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In the random-effects model of meta-analysis a canonical representation of the restricted likelihood function
is obtained. This representation relates the mean effect and the heterogeneity variance estimation problems.
An explicit form of the variance of weighted means statistics determined by means of a quadratic form is
found. The behavior of the mean squared error for large heterogeneity variance is elucidated. It is noted
that the sample mean is not admissible nor minimax under a natural risk function for the number of studies
exceeding three.
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1. Parameter estimation in meta-analysis: Random-effects
model

In the simplest random-effects model of meta-analysis involving, say, n studies the data is sup-
posed to consist of treatment effect estimators xi, i = 1, . . . , n, which have the form

xi = μ + bi + εi .

Here μ is an unknown common mean, bi is zero mean between-study effect with variance τ 2,
τ 2 ≥ 0, and εi represents the measurement error of the ith study, with variance σ 2

i , σ 2
i > 0. Then

the variance of xi is τ 2 + σ 2
i . In practice σi is often treated as a given constant, si , which is the

reported standard error or uncertainty of the ith study.
The considered here problem is that of estimation of the common mean μ and of the het-

erogeneity variance τ 2 from the statistical decision theory point of view under normality as-
sumption. If τ 2 is known, then the best unbiased estimator of μ is the weighted means statistic,
μ̂opt = ∑

ω0
i xi , with the normalized weights,

ω0
i = 1

τ 2 + s2
i

(∑
k

1

τ 2 + s2
k

)−1

, (1.1)

∑
ω0

i = 1. Its variance has the form

Var(μ̂opt) =
[∑

i

1

τ 2 + s2
i

]−1

.

1350-7265 In the Public Domain

http://www.bernoulli-society.org/index.php/publications/bernoulli-journal/bernoulli-journal
http://dx.doi.org/10.3150/13-BEJ547
mailto:andrew.rukhin@nist.gov


1980 A.L. Rukhin

When τ 2 is unknown, to estimate μ the common practice uses a plug-in version of μ̂opt,

μ̂plug =
∑

i

xi

τ̂ 2 + s2
i

(∑
i

1

τ̂ 2 + s2
i

)−1

, (1.2)

so that an estimator τ̂ 2 of τ 2 is required in the first place.
Usually such an estimator is obtained from a moment-type equation [15]. For example, the

DerSimonian–Laird [3] estimator of τ 2 is

τ̂ 2
DL =

∑
i (xi − δGD)2s−2

i − n + 1∑
i s

−2
i − ∑

i s
−4
i /(

∑
i s

−2
i )

with δGD = ∑
i s

−2
i xi/

∑
i s

−2
i denoting the Graybill–Deal estimator of μ. The popular

DerSimonian–Laird μ-estimator is obtained from (1.2) by using the positive part of τ̂ 2
DL.

Similarly the estimator of τ 2,

τ̂ 2
H =

∑
i (xi − x̄)2 − (n − 1)

∑
i s

2
i /n

n − 1
,

leads to the Hedges estimator of μ.
The paper questions the wisdom of using under all circumstances the tradition of plugging

in τ 2 estimators to get μ estimators. Indeed the routine of plug-in estimators may lead to poor
procedures. For example, by replacing the unknown τ 2 by τ̂ 2 in the above formula for Var(μ̂opt),
one can get a flagrantly biased estimator which leads to inadequate confidence intervals for μ.

A large class of weighted means statistics is motivated by the form of Bayes procedures de-
rived in Section 2.2. These statistics which typically do not admit the representation (1.2) induce
estimators of the weights (1.1) which shows the primary role of μ-estimation.

The main results of this work are based on a canonical representation of the restricted likeli-
hood function in terms of independent normal random variables and possibly of some χ2-random
variables. An important relationship between the weighted means statistics with weights of the
form (1.1) and linear combinations of x’s, which are shift invariant and independent, follows
from this fact. Our representation transforms the original problem to that of estimating curve-
confined expected values of independent heterogeneous χ2-random variables. This reduction
makes it possible to describe the risk behavior of the weighted means statistics whose weights
are determined by a quadratic form.

We make use of the concept of permissible estimators which cannot be uniformly improved
in terms of the differential inequality in Section 2.3. This inequality shows that the sample mean
exhibits the Stein-type phenomenon being an inadmissible estimator of μ under the quadratic
loss when n > 3. A risk function for the weights in a weighted means statistic whose main pur-
pose is μ-estimation is suggested in Section 2.4. It is shown there that under this risk the sample
mean is not even minimax. Section 2.5 discusses the case of approximately equal uncertainties,
and Section 3 gives an example. The derivation of the canonical representation of the likeli-
hood function is given in the Appendix; the proof of Theorem 2.1 is delegated to the Electronic
Supplement [16].
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2. Estimating the common mean

2.1. Restricted likelihood, heterogeneity variance estimation and quadratic
forms

The setting with the common mean μ and the heterogeneity variance τ 2 described in Section 1
is a special case of a mixed linear model where statistical inference is commonly based on the
restricted (residual) likelihood function.

The (negative) restricted log-likelihood function ([17], Section 6.6) has the form

L = 1

2

[∑
i

(xi − μ̂opt)
2

τ 2 + s2
i

+
∑

i

log
(
τ 2 + s2

i

) + log

(∑
i

1

τ 2 + s2
i

)]
.

It is possible that some of s2
i are equal; let s2

i have the multiplicity νi, νi ≥ 1, so that
∑

νi = n.
Then with the index i now taking values from 1 to p,

L = 1

2

[∑
i

νi(x̄i − μ̂opt)
2

τ 2 + s2
i

+
∑

i

νi log
(
τ 2 + s2

i

) + log

(∑
i

νi

τ 2 + s2
i

)
+

∑
i

(νi − 1)u2
i

τ 2 + s2
i

]
.

Here, p denotes the number of pairwise different s2
i , x̄i = ∑

k:sk=si
xk/νi represents the av-

erage of νi x’s corresponding to the particular s2
i , i = 1, . . . , p, and u2

i is their sample vari-
ance when νi ≥ 2. To simplify the notation, we write xi for x̄i , so that μ̂opt = ∑

i νi(τ
2 +

s2
i )−1xi/

∑
i νi(τ

2 + s2
i )−1. In our problem x = (x1, . . . , xp) and u2

i = ∑
k:sk=si

(xk − x̄i )
2/(νi −

1), νi > 1, form a sufficient statistic for μ and τ 2.
Throughout this paper, we assume that p ≥ 2. Otherwise all μ-estimators reduce to the sample

mean (but see Section 2.5 where τ 2-estimation for equal uncertainties is considered). The results
in the Appendix relate the likelihood function L to the joint density of p−1 independent normal,
zero mean random variables y1, . . . , yp−1. The (p − 1)-dimensional normal random vector y =
(y1, . . . , yp−1)

T which is a linear transform of x has zero mean (no matter what μ is) and the
covariance matrix, diag(τ 2 + t2

1 , . . . , τ 2 + t2
p−1), with t2

1 , . . . , t2
p−1 larger than min s2

i .

To find these numbers, we introduce the polynomial P(v) = ∏
i (v + s2

i )νi of degree n, and its
minimal annihilating polynomial M(v) = ∏

i (v + s2
i ) which has degree p. Define

Q(v) = M(v)
P ′(v)

P (v)
=

∑
i

νi

∏
k:k �=i

(
v + s2

k

)
. (2.1)

Thus Q is a polynomial of degree p − 1 which has only real (negative) roots, denoted by
−t2

1 , . . . ,−t2
p−1 (coinciding with the roots of P ′ different from −s2

1 , . . . ,−s2
p). Thus Q(v) =

n
∏

j (v + t2
j ). Note that M(−t2

j ) �= 0. When νi ≡ 1, M(v) = P(v), and Q(v) = P ′(v).
According to (2.1),

∑
i

log
(
τ 2 + s2

i

) + log

(∑
i

νi

τ 2 + s2
i

)
=

∑
j

log
(
τ 2 + t2

j

) + logn,
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so that by using (A.8) one gets

L = 1

2

[∑
j

y2
j

τ 2 + t2
j

+
∑
j

log
(
τ 2 + t2

j

)
(2.2)

+
∑

i

(νi − 1)u2
i

τ 2 + s2
i

+
∑

i

(νi − 1) log
(
τ 2 + s2

i

) + logn

]
.

The representation (2.2) of the restricted likelihood function very explicitly takes into account
one degree of freedom used for estimating μ, as it corresponds to p − 1 independent zero mean,
normal random variables yj with variances τ 2 + t2

j , j = 1, . . . , p − 1. In addition, this likelihood
includes independent u2

i , each being a multiple of a χ2-random variable with νi − 1 degrees of
freedom. When νi > 1, u2

i is an unbiased estimator of τ 2 + s2
i , u2

i ∼ (τ 2 + s2
i )χ2

νi−1/(νi −1). For

νi = 1, u2
i = 0 with probability one. According to the sufficiency principle, all statistical infer-

ence about τ 2 involving the restricted likelihood can be based exclusively on y2
1 , . . . , y2

p−1 and

u2
1, . . . , u

2
p . Their joint distribution forms a curved exponential family whose natural parameter

is formed by (τ 2 + t2
j )−1 (and perhaps by some (τ 2 + s2

i )−1).

Evaluation of the restricted maximum likelihood estimator (REML) τ̂ 2 is considerably facil-
itated by employing y2

1 , . . . , y2
p−1 and u2

1, . . . , u
2
p . Indeed (2.2) shows that this estimator can be

determined by simple iterations as

τ̂ 2 =
(∑

j

y2
j − t2

j

(τ̂ 2 + t2
j )2

+
∑

i

(νi − 1)(u2
i − s2

i )

(τ̂ 2 + s2
i )2

)/(∑
j

1

(τ̂ 2 + t2
j )2

+
∑

i

νi − 1

(τ̂ 2 + s2
i )2

)

with τ̂ 2
DL as a good starting point, and truncation at zero if the iteration process converges to a

negative number. Thus, τ̂ 2 is related to a quadratic form whose coefficients are inversely propor-
tional to the estimated variances of y2

j − t2
j and of u2

i − s2
i (cf. [4], Section 8).

The form of the likelihood function L also motivates the moment-type equations based on
general quadratic forms,

∑
j qj y

2
j +∑

i (νi − 1)riu
2
i with positive constants qj , ri . The moment-

type equation written in terms of random variables y2
1 , . . . , y2

p−1 and u2
1, . . . , u

2
p is

E

[∑
j

qj y
2
j +

∑
i

(νi − 1)riu
2
i

]
=

[∑
j

qj +
∑

i

(νi − 1)ri

]
τ 2 +

∑
j

qj t
2
j +

∑
i

(νi − 1)ris
2
i .

Then the estimator of τ 2 by the method of moments is

τ̂ 2 =
∑

j qj (y
2
j − t2

j ) + ∑
i (νi − 1)ri(u

2
i − s2

i )∑
j qj + ∑

i (νi − 1)ri
.

Unless τ 2 is large, the probability that τ̂ 2 takes negative values is non-negligible. Non-negative
statistics τ̂ 2+ = max(τ̂ 2,0) are used to get μ-estimators of the form (1.2).
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The representations of two traditional statistics in Section 1 easily follow,

τ̂ 2
DL =

∑
j t−2

j y2
j + ∑

i (νi − 1)s−2
i u2

i − n + 1∑
j t−2

j + ∑
i (νi − 1)s−2

i

and

τ̂ 2
H =

∑
j (y

2
j − t2

j ) + ∑
i (νi − 1)(u2

i − s2
i )

n − 1
.

A different method-of-moments procedure suggested by Paule and Mandel [12] is based on
solving the equation,

∑
i

νi(xi − μ̂)2

τ 2 + s2
i

+
∑

i

(νi − 1)u2
i

τ 2 + s2
i

= n − 1,

which has a unique positive solution, τ 2 = τ̂ 2
MP, provided that

∑
i νi(xi − x̂GD)2s−2

i + ∑
i (νi −

1)u2
i s

−2
i > n − 1. If this inequality does not hold, τ̂ 2

MP = 0. Because of (A.8), the equation can
be rewritten in terms of y’s and t ’s as

∑
j

y2
j

τ 2 + t2
j

+
∑

i

(νi − 1)u2
i

τ 2 + s2
i

= n − 1.

This representation allows for an explicit form of τ̂ 2
MP in some cases.

Indeed, when n = p = 2, τ̂ 2
MP = τ̂ 2

DL = τ̂ 2
H = max[0, y2

1 − t2
1 ], which is also the REML. When

n = p = 3, y2
1/t2

1 + y2
2/t2

2 ≥ 2,

τ̂ 2
MP = y2

1 + y2
2

4
− t2

1 + t2
2

2
+

√(
y2

1 + y2
2

4

)2

+
(

t2
1 − t2

2

2

)2

− (t2
1 − t2

2 )(y2
1 − y2

2)

4
.

We conclude this section by noticing that the widely used heterogeneity index I 2 ([1],
page 117) in terms of y’s and u’s takes the from

I 2 =
∑

j t−2
j y2

j + ∑
i (νi − 1)s−2

i u2
i − n + 1∑

j t−2
j y2

j + ∑
i (νi − 1)s−2

i u2
i

, 0 ≤ I 2 < 1.

2.2. Weighted means statistics and suggested estimators

Let us look now at the generalized Bayes estimator of μ when 	 is a prior distribution for τ 2

while μ has the uniform (non-informative) prior. Under the quadratic loss this estimator has the
form with L given in (2.2)

δ =
∫ ∞

0 μ̂opt exp{−L}d	(τ 2)∫ ∞
0 exp{−L}d	(τ 2)

=
∑

i

ωixi . (2.3)
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Thus δ is a weighted means statistic with normalized weights, ωi ∝ νi

∫ ∞
0 (τ 2 +s2

i )−1[∑νk(τ
2 +

s2
k )−1]−1 exp{−L}d	(τ 2),

∑
i ωi = 1, which are shift invariant, ωi(x1 + c, . . . , xp + c) =

ωi(x1, . . . , xp) for any real c. (Any function of y1, . . . , yp−1 is shift invariant.) Indeed the use
of restricted likelihood is tantamount to the practice of weighted means statistics with invariant
weights as μ estimators. (cf. [17], Section 9.2).

Formula (A.10) in the Appendix gives

δ = x̄ −
∑
j

∫ ∞
0 (τ 2 + t2

j )−1 exp{−L}d	(τ 2)∫ ∞
0 exp{−L}d	(τ 2)

√
bjyj = x̄ −

∑
j

wj

√
bjyj

with yj discussed in Section 2.1. Positive coefficients bj (the diagonal elements of the diagonal
matrix ATJ−1A defined in Lemma A.1) can be found from (A.3) or rather from (A.11); wj is
the posterior mean of (τ 2 + t2

j )−1,

wj = −2
∂

∂y2
j

logλ
(
y2

1 , . . . , y2
p−1, u

2
1, . . . , u

2
p

)

with λ = ∫ ∞
0 exp{−L}d	(τ 2). Thus positive wj is designed to estimate (τ 2 + t2

j )−1, wj ≤ t−2
j ,

and as a function of y2
� , wj decreases. The inequalities, t2

j < t2
� , and wj > w�, are equivalent.

If p > 2 and the support of 	 has at least two points, δ does not admit representation (1.2)
which suggests a more general class of μ-estimators. Namely, we propose to use weighted
means statistics δ = ∑

i ωixi with weights ωi = 1/p − ∑
j wjAij . The Bayes weights belong

to a smaller part of this polyhedron, namely to the convex hull of the vectors with coordinates
(τ 2 + t2

1 )−1, . . . , (τ 2 + t2
p−1)

−1 for τ 2 ≥ 0. If τ̂ 2 is an estimate of τ 2, the weights corresponding
to (1.2),

wj = 1

τ̂ 2 + t2
j

, (2.4)

lie on the boundary of this convex hull. A corner point, (t−2
1 , . . . , t−2

p−1), of the convex hull always
is an inner point of the polyhedron.

Thus the focus in this paper is on estimators δ of μ, which admit the representation,

δ =
∑

i

ωixi = x̄ −
∑
j

√
bjwjyj (2.5)

with wj ,0 ≤ wj ≤ t−2
j , yj and bj as defined above. The last term in the right-hand side of (2.5)

can be viewed as an arguably necessary heterogeneity correction to x̄.
Notice that (2.5) does not need an estimate of τ 2 as a prerequisite. Since wj is an approxi-

mation to (τ 2 + t2
j )−1, when n = p, the form of the REML τ̂ 2 in Section 2.1 suggests such an

estimator: [∑w2
j (yj − t2

j )]+/
∑

w2
j . If some of the multiplicities exceed one, an estimator of

(τ 2 + s2
i )−1 can be derived from wj by replacing t2

j by s2
i . According to (A.10), μ̂opt as well as

x̄, has the form (2.5). In fact, all traditional statistics (1.2) admit this representation.
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2.3. Estimation of multivariate normal mean and permissible procedures

We look now at the quadratic risk behavior of μ-estimators of the form (2.5). If δ = ∑
i ωixi

is such an estimator with positive normalized weights ωi which are shift invariant functions of
x1, . . . , xp , then it is unbiased. Its variance does not depend on μ and can be written as

Var(δ) = Var(μ̂opt) + E(δ − μ̂opt)
2 =

[∑
i

νi

τ 2 + s2
i

]−1

+ E(δ − μ̂opt)
2 (2.6)

by independence of μ̂opt and δ−μ̂opt. This and more general decompositions of the mean squared
error are discussed by Harville [5]. The second term in the right-hand side of this identity is an
important variance component which shows how well δ approximates the optimal but unavailable
μ̂opt, and which relates our setting to the classical estimation problem of the multivariate (p−1)-
dimensional normal mean.

Proposition 2.1. If the coefficients wj = wj(y
2
1 , . . . , y2

p−1, u
2
1, . . . , u

2
p) defining the estimator

(2.5) are piecewise differentiable in y’s, then

Var(δ) = Var(μ̂opt) +
∑
j

bjEy2
j

(
wj − 1

τ 2 + t2
j

)2

= Var(x̄) + E
∑
j

bj

(
f 2

j − 2
∂

∂yj

fj

)
,

where fj = yjwj . When p > 3, x̄ is an inadmissible estimator of μ under the quadratic loss.

The omitted proof of Proposition 2.1 is based on (A.10), (A.11), and on familiar integra-
tion by parts technique. It demonstrates linkage of our situation to the differential inequality
of a statistical estimation problem [2]. Namely, if for some vector θ , Y ∼ Np−1(θ, I ), then∑

j bj (f
2
j − 2 ∂fj/∂yj ) is an unbiased estimate of

∑
j bjE(Yj + fj (Y ) − θj )

2 − ∑
j bj θ

2
j .

Therefore Y + g(Y ), g = (g1, . . . , gp−1)
T, improves on Y + f (Y ), f = (f1, . . . , fp−1)

T, as a
θ -estimator provided that for all values Y1, . . . , Yp−1,

∑
j

bj

(
f 2

j − 2
∂

∂Yj

fj

)
≥

∑
j

bj

(
g2

j − 2
∂

∂Yj

gj

)
. (2.7)

Following [13], let us call a (piecewise differentiable) vector function f permissible if (2.7) does
not have any solutions g providing a strict inequality at some point. Thus, Y +f is a permissible
estimator of the vector normal mean θ if and only if the corresponding scalar μ-estimator, x̄ −∑

j

√
bjfj , cannot be improved upon in the sense of differential inequality (2.7). Since for p > 3,

f ≡ 0 is not a permissible function, the sample mean x̄ is inadmissible in the original setting.
Indeed the left-hand side of (2.7) is negative for f S

j = yjw
S
j ,wS

j = (p−3)/(bj

∑
y2
� /b�) proving

this statement.
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The differential operator in (2.7) does not involve t ’s or s’s, but in our problem only functions
fj such that |fj | ≤ |yj |t−2

j and fj/yj ≥ 0 are of interest. Since (τ 2 + t2
j )−1 is positive and

cannot exceed t−2
j , according to the first equality in Proposition 2.1, wj can be improved by

max[0,min(wj , t
−2
j )].

The proof of Theorem 1 in [2] shows that any permissible wj in our situation is of the form

wj = max

[
0,min

(
− ∂

∂y2
j

logλ,
1

t2
j

)]

with some piecewise differentiable positive function λ = λ(y2
1 , . . . , y2

p−1, u
2
1, . . . , u

2
p). When

n = p and λ = λ(q) for a positive quadratic form q = ∑
j qj y

2
j , qj > 0, one gets wj =

min[−qj (logλ)′(q), t−2
j ]. If there are multiplicities exceeding one, the quadratic form q is to

be replaced by q = ∑
j qj y

2
j + ∑

i (νi − 1)riu
2
i . For example, the function, λ(q) = q−α,α > 0,

leads to the estimator (2.5) with

wj = min

[
αqj∑

� q�y
2
� + ∑

i (νi − 1)riu
2
i

,
1

t2
j

]
. (2.8)

The statistic wJS
j = min(wS

j , t−2
j ), corresponding to qj = b−1

j , α = p − 3, when n = p is
similar to the positive part of the Stein estimator of the vector normal mean which improves
over Y . However, in the meta-analysis context it is desirable having the coefficients qj of the
same ordering as t−2

j , and this condition may not hold for qj ∝ b−1
j . As a matter of fact, despite

doing better than wj ≡ 0 or wS
j , the weights wJS

j do not produce a good estimator of μ. The
same is true for many other procedures (2.8) satisfying condition (2.10) of Theorem 2.1 in the
next section. This theorem shows that if p ≤ 3 < n, x̄ is an inadmissible estimator of μ although
the function f ≡ 0 is permissible then.

2.4. R-risk and asymptotic optimality

According to (2.6) the variance of estimator (2.5) is completely determined by the term, E(δ −
μ̂opt)

2, which can be interpreted as a cost of not knowing τ 2 when estimating μ, or as a new risk
of δ viewed as a procedure providing approximations to (τ 2 + t2

j )−1, j = 1, . . . , p − 1. More
conveniently, with s2 = ∑

i νis
2
i /n, define

R
(
δ, τ 2) = E(δ − μ̂opt)

2

Var(x̄) − Var(μ̂opt)
= E[∑i (ωi − ω0

i )xi]2

(τ 2 + s2)/n − [∑i νi/(τ 2 + s2
i )]−1

to be the R-risk of δ. Because of (A.10) and (2.5), the ensuing random loss function has the form,

L
(
δ, τ 2) = (δ − μ̂opt)

2

(τ 2 + s2)/n − [∑i νi/(τ 2 + s2
i )]−1

=
∑

j (wj − 1/(τ 2 + t2
j ))2bjy

2
j∑

j bj /(τ 2 + t2
j )

.
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This loss is invariant under a scale change of yj , τ, tj (or of xi, τ, si ). For τ 2 → ∞,

τ 2 + s2

n
−

[∑
i

νi

τ 2 + s2
i

]−1

∼
∑

i νi(s
2
i − s2)2

n2τ 2
,

so that the normalizing factor in the definition of L amplifies the error in approximating μ̂opt
when τ 2 is large. The results of this section show that for estimators δ satisfying conditions of
the following Theorem 2.1,

Var(δ) = Var(x̄) + [
Var(x̄) − Var(μ̂opt)

][
R

(
δ, τ 2) − 1

] = τ 2 + s2

n
+ O

(
1

τ 2

)

when τ 2 → ∞. Thus, Var(x̄) = (τ 2 + s2)/n is the dominating contribution to the variance of δ

when τ 2 is large. The R-risk is a useful tool for the comparison of estimators (2.5), as unlike the
normalized quadratic risk, E(δ − μ)2/Var(x̄), it removes this linear in τ 2 term.

If δ = μ̂plug with an invariant τ̂ 2, then R(μ̂plug, τ
2) can be interpreted as a conventional risk

of the estimator τ̂ 2. However under this risk large values of τ̂ 2 are not penalized very much no
matter what τ 2 is. Indeed τ̂ 2 is not designed to estimate τ 2 itself, but rather (τ̂ 2 + t2

j )−1 estimates
(τ 2 + t2

j )−1 (cf. [11], page 329). When n = p = 2, the estimator x̄, which corresponds to τ̂ 2 =
∞, is even admissible which of course cannot happen for any unbounded loss function. This
circumstance explains why an estimator τ̂ 2 may have a large quadratic risk, while the associated
estimator μ̂plug in (1.2) has a small variance. That phenomenon is known to happen in the case
of the DerSimonian–Laird procedure [6].

The estimator x̄ has a constant risk, R(x̄, τ 2) ≡ 1, which raises the question of its R-
minimaxity, i.e., if infδ supτ 2 R(δ, τ 2) = 1. In contrast, for the Graybill–Deal estimator, R(δGD,

τ 2) = τ 4[∑bj (τ
2 + t2

j )−1t−4
j ]/[∑bj (τ

2 + t2
j )−1], so that its R-risk, which vanishes when

τ 2 = 0, grows quadratically in τ 2. The next result gives a large class of estimators with bounded
R-risk improving on x̄ when n > 3.

Theorem 2.1. Under notation of Section 2.1, let for n > 3, q = ∑
j qj y

2
j +∑

i (νi − 1)riu
2
i be a

quadratic form with positive coefficients qj , ri . If δ has the form (2.5) such that for q → ∞,wj ∼
αj/q,0 < αj < ∞, then

lim
τ 2→∞

R
(
δ, τ 2) = 1 − 1∑

j bj

∑
j

bj

×
[

2αjE
z2
j∑

� q�z
2
� + ∑

i riχ
2
νi−1

− α2
jE

z2
j

(
∑

� q�z
2
� + ∑

i riχ
2
νi−1)

2

]
(2.9)

≥ 2

n − 1
,

where independent standard normal z1, . . . , zp−1 are independent of χ2
ν1−1, . . . , χ

2
νp−1. Equal

coefficients qj = ri (and only they) provide the asymptotically optimal quadratic form. If qj =
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ri = 1, the optimal choice is αj ≡ n − 3. The sample mean x̄ is not R-minimax, any estimator
(2.5) with weights (2.8) improves on it if

0 < α ≤ 2(n − 3)
min[minj q2

j t4
j ,mini:νi≥2 r2

i s4
i ]∑j bj qj

max[maxj q2
j t4

j ,maxi:νi≥2 r2
i s4

i ]∑j bj q
2
j

. (2.10)

Theorem 2.1 shows that the traditional weights (2.4) with τ̂ 2 = q/α are not asymptot-
ically optimal unless the quadratic form q coincides (up to a positive factor) with q∞ =∑

j y2
j + ∑

i (νi − 1)u2
i = ∑

i νi(xi − x̄)2 + ∑
i (νi − 1)u2

i , and α = n − 3. Only then (2.9) is

an equality. Thus, the Hedges estimator for which α = n − 1 and R(δH, τ 2) ∼ 2(n − 3)−1, is not
asymptotically optimal albeit its performance is the best when τ 2 is large. For the Mandel–
Paule estimator from Section 2.1, as well as for the REML, (2.9) also holds with the same
quadratic form and the same α. The DerSimonian–Laird estimator is defined by the quadratic
form q0 = ∑

j y2
j /t2

j + ∑
i (νi − 1)u2

i /s
2
i with α = ∑

j t−2
j + ∑

i (νi − 1)s−2
i . Therefore, these

three statistics are not optimal for large τ 2 either.
The case when n = p = 2 was studied in [14]. Then x̄ is admissible (so that it is automatically

minimax under R). Any estimator (2.5) has the form (1.2) with some τ̂ 2 = τ̂ 2(y2
1), and its R-risk

grows linearly in τ ,

R
(
δ, τ 2) ∼

√
2√
π

∫ ∞

0

y2 dy

(τ̂ 2 + s2)2
τ.

For n = p = 3, as τ 2 → ∞, R(δ, τ 2) ∼ C log τ 2 (see Electronic Supplement). By analogy with
the Stein phenomenon, admissibility of the sample mean when n = 3 is expected.

2.5. Equal uncertainties and minimax value

When n > 3, the minimax value, infδ supτ 2 R(δ, τ 2), (which does not exceed one since
R(x̄, τ 2) ≡ 1) cannot be smaller than 2(n − 1)−1. Indeed for any estimator δ,

sup
τ 2

R
(
δ, τ 2) ≥ lim sup

τ 2→∞
R

(
δ, τ 2) ≥ 2

n − 1
.

This fact can be proven by constructing a sequence of proper prior densities for τ 2 such that the
corresponding sequence of the Bayes R-risks converges to 2(n − 1)−1.

Thus for large τ 2, the estimators (2.5) with q∞, α = n − 3, cannot be improved upon. The
most natural of these statistics, say, δ1 has the form (2.5) with

w1
j = min

(
n − 3

q∞ ,
1

t2
j

)
. (2.11)

Another modified Hedges estimator, δmH, has the form (1.2) with τ̂ 2 = (n− 3)−1[q∞ −∑
j t2

j −∑
i (νi − 1)s2

i ]+ and also is asymptotically optimal although in general its performance is worse
than that of (2.11).
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If
∑

i νi(s
2
i − s2)2 → 0, so that all t2

j and s2
i tend to s2 = ∑

i νis
2
i /n, wj(v) → w(v),

R
(
δ, τ 2) → (

τ 2 + s2)2
∫ ∞

0

[
w(v) − 1

τ 2 + s2

]2

dGn+1

(
v

τ 2 + s2

)
.

Here and further Gk is the distribution function of χ2-law with k degrees of freedom. Thus if
s2
i ≈ s2, our problem is that of estimation of the reciprocal of the scale parameter σ = τ 2 + s2

under the restriction, σ ≥ s2. The “data” v in this problem is χ2-distributed, v ∼ σχ2
n+1, and

the invariant loss function, σ 2(w − σ−1)2, corresponds to the R-risk. Then the minimax value,
2(n − 1)−1, is the same as in the non-restricted (s = 0) parameter case [8]. As in unrestricted
scale parameter estimation, the generalized prior, dσ/σ , σ ≥ s2, or dτ 2/(τ 2 + s2), provides a
least favorable distribution. See also [9] for more general results.

Thus in meta-analysis problems with s2
i exhibiting little variation, the minimax value is ex-

pected to stay close to 2(n − 1)−1. Indeed when w(v) = min(αv−1, s−2), ξ = αs2/(τ 2 + s2),

R
(
δ, τ 2) → 1 −

(
1 − τ 4

s4

)
Gn+1(ξ) − 2α(1 − Gn−1(ξ))

n − 1
+ α2(1 − Gn−3(ξ))

(n − 1)(n − 3)
. (2.12)

The formula (2.12) shows that the estimator (2.11) is minimax unlike δmH for which w(v) =
{[v − (n − 1)s2]+/(n − 3) + s2}−1.

The DerSimonian–Laird rule, wDL(v) = {[v − (n − 1)s2]+/(n − 1) + s2}−1, α = n − 1, co-
incides in this situation with the REML and the Hedges estimator. For the proper maximum
likelihood estimator of (τ 2 + s2)−1, α = n + 1. None of these procedures is minimax which
indicates that their good properties in meta-analysis may be attributable to a large number of
individual studies (large n) or to lack of interest in high heterogeneity (small τ 2).

Figure 1 shows the graphs of the R-risk in (2.12) when s2 = 1. It suggests that the estimator δ1

performs quite well for small/medium n’s. Indeed this estimator is better than other procedures
except for small τ 2 in which case δDL dominates δmH (at the price of higher risk for larger values
of τ 2).

3. Example: p = 2

When there are only two different values s2
1 and s2

2 with multiplicities ν1 and ν2, n = ν1 +ν2 > 3,

t2
1 = t2 = ν2s

2
1 + ν1s

2
2

n
,

A11 = −A21 = ν1ν2(s
2
1 − s2

2)

n2
,

b1 = b = ν1ν2(s
2
1 − s2

2)2

n3
,
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Figure 1. Plots of R-risks of estimators corresponding to δDL (dash-dotted line), δmH (line marked by
diamonds) and δ1 (line marked by ∗) when n = 5 (left panel), and of the same risks when n = 15 (right
panel). The straight line depicts the minimax value 2(n − 1)−1.

and if s2
1 > s2

2 ,

y1 = y =
√

ν1ν2(x1 − x2)√
n

.

Any estimator (2.5) has the form (1.2) for some τ̂ 2,

δ = x1 + x2

2
− ν1ν2(s

2
1 − s2

2)(x1 − x2)

n2(τ̂ 2 + t2)
.

For δ1, τ̂ 2 = [(n− 3)−1q∞ − t2]+, q∞ = y2 + (ν1 − 1)u2
1 + (ν2 − 1)u2

2. The modified Hedges
estimator δmH with τ̂ 2 = (n − 3)−1[q∞ − t2 − (ν1 − 1)s2

1 − (ν2 − 1)s2
2 ]+ typically has its R-risk

at τ 2 = 0 larger than that of δ1. (The exact condition for δmH to have a smaller R-risk at τ 2 = 0
than δ1 is: n ≥ 5, and if ν1 ≤ ν2, then ν1 ≤ n(n − 4)/(2n − 5), [n(n − 1) − ν1(2n − 5)]s2

2 ≥
[n(n − 4) − ν1(2n − 5)]s2

1 .)
The R-risk of δ1 at τ 2 = 0 can be larger than 2/(n − 1). Indeed

R(δ1,0) =
∫ ∞

(n−3)

(
n − 3

v
− 1

)2

dF
(
t2v

)
,

where F(v) is the distribution function of t2χ2
3 + s2

1χ2
ν1−1 + s2

2χ2
ν2−1. With a = t2/[t6s

2(ν1−1)
1 ×

s
2(ν2−1)
2 ]1/(n+1), according to the Okamoto inequality [10], F(t2v) ≤ Gn+1(av). Thus, since

[(n − 3)v−1 − 1]2 is an increasing function of v, v ≥ n − 3,

R(δ1,0) >

∫ ∞

(n−3)

(
n − 3

v
− 1

)2

dGn+1(av)

= 1 − Gn+1
(
a(n − 3)

)
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− 2(n − 3)a[1 − Gn−1(a(n − 3))]
n − 1

+ (n − 3)a2[1 − Gn−3(a(n − 3))]
n − 1

.

This inequality shows that R(δ1,0) ≥ 2(n − 1)−1, if a < a0 < 1, where a0 = a0(n) is mono-
tonically increasing to 1 in n,a0(4) = 0.637 . . . , a0(10) = 0.798 . . . For small a, δ1 cannot
have its risk at the origin smaller than 2(n − 1)−1. For example, when n = 4, ν1 = 1, ν2 = 3,
R(δ1,0) ≤ 2(n − 1)−1 if and only if s2

1/s2
2 ≥ 0.173 . . . , i.e., iff a ≥ 0.679 . . . .

The DerSimonian–Laird estimator δDL with τ̂ 2
DL = (q0 −n+1)+/(1/t2 + (ν1 −1)/s2

1 + (ν2 −
1)/s2

2), q0 = y2/t2 + (ν1 − 1)u2
1/s

2
1 + (ν2 − 1)u2

2/s
2
2 , has its R-risk at τ 2 = 0 of the form

R(δDL,0) =
∫ ∞

(n−1)

[
1

1 + κ−1(v − n + 1)
− 1

]2

dGn+1(v)

with κ = 1 + t2[(ν1 − 1)/s2
1 + (ν2 − 1)/s2

2 ].
For the estimator δ0 defined by (2.5),

w0
j = min

(
n − 1

q0
,1

)
1

t2
j

,

so that τ̂ 2 = t2[q0/(n − 1) − 1]+. Its risk at τ 2 = 0,

R(δ0,0) =
∫ ∞

(n−1)

(
n − 1

v
− 1

)2

dGn+1(v),

is always smaller than that of δ1.
But δ0 is also competitive against δDL. Indeed R(δ0,0) < R(δDL,0) if and only if κ < n − 1,

that is, iff

(ν2 − 1)s2
1

ν1s
2
2

+ (ν1 − 1)s2
2

ν2s
2
1

<
ν1ν2(n − 2)

n
− 2 + n

ν1ν2
.

Thus provided that ν1, ν2 > 1, s2
1/s2

2 ≈ √
(ν1 − 1)ν1/[(ν2 − 1)ν2], δ0 improves upon δDL for

small τ 2. If, say, ν1 = 1, this domination means that s2
1 < s2

2 . Thus, when one study reports
a smaller uncertainty than all other studies whose standard errors are approximately equal, δ0
improves upon the DerSimonian–Laird estimator for small τ 2.

However, there is no uniform domination as the condition, κ < n − 1, means that for large
τ 2,R(δ0, τ

2) > R(δDL, τ 2).

4. Conclusions

Author’s attempt was to give a perspective of a meta-analysis setting from the point of view of
the statistical decision theory. Although concepts like admissibility or minimaxity have not so
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far generated much interest among meta-analysts, there is a realization that different desirable
qualities of the employed procedures call for different loss functions. The quadratic loss for the
mean effect estimators from a wide class leads in a natural way to the R-risk suggested and
studied in this paper. This risk strongly recommends against the use of the sample mean as a
consensus estimate which still happens in some collaborative studies.

Moreover, the R-risk questions well recognized excellent properties of the DerSimonian–Laird
estimator δDL in the situation when si are almost equal, or when one study claims a high precision
while all other studies report larger uncertainties which are about the same. The unsatisfactory
performance of the Graybill–Deal estimator δGD is well known in the latter case. It is of interest
that δ0 improves on the DerSimonian–Laird estimator for moderate/small τ 2. Inference on the
overall effect can be obtained before the heterogeneity variance is estimated, but even in the
simplest cases considered here there is no unique rule dominating all others.

This paper is dedicated to the memory of George Casella who was always interested in impli-
cations of the statistical decision theory results to practical estimation problems [7].

Appendix

A.1. Partial fraction decomposition and weighted means

Let e denote unit coordinates vector whose dimension is clear from the context, and put J =
diag(ν1, . . . , νp), S = diag(s2

1/ν1, . . . , s
2
p/νp). In the used here notation of Section 2.1 the vector

x has the diagonal covariance matrix, C = τ 2J−1 + S.

Lemma A.1. For any v different from −t2
j , j = 1, . . . , p − 1, and for any i = 1, . . . , p,

νi

v + s2
i

[∑
k

νk

v + s2
k

]−1

= νi

n
−

∑
j

Aij

v + t2
j

, (A.1)

where

Aij = νiM(−t2
j )

Q′(−t2
j )(t2

j − s2
i )

. (A.2)

For any j, j = 1, . . . , p − 1,

bj =
∑

i

A2
ij

νi

= 1

t2
j

∑
i

s2
i A2

ij

νi

= − M(−t2
j )

Q′(−t2
j )

. (A.3)

If the p × (p − 1) matrix A is determined by its elements Aij in (A.2), then

ATe = 0, (A.4)
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and

Ae = 1

n
J
(
S − s2I

)
e, s2 =

∑
i νis

2
i

n
. (A.5)

The matrices ATJ−1A = diag(b1, . . . , bp−1) and ATSA = diag(b1t
2
1 , . . . , bp−1t

2
p−1) are diago-

nal, and

A
(
ATJ−1A

)−1
AT = J − JeeTJ

eTJe
. (A.6)

With ρ = ((τ 2 + t2
1 )−1, . . . , (τ 2 + t2

p−1)
−1)T,

ATJ−1C−1J−1A = diag
(
ATJ−1Aρ

) +
(∑

i

νi

τ 2 + s2
i

)(
ATJ−1Aρ

)(
ATJ−1Aρ

)T
, (A.7)

and

∑
i

νi(xi − μ̂opt)
2

τ 2 + s2
i

=
∑
j

y2
j

τ 2 + t2
j

. (A.8)

Proof. By the definition of the polynomial Q in Section 2.1,

νi

n
− νi

v + s2
i

[∑
k

νk

v + s2
k

]−1

= νi

n
− νiP (v)

(v + s2
i )P ′(v)

= νi

n
− νiM(v)

(v + s2
i )Q(v)

= νi[∏j (v + t2
j ) − ∏

k �=i (v + s2
k )]

Q(v)

with the right-hand side of this identity being the ratio of two polynomials of degree p − 2 and
p−1, respectively. The formulas (A.1) and (A.2) easily follow from the classical result on partial
fraction decomposition for such ratios.

For any fixed j ,

∑
i

νi

s2
i − t2

j

= P ′(−t2
j )

P (−t2
j )

= 0,

so that (A.4) follows from (A.2),

∑
i

Aij = M(−t2
j )

Q′(−t2
j )

∑
i

νi

s2
i − t2

j

= 0.

By equating coefficients at vn+p−2 of QP and MP ′, one gets
∑

t2
j = ∑

s2
i − s2. The

comparison of coefficients at vp−2 of two equal polynomials, n
∑

j Aij

∏
��=j (v + t2

� ) and
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νi[∏j (v + t2
j ) − ∏

k �=i (v + s2
k )], shows that

n
∑
j

Aij = νi

(∑
j

t2
j −

∑
k �=i

s2
k

)
= νi

(
s2
i −

∑
k

νks
2
k /n

)
,

which implies (A.5).
For any j

∑
i

νi

(s2
i − t2

j )2
= −Q′(−t2

j )

M(−t2
j )

,

and

∑
i

νis
2
i

(s2
i − t2

j )2
= t2

j

∑
i

νi

(s2
i − t2

j )2
= −t2

j

Q′(−t2
j )

M(−t2
j )

,

so that (A.3) is established by substituting (A.2) for Aij .
For any different j and �

0 =
∑

i

νi

s2
i − t2

j

−
∑

i

νi

s2
i − t2

�

= (
t2
j − t2

�

)∑
i

νi

(s2
i − t2

j )(s2
i − t2

� )
,

which implies that
∑

i ν
−1
i AijAi� = 0, or that ATJ−1A is a diagonal matrix.

This argument also shows that

∑
i

s2
i AijAi�

νi

= 0,

as

∑
i

νis
2
i

(s2
i − t2

j )(s2
i − t2

� )
= t2

j

∑
i

νi

(s2
i − t2

j )(s2
i − t2

� )
= 0.

To prove (A.6), observe that for i �= k, the (i, k)th element of the matrix A(ATJ−1A)−1AT

has the form,

∑
j

AijAkj

bj

= νiνk

∑
j

bj

(t2
j − s2

i )(t2
j − s2

k )

= νiνk

s2
i − s2

k

[∑
j

bj

t2
j − s2

i

−
∑
j

bj

t2
j − s2

k

]
= −νiνk

n
.

Here we used the facts that Aij = −νibj /(t
2
j − s2

i ), and
∑

j bj (t
2
j − s2

i )−1 = (s2 − s2
i )/n.
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To determine the diagonal elements of A(ATJ−1A)−1AT, observe that according to the defi-
nition of Q,Q(−s2

i )/M ′(−s2
i ) = νi . Therefore for any i,

∑
j

A2
ij

bj

= −νi

∑
j

Aij

t2
j − s2

i

= ν2
i

[
M ′(−s2

i )

Q(−s2
i )

− 1

n

]
= νi − ν2

i

n
.

Thus, (A.6) holds.
Because of (A.2),

ATJ−1C−1e = −
(∑

i

νi

τ 2 + s2
i

)(
ATJ−1A

)
ρ. (A.9)

To prove (A.7) for fixed j, �, multiply (A.1) by Aij ,Ai�, divide by ν2
i , and sum up over i to

get the following expression for the (j, �)th element of the matrix ATJ−1C−1J−1A,

(∑
i

νi

τ 2 + s2
i

)[
δj�bj

n
−

∑
i,m

AijAi�Aim

ν2
i (τ 2 + t2

m)

]
,

where δij is the Kronecker symbol (δij = 1, if i = j ;= 0 otherwise). It is easy to see that∑
i AijAi�Aimν−2

i = 0, unless there are at least two equal indices among j, �,m. When all three
of these indices coincide,

∑
i

A3
ij

ν2
i

= − M3(−t2
j )

[Q′(−t2
j )]3

∑
i

νi

(s2
i − t2

j )3

= −M(−t2
j )[Q′′(−t2

j )M(−t2
j ) − 2Q′(−t2

j )M ′(−t2
j )]

2[Q′(−t2
j )]3

= bj [Q′′(−t2
j )M(−t2

j ) − 2Q′(−t2
j )M ′(−t2

j )]
2[Q′(−t2

j )]2
= −b2

jQ
′′(−t2

j ) + 2bjM
′(−t2

j )

2Q′(−t2
j )

.

If, say, m = j �= �,

∑
i

A2
ijAi�

ν2
i

= − M2(−t2
j )M(−t2

� )

[Q′(−t2
j )]2Q′(−t2

� )

∑
i

νi

(s2
i − t2

j )2(s2
i − t2

� )

= − M2(−t2
j )M(−t2

� )

[Q′(−t2
j )]2Q′(−t2

� )(t2
j − t2

� )

∑
i

νi

(s2
i − t2

j )2

= M(−t2
j )M(−t2

� )

Q′(−t2
j )Q′(−t2

� )(t2
j − t2

� )
= bjb�

t2
j − t2

�

.
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The last formula shows that off-diagonal elements of ATJ−1C−1J−1A, for j �= � have the form

−
(∑

i

νi

τ 2 + s2
i

)[
bjb�

(t2
j − t2

� )(τ 2 + t2
j )

+ bjb�

(t2
� − t2

j )(τ 2 + t2
� )

]

=
(∑

i

νi

τ 2 + s2
i

)
bjb�

(τ 2 + t2
j )(τ 2 + t2

� )
,

that is, (A.7) holds for the off-diagonal elements.
We demonstrate now the equality of the diagonal elements of matrices in (A.7). These elements

for the matrix ATJ−1C−1J−1A are

bj

(∑
i

νi

τ 2 + s2
i

)[
1

n
−

∑
��=j

b�

(t2
j − t2

� )(τ 2 + t2
� )

+ bjQ
′′(−t2

j ) + 2M ′(−t2
j )

2Q′(−t2
j )(τ 2 + t2

j )

]
.

Define the polynomial Qj by the formula,

Qj(τ
2)

Q(τ 2)
=

∑
��=j

b�

(t2
� − t2

j )(τ 2 + t2
� )

+ bjQ
′′(−t2

j ) + 2M ′(−t2
j )

2Q′(−t2
j )(τ 2 + t2

j )
.

Then the degree of Qj is p − 2, and this polynomial is determined by its values at −t2
� , � =

1, . . . , p − 1: Qj(−t2
� ) = b�Q

′(−t2
� )/(t2

� − t2
j ) = −M(−t2

� )/(t2
� − t2

j ), � �= j , and Qj(−t2
j ) =

bjQ
′′(−t2

j )/2 + M ′(−t2
j ). It follows that

Qj

(
τ 2) = M(τ 2)

τ 2 + t2
j

+ bjQ(τ 2)

(τ 2 + t2
j )2

− Q(τ 2)

n
.

Indeed, the polynomial in the right-hand side has degree p − 2. Since

lim
τ 2→−t2

j

M(τ 2)(τ 2 + t2
j ) + bjQ(τ 2)

(τ 2 + t2
j )2

= M ′(−t2
j

) + bjQ
′′(−t2

j )

2
,

it assumes the same values as Qj at −t2
� , � = 1, . . . , p − 1, which establishes (A.7).

Because of (A.6) and (A.2), x − μ̂opte = x − x̄e + (x̄ − μ̂opt)e = [I − eeTJ/(eTJe)]x +
(ρTATx)e. Thus the quadratic form in the left-hand side of (A.8) can be written as[

J−1A
(
ATJ−1A

)−1
ATx + eρTATx

]T
C−1[J−1A

(
ATJ−1A

)−1
ATx + eρTATx

]
= yT[(

ATJ−1A
)−1/2

ATJ−1 + (
ATJ−1A

)1/2
ρeT]

× C−1[J−1A
(
ATJ−1A

)−1/2 + eρT(
ATJ−1A

)1/2]
y

= yT diag(ρ)y,

where the second equality follows from (A.7) and (A.9). �
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The following important representation for μ̂opt

μ̂opt = x̄ −
∑
i,j

Aij xi

τ 2 + t2
j

= x̄ −
∑
j

√
bjyj

τ 2 + t2
j

(A.10)

is a consequence of Lemma A.1. Here yj = ∑
i Aij xi/

√
bj are independent normal, zero

mean random variables with the variances τ 2 + t2
j . Indeed the normal random vector y =

(ATJ−1A)−1/2ATx has the covariance matrix (ATJ−1A)−1/2ATCA(ATJ−1A)−1/2 = diag(τ 2 +
t2
1 , . . . , τ 2 + t2

p−1). Since Eyj (μ̂opt − μ) = 0, μ̂opt and yj are independent implying indepen-
dence of μ̂opt and δ − μ̂opt in Section 2.3.

The coefficients Aij provide a simple expression for Var(x̄) − Var(μ̂opt). Indeed, by dividing
(A.1) by νi and multiplying it by Ai�, one gets after summing up over all i and � and using (A.4),
(A.5),

P(τ 2)

P ′(τ 2)

∑
i,�

Ai�

τ 2 + s2
i

= M(τ 2)

nQ(τ 2)

∑
i

νi(s
2
i − s2)

τ 2 + s2
i

=
[∑

i

νi

τ 2 + s2
i

]−1

− τ 2 + s2

n
= −

∑
i,j

A2
ij

νi(τ 2 + t2
j )

.

This formula can be written in the form,

∑
j

bj

τ 2 + t2
j

= Var(x̄) − Var(μ̂opt) =
∑

i νi(s
2 − s2

i )
∏

k �=i (τ
2 + s2

k )

nQ(τ 2)
, (A.11)

which provides the representation of the left-hand side of (A.11) as a ratio of two polynomials
of degree p − 2 and p − 1, respectively and which allows numerical evaluation of b’s without
calculating Aij .

Supplementary Material

Restricted likelihood representation and decision-theoretic aspects of meta-analysis: Elec-
tronic supplement (DOI: 10.3150/13-BEJ547SUPP; .pdf). The supplement contains the proof
of Theorem 2.1.
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