ < ∞. Indeed, one of
the implications of our results is that if 0 < ρ < ∞, then the minimax risk r(τ ) is influenced
by the spectral distribution of the empirical covariance matrix n−1XT X. On the other hand,
if ρ = 0, then the behavior of r(τ ) is more standard. If ρ = ∞, then we will show that it is
impossible to out-perform the trivial estimator β̂null = 0 for estimation over Sd−1(τ ); note the
contrast with sparse estimation problems, where β is assumed to be sparse and it may be possible
to dramatically out-perform β̂null when d/n → ∞, for example, Bickel et al. [10], Bunea et al.
[18], Candes and Tao [19], Raskutti et al. [44], Ye and Zhang [52], Zhang [54].

1.3. Relationship to existing work

The minimax problem (4) is closely related to problems considered by Goldenshluger and Tsy-
bakov [31,32], who studied minimax prediction problems over �2-ellipsoids{

β ∈ �2;
∞∑

k=1

a2
kβ

2
k ≤ L2

}
; L > 0, a = {ak},

in an infinite-dimensional linear model with independent (but not necessarily Gaussian) pre-
dictors. Goldenshluger and Tsykbakov’s results apply to classes of ellipsoids with various con-
straints on a = {ak} and L. Taking L = τ , a1 = · · · = ad = 1, and ad+1 = ad+2 = · · · = ∞
(and following the convention that 0 × ∞ = 0), the results in Goldenshluger and Tsybakov
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[32] may be applied to obtain asymptotics for the minimax risk over the d-dimensional ball
Bd(τ) = {β ∈ R

d; ‖β‖ ≤ τ },
r̄(τ ) = inf

β̂

sup
β∈Bd(τ)

R(β̂,β); (5)

results in Goldenshluger and Tsybakov [31] yield adaptive estimators that are asymptotically
minimax over classes of balls Bd(τ). In Section 3.2, we show that r(τ ) ≈ r̄(τ ), when d is large
(see (12) below). Thus, Goldenshluger and Tsybakov’s results are clearly related to the results
presented here. However, as applied to balls Bd(τ), their results typically require that d/n → 0
(for instance, Theorem 1 of Goldenshluger and Tsybakov [32] requires that d = o{√n/ log(n)}
and Assumption 3 of Goldenshluger and Tsybakov [31] requires d = O{√n/ log(n)}). By con-
trast, the results in this paper apply in settings where d/n → ρ ∈ [0,∞], with the bulk of our
work focusing on 0 < ρ < ∞.

The analysis in this paper focuses on estimation over the sphere Sd−1(τ ), rather than the ball
Bd(τ); that is, we focus on the minimax problem (4), as opposed to (5). The ball Bd(τ) and other
star-shaped parameter spaces (e.g., ellipsoids or �p-balls) have been more frequently studied in
the literature on asymptotic minimax problems over restricted parameter spaces (Donoho and
Johnstone [26], Golubev [34], Nussbaum [42]). Evidently, the problems (4) and (5) are closely
related. However, analysis of (4) appears to be somewhat more complex; in particular, obtaining
lower bounds on r(τ ) seems more challenging. To justify our emphasis on the sphere Sd−1(τ ),
in Section 3.2, we show that asymptotics for r̄(τ ) follow easily from asymptotics for r(τ ). Ad-
ditionally, by studying estimation over the sphere, we are able to draw deeper connections with
equivariance than seem to be available if one focuses on the ball (e.g., Proposition 7 below).
A similar approach has been considered by Marchand [40] and Beran [7] in their analysis of the
finite-dimensional Gaussian sequence mode. In fact, one of the key technical results in this paper
(Theorem 2) is essentially a multivariate extension of Theorem 3.1 in Marchand [40]. While we
believe that the additional insights provided by studying minimax problems over the sphere jus-
tify the added complexity, we also note that more standard approaches to obtaining lower bounds
on the minimax risk over balls (see, e.g., Nussbaum [42] or Chapter 3 of Tsybakov [51]) may be
applied to obtain lower bounds for r̄(τ ) directly.

Finally in this section, we mention some of the existing work on random matrix theory that
is especially relevant for our analysis of ridge regression in Section 2. Theorem 1 in Section 2.2
relies heavily on now classical results that describe the asymptotic behavior of the empirical
distribution of the eigenvalues of n−1XT X in high dimensions (Bai [1], Bai et al. [2], Marčenko
and Pastur [39]). Additionally, we point out that while other authors have alluded to the relevance
of random matrix theory for ridge regression (El Karoui and Kösters [29]), the results presented
here on ridge regression’s asymptotic risk seem to provide a greater level of detail than available
elsewhere, in the specified setting.

1.4. Distributional assumptions

The linear model (1) with distributional assumptions (2) is highly specialized. However, similar
models have been studied previously. Stein [48], Baranchik [3], Breiman and Freedman [13],
Brown [15] and Leeb [37] studied estimation problems for linear models with jointly Gaussian
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data, but, for the most part, these authors do not require Cov(xi ) = Id . Moreover, as discussed
in Section 1.3, the infinite-dimensional linear model considered by Goldenshluger and Tsybakov
[31,32] is similar to the model studied in this paper. For our purposes, one of the more significant
consequences of the normality assumption (2) is that the distributions of X and ε are invariant
under orthogonal transformations. This leads to substantial simplifications in many of the ensuing
calculations. Results in El Karoui and Kösters [29] suggest that a general approach to relaxing
some of the distributional assumptions made in this paper may be feasible, but this is not pursued
further here.

We point out that the assumption E(xi ) = 0, which is implicit in (2), is not particularly lim-
iting: If E(xi ) �= 0, then we can reduce to the mean 0 case by centering and de-correlating
the data. The normality assumption (2) also requires Var(εi) = 1. If Var(εi) = σ 2 �= 1 and σ 2

is known, then this can be reduced to the case where Var(εi) = 1 by transforming the data
(y,X) 
→ (y/σ,X); the corresponding transformation for the parameters β , σ 2 is given by
(β, σ 2) 
→ (β/σ,1) and the risk function should be scaled by σ 2, as well (ultimately in this sce-
nario, most of the results in this paper remain valid except that the signal-to-noise ratio ‖β‖2/σ 2

replaces the signal strength ‖β‖2). If σ 2 is unknown and d/n → ρ < 1, then σ 2 may be ef-
fectively estimated by σ̂ 2 = (n − d)−1‖y − Xβ̂ols‖2, where β̂ols = (XT X)−1XT y is the ordi-
nary least squares (OLS) estimator; one can subsequently reduce to the case where Var(εi) = 1.
(Throughout, if the square matrix A is not invertible, then we take A−1 to be its Moore–Penrose
pseudoinverse; typically, the matrices we seek to invert will be invertible with probability 1.) Re-
cent work suggests that σ 2 may also be effectively estimated when d > n. Fan et al. [30] and Sun
and Zhang [49] propose methods for estimating σ 2 when d > n and β is sparse (see also related
work by Belloni et al. [6] and Dalalyan and Chen [20] on estimating β in high dimensions when
σ 2 is unknown); Dicker [25] considers estimating σ 2 when d > n and β is not sparse.

Under the Gaussian assumption (2), the predictors xi are uncorrelated at the population level,
that is, Cov(xi ) = Id . The results in this paper are easily adapted to settings where Cov(xi ) = Σ

is a known positive definite matrix by transforming the data (y,X) 
→ (y,XΣ−1/2), and making
corresponding transformations of the parameters and risk function. If Cov(xi ) = Σ is unknown,
but Σ̂ is an operator norm consistent estimator, then it is straigthforward to check that most of
our asymptotic results remain valid, mutatis mutandis, for the transformed data (y,XΣ̂−1/2). On
the other hand, in high-dimensional settings where d/n → ρ > 0, an operator norm consistent
estimator for Σ may not exist. In Dicker [24], the author considers a prediction problem closely
related to the estimation problem considered in this paper, with unknown Cov(xi ) = Σ ; the
author identifies an asymptotically optimal equivariant estimator and derives expressions for the
estimator’s asymptotic risk (Theorems 2–3 and Corollary 1 of Dicker [24]). One interpretation
of the results in Dicker [24] is that they quantify the loss in efficiency of equivariant estimators
when Cov(xi ) = Σ is unknown, as compared to the results presented here for the case where
Cov(xi ) = Id is known.

2. Ridge regression

Define the ridge regression estimator

β̂r (t) = (
XT X + d/t2Id

)−1
XT y, t ∈ [0,∞].
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The parameter t is referred to as the “regularization” or “ridge” parameter and is subject to further
specification. By convention, we take β̂r (0) = 0 and β̂r (∞) = β̂ols = (XT X)−1XT y to be the
OLS estimator.

2.1. The oracle ridge estimator

Our first result identifies the optimal ridge parameter t and yields an oracle ridge estimator with
minimal risk. A simplified expression for the oracle ridge estimator’s risk is also provided.

Proposition 1. Suppose that β ∈ Sd−1(τ ). Then

R
{
β̂r (τ ),β

} = inf
t∈[0,∞]R

{
β̂r (t),β

} = E
[
tr
{(

XT X + d/τ 2Id

)−1}]
. (6)

Corollary 1. Suppose that τ ≥ 0. Then

r(τ ) ≤ sup
β∈Sd−1(τ )

R
{
β̂r (τ ),β

} = E
[
tr
{(

XT X + d/τ 2Id

)−1}]
.

Proposition 1 is proved in Appendix A and it implies that the optimal ridge parameter is
given by the signal strength τ = ‖β‖. Notice that the risk of β̂r (τ ) is constant over the sphere
β ∈ Sd−1(τ ). Corollary 1, which gives an upper bound on r(τ ), follows immediately from Propo-
sition 1 and the definition of r(τ ).

In practice, the signal strength τ = ‖β‖ is typically unknown. Thus, with β ∈ Sd−1(τ ), β̂r (τ )

may be viewed as an oracle estimator. In cases where the signal strength is not prespecified,
Proposition 1 implies that β̂r (‖β‖) is the oracle estimator with minimal risk among ridge es-
timators. We will refer to both β̂r (τ ) and β̂r (‖β‖) as the oracle ridge estimator, according to
whether or not β ∈ Sd−1(τ ) has been specified in advance. In Section 4, we discuss adaptive
ridge estimators that utilize an estimate of the signal strength.

Expressions similar to those in Proposition 1 for the optimal ridge parameter and the risk ridge
estimators have appeared previously in the literature (see, e.g., the review article by Draper and
Van Nostrand [27]). However, other existing results on the risk of ridge estimators tend to either
(i) be significantly more complex than Proposition 1 or (ii) pertain to the Bayes risk of ridge
regression, assuming that β follows a normal prior distribution. Proposition 1 is a simple, yet
conclusive result for the optimal ridge parameter with respect to the frequentist risk R(β̂,β). Its
simplicity follows largely from the symmetry in our formulation of the problem; in particular,
we are focusing on unconditional risk and the distribution of X is orthogonally invariant.

2.2. Asymptotic risk

It appears that the risk formula (6) cannot be further simplified with ease. However, results from
random matrix theory yield a closed-form expression for the asymptotic risk. For ρ ∈ (0,∞), the
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Marčenko–Pastur density fρ is defined by

fρ(z) = max
{(

1 − ρ−1),0
}
δ0(z) + 1

2πρz

√
(b − z)(z − a)1(a,b)(z),

where a = (1 − √
ρ)2, b = (1 + √

ρ)2, δ0(·) is the Dirac delta, and 1(a,b)(·) is the indicator
function of the open interval (a, b). The density fρ determines the Marčenko–Pastur distribution,
which is the limiting distribution of the eigenvalues of n−1XT X, if n → ∞ and d/n → ρ ∈
(0,∞) (Marčenko and Pastur [39]); it also determines the corresponding cumulative distribution
function, Fρ(t) = ∫ t

−∞ fρ(z)dz. The Stieltjes transform of the Marčenko–Pastur distribution is
defined by

mρ(s) =
∫

1

z − s
fρ(z)dz =

∫
1

z − s
dFρ(z)

(7)

= − 1

2ρs

{
s + ρ − 1 +

√
(s + ρ − 1)2 − 4ρs

}
, s < 0.

The main result of this section implies that if β ∈ Sd−1(τ ), then the risk of the oracle ridge
estimator may be approximated by (d/n)md/n{−d/(nτ 2)}.

Theorem 1. Suppose that 0 < ρ− ≤ d/n ≤ ρ+ < ∞ for some fixed constants ρ−, ρ+ ∈R.

(a) If 0 < ρ− < ρ+ < 1 or 1 < ρ− < ρ+ < ∞ and |n − d| > 5, then

sup
β∈Sd−1(τ )

∣∣∣∣R{
β̂r (τ ),β

} − d

n
md/n

(
− d

nτ 2

)∣∣∣∣ = O

(
τ 2

1 + τ 2
n−1/2

)
.

(b) If 0 < ρ− < 1 < ρ+ < ∞, then

sup
β∈Sd−1(τ )

∣∣∣∣R{
β̂r (τ ),β

} − d

n
md/n

(
− d

nτ 2

)∣∣∣∣ = O
(
τ 2n−1/8).

Theorem 1 is proved in Appendix A. Since R{β̂r (τ ),β} is constant over β ∈ Sd−1(τ ), the
supremums in parts (a) and (b) of Theorem 1 are somewhat superfluous; however, they serve to
emphasize that the upper bounds do not depend on any particular value of β ∈ Sd−1(τ ).

Let 0 ≤ sd ≤ sd−1 ≤ · · · ≤ s1 denote the ordered eigenvalues of n−1XT X and define the em-
pirical cumulative distribution function Fn,d (s) = d−1 ∑d

j=1 1(−∞,sj ](s). There are two keys to

the proof of Theorem 1. The first is the observation that if β ∈ Sd−1(τ ), then, by Proposition 1,

n

d
R

{
β̂r (τ ),β

} = 1

d
E

[
tr

{(
1

n
XT X + d

nτ 2
Id

)−1}]
= E

{∫
1

s + d/(nτ 2)
dFn,d(s)

}
;

in other words, the risk of the oracle ridge estimator is the expected value of the Stieltjes trans-
form of Fn,d . The second key is Theorem 1.1 of Bai et al. [2], which states that under the condi-
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tions of Theorem 1,

sup
s∈R

∣∣E{
Fn,d(s)

} − Fd/n(s)
∣∣ =

{
O

(
n−1/2

)
if 0 < ρ− < ρ+ < 1 or 1 < ρ− < ρ+ < ∞,

O
(
n−1/8

)
if 0 < ρ− < 1 < ρ+ < ∞.

(8)

The different rates in (8) depending on whether or not ρ− < 1 < ρ+ helps to explain why these
situations are considered separately in Theorem 1 above; more fundamentally, the major differ-
ence between the two cases is that if d/n → 1 (corresponding to the setting where ρ− < 1 < ρ+),
then 0 is contained in the support of the continuous part of the Marčenko–Pastur distribution,
which complicates the analysis.

The asymptotic risk of the oracle ridge estimator, when d/n → ρ ∈ (0,∞), is given explicitly
in the following corollary, which follows immediately from Theorem 1.

Corollary 2. For ρ ∈ (0,∞) and τ ∈ [0,∞) define the asymptotic risk of the oracle ridge esti-
mator

Rr(τ, ρ) = 1

2ρ

[
τ 2(ρ − 1) − ρ +

√{
τ 2(ρ − 1) − ρ

}2 + 4ρ2τ 2
]
.

(a) If ρ ∈ (0,∞) \ {1}, then

lim
d/n→ρ

sup
β∈Rd

∣∣R{
β̂r

(‖β‖),β} − Rr

(‖β‖, d/n
)∣∣ = 0.

(b) If 0 ≤ T < ∞ is a fixed real number, then

lim
d/n→1

sup
β∈Rd ;

0≤‖β‖≤T

∣∣R{
β̂r

(‖β‖),β} − Rr

(‖β‖, d/n
)∣∣ = 0.

In Corollary 2 and throughout the paper, the notation limd/n→ρ indicates the limit as n → ∞
and d/n → ρ. Corollary 2 implies that if d/n → ρ ∈ (0,∞)\{1}, then the risk of the oracle ridge
estimator β̂r (‖β‖) converges to the asymptotic risk Rr(‖β‖, d/n) uniformly over all β ∈ R

d ; if
d/n → 1, then the convergence is uniform over compact sets.

It is clear from Theorem 1 and Corollary 2 that if d/n → ρ ∈ (0,∞), then the spectral distri-
bution of n−1XT X plays a prominent role in determining the risk of the oracle ridge estimator
via the Marčenko–Pastur law; if d/n → 0 or d/n → ∞, then its role subsides, as illustrated by
the following proposition.

Proposition 2.

(a) [d/n → 0] For ρ, τ ∈ [0,∞) define

R0
r (τ, ρ) = ρτ 2

ρ + τ 2
. (9)
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Then

lim
d/n→0

sup
β∈Rd

∣∣∣∣R{β̂r (‖β‖),β}
R0

r (‖β‖, d/n)
− 1

∣∣∣∣ = 0.

(b) [d/n → ∞] Let 0 ≤ T < ∞ be a fixed real number. Then

lim
d/n→∞ sup

β∈Rd ;
0≤‖β‖≤T

∣∣R{
β̂r

(‖β‖),β} − ‖β‖2
∣∣ = 0.

Proposition 2 is proved in Appendix A. It gives the asymptotic risk of the oracle ridge estimator
in settings where d/n → 0 and ∞. Expressions like (9) are common in the analysis of linear
estimators for the Gaussian sequence model (Pinsker [43]). Thus, if d/n → 0, then features of
R{β̂r (‖β‖),β} deriving from the random predictors X are less apparent.

Now consider the null estimator β̂null = 0 and notice that R(β̂null,β) = ‖β‖2. Proposition 2(b)
implies that if d/n → ∞, then the oracle ridge estimator is asymptotically equivalent to β̂null.
In Section 3, we argue that if d/n → ∞, then β̂null is in fact asymptotically minimax for the
problem (4). In other words, non-trivial estimation is impossible in (4) when d/n → ∞.

Combined with Theorem 1, Proposition 2 implies that the asymptotic risk of the oracle ridge
estimator Rr(τ, ρ) extends continuously to ρ = 0 and ρ = ∞. For τ ≥ 0, we define Rr(τ,0) = 0
and Rr(τ,∞) = τ 2.

3. An equivalent Bayes problem

In this section, we use an equivariance argument to reduce the minimax problem (4) to an equiv-
alent Bayes problem. We then show that ridge regression solves the Bayes problem, asymptoti-
cally.

3.1. The uniform measure on Sd−1(τ ) and equivariance

Let πSd−1(τ ) denote the uniform measure on Sd−1(τ ). Define the Bayes risk

rB(τ ) = inf
β̂

∫
Sd−1(τ )

R(β̂,β)dπSd−1(τ )(β) = inf
β̂

Eπ
Sd−1(τ )

(‖β̂ − β‖2), (10)

where the expectation Eπ
Sd−1(τ )

is taken with respect to the joint distribution of (X,ε,β), with
β ∼ πSd−1(τ ) independent of (X,ε). The Bayes estimator

β̂Sd−1(τ ) = Eπ
Sd−1(τ )

(β|y,X)

satisfies

rB(τ ) = Eπ
Sd−1(τ )

{‖β̂Sd−1(τ ) − β‖2}. (11)
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Let O(d) denote the group of d × d orthogonal matrices. As with ε and X, the distribution
πSd−1(τ ) is invariant under orthogonal transformations; that is, if U ∈ O(d) and β ∼ πSd−1(τ ),

then Uβ ∼ πSd−1(τ ). A corresponding feature of the estimator β̂Sd−1(τ ) is that it is equivariant
with respect to orthogonal transformations.

Definition 1. An estimator β̂ = β̂(y,X) is orthogonally equivariant if

β̂(y,XU) = UT β̂(y,X)

for all d × d orthogonal matrices U ∈O(d).

Let

E = Ed,n = {β̂; β̂ is an orthogonally equivariant estimator for β}.
Then one easily checks that β̂Sd−1(τ ) ∈ E . Additionally, notice that β̂r (τ ) ∈ E is orthogonally
equivariant. The following proposition is proved in Appendix A.

Proposition 3. Suppose that τ ≥ 0 and that β1,β2 ∈ Sd−1(τ ).

(a) If β̂ is an orthogonally equivariant estimator, then the risk of β̂ is constant over Sd−1(τ );
that is, R(β̂,β1) = R(β̂,β2).

(b)

r(τ ) = inf
β̂∈E

sup
β∈Sd−1(τ )

R(β̂,β) = R{β̂Sd−1(τ ),β1} = Eπ
Sd−1(τ )

{‖β̂Sd−1(τ ) − β‖2} = rB(τ ).

Proposition 3(a) implies that all orthogonally equivariant estimators have constant risk over
spheres Sd−1(τ ); we first noted that ridge regression possesses this property in a remark fol-
lowing Proposition 1. Proposition 3(b) implies that the Bayes problem (10) and the minimax
problem (4) are equivalent. Proposition 3(b) also implies that the estimator β̂Sd−1(τ ) is mini-
max over Sd−1(τ ). While this, in a sense, “solves” the main problem of interest (4), there are
several caveats. For instance, the estimator β̂Sd−1(τ ) is an oracle estimator (it depends on τ )
and is difficult to compute, even if τ is known. Furthermore, Proposition 3 provides no in-
formation about the magnitude of r(τ ). In the next section, we show that when d is large,
r(τ ) = R{β̂Sd−1(τ ),β} ≈ R{β̂r (τ ),β} ≈ Rr(τ, ρ) for β ∈ Sd−1(τ ). In addition to providing
quantitative information about r(τ ), this result suggests that ridge regression may be an appeal-
ing alternative to β̂Sd−1(τ ), especially when combined with results on adaptive ridge estimators
in Section 4.

3.2. Ridge regression and asymptotic optimality

Recall that the minimax estimator β̂Sd−1(τ ) is the posterior mean of β , under the assumption
that β ∼ πSd−1(τ ) is uniformly distributed on the sphere Sd−1(τ ). On the other hand, the oracle
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ridge estimator β̂r (τ ) = EN(0,τ 2/dId )(β|y,X) may be interpreted as the posterior mean of β

under the assumption that β ∼ N(0, τ 2/dId) is normally distributed and independent of (X,ε).
If d is large, then the normal distribution N(0, τ 2/dId) is “close” to the uniform distribution on
Sd−1(τ ) (there is an enormous body of literature that makes this idea more precise – Diaconis
and Freedman [23] attribute early work to Borel [12] and Lévy [38]). Thus, it is reasonable to
expect that if d is large and β ∈ Sd−1(τ ), then β̂Sd−1(τ ) ≈ β̂r (τ ) and that the two estimators have
similar risk properties. This is the content of the main result in this section, which is essentially
a multivariate extension of Theorem 3.1 from Marchand [40].

Theorem 2. Suppose that n > 2 and let s1 ≥ · · · ≥ sd∧n > 0 denote the nonzero (with probability
1) eigenvalues of n−1XT X. Let τ ≥ 0.

(a) If d ≤ n and β ∈ Sd−1(τ ), then

R{β̂Sd−1(τ ),β} ≤ R
{
β̂r (τ ),β

} ≤ R{β̂Sd−1(τ ),β} + 1

d
E

[
s1

sd
tr

{(
XT X + d

τ 2
Id

)−1}]
.

(b) If d > n and β ∈ Sd−1(τ ), then

R{β̂Sd−1(τ ),β} ≤ R
{
β̂r (τ ),β

} ≤ R{β̂Sd−1(τ ),β} + 1

n
E

[
s1

sn
tr

{(
XXT + d

τ 2
In

)−1}]

+ 2(d − n)

τ 2(n − 2)
E

[
tr

{(
XXT + d

τ 2
In

)−2}]
.

Theorem 2 is proved in Appendix B. The bound R{β̂Sd−1(τ ),β} ≤ R{β̂r (τ ),β} follows imme-

diately from Proposition 3(b) and Corollary 1. Proving the required upper bounds on R{β̂r (τ ),β}
(which, by Proposition 3(b), are equivalent to lower bounds on r(τ )) is fairly complex and in-
volves transforming the linear model into an equivalent sequence model, along with the ap-
plication of classical information identities (Brown [14]) and inequalities (Stam [47]). In the
remainder of this section, we discuss some of the implications of Theorem 2.

Asymptotically, Theorem 2 is primarily significant for settings where d/n → ρ ∈ (0,∞). If
d/n → ρ ∈ (0,∞) \ {1}, then the upper bounds in Theorem 2 are O(n−1) and R{β̂r (τ ),β} ≈
R{β̂Sd−1(τ ),β} = r(τ ), where β ∈ Sd−1(τ ); by Corollary 2, we can further conclude that r(τ ) ≈
Rr(τ, d/n). The case where d/n → 1 is somewhat problematic, because then E(s−1

d ) → ∞;
however, some conclusions can be made in this case by continuity arguments, for example,
Corollary 3(b) below.

Proposition 4. Suppose that 0 < ρ− ≤ d/n ≤ ρ+ < ∞ for some fixed constants ρ−, ρ+ ∈ R and
that 0 < ρ− < ρ+ < 1 or 1 < ρ− < ρ+ < ∞. If |n − d| > 5, then

sup
β∈Sd−1(τ )

∣∣R{
β̂r (τ ),β

} − R{β̂Sd−1(τ ),β}∣∣ = sup
β∈Sd−1(τ )

∣∣R{
β̂r (τ ),β

} − r(τ )
∣∣

= O

(
τ 2

τ 2 + 1
n−1

)
.
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Corollary 3. Let Rr(τ, ρ) be the asymptotic risk of the ridge estimator defined in Corollary 2.

(a) If ρ ∈ (0,∞) \ {1}, then

lim
d/n→ρ

sup
0≤τ

∣∣Rr(τ, d/n) − r(τ )
∣∣ = lim

d/n→ρ
sup

β∈Rd

∣∣R{
β̂r

(‖β‖),β} − r
(‖β‖)∣∣ = 0.

(b) If 0 ≤ T < ∞ is a fixed real number, then

lim
d/n→1

sup
0≤τ≤T

∣∣Rr(τ, d/n) − r(τ )
∣∣ = lim

d/n→1
sup

β∈Rd ;
0≤‖β‖≤T

∣∣R{
β̂r

(‖β‖),β} − r
(‖β‖)∣∣ = 0.

Proposition 4 follows directly from Theorem 2 and Lemma C.2 (found in Appendix C). Corol-
lary 3(a) follows immediately from Proposition 4 and Corollary 2(a). Corollary 3(b) may be
proved similarly to part (a), while making use of the inequality rd,n−k(τ ) ≤ rd,n(τ ) for integers
0 ≤ k < n in order to avoid issues around d/n ≈ 1. Corollary 3 implies that if d/n → ρ ∈ (0,∞),
then the minimax risk r(τ ) is asymptotically equivalent to the asymptotic risk of the oracle ridge
estimator and that the oracle ridge estimator is asymptotically minimax.

Corollary 3 also provides the means for relating the minimax problem over �2-spheres (4) to
the minimax problem over �2-balls (5). Since Sd−1(τ ) ⊆ Bd(τ), we have r(τ ) ≤ r̄(τ ). Further-
more, one easily checks that

sup
β∈Bd(τ)

R
{
β̂r (τ ),β

} = sup
β∈Sd−1(τ )

R
{
β̂r (τ ),β

}
.

Thus, if d/n → ρ ∈ (0,∞), then

r(τ ) ≤ r̄(τ ) ≤ sup
β∈Bd(τ)

R
{
β̂r (τ ),β

} = sup
β∈Sd−1(τ )

R
{
β̂r (τ ),β

} → r(τ ). (12)

It follows that if d/n → ρ ∈ (0,∞), then the minimax risk over Sd−1(τ ) is equivalent to the
minimax risk over Bd(τ) and that the ridge estimator β̂r (τ ) is asymptotically minimax for both
problems.

When d/n → 0 or ∞, asymptotics for the minimax risk r(τ ) are more straightforward. The
following proposition summarizes the behavior of r(τ ) in these settings.

Proposition 5.

(a) [d/n → 0] Let R0
r (τ, ρ) be the risk function (9). Then

lim
d/n→0
d→∞

sup
τ≥0

∣∣∣∣R0
r (τ, d/n)

r(τ )
− 1

∣∣∣∣ = 0.

(b) [d/n → ∞] Let 0 < T < ∞ be fixed. Then

lim
d/n→∞ sup

0≤τ≤T

∣∣r(τ ) − τ 2
∣∣ = 0.
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Proposition 5(a) is a straightforward consequence of Theorem 2, Proposition 2, and Lem-
ma C.2. Proposition 5(b) follows from general properties of orthogonally equivariant estimators;
in particular, one can check that if d ≥ n, then

R(β̂,β) ≥ d − n

d
‖β‖2

for all orthogonally equivariant estimators β̂ .
Proposition 5 gives precise asymptotics for r(τ ) when d → ∞ and d/n → 0 or ∞. While

Proposition 5 does not directly reference the ridge estimator, combined with Proposition 2 it
implies that β̂r (τ ) is asymptotically optimal for the minimax problem (4) when d → ∞ and
d/n → 0 or ∞. Note that the null estimator β̂null = 0 is also asymptotically optimal for (4) when
d/n → ∞. We point out that the condition d → ∞ in Proposition 5(a) appears to be necessary,
as it drives the approximation πSd−1(τ ) ≈ N(0, τ 2/dId) underlying Theorem 2.

4. An adaptive ridge estimator

To this point, we have focused on the oracle ridge estimator β̂r (τ ), where τ = ‖β‖ is the signal
strength. Typically, τ is unknown and, consequently, β̂r (τ ) is non-implementable. A natural
strategy is to replace τ with an estimate, τ̂ .

Define

τ̂ 2 = max

{
1

n
‖y‖2 − 1,0

}
(13)

and define the adaptive ridge estimator

β̌r = β̂r (τ̂ ).

Observe that β̌r ∈ E is orthogonally equivariant. One can check that supβ∈Sd−1(τ ) Eβ(τ̂ /τ −
1)2 → 0 whenever n → ∞ (see Lemma C.5); thus, τ̂ is a reasonable estimator for τ . The next
result relates the risk of the adaptive ridge estimator β̌r to that of the oracle ridge estimator. It is
proved in Appendix A.

Theorem 3. Suppose that 0 < ρ− < d/n < ρ+ < ∞, where ρ−, ρ+ ∈ R are fixed constants
satisfying 0 < ρ− < ρ+ < 1 or 1 < ρ− < ρ+ < ∞. Also suppose that |n − d| > 9 and n > 8.
Then

sup
β∈Sd−1(τ )

∣∣R(β̌r ,β) − R
{
β̂r (τ ),β

}∣∣ = O

(
1

τ 2 + 1
n−1/2

)
(14)

and

sup
β∈Rd

∣∣R(β̌r ,β) − Rr

(‖β‖, d/n
)∣∣ = O

(
n−1/2), (15)

where Rr(τ, ρ) is the asymptotic risk of the oracle ridge estimator defined in Corollary 2.



14 L.H. Dicker

Theorem 3 implies that if d/n → ρ ∈ (0,∞) \ {1}, then the risk of the adaptive ridge esti-
mator converges uniformly to that of the oracle ridge estimator and its asymptotic risk is given
explicitly by Rr(τ, ρ). If d/n → ρ ∈ (0,∞) \ {1} and τ 2 = ‖β‖2 
 n−1/2, then it follows from
Theorem 3 that R(β̌r ,β)/R{β̂r (τ ),β} → 1. On the other hand, if d/n → ρ ∈ (0,∞) \ {1} and
τ 2 = O(n−1/2), then R{β̂r (τ ),β} = O(n−1/2) and the limit of R(β̌r ,β)/R{β̂r (τ ),β} does not
follow readily from Theorem 3. In other words, the effectiveness of the adaptive ridge estimator
is less clear when τ 2 = ‖β‖2 is very small.

If d/n → 0 or d/n → 1, then results similar to Theorem 3 may be obtained for the adap-
tive ridge estimator, but the results are more delicate; results for d/n → ∞ are, in a sense,
unnecessary because the oracle ridge estimator is equivalent to β̂null in this setting. If d/n → 0,
then the relevant quantity is the risk ratio R(β̌r ,β)/R{β̂r (τ ),β}, rather than the risk differ-
ence considered in Theorem 3, and one must carefully track the magnitude of τ 2 = ‖β‖2 rel-
ative to d/n. Ultimately, however, when d/n → 0 the message is the same as the case where
d/n → ρ ∈ (0,∞) \ {1}: If τ 2 is not too small, then the adaptive ridge estimator performs nearly
as well as the oracle ridge estimator. If d/n → 1, then the rate in (14) may be different, depending
on τ 2 and the magnitude of |d/n − 1|, for example, Bai et al. [2].

4.1. Adaptive minimax estimation

Theorem 3 compares the risk of the adaptive ridge estimator to that of the oracle ridge estimator.
The next result, which follows immediately from Theorem 3 and Proposition 4, compares the
risk of the adaptive ridge estimator to r(τ ).

Proposition 6. Suppose that ρ−, ρ+ ∈ R are fixed constants satisfying 0 < ρ− < ρ+ < 1 or
1 < ρ− < ρ+ < ∞. Suppose further that 0 < ρ− ≤ d/n ≤ ρ+ < ∞. If |n − d| > 9 and n > 8,
then

sup
β∈Sd−1(τ )

∣∣R(β̌r ,β) − r(τ )
∣∣ = O

(
τ 2

τ 2 + 1
n−1

)
+ O

(
1

τ 2 + 1
n−1/2

)
. (16)

Combined with Proposition 4, Proposition 6 implies that if d/n → ρ ∈ (0,∞) \ {1}, then β̌r

is adaptive asymptotic minimax over spheres Sd−1(τ ), provided τ 2 
 n−1/2.

4.2. Equivariance

In Section 3.1, we discussed connections between the minimax problem (4) and equivariance.
Previously in this section, we noted that the adaptive ridge estimator β̌r is orthogonally equiv-
ariant and adaptive asymptotic minimax over spheres Sd−1(τ ). The following is an asymptotic
optimality result for β̌r , which pertains to the class of orthogonally equivariant estimators E .

Proposition 7. Suppose that ρ ∈ (0,∞) \ {1}. Then

lim
d/n→ρ

sup
β∈Rd

∣∣∣R(β̌r ,β) − inf
β̂∈E

R(β̂,β)

∣∣∣ = 0.
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By Proposition 3, inf
β̂∈E R(β̂,β) = r(‖β‖). Thus, Proposition 7 is a direct consequence of

Proposition 6. Proposition 7 implies that if d/n → ρ ∈ (0,∞) \ {1}, then the adaptive ridge esti-
mator β̌r is asymptotically optimal among all orthogonally equivariant estimators. Note that the
caveats discussed after the statement of Theorem 3 relating to small ‖β‖ also apply to Proposi-
tion 7. More specifically, if ‖β‖ = O(n−1/2), then the ratio R(β̌r ,β)/{inf

β̂∈E R(β̂,β)} is more
relevant than the risk difference considered in Proposition 7 and the precise asymptotic behavior
of this ratio is less clear.

Appendix A

This appendix contains proofs of results stated in the main text, with the exception of Theorem 2;
a proof of Theorem 2 may be found in Appendix B.

Proof of Proposition 1. Fix t ∈ [0,∞] and suppose that β ∈ Sd−1(τ ). Then

R
{
β̂r (t),β

} = Eβ

{∥∥β̂r (t) − β
∥∥2}

= E
{∥∥d

(
t2XT X + dId

)−1
β − t2(t2XT X + dId

)−1
XT ε

∥∥2} (17)

= E
{∥∥d

(
t2XT X + dId

)−1
β
∥∥2} + E

{∥∥t2(t2XT X + dId

)−1
XT ε

∥∥2}
.

Since X is orthogonally invariant (i.e., X and XU have the same distribution for any U ∈O(d)),
it follows that

E
{∥∥d

(
t2XT X + dId

)−1
β
∥∥2} = d2E

{
βT

(
t2XT X + dId

)−2
β
}

= d2τ 2E
{
eT
k

(
t2XT X + dId

)−2ek

}
,

where ek = (0, . . . ,0,1,0, . . . ,0)T ∈ R
d is the kth standard basis vector. Summing over k =

1, . . . , d above and dividing by d , we obtain

E
{∥∥d

(
t2XT X + dId

)−1
β
∥∥2} = dτ 2E

[
tr
{(

t2XT X + dId

)−2}]
. (18)

Additionally, it is clear that

E
{∥∥t2(t2XT X + dId

)−1
XT ε

∥∥2} = E
[
tr
{
t4(t2XT X + dId

)−2
XT X

}]
.

Combining this with (17) and (18) yields

R
{
β̂r (t),β

} = dτ 2E
[
tr
{(

t2XT X + dId

)−2}] + E
[
tr
{
t4(t2XT X + dId

)−2
XT X

}]
= E

[
tr
{(

t2XT X + dId

)−2(
t4XT X + dτ 2Id

)}]
.



16 L.H. Dicker

Now let s1 ≥ · · · ≥ sd ≥ 0 denote the eigenvalues of n−1XT X. Then

R
{
β̂r (t),β

} = E

{
d∑

j=1

t4nsj + dτ 2

(t2nsj + d)2

}

= E

[
d∑

j=1

{
τ 2

τ 2nsj + d
+ dnsj (τ

2 − t2)2

(t2nsj + d)2(τ 2nsj + d)

}]
.

Clearly, the right-hand side above is minimized by taking t = τ and R{β̂r (τ ),β} = E[tr{(XT X+
d/τ 2Id)−1}]. �

Proof of Theorem 1. Suppose that β ∈ Sd−1(τ ) and let Fn,d be the empirical cumulative distri-
bution function of the eigenvalues of n−1XT X. Using integration by parts, for c ≥ 0,

n

d
tr
{(

XT X + d/τ 2Id

)−1} =
∫ ∞

0

1

s + d/(nτ 2)
dFn,d(s)

=
∫ c

0

1

s + d/(nτ 2)
dFn,d(s) + 1

c + d/(nτ 2)

{
1 − Fn,d (c)

}
(19)

−
∫ ∞

c

1

{s + d/(nτ 2)}2

{
1 − Fn,d (s)

}
ds.

Similarly,

md/n

{−d/
(
nτ 2)} =

∫ c

0

1

s + d/(nτ 2)
dFd/n(s) + 1

c + d/(nτ 2)

{
1 − Fd/n(c)

}
(20)

−
∫ ∞

c

1

{s + d/(nτ 2)}2

{
1 − Fd/n(s)

}
ds.

Now let � = |R{β̂r (τ ),β} − (d/n)md/n{−d/(nτ 2)}|. Taking c = 0 in (19) and (20) implies

� ≤ d

n

∫ ∞

0

1

{s + d/(nτ 2)}2

∣∣E{
Fn,d(s)

} − Fd/n(s)
∣∣ds

≤ ‖β‖2 sup
s≥0

∣∣E{
Fn,d(s)

} − Fd/n(s)
∣∣,

where we have used the fact that Fn,d(0) = Fd/n(0) = max{1−n/d,0}, with probability 1. Thus,
it follows from Theorem 1.1 of Bai et al. [2] (see equation (8) in Section 2.2 above) that

� =
{

O
(
τ 2n−1/2

)
if 0 < ρ− < ρ+ < 1 or 1 < ρ− < ρ+ < ∞,

O
(
τ 2n−1/8

)
if 0 < ρ− < 1 < ρ+ < ∞.

Part (b) of Theorem 1 follows immediately.
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To prove Theorem 1(a) we show that, in fact, � = O(n−1/2) if 0 < ρ− < ρ+ < 1 or 1 < ρ− <

ρ+ < ∞. First, suppose that 0 < ρ− < ρ+ < 1. Then, for 0 < c < (1 − √
d/n)2,

md/n

(
− d

nτ 2

)
= 1

c + d/(nτ 2)
−

∫ ∞

c

1

{s + d/(nτ 2)}2

{
1 − Fd/n(s)

}
ds

and

n

d
� ≤ E

{∫ c

0

1

s + d/(nτ 2)
dFn,d(s)

}
+ 1

c + d/(nτ 2)
E

{
Fn,d(c)

}

+
∣∣∣∣
∫ ∞

c

1

{s + d/(nτ 2)}2

[
E

{
Fn,d(s)

} − Fd/n(s)
]

ds

∣∣∣∣
≤ E

{∫ c

0
s−1 dFn,d(s)

}
+ 1

c + d/(nτ 2)
E

{
Fn,d (c)

}

+ 1

c + d/(nτ 2)
sup
s≥c

∣∣E{
Fn,d (s)

} − Fd/n(s)
∣∣

≤ E
[
s−1
d 1{sd<c}

] + 1

c + d/(nτ 2)
P (sd < c)

+ 1

c + d/(nτ 2)
sup
s≥c

∣∣E{
Fn,d (s)

} − Fd/n(s)
∣∣

≤ {
E

(
s−2
d

)}1/2
P(sd < c)1/2 + c−1P(sd < c) + c−1 sup

s≥c

∣∣E{
Fn,d (s)

} − Fd/n(s)
∣∣,

where sd ≥ 0 is the smallest eigenvalue of n−1XT X, 1D is the indicator function of the event
D, and P(·) denotes the probability measure induced by the joint distribution of (X,ε). We
bound the first two terms and the last term on right-hand side above separately. Bounding the
first two terms relies on a result of Davidson and Szarek [22]. Their Theorem II.13, which is a
consequence of concentration of measure, implies that

P(sd ≤ c) ≤ exp

{
−n(1 − √

d/n)2

2

(
1 − c1/2

1 − √
d/n

)2}
, (21)

provided c ≤ 1 −√
d/n. Additionally, Lemma C.2 in Appendix C implies that E(s−2

d ) = O(1) if
n − d > 5. Taking c = (1 − √

d/n)2/2, it follows that

{
E

(
s−2
d

)}1/2
P(sd < c)1/2 + c−1P(sd < c) = O

(
n−1/2)

(in fact, we can conclude that the quantities on the left above decay exponentially, but this is
not required for the current result). It now follows from Theorem 1.1 of Bai et al. [2] that � =
O(n−1/2). For the case where 1 < ρ− < ρ+ < ∞, we note that the same argument as above may
be applied, except that both Fn,d(s) and Fd/n(s) have a mass of weight (d − n)/d at 0, which
cancel. Theorem 1(a) follows. �
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Proof of Proposition 2. Proposition 2(b) follows directly from Proposition 1. Part (a) follows
from two applications of Jensen’s inequality. If d + 1 < n, then

R
{
β̂r

(‖β‖),β} = E
[
tr
{(

XT X + d/‖β‖2Id

)−1}]
≥ d

[
1

d
E

{
tr
(
XT X

)} + d

‖β‖2

]−1

= ‖β‖2d/n

‖β‖2 + d/n

= R0
r

(‖β‖, d/n
)

and, since E[tr{(XT X)−1}] = d/(n − d − 1) (Problem 3.6 of Muirhead [41]),

R
{
β̂r

(‖β‖),β} = E
[
tr
{(

XT X + d/‖β‖2Id

)−1}]
≤ E[tr{(XT X)−1}]

1 + (1/‖β‖2)E[tr{(XT X)−1}]

= ‖β‖2d/(n − d − 1)

‖β‖2 + d/(n − d − 1)

= R0
r

{‖β‖, d/(n − d − 1)
}
.

Thus, R0
r {‖β‖, d/(n − d − 1)} ≤ R{β̂r (‖β‖),β} ≤ R0

r (‖β‖, d/n). It follows that if d/n → 0,
then

sup
β∈Rd

∣∣∣∣R{β̂r (‖β‖),β}
R0

r (‖β‖, d/n)
− 1

∣∣∣∣ → 0. �

Proof of Proposition 3. Suppose that β̂ = β̂(y,X) ∈ E and that β ∈ Sd−1(τ ). Let e1 =
(1,0, . . . ,0) ∈ R

d denote the first standard basis vector and let U ∈ O(d) satisfy β = τUe1.
Then, since β̂ ∈ E and (X,ε) has the same distribution as (XU,ε),

R(β̂,β) = Eβ

(‖β̂ − β‖2)
= Eβ

(∥∥UT β̂(y,X) − τe1
∥∥2)

= Eβ

(∥∥β̂(y,XU) − τe1
∥∥2)

= E
(∥∥β̂(XUτe1 + ε,XU) − τe1

∥∥2)
= E

(∥∥β̂(Xτe1 + ε,X) − τe1
∥∥2)

= Eτe1

(‖β̂ − τe1‖2)
= R(β̂, τe1).
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Part (a) of the proposition follows.
To prove part (b), we first show that

r(τ ) = inf
β̂∈E

sup
β∈Sd−1(τ )

R(β̂,β). (22)

Given an estimator β̂ (not necessarily orthogonally equivariant), define

β̂O(y,X) =
∫
O(d)

U β̂(y,XU)dπO(d)(U),

where πO(d) is the uniform (Haar) measure on O(d). Then β̂ ∈ E and, since X and XU have the
same distribution for any U ∈ O(d),

sup
β∈Sd−1(τ )

R(β̂O,β) = sup
β∈Sd−1(τ )

Eβ

{∥∥∥∥
∫
O(d)

U β̂(y,XU)dπO(d)(U) − β

∥∥∥∥
2}

≤
∫
O(d)

sup
β∈Sd−1(τ )

E
{∥∥U β̂(Xβ + ε,XU) − β

∥∥2}
dπO(d)(U)

=
∫
O(d)

sup
β∈Sd−1(τ )

E
{∥∥β̂

(
XUT β + ε,X

) − UT β
∥∥2}

dπO(d)(U)

≤ sup
β∈Sd−1(τ )

R(β̂,β).

The identity (22) follows. Thus, by part (a) and the fact that β̂Sd−1(τ ) ∈ E ,

r(τ ) = inf
β̂∈E

sup
β∈Sd−1(τ )

R(β̂,β)

= inf
β̂∈E

R(β̂,β1)

= inf
β̂∈E

Eπ
Sd−1(τ )

(‖β̂ − β‖2)
= Eπ

Sd−1(τ )

{‖β̂Sd−1(τ ) − β‖2}
= rB(τ ),

which completes the proof of the proposition. �

Proof of Theorem 3. Suppose that β ∈ Sd−1(τ ). It is clear that (15) follows from (14) and
Theorem 1. To prove (14), consider the risk decomposition of the oracle and adaptive ridge
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estimators

R
{
β̂r (τ ),β

} =
(

d

n

)2

E

{∥∥∥∥
(

τ 2

n
XT X + d

n
Id

)−1

β

∥∥∥∥
2}

+ 1

n2
E

{∥∥∥∥τ 2
(

τ 2

n
XT X + d

n
Id

)−1

XT ε

∥∥∥∥
2}

,

R(β̌r ,β) =
(

d

n

)2

Eβ

{∥∥∥∥
(

τ̂ 2

n
XT X + d

n
Id

)−1

β

∥∥∥∥
2}

− 2
d

n2
Eβ

{
τ̂ 2εT X

(
τ̂ 2

n
XT X + d

n
Id

)−2

β

}

+ 1

n2
Eβ

{∥∥∥∥τ̂ 2
(

τ̂ 2

n
XT X + d

n
Id

)−1

XT ε

∥∥∥∥
2}

.

The triangle inequality implies

∣∣R{
β̂r (τ ),β

} − R(β̌r , τ )
∣∣ ≤ ∣∣Eβ(H1)

∣∣ + ∣∣Eβ(H2)
∣∣ + 2

∣∣Eβ(H3)
∣∣, (23)

where

H1 =
(

d

n

)2{∥∥∥∥
(

τ 2

n
XT X + d

n
Id

)−1

β

∥∥∥∥
2

−
∥∥∥∥
(

τ̂ 2

n
XT X + d

n
Id

)−1

β

∥∥∥∥
2}

,

H2 = 1

n2

{∥∥∥∥τ 2
(

τ 2

n
XT X + d

n
Id

)−1

XT ε

∥∥∥∥
2

−
∥∥∥∥τ̂ 2

(
τ̂ 2

n
XT X + d

n
Id

)−1

XT ε

∥∥∥∥
2}

,

H3 = d

n2
τ̂ 2εT X

(
τ̂ 2

n
XT X + d

n
Id

)−2

β.

To prove the theorem, we bound the terms |Eβ(H1)|, |Eβ(H2)|, and |Eβ(H3)| separately.
Let s1 ≥ · · · ≥ sd ≥ 0 denote the ordered eigenvalues of n−1XT X and let U ∈ O(d) be

a d × d orthogonal matrix such that S = n−1UT XT XU is diagonal. Additionally, let β̃ =
(β̃1, . . . , β̃d )T = UT β and let δ̃ = (δ̃1, . . . , δ̃d )T = UT (XT X)−1/2XT ε, where (XT X)−1/2 de-
notes the Moore–Penrose pseudoinverse of (XT X)1/2 if XT X is not invertible. Then

|H1| =
(

d

n

)2
∣∣∣∣∣

d∑
j=1

{
β̃2

j

(τ̂ 2sj + d/n)2
− β̃2

j

(τ 2sj + d/n)2

}∣∣∣∣∣
=

(
d

n

)2
∣∣∣∣∣

d∑
j=1

β̃2
j sj (τ

2 − τ̂ 2)

(τ̂ 2sj + d/n)(τ 2sj + d/n)

(
1

τ̂ 2sj + d/n
+ 1

τ 2sj + d/n

)∣∣∣∣∣.
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Since (ax + b)−1 ≤ (a + b)−1 max{x−1,1} for a, b, x ≥ 0,

|H1| ≤
(

d

n

)2 d∧n∑
j=1

{
β̃2

j |τ 2 − τ̂ 2|
(τ̂ 2 + d/n)(τ 2 + d/n)

(
1

τ̂ 2 + d/n
+ 1

τ 2 + d/n

)(
1

s2
j

+ sj

)}

≤
(

d

n

)2 |τ 2 − τ̂ 2|
τ̂ 2 + d/n

(
1

τ̂ 2 + d/n
+ 1

τ 2 + d/n

)(
1

s2
d∧n

+ s1

)
.

Similarly, we have

|H2| = 1

n

∣∣∣∣∣
d∑

j=1

{
τ̂ 4sj δ̃

2
j

(τ̂ 2sj + d/n)2
− τ 4sj δ̃

2
j

(τ 2sj + d/n)2

}∣∣∣∣∣
= 1

n

∣∣∣∣∣
d∑

j=1

(d/n)δ̃2
j sj (τ̂

2 − τ 2)

(τ̂ 2sj + d/n)(τ 2sj + d/n)

(
τ̂ 2

τ̂ 2sj + d/n
+ τ 2

τ 2sj + d/n

)∣∣∣∣∣
≤ 1

n

d∧n∑
j=1

(d/n)δ̃2
j |τ̂ 2 − τ 2|

(τ̂ 2 + d/n)(τ 2 + d/n)

(
1

sj
+ sj

)

≤ d

n2
‖δ̃‖2 |τ̂ 2 − τ 2|

(τ̂ 2 + d/n)(τ 2 + d/n)

(
1

sd∧n

+ s1

)
.

Repeated application of Hölder’s inequality and Lemmas C.2, C.3 and C.5 (found in Appendix C)
imply that

∣∣Eβ(H1)
∣∣ + ∣∣Eβ(H2)

∣∣ = O

(
1

τ 2 + 1
n−1/2

)
. (24)

To bound |Eβ(H3)|, we condition on X and use integration by parts (Stein’s lemma, e.g.,
Lemma 3.6 of Tsybakov [51]):

Eβ(H3) = d

n2
Eβ

{
τ̂ 2εT X

(
τ̂ 2

n
XT X + d

n
Id

)−2

β

}

= 2d

n3
Eβ

[
yT X

(
d

n
Id − τ̂ 2

n
XT X

)(
τ̂ 2

n
XT X + d

n
Id

)−3

β1{‖y‖2≥n}
]

= 2d

n3
Eβ

[
d∑

j=1

(nsj β̃j + n1/2s
1/2
j δ̃j )(d/n − τ̂ 2sj )β̃j

(τ̂ 2sj + d/n)3
1{‖y‖2≥n}

]
.
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It follows that

∣∣Eβ(H3)
∣∣ ≤ 2d

n3
Eβ

{
d∑

j=1

∣∣∣∣ (nsj β̃j + n1/2s
1/2
j δ̃j )β̃j

(τ̂ 2sj + d/n)2

∣∣∣∣
}

≤ 2d

n2
Eβ

{
d∑

j=1

sj β̃
2
j

(τ̂ 2sj + d/n)2

}
+ 2d

n5/2
Eβ

{
d∑

j=1

∣∣∣∣ s
1/2
j δ̃j β̃j

(τ̂ 2sj + d/n)2

∣∣∣∣
}

(25)

= O

(
1

τ 2 + 1
n−1

)
,

where we have used Lemmas C.2 and C.3 to obtain the last bound. The theorem follows from
(23) and (25). �

Appendix B

This appendix is devoted to a proof of Theorem 2, which is fairly involved. Our first step is to
show that the minimax problem (4) may be reformulated as a minimax problem for an equiva-
lent sequence model. Ultimately, this will substantially simplify notation and allow for a direct
application of results from Marchand [40] that are important for Theorem 2.

B.1. An equivalent sequence model

Let Σ be a random orthogonally invariant m×m positive semidefinite matrix with rank m, almost
surely (by orthogonally invariant, we mean that Σ and UΣUT have the same distribution for
any U ∈ O(m)). Additionally, let δ ∼ N(0, Im) be an m-dimensional Gaussian random vector
that is independent of Σ . Suppose that the observed data are (w,Σ), where

w = θ + Σ1/2δ ∈R
m (26)

and θ ∈R
m is an unknown parameter.

For an estimator θ̂ = θ̂(w,Σ), define the risk under squared error loss

Rseq(θ̂ , θ) = Eθ‖θ̂ − θ‖2,

where, abusing notation, the expectation Eθ (·) is taken with respect to (δ,Σ) and the subscript
θ indicates that w = θ +Σ1/2δ (we will sometimes drop the subscript θ in Eθ (·) if the integrand
does not depend on θ ). To distinguish Eθ (·) from expectations Eβ(·) considered elsewhere in the
paper, we emphasize that all expectations considered in this section (Appendix B) refer to the
sequence model (26).
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B.2. Equivalence with the linear model

Most of the key concepts initially introduced in the context of the linear model (1) have analogues
in the sequence model (26). Define

θ̂Sm−1(τ ) = Eπ
Sm−1(τ )

(θ |w,Σ),

to be the posterior mean of θ under the assumption that θ ∼ πSm−1(τ ) is uniformly distributed on
Sm−1(τ ) and define

θ̂ r (τ ) = EN(0,τ 2/mIm)(θ |w,Σ) = τ 2/m
(
Σ + τ 2/mIm

)−1w

to be the posterior mean under the assumption that θ ∼ N(0, τ 2/mIm) (for both of these Bayes
estimators we assume that θ is independent of δ and Σ ). The estimators θ̂Sm−1(τ )(τ ) and θ̂ r (τ )

are analogous to the minimax estimator β̂Sd−1(τ ) and the optimal ridge estimator β̂r (τ ) in the
linear model, respectively. Now define the minimax risk over Sm−1(τ ) for the sequence model

rseq(τ ) = inf
θ̂

sup
θ∈S(τ)

Rseq(θ̂ , θ),

where the infimum is over all measurable estimators for θ . We have the following analogue to
Proposition 3(b).

Lemma B.1. Suppose that τ ≥ 0 and that θ1, θ2 ∈ Sm−1(τ ). Then Rseq{θ̂Sm−1(τ ), θ1} =
Rseq{θ̂Sm−1(τ ), θ2} and

rseq(τ ) = sup
θ∈Sm−1(τ )

Rseq{θ̂Sm−1(τ ), θ}.

The proof of Lemma B.1 is essentially the same as that of Proposition 3 and is omitted. The
next result gives an equivalence between the linear model (1) and the sequence model (26) when
d ≤ n.

Lemma B.2. Suppose that m = d ≤ n and that Σ = (XT X)−1. Let τ ≥ 0. If θ ,β ∈ Sm−1(τ ),
then

Rseq
{
θ̂ r (τ ), θ

} = R
{
β̂r (τ ),β

}
and

rseq(τ ) = Rseq{θ̂Sm−1(τ ), θ} = R{β̂Sd−1(τ ),β} = r(τ ).

Lemma B.2 follows directly upon identifying w with β̂ols = (XT X)−1XT y = β +
(XT X)−1XT ε. Lemma B.2 implies that it suffices to consider the sequence model (26) (in partic-
ular, Rseq{θ̂ r (τ ), θ} and Rseq{θ̂Sm−1(τ ), θ}) in order to prove Theorem 2(a). Note that Lemma B.2
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does not apply when d > n. Indeed, if d > n, then the usual OLS estimator is not defined (more-
over, if one uses a pseudoinverse in place of (XT X)−1, then (XT X)−1XT Xβ is not necessarily
in Sd−1(τ )). The case where d > n is considered separately below.

B.3. Proof of Theorem 2(a)

In this section, we prove Theorem 2(a) by bounding

Rseq
{
θ̂ r (τ ), θ

} − Rseq{θ̂Sm−1(τ ), θ}. (27)

By Lemma B.2, this is equivalent to bounding R{β̂r (τ ),β} − R{β̂Sd−1(τ )(τ ),β}. The lower
bound

0 ≤ Rseq
{
θ̂ r (τ ), θ

} − Rseq{θ̂Sm−1(τ ), θ} (28)

follows immediately from Lemma B.1. Marchand [40] obtained an upper bound on (27) in the
case where Σ = ν2Im for fixed ν2 > 0 (i.e., in the Gaussian sequence model with i.i.d. errors),
which is one of the keys to the proof of Theorem 2(a).

Lemma B.3 (Theorem 3.1 from Marchand [40]). Suppose that Σ = ν2Im for some fixed ν2 >

0 and that θ ∈ Sm−1(τ ). Then

Rseq
{
θ̂ r (τ ), θ

} − Rseq{θ̂Sm−1(τ ), θ} ≤ 1

m

τ 2ν2m

τ 2 + ν2m
= 1

m
Rseq

{
θ̂ r (τ ), θ

}
.

Thus, in the Gaussian sequence model with i.i.d. errors, the risk of θ̂ r (τ ) is nearly as small as
that of θ̂Sm−1(τ ). Marchand’s result relies on somewhat delicate calculations involving modified
Bessel functions (Robert [45]). A direct approach to bounding (27) for general Σ might involve
attempting to mimic these calculations. However, this seems daunting (Bickel [9]). Brown’s iden-
tity, which relates the risk of a Bayes estimator to the Fisher information, allows us to sidestep
these calculations and apply Marchand’s result directly.

Define the Fisher information of a random vector ξ ∈ R
m, with density fξ (with respect to

Lebesgue measure on R
m) by

I (ξ) =
∫
Rm

∇fξ (t)∇fξ (t)T

fξ (t)
dt,

where ∇fξ (t) is the gradient of fξ (t). Brown’s identity has typically been used for univariate
problems or problems in the sequence model with i.i.d. Gaussian errors (Bickel [9], Brown and
Gajek [16], Brown and Low [17], DasGupta [21]). The next proposition is a straightforward
generalization to the correlated multivariate Gaussian setting. Its proof is based on Stein’s lemma.

Lemma B.4 (Brown’s identity). Let IΣ(θ +Σ1/2δ) denote the Fisher information of θ +Σ1/2δ,
conditional on Σ , under the assumption that θ ∼ πSm−1(τ ) is independent of δ and Σ . If θ ∈
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Sm−1(τ ), then

Rseq{θ̂Sm−1(τ ), θ} = E
{
tr(Σ)

} − E
[
tr
{
Σ2IΣ

(
θ + Σ1/2δ

)}]
.

Proof. Suppose that θ ∈ Sm−1(τ ) and let

f (w) =
∫

Sm−1(τ )

(2π)−m/2 det
(
Σ−1/2)e−1/2(w−θ)T Σ−1(w−θ) dπSm−1(τ )(θ)

be the density of w = θ + Σ1/2δ, conditional on Σ and under the assumption that θ ∼ πSm−1(τ ).
Then

θ̂Sm−1(τ ) = Eπ
Sm−1(τ )

(θ |w,Σ) = w + Σ∇f (w)

f (w)
.

It follows that

Rseq{θ̂Sm−1(τ ), θ} = Eπ
Sm−1(τ )

{‖θ̂Sm−1(τ ) − θ‖2}
= Eπ

Sm−1(τ )

{∥∥∥∥Σ1/2δ + Σ∇f (w)

f (w)

∥∥∥∥
2}

= E
{
tr(Σ)

} + 2Eπ
Sm−1(τ )

{
δT Σ3/2∇f (w)

f (w)

}
(29)

+ Eπ
Sm−1(τ )

{∇f (w)T Σ2∇f (w)

f (w)2

}

= E
{
tr(Σ)

} + 2Eπ
Sm−1(τ )

{
δT Σ3/2∇f (w)

f (w)

}

+ E
[
tr
{
Σ2IΣ

(
θ + Σ1/2δ

)}]
.

By Stein’s lemma (Lemma 3.6 of Tsybakov [51]),

Eπ
Sm−1(τ )

{
δT Σ3/2∇f (w)

f (w)

}
= Eπ

Sm−1(τ )

[
tr
{
Σ2∇2 logf (w)

}]
(30)

= −E
[
tr
{
Σ2IΣ

(
θ + Σ1/2δ

)}]
.

Brown’s identity follows by combining (29) and (30). �

Using Brown’s identity, Fisher information bounds may be converted to risk bounds, and vice-
versa. Its usefulness in the present context springs from two observations: (i) The decomposition

w = θ + Σ1/2δ = {
θ + (γ σm)1/2δ1

} + (Σ − γ σmIm)1/2δ2, (31)
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where δ1, δ2
i.i.d.∼ N(0, Im) are independent of Σ , σm is the smallest eigenvalue of Σ , and 0 <

γ < 1 is a constant; and (ii) Stam’s inequality for the Fisher information of sums of independent
random variables.

Lemma B.5 (Stam’s inequality; this version due to Zamir [53]). Let u,v ∈ R
m be indepen-

dent random variables that are absolutely continuous with respect to Lebesgue measure on R
m.

Then

tr
[
�I (u + v)

] ≤ tr
[
�

{
I (u)−1 + I (v)−1}−1]

for all m × m positive definite matrices � .

Notice in (31) that θ + (γ σm)1/2δ1 may be viewed as an observation from the Gaussian se-
quence model with i.i.d. errors, conditional on Σ . The necessary bound on (27) is obtained by
piecing together Brown’s identity, the decomposition (31), and Stam’s inequality, so that Marc-
hand’s inequality (Lemma B.3) may be applied to θ + (γ σm)1/2δ1.

Lemma B.6. Suppose that Σ has rank m with probability 1 and that θ ∈ Sm−1(τ ). Let σ1 ≥
· · · ≥ σm ≥ 0 denote the eigenvalues of Σ . Then

Rseq
{
θ̂ r (τ ), θ

} − Rseq{θ̂Sm−1(τ ), θ} ≤ E

[(
σ1

mσm

∧ 1

)
tr
{(

Σ−1 + m/τ 2Im

)−1}]
.

Proof. Since Σ is orthogonally invariant and independent of δ,

Rseq
{
θ̂ r (τ ), θ

} = Eθ

{∥∥τ 2/m
(
Σ + τ 2/mIm

)−1w − θ
∥∥2}

= E
{∥∥Σ

(
Σ + τ 2/mIm

)−1
θ
∥∥2}

+ E
{∥∥τ 2/m

(
Σ + τ 2/mIm

)−1
Σ1/2δ

∥∥2}
= E

[
tr
{
τ 2/mΣ2(Σ + τ 2/mIm

)−2}] (32)

+ E
[
tr
{(

τ 2/m
)2

Σ
(
Σ + τ 2/mIm

)−2}]
= E

[
tr
{
τ 2/mΣ

(
Σ + τ 2/mIm

)−1}]
= E

[
tr
{(

Σ−1 + m/τ 2Im

)−1}]
.

Thus, Brown’s identity and (32) imply

Rseq
{
θ̂ r (τ ), θ

} − Rseq{θ̂Sm−1(τ ), θ} = E
[
tr
{
Σ2IΣ

(
θ + Σ1/2δ

)}]
+ E

[
tr
{(

Σ−1 + m/τ 2Im

)−1}] − E
{
tr(Σ)

}
= E

[
tr
{
Σ2IΣ

(
θ + Σ1/2δ

)}]
− E

[
tr
{
Σ2(Σ + τ 2/mIm

)−1}]
.
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Taking u = θ + (γ σm)1/2δ1, v = (Σ − γ σmIm)1/2δ2, and � = Σ2 in Stam’s inequality, where
δ1, δ2, and 0 < γ < 1 are given in (31), one obtains

Rseq
{
θ̂ r (τ ), θ

} − Rseq{θ̂Sm−1(τ ), θ}
≤ E

{
tr
(
Σ2[IΣ

{
θ + (γ σm)1/2δ1

}−1 + Σ − γ σmIm

]−1)}
− E

[
tr
{
Σ2(Σ + τ 2/mIm

)−1}]
.

By orthogonal invariance, IΣ {θ + (γ σm)1/2δ1} = ζ Im for some ζ ≥ 0. Thus,

Rseq
{
θ̂ r (τ ), θ

} − Rseq{θ̂Sm−1(τ ), θ} ≤ E

(
tr

[
Σ2

{
Σ +

(
1

ζ
− γ σm

)
Im

}−1])
(33)

− E
[
tr
{
Σ2(Σ + τ 2/mIm

)−1}]
.

Next we bound ζ . Conditioning on Σ , applying Brown’s identity with γ σmIm in place of Σ , and
applying Marchand’s inequality (Lemma B.3) with ν2 = γ σm, we obtain

mγ 2σ 2
mζ = tr

[
γ 2σ 2

mIΣ

{
θ + (γ σm)1/2δ1

}] ≤ mγσm −
(

1 − 1

m

)
τ 2γ σmm

τ 2 + γ σmm
.

Dividing by mγ 2σ 2
m above, it follows that

ζ ≤
(

1

γ σm

)
γ σm + τ 2/m2

γ σm + τ 2/m
.

Further rearranging implies that

1

ζ
− γ σm ≥ (m − 1)

γ σmτ 2

γ σmm2 + τ 2
.

Hence, combining this with (33),

Rseq
{
θ̂ r (τ ), θ

} − Rseq{θ̂Sm−1(τ ), θ} ≤ E

(
tr

[
Σ2

{
Σ + (m − 1)

γ σmτ 2

γ σmm2 + τ 2
Im

}−1])

− E
[
tr
{
Σ2(Σ + τ 2/mIm

)−1}]
.

Finally, taking γ ↑ 1 above yields

Rseq
{
θ̂ r (τ ), θ

} − Rseq{θ̂Sm−1(τ ), θ} ≤ E

(
tr

[
Σ2

{
Σ + (m − 1)

σmτ 2

σmm2 + τ 2
Im

}−1])

− E
[
tr
{
Σ2(Σ + τ 2/mIm

)−1}]
≤ E

[(
σ1

mσm

∧ 1

)
tr
{(

Σ−1 + m/τ 2Im

)−1}]
,
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where it is elementary to verify the second inequality upon diagonalizing Σ . This completes the
proof of the lemma. �

Theorem 2(a) follows immediately from (28) and Lemmas B.2 and B.6.

B.4. Proof of Theorem 2(b)

It remains to prove Theorem 2(b), which is achieved through a sequence of lemmas. Similar to the
proof of Theorem 2(a), the initial steps involve reducing the problem from the linear model to the
sequence model. In the following lemma, we derive a basic property of orthogonally equivariant
estimators for β (in the linear model) when d > n.

Lemma B.7. Suppose d > n and that β̂ = β̂(y,X) ∈ E is an orthogonally equivariant estimator
for β in the linear model (1). Further suppose that X = UDV T , where U ∈O(n), D is an n×n

diagonal matrix, and V is an n × d matrix with orthonormal columns. Let V0 be a (d − n) × d

matrix so that (V V0) ∈ O(d). Then V T
0 β̂ = 0.

Proof. Let W ∈O(d − n) and let VW = V V T + V0WV T
0 ∈O(d). Then

β̂(y,X) = VW β̂(y,XVW) = VW β̂(y,X). (34)

Since (34) holds for all W ∈O(d − n), we must have V T
0 β̂ = 0. �

In the next lemma, we relate the minimax risk under the linear model r(τ ) to the risk under
the sequence model.

Lemma B.8. Suppose that d > n and let τ 2 > 0. In the sequence model (26), suppose that m = n

and Σ = (XXT )−1. For θ = (θ1, . . . , θd)T ∈ R
d , let θn = (θ1, . . . , θn)

T ∈ R
n be the projection

onto the first n coordinates. Then

r(τ ) ≥
∫

Sd−1(τ )

rseq
(‖θn‖

)
dπSn−1(τ )(θ) + d − n

n
τ 2.

Proof. By Proposition 3,

r(τ ) = inf
β̂∈E

∫
Sd−1(τ )

R(β̂,β)dπSd−1(τ )(β). (35)

Assume that β̂ = β̂(y,X) ∈ E and let X = UDV T be the decomposition in Lemma B.7. Ad-
ditionally, let β̂n = (β̂1, . . . , β̂n)

T ∈ R
n be the first n coordinates of β̂ . Then, under the linear

model (1),

‖β̂ − β‖2 = ∥∥V T β̂(y,X) − V T β
∥∥2 + ∥∥V T

0 β
∥∥2

= ∥∥β̂n

{
UDV T β + ε, (UD 0)

} − V T β
∥∥2 + ∥∥V T

0 β
∥∥2

.
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Let βn = (β1, . . . , βn)
T ∈ R

n. Integrating β over Sd−1(τ ) with respect to the uniform measure,
making the change of variables

β 
→ (V V0)

(
UT 0
0 Id−n

)
β,

and using the fact that β̂ ∈ E , it follows that∫
Sd−1(τ )

‖β̂ − β‖2 dπSd−1(τ )(β)

=
∫

Sd−1(τ )

∥∥β̂n

{
UDV T β + ε, (UD 0)

} − V T β
∥∥2 dπSd−1(τ )(β) + d − n

d
τ 2

=
∫

Sd−1(τ )

∥∥β̂n

{
UDUT βn + ε, (UD 0)

} − UT βn

∥∥2 dπSd−1(τ )(β) + d − n

d
τ 2

=
∫

Sd−1(τ )

∥∥β̂n

{
UDUT βn + ε,

(
UDUT 0

)} − βn

∥∥2 dπSd−1(τ )(β) + d − n

d
τ 2.

Next, for w ∈ R
n and n × n positive definite matrices Σ , define the estimator for the sequence

model θ̂(w,Σ) = β̂n{Σ−1/2w, (Σ−1/2 0)}. Then, with m = n and Σ = (XXT )−1 = UD−2UT ,∫
Sd−1(τ )

R(β̂,β)dπSd−1(τ )(β)

=
∫

Sd−1(τ )

Rseq(θ̂ , θn)dπSd−1(τ )(θ) + d − n

n
τ 2.

By equivariance, Rseq(θ̂ ,ϑ) is constant over spheres ϑ ∈ Sd−1(‖θn‖), which implies that

Rseq(θ̂ , θn) ≥ rseq(‖θn‖). Hence,

∫
Sd−1(τ )

R(β̂,β)dπSd−1(τ )(β) ≥
∫

Sd−1(τ )

rseq
(‖θn‖

)
dπSd−1(τ )(θ) + d − n

n
τ 2. (36)

The lemma follows from (35) and (36). �

The proof of Theorem 2(b) will follow from a calculation involving Lemmas B.6 and B.8. The
key part of this calculation is contained in the following lemma.

Lemma B.9. Suppose that 2 < n < d . Let s1 ≥ · · · ≥ sn ≥ 0 denote the nonzero eigenvalues of
n−1XT X. Then

r(τ ) ≥ E

[(
1 − s1

nsn

)
tr

{(
XXT + n(d − 2)

τ 2(n − 2)
In

)−1}]
+ d − n

d
τ 2.
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Proof. With θn ∈R
n, m = n and Σ = (XXT )−1, Lemma B.6 and (32) imply that

rseq
(‖θn‖

) = Rseq{θ̂Sn−1(‖θn‖), θn}

≥ Rseq
{
θ̂ r

(‖θn‖
)
, θn

} − E

[(
s1

nsn
∧ 1

)
tr

{(
XXT + n

‖θn‖2
In

)−1}]
(37)

= E

[{(
1 − s1

nsn

)
∨ 0

}
tr

{(
XXT + n

‖θn‖2
In

)−1}]
.

Additionally, if θ ∼ πSd−1(τ ), then θ = τz/‖z‖ in distribution, where z ∼ N(0, Id); using basic
properties of the chi-squared distribution, it follows that∫

Sd−1(τ )

1

‖θn‖2
dπSd−1(τ )(θ) = d − 2

τ 2(n − 2)
, (38)

where θn = (θ1, . . . , θn)
T ∈ R

n is the projection of θ = (θ1, . . . , θd)T ∈ R
d onto the first n coor-

dinates. Thus, by (37), Jensen’s inequality and (38),∫
Sd−1d(τ)

r
(‖θn‖

)
dπSd−1(τ )(θ)

≥ E

[(
1 − s1

nsn

)
tr

{(
XXT +

∫
Sd−1(τ )

n

‖θn‖2
dπSd−1(τ )(θ)In

)−1}]

≥ E

[(
1 − s1

nsn

)
tr

{(
XXT + n(d − 2)

τ 2(n − 2)
In

)−1}]
.

The lemma follows by combining the last inequality above with Lemma B.8. �

We now have the tools to complete the proof of Theorem 2(b). Suppose that d > n and β ∈
Sd−1(τ ). Then

R
{
β̂r (τ ),β

} = E
[
tr
{(

XXT + d/τ 2In

)−1}] + d − n

d
τ 2.

Since R{β̂Sd−1(τ ),β} = r(τ ), Lemma B.9 implies

R
{
β̂r (τ ),β

} − R{β̂Sd−1(τ ),β} = R
{
β̂r (τ ),β

} − r(τ )

≤ E
[
tr
{(

XXT + d/τ 2In

)−1}]
− E

[(
1 − s1

nsn

)
tr

{(
XXT + n(d − 2)

τ 2(n − 2)
In

)−1}]

≤ 1

n
E

[
s1

sn
tr

{(
XXT + d

τ 2
In

)−1}]

+ 2(d − n)

τ 2(n − 2)
E

[
tr

{(
XXT + d

τ 2
In

)−2}]
.
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Theorem 2(b) follows.

Appendix C

Lemma C.1. Let sd ≥ 0 denote the smallest eigenvalue of n−1XT X. Suppose that a > 0 is a
positive real number and that n − d ≥ 2a + 1. If d = 1, then E(s−a

d ) ≤ ea . If d ≥ 2, then

E
(
s−a
d

) ≤ 2

{
π

4

√
n5

(d − 1)(n − d)2
en+1/2

}2a/(n−d+1)

. (39)

Proof. Suppose first that d = 1. Then nsd ∼ χ2
n is a chi-squared random variable on n degrees

of freedom. By Theorem 1 of Kečkić and Vasić [36], which gives convenient bounds on the ratio
of two gamma functions,

E
(
s−a
d

) = (n/2)a�(n/2 − a)

�(n/2)
≤ (n/2)a(n/2 − a)n/2−a−1

(n/2)n/2−1
ea ≤ ea.

This proves the first part of the lemma.
Now suppose that d ≥ 2. Suppose further that (39) is true for a = 1. If 0 < a0 < 1, then

E
(
s
−a0
d

) ≤ {
E

(
s−1
d

)}a0 ≤ 2

{
π

4

√
n5

(d − 1)(n − d)2
en+1/2

}2a0/(n−d+1)

and (39) holds for a = a0. Thus, we may assume that a ≥ 1. Let t > 0 be a fixed positive number.
Then

E
(
s−a
d

) ≤ E
[
s−a
d 1{sd≤t}

] + t−a. (40)

Muirhead [41] (Corollary 3.2.19) gives the joint density of the ordered eigenvalues, s1 > · · · >

sd > 0, of n−1XT X:

fd,n(s1, . . . , sd) = cd,n exp

(
−n

2

d∑
j=1

sj

)
d∏

j=1

s
(n−d−1)/2
j

∏
i<j

(si − sj ),

where

cd,n = πd2/2

(2/n)dn/2�d(d/2)�d(n/2)

and

�d(n/2) = πd(d−1)/4
d∏

j=1

�
{
(n − j + 1)/2

}
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is the multivariate gamma function. Let Td = {(s1, . . . , sd) ∈R
d; s1 > · · · > sd > 0}. Then,

E
[
s−a
d 1{sd<t}

] =
∫

Td∩{sd<t}
s−a
d fd,n(s1, . . . , sd)ds1 · · · dsd

≤
∫

Td−1

{∫ t

0
s−a
d fd,n(s1, . . . , sd)dsd

}
ds1 · · · dsd−1

≤ cd,n

cd−1,n

∫
Td−1

(
d−1∏
j=1

sj

)1/2

fd−1,n(s1, . . . , sd−1)ds1 · · · dsd−1

·
∫ t

0
s(n−d−1)/2−ae−ns/2 ds

≤ cd,n

cd−1,n

E
{
det

(
n−1ZT Z

)1/2}
t (n−d+1)/2−a,

where Z is an n × (d − 1)-dimensional matrix with i.i.d. N(0,1) entries and the last inequality
above follows from the fact that n − d ≥ 2a + 1. It is easy to check that

cn,d

cn,d−1
=

√
π(n/2)n/2

�(d/2)�{(n − d + 1)/2} .

Additionally, it is well known (Problem 3.11 in Muirhead [41], for instance) that

E
{
det

(
n−1ZT Z

)1/2} = (2/n)(d−1)/2 �{(n + 1)/2}
�{(n − d + 1)/2} .

By Corollary 1.2 of Batir [4] (a variant of Stirling’s approximation),

xxe−x
√

2x + 1 ≤ �(x + 1) ≤ xxe−x
√

π(2x + 1), for all x ≥ 0.

It follows that,

cn,d

cn,d−1
E

{
det

(
n−1ZT Z

)1/2} =
√

π(n/2)(n−d+1)/2�{(n + 1)/2}
�(d/2)�{(n − d + 1)/2}2

≤ πn(n−d+2)/2(n − 1)(n−1)/2e(n−d−3)/2

4(d − 2)(d−2)/2
√

d − 1(n − d − 1)n−d−1(n − d)

≤ π

4

√
n5

(d − 1)(n − d)2
en+1/2

and

E
[
s−a
d 1{sd<t}

] ≤ t (n−d+1)/2−a π

4

√
n5

(d − 1)(n − d)2
en+1/2.
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Thus, by (40)

E
(
s−a
d

) ≤ t (n−d+1)/2−a π

4

√
n5

(d − 1)(n − d)2
en+1/2 + t−a.

Taking t = [(π/4)
√

n5/{(d − 1)(n − d)2}en+1/2]−2/(n−d+1) gives (39). �

Lemma C.2. Let s1 ≥ sd ≥ 0 denote the largest and smallest eigenvalues of n−1XT X, respec-
tively. Suppose that a > 0 is a fixed positive real number and that 0 < d/n ≤ ρ+ < 1 for some
fixed constant ρ+ ∈ R.

(a) E(sa
1 ) = O(1).

(b) If n − d > 2a + 1, then E(s−a
d ) = O(1).

The constants implicit in the bounds from parts (a) and (b) depend on the exponent a.

Proof. Part (a) is well known and may be easily derived from large deviations results for s1 (see,
e.g., Theorem II.13 of Davidson and Szarek [22]). Part (b) follows directly from Lemma C.1. �

Lemma C.3. Let a > 0 be a fixed positive real number. If n > 2a, then

sup
β∈Sd−1(τ )

Eβ

{(
1

τ̂ 2 + d/n

)a}
= O

{(
n/d + 1

τ 2 + 1

)a}
,

where the implicit constant in the big-O bound depends on the exponent a.

Proof. Suppose that β ∈ Sd−1(τ ). Since ‖y‖2/(τ 2 + 1) ∼ χ2
n has a chi-squared distribution with

n degrees of freedom,

Eβ

{(
1

τ̂ 2 + d/n

)a}
≤ Eβ

{(
n/d + 1

τ̂ 2 + 1

)a}

≤ (n/d + 1)anaEβ

(‖y‖−2a
)

= O

{(
n/d + 1

τ 2 + 1

)a}
. �

Lemma C.4. Let Pβ(·) denote the probability measure induced by the joint distribution of
(y,X), where y = Xβ + ε. Then

sup
β∈Sd−1(τ )

Pβ

(
τ̂ 2 = 0

) ≤ e(−n/4)(τ 2/(τ 2+1))2
.

Proof. Suppose that β ∈ Sd−1(τ ). Let t ≥ 0 be fixed. Since V = ‖y‖2/(τ 2 + 1) ∼ χ2
n has a

chi-squared distribution with n degrees of freedom, it follows that

Pβ

(
τ̂ 2 = 0

) = Pβ

(
V ≤ n

τ 2 + 1

)
≤ ent/(τ 2+1)Eβ

(
e−tV

) =
(

e2t/(τ 2+1)

1 + 2t

)n/2

.
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Taking t = τ 2/2 and using the fact that (1 − x)ex ≤ e−x2/2 for all x ≥ 0 yields

Pβ

(
τ̂ 2 = 0

) ≤
(

eτ 2/(τ 2+1)

τ 2 + 1

)n/2

≤ e(−n/4)(τ 2/(τ 2+1))2
. �

Lemma C.5. Suppose a > 0 is a fixed positive real number. Then

sup
β∈Sd−1(τ )

Eβ

(∣∣τ̂ 2 − τ 2
∣∣a) = O

(
τ 2a + 1

na/2

)
,

where the implicit constant in the big-O bound depends on the exponent a.

Proof. Suppose that β ∈ Sd−1(τ ). From the definition of τ̂ 2,

Eβ

(∣∣τ̂ 2 − τ 2
∣∣a) ≤ Eβ

{∣∣∣∣1

n
‖y‖2 − (

τ 2 + 1
)∣∣∣∣

a}
+ τ 2aPβ

(
τ̂ 2 = 0

)
. (41)

Since ‖y‖2/(τ 2 + 1) ∼ χ2
n ,

Eβ

{∣∣∣∣1

n
‖y‖2 − (

τ 2 + 1
)∣∣∣∣

a}
= O

(
τ 2a + 1

na/2

)
. (42)

Additionally, Lemma C.4 implies

τ 2aPβ

(
τ̂ 2 = 0

) ≤ τ 2ae(−n/4)(τ 2/(τ 2+1))2

= (
τ 2 + 1

)a
(

τ 2

τ 2 + 1

)a

e(−n/4)(τ 2/(τ 2+1))2
(43)

≤ (
τ 2 + 1

)a
(

2a

n

)a/2

e−a/2.

The lemma follows by combining (41) and (43). �
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