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Linear combinations of independent random variables have been extensively studied in the literature. How-
ever, most of the work is based on some specific distribution assumptions. In this paper, a companion of
(J. Appl. Probab. 48 (2011) 1179–1188), we unify the study of linear combinations of independent nonneg-
ative random variables under the general setup by using some monotone transforms. The results are further
generalized to the case of independent but not necessarily identically distributed nonnegative random vari-
ables. The main results complement and generalize the results in the literature including (In Studies in
Econometrics, Time Series, and Multivariate Statistics (1983) 465–489 Academic Press; Sankhyā Ser. A 60
(1998) 171–175; Sankhyā Ser. A 63 (2001) 128–132; J. Statist. Plann. Inference 92 (2001) 1–5; Bernoulli
17 (2011) 1044–1053).
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1. Introduction

Linear combinations of independent nonnegative random variables arise naturally in statistics,
operations research, reliability theory, computer science, economic theory, actuarial science and
other fields. There are a large number of extensive studies on this topic in the literature. Some
typical applications could be found in [1,2,8,13,20] and references therein. It should be remarked
that most of the work in the literature is under some specific distribution assumptions such as
exponential, Weibull, Pareto and gamma, etc.

Under the general framework, Karlin and Rinott [6] studied the linear combinations of non-
negative independent and identically distributed (i.i.d.) random variables X1,X2, . . . ,Xn with
X

p
i having a log-concave density for 0 < p < 1. They showed that if q < 0 and p−1 + q−1 = 1,

then

(a
q

1 , . . . , a
q
n)�m (b

q

1 , . . . , b
q
n) �⇒

n∑
i=1

aiXi ≥st

n∑
i=1

biXi, (1.1)

where a = (a1, . . . , an) ∈ �n+, b = (b1, . . . , bn) ∈ �n+, �m means the majorization order, and ≥st

means the usual stochastic order (their formal definitions are given in Section 2).
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Recently, Yu [20] further studied this problem and showed two very interesting results. For
nonnegative i.i.d. random variables X1,X2, . . . ,Xn, if log(Xi) has a log-concave density, then

(loga1, . . . , logan) �m (logb1, . . . , logbn) �⇒
n∑

i=1

aiXi ≥st

n∑
i=1

biXi. (1.2)

In contrast to the result (1.1) in [6], Yu [20] proved that if X
p
i has a log-concave density for

p > 1, then, for q > 1 and p−1 + q−1 = 1,

(a
q

1 , . . . , a
q
n)�m (b

q

1 , . . . , b
q
n) �⇒

n∑
i=1

aiXi ≤st

n∑
i=1

biXi. (1.3)

However, in practical situation, it is quite often that random variables may not be i.i.d., that is,
i.i.d. seems to be a restrictive assumption; see [7,9,10,21] and references therein. Xu and Hu [19]
successfully extended (1.2) to the case of independent but not necessarily identically distributed
random variables under some suitable conditions.

This paper is a companion of [19]. In this paper, we will further study this topic. First, in Sec-
tion 3, we unify the study of (1.1)–(1.3) by using some monotone transforms, and then extend the
results to the case of independent but not necessarily identically distributed nonnegative random
variables in Section 4. Some examples are highlighted as well.

2. Preliminaries

In this section, we recall the definitions of some stochastic orders and majorization orders, which
will be used in the sequel.

Definition 2.1. Let X and Y be two random variables with distribution functions F and G,
density functions f and g (if exist), respectively. Then X is said to be smaller than Y

• in the usual stochastic order, denoted by X ≤st Y , if F(x) ≥ G(x) for all x;
• in the likelihood ratio order, denoted by X ≤lr Y , if g(x)/f (x) is increasing in x for which

the ratio is well defined.

The likelihood ratio order is stronger than the usual stochastic order. For more discussions on
stochastic orders, please refer to [16].

We shall also be using the concept of majorization in our discussion. For extensive and com-
prehensive details on the theory of majorization orders and their applications, please refer to
[12]. Let x(1) ≤ x(2) ≤ · · · ≤ x(n) be the increasing arrangement of components of the vector
x = (x1, x2, . . . , xn).

Definition 2.2. For vectors x,y ∈ �n, x is said to be



1778 X. Pan, M. Xu and T. Hu

• majorized by y, denoted by x 	m y, if
∑n

i=1 x(i) = ∑n
i=1 y(i) and

j∑
i=1

x(i) ≥
j∑

i=1

y(i) for j = 1, . . . , n − 1;

• weakly supmajorized by y, denoted by x 	w y, if

j∑
i=1

x(i) ≥
j∑

i=1

y(i) for j = 1, . . . , n;

• weakly submajorized by y, denoted by x 	w y, if

n∑
i=j

x(i) ≤
n∑

i=j

y(i) for j = 1, . . . , n.

A real-valued function h defined on a set A ⊆ �n is said to be Schur-concave [Schur-convex]
on A if, for any x,y ∈ A,

x �m y �⇒ h(x) ≤ [≥]h(y),

and h is log-concave on A if A is a convex set and, for any x,y ∈ A and α ∈ [0,1],
h
(
αx + (1 − α)y

) ≥ [h(x)]α[h(y)]1−α.

To prove the main results in the next section, we recall the following two well-known lemmas.
The first one gives the preservation properties of the weakly majorization orders under monotone
transforms, while the second one states that the log-concavity is closed under integral.

Lemma 2.3 ([12], Theorem 5.A.2).

(i) For all increasing and convex functions g,

x 	w y �⇒ (g(x1), . . . , g(xn)) 	w (g(y1), . . . , g(yn)).

(ii) For all increasing and concave functions g,

x 	w y �⇒ (g(x1), . . . , g(xn)) 	w (g(y1), . . . , g(yn)).

(iii) For all decreasing and convex functions g,

x 	w y �⇒ (g(x1), . . . , g(xn)) 	w (g(y1), . . . , g(yn)).

(iv) For all decreasing and concave functions g,

x 	w y �⇒ (g(x1), . . . , g(xn)) 	w (g(y1), . . . , g(yn)).
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Lemma 2.4 ([4,15]). Suppose that h :�m × �k → �+ is a log-concave function and that

g(x) =
∫

�k

h(x, z)dz

is finite for each x ∈ �m. Then g is log-concave on �m.

3. i.i.d. nonnegative random variables

In this section, we unify the study of linear combinations of i.i.d. nonnegative random variables
under the general setup by using some monotone transforms.

Theorem 3.1. Let X1,X2, . . . ,Xn be i.i.d. absolutely continuous and nonnegative random vari-
ables, and let φ,ψ :�+ → �+ be two twice continuously differentiable and strictly monotone
functions such that, for all (u, v) ∈ �2+,

φ′′(u) ≥ 0 (3.1)

and

φ′′(u)ψ ′′(v)φ(u)ψ(v) ≥ [φ′(u)ψ ′(v)]2. (3.2)

Assume that ψ−1(X1) has a log-concave density function, where ψ−1 is the inverse function
of ψ . If

(φ−1(a1), . . . , φ
−1(an)) �m (φ−1(b1), . . . , φ

−1(bn)), (3.3)

then
n∑

i=1

aiXi ≥st

n∑
i=1

biXi. (3.4)

Moreover, if φ is increasing (decreasing), the majorization order in (3.3) can be replaced by the
submajorization (supmajorization) order.

Proof. First, we prove that (3.3) implies (3.4). To see it, suppose that (3.3) holds. Fix any t ∈ �+,
and define

h(c) = P

(
n∑

i=1

φ(ci)Xi ≤ t

)
.

It suffices to show that h(c) is Schur-concave in c ∈ �n+. Define

A =
{

(y, c) ∈ �2n+ :
n∑

i=1

φ(ci)ψ(yi) ≤ t

}
.
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Then

h(c) = P

(
n∑

i=1

φ(ci)ψ(ψ−1(Xi)) ≤ t

)
=

∫
�n

g(y, c)dy,

where

g(y, c) = 1A(y, c) ·
n∏

i=1

fψ−1(Xi)
(yi).

Next, we will discuss when

�(u,v) = φ(u)ψ(v)

is convex on �2+. Note that the Hessian matrix for �(u,v) is

(
φ′′(u)ψ(v) φ′(u)ψ ′(v)

φ′(u)ψ ′(v) φ(u)ψ ′′(v)

)
.

It is known that if the Hessian matrix for �(u,v) is nonnegative semi-definite, then �(u,v) is
convex on �2+. That is, if (3.1) and (3.2) hold, then �(u,v) is convex and, hence, A is a con-
vex set. This implies that 1A(y, c) is log-concave on (y, c) ∈ �2n. Thus, g(y, c) is log-concave.
By Lemma 2.4, h(c) is log-concave. Since h(c) is permutation symmetric, and the permutation
symmetry and log-concavity imply Schur-concavity (see Fact 3.1 in [18]), we conclude that h(c)
is Schur-concave.

Next, suppose that φ is decreasing and (φ−1(a1), . . . , φ
−1(an)) �w (φ−1(b1), . . . , φ

−1(bn)).
By Proposition 5.A.9 in [12], there exists a real vector (c1, . . . , cn) ∈ �n+ such that

(φ−1(a1), . . . , φ
−1(an)) ≤ (c1, . . . , cn) �m (φ−1(b1), . . . , φ

−1(bn)).

Here, for two vectors s, t ∈ �n, s ≥ t means componentwise ordering. Since φ is decreasing, we
have ai ≥ φ(ci) for each i and, hence,

∑n
i=1 aiXi ≥st

∑n
i=1 φ(ci)Xi. On the other hand, it is

shown that
∑n

i=1 φ(ci)Xi ≥st
∑n

i=1 biXi. Thus, we conclude (3.4).
Finally, suppose that φ is increasing and (φ−1(a1), . . . , φ

−1(an)) �w (φ−1(b1), . . . , φ
−1(bn)).

Again, by Proposition 5.A.9 in [12], there exists a real vector (c1, . . . , cn) ∈ �n+ such that

(φ−1(a1), . . . , φ
−1(an)) ≥ (c1, . . . , cn) �m (φ−1(b1), . . . , φ

−1(bn)).

The rest of the proof is similar and is hence omitted. This completes the proof. �

Theorem 3.2. Let X1,X2, . . . ,Xn be i.i.d. absolutely continuous and nonnegative random vari-
ables, and let φ,ψ :�+ → �+ be two twice continuously differentiable and strictly monotone
functions such that, for all (u, v) ∈ �2+,

φ′′(u) ≤ 0 (3.5)
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and (3.2) hold. If ψ−1(X1) has a log-concave density function, then

(φ−1(a1), . . . , φ
−1(an)) �m (φ−1(b1), . . . , φ

−1(bn)) �⇒
n∑

i=1

aiXi ≤st

n∑
i=1

biXi. (3.6)

Moreover, if φ is increasing (decreasing), the majorization order in (3.6) can be replaced by the
supmajorization (submajorization) order.

Proof. The proof is similar to that of Theorem 3.1 by observing that, for any t ∈ �+,

h(c) = P

(
n∑

i=1

φ(ci)Xi > t

)

is Schur-concave in c ∈ �n+ under conditions (3.2) and (3.5). �

Remark 3.3. The results in Theorems 3.1 and 3.2 can be extended to permutation invariant ran-
dom variables; see [11]. This was also pointed out by one of the referees.

Remark 3.4. Theorems 3.1 and 3.2 do not apply to the case that φ(x) = x or/and ψ(x) = x.
One may wonder whether

∑n
i=1 aiXi and

∑n
i=1 biXi are ordered in the usual stochastic order

whenever a,b ∈ �n+ such that a �m b under the assumption that Xi has a log-concave density.
However, this is not true. A counterexample is given by Diaconis and Perlman [3] as follows: For
Xi having a gamma distribution with shape parameter α ≥ 1 (whose density is log-concave) and
n ≥ 3, if a and b differ in exactly two components, then the distribution functions of

∑n
i=1 aiXi

and
∑n

i=1 biXi are of unique crossing. In fact, if a �m b, then E[∑n
i=1 aiXi] = E[∑n

i=1 biXi]
and, hence, there cannot be a stochastic order between the two weighted sums unless there is
equality in distribution.

Remark 3.5. For Theorem 3.1, conditions (3.1) and (3.2) imply that φ and ψ are both convex;
while, for Theorem 3.2, (3.2) and (3.5) imply that φ and ψ are both concave. Some special
choices of φ and ψ in Theorem 3.1 or 3.2 are as follows.

• φ(x) = ψ(x) = ex:
Conditions (3.1) and (3.2) are satisfied. Theorem 3.1 reduces to Theorem 1 in [20]. That is,
if logXi has a log-concave density, we have

(loga1, . . . , logan) �w (logb1, . . . , logbn) �⇒
n∑

i=1

aiXi ≥st

n∑
i=1

biXi. (3.7)

• φ(x) = x1/q and ψ(x) = x1/p:
It can be checked that

(3.1) and (3.2) hold ⇐⇒ (p, q) ∈ A0 ∪ A1 ∪ A2;
(3.2) and (3.5) hold ⇐⇒ (p, q) ∈ A3,
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where

A0 = {(p, q) :p < 0, q < 0},

A1 =
{
(p, q) :p < 0,0 < q < 1,

1

p
+ 1

q
≥ 1

}
,

A2 =
{
(p, q) : 0 < p < 1, q < 0,

1

p
+ 1

q
≥ 1

}
,

A3 =
{
(p, q) :p > 1, q > 1,

1

p
+ 1

q
≤ 1

}
.

Choosing (p, q) ∈ A1,A2 and A3, Theorems 3.1 and 3.2 reduce to Corollaries 3.6, 3.7
and 3.8, respectively. For more details, see Remark 3.10. Choosing (p, q) ∈ A0, from The-
orem 3.1, it follows that

(a
q

1 , . . . , a
q
n) �w (b

q

1 , . . . , b
q
n) �⇒

n∑
i=1

aiXi ≥st

n∑
i=1

biXi (3.8)

when p < 0, q < 0 and X
p
i has a log-concave density. Applying Lemma 2.3(iii) with g(x) =

xβ/q , we have

(a
q

1 , . . . , a
q
n) �w (b

q

1 , . . . , b
q
n) �⇒ (a

β

1 , . . . , aβ
n ) �w (b

β

1 , . . . , bβ
n )

for any q < 0 and β > 0. Thus, (3.8) can be deduced from Corollary 3.6.
• φ(x) = x1/q (q < 0) and ψ(x) = ex:

Conditions (3.1) and (3.2) are satisfied. From Theorem 3.1, it follows that

(a
q

1 , . . . , a
q
n) �w (b

q

1 , . . . , b
q
n) �⇒

n∑
i=1

aiXi ≥st

n∑
i=1

biXi (3.9)

when q < 0 and logXi has a log-concave density. It should be pointed out that (3.9) is
implied by (3.7) because applying Lemma 2.3(iii) with g(x) = q−1 logx yields

(a
q

1 , . . . , a
q
n) �w (b

q

1 , . . . , b
q
n) �⇒ (loga1, . . . , logan) �w (logb1, . . . , logbn).

• φ(x) = log(x + e) and ψ(x) = x1/p (p ≥ 2):
Conditions (3.2) and (3.5) are satisfied. Theorem 3.2 reduces to Corollary 3.9 below, which
can be deduced from Corollary 3.8 by observing g(x) = (log(x + e))q is increasing and
concave on �+ and applying Lemma 2.3(ii).

Corollary 3.6. Let p < 0 and 0 < q < 1 with p−1 + q−1 = 1, and let X1,X2, . . . ,Xn be i.i.d.
random variables with density function f on �+. If X

p

1 has a log-concave density function, then,
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for a,b ∈ �n+,

(a
q

1 , . . . , a
q
n) �w (b

q

1 , . . . , b
q
n) �⇒

n∑
i=1

aiXi ≥st

n∑
i=1

biXi.

Corollary 3.7 ([6]). Let 0 < p < 1 and q < 0 with p−1 + q−1 = 1, and let X1,X2, . . . ,Xn be
i.i.d. random variables with density function f on �+. If X

p

1 has a log-concave density function,
then

(a
q

1 , . . . , a
q
n) �w (b

q

1 , . . . , b
q
n) �⇒

n∑
i=1

aiXi ≥st

n∑
i=1

biXi.

Corollary 3.8 ([20]). Let p > 1 and q > 1 with p−1 + q−1 = 1, and let X1,X2, . . . ,Xn be i.i.d.
random variables with density function f on �+. If X

p

1 has a log-concave density, then, for
a,b ∈ �n+,

(a
q

1 , . . . , a
q
n) �w (b

q

1 , . . . , b
q
n) �⇒

n∑
i=1

aiXi ≤st

n∑
i=1

biXi.

Corollary 3.9. Let p ≥ 2, and let X1,X2, . . . ,Xn be i.i.d. random variables with density func-
tion f on �+. If X

p

1 has a log-concave density function, then, for a,b ∈ [1,∞)n,

(ea1 , . . . , ean) �w (eb1 , . . . , ebn) �⇒
n∑

i=1

aiXi ≤st

n∑
i=1

biXi.

Remark 3.10. In Theorems 3.1 and 3.2, the functions φ and ψ play an independent role. From
Remark 3.5, it is seen that, for ψ(x) = ex , φ(x) = ex is better than φ(x) = x1/q (q < 0). Two
anonymous referees pointed out whether there is any meaning of considering the best possible φ

for a given ψ . This interesting question is worth further investigation. We give a partial answer
to this question.

For given two pairs (φ1,ψ) and (φ2,ψ) satisfying the conditions of Theorem 3.1 (resp. The-
orem 3.2), define g(x) = φ−1

2 ◦ φ1(x) (resp. g(x) = −φ−1
2 ◦ φ1(x)). By Lemma 2.3, φ2 is better

than φ1 if either one of the following conditions holds:

(i) φ1 and φ2 are increasing, and g(x) is convex;
(ii) φ1 is increasing, φ2 is decreasing, and g(x) is concave;

(iii) φ1 is decreasing, φ2 is increasing, and g(x) is convex;
(iv) φ1 and φ2 are decreasing, and g(x) is concave.

For example, denote ψp(x) = x1/p and φq(x) = x1/q with (p, q) ∈ A1 (resp. A2, A3), where the
Ai ’s are defined in Remark 3.5. Fix ψp(x), and choose q∗ ∈ � such that p−1 + q−1∗ = 1 and,
hence, (p, q∗) ∈ A1 (resp. A2, A3). Define

g(x) = φ−1
q∗ ◦ φq(x) = xq∗/q, x ∈ �+.



1784 X. Pan, M. Xu and T. Hu

It is easy to see that, for (p, q) ∈ A1 (resp. A2, A3), g(x) is convex (resp. concave, concave).
Thus, for fixed ψp with (p, q) ∈ Ai (i = 1,2,3), φq∗ is better than φq .

4. Non-i.i.d. nonnegative random variables

Before we prove the main results of this section, we give four lemmas. In the proofs of Theorems
3.1 and 3.2, we use an important fact that a permutation symmetric and log-concave function is
Schur-concave. In Lemma 4.1 below, a sufficient condition is given for a log-concave function
on �2+ to be Schur-concave on D2+ = {(x1, x2) :x1 ≤ x2, (x1, x2) ∈ �2+}. Lemma 4.1 plays a key
role in the proofs of Lemmas 4.3 and 4.4.

Lemma 4.1. If h(x1, x2) is log-concave on �2+ and

h
(
x(2), x(1)

) ≥ h
(
x(1), x(2)

)
for all (x1, x2) ∈ �2+,

then

(x1, x2) 	m (y1, y2) �⇒ h
(
x(1), x(2)

) ≥ h
(
y(1), y(2)

)
.

Proof. Suppose that (x1, x2) 	m (y1, y2). Then there exists α ∈ [1/2,1] such that

x(1) = αy(1) + αy(2), x(2) = αy(2) + αy(1)

with α = 1 − α. So,

logh
(
x(1), x(2)

) = logh
(
αy(1) + αy(2), αy(2) + αy(1)

)
= logh

(
α
(
y(1), y(2)

) + α
(
y(2), y(1)

))
≥ α logh

(
y(1), y(2)

) + α logh
(
y(2), y(1)

)
≥ logh

(
y(1), y(2)

)
,

where the first inequality follows from the log-concavity of h. �

Lemma 4.2 ([17]). Let X and Y be two independent random variables. Then X ≥lr Y if and only
if g(X,Y ) ≥st g(Y,X) for all g ∈ Clr, where

Clr = {g(x, y) :g(x, y) ≥ g(y, x),∀x ≥ y}.

Lemma 4.3. Let X1 and X2 be independent nonnegative random variables satisfying

X1 ≥lr X2,

and let φ,ψ :�+ → �+ be two twice continuously differentiable and strictly monotone functions
such that (3.1) and (3.2) hold. If ψ−1(Xi) has a log-concave density for each i, then

(φ−1(a1),φ
−1(a2)) �m (φ−1(b1),φ

−1(b2)) �⇒ a(2)X1 + a(1)X2 ≥st b(2)X1 + b(1)X2.
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Proof. From the proof of Theorem 3.1, it follows that, for fixed t ≥ 0,

h(c1, c2) = P
(
φ(c1)X1 + φ(c2)X2 ≤ t

)
, η(c1, c2) = P

(
φ(c1)X2 + φ(c2)X1 ≤ t

)
are log-concave in (c1, c2) ∈ �2+ under conditions (3.1) and (3.2).

(1) Suppose that φ is decreasing. By Lemma 4.2, it follows that

φ
(
c(2)

)
X1 + φ

(
c(1)

)
X2 ≤st φ

(
c(1)

)
X1 + φ

(
c(2)

)
X2,

that is,

h
(
c(2), c(1)

) ≥ h
(
c(1), c(2)

)
, (c1, c2) ∈ �2+.

Then, by Lemma 4.1,

φ
(
c(1)

)
X1 + φ

(
c(2)

)
X2 ≤st φ

(
d(1)

)
X1 + φ

(
d(2)

)
X2

whenever (c1, c2), (d1, d2) ∈ �2+ such that (c1, c2) 	m (d1, d2). Setting (c1, c2) = (φ−1(b1),
φ−1(b2)) and (d1, d2) = (φ−1(a1),φ

−1(a2)), it follows that b(2)X1 +b(1)X2 ≤st a(2)X1 +a(1)X2
since φ is deceasing.

(2) Suppose that φ is increasing. Again, by Lemma 4.2, it follows that

η
(
c(2), c(1)

) ≥ η
(
c(1), c(2)

)
, (c1, c2) ∈ �2+.

Then, by Lemma 4.1,

φ
(
c(2)

)
X1 + φ

(
c(1)

)
X2 ≤st φ

(
d(2)

)
X1 + φ

(
d(1)

)
X2

whenever (c1, c2), (d1, d2) ∈ �2+ such that (c1, c2) 	m (d1, d2). This implies b(2)X1 +b(1)X2 ≤st
a(2)X1 + a(1)X2 since φ is increasing. This completes the proof of the lemma. �

Lemma 4.4. Let X1 and X2 be independent nonnegative random variables satisfying

X1 ≥lr X2,

and let φ,ψ :�+ → �+ be two twice continuously differentiable and strictly monotone functions
such that (3.2) and (3.5) hold. If ψ−1(Xi) has a log-concave density for each i, then

(φ−1(a1),φ
−1(a2)) �m (φ−1(b1),φ

−1(b2)) �⇒ a(1)X1 + a(2)X2 ≤st b(1)X1 + b(2)X2.

Proof. From the proof of Theorem 3.2, it follows that, for fixed t ≥ 0,

h(c1, c2) = P
(
φ(c1)X1 + φ(c2)X2 > t

)
, η(c1, c2) = P

(
φ(c2)X1 + φ(c1)X2 > t

)
are log-concave in (c1, c2) ∈ �2+ under conditions (3.2) and (3.5). The rest of the proof is similar
to that of Lemma 4.3 and is, hence, omitted. �

Now, we are ready to present the following two main results, Theorems 4.5 and 4.6.
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Theorem 4.5. Let X1,X2, . . . ,Xn be independent nonnegative random variables satisfying

X1 ≥lr X2 ≥lr · · · ≥lr Xn,

and let φ,ψ :�+ → �+ be two twice continuously differentiable and strictly monotone functions
such that (3.1) and (3.2) hold. Assume that ψ−1(Xi) has a log-concave density for each i. If

(φ−1(a1), . . . , φ
−1(an)) �m (φ−1(b1), . . . , φ

−1(bn)), (4.1)

then
n∑

i=1

a(n−i+1)Xi ≥st

n∑
i=1

b(n−i+1)Xi. (4.2)

Moreover, if φ is increasing (decreasing), the majorization order in (4.1) can be replaced by the
submajorization (supmajorization) order.

Proof. By the nature of the supmajorization and submajorization orders (see the proof of The-
orem 3.1), it suffices to prove that (4.1) implies (4.2). Suppose that (4.1) holds. Then, by Lem-
ma 2.B.1 in [12], there exists a finite number of vectors φ−1(cj

()) := (φ−1(c
j

(1)), . . . , φ
−1(c

j

(n))) ∈
�n+, j = 1, . . . ,N , such that(

φ−1(a(1)

)
, . . . , φ−1(a(n)

)) = φ−1(c1
()

) 	m φ−1(c2
()

) 	m · · · 	m φ−1(cN
()

)
= (

φ−1(b(1)

)
, . . . , φ−1(b(n)

))
,

where ck
() = (ck

(1), . . . , c
k
(n)), the ordered vector of ck = (ck

1, . . . , c
k
n) ∈ �n+, and ck

() and ck+1
() differ

only in two coordinates for each k. Therefore, the desired result now follows from Lemma 4.3 and
the fact that the usual stochastic order is closed under convolution. This completes the proof. �

Similarly, we can prove the next result by using Lemma 4.4.

Theorem 4.6. Let X1,X2, . . . ,Xn be independent nonnegative random variables satisfying

X1 ≥lr X2 ≥lr · · · ≥lr Xn,

and let φ,ψ :�+ → �+ be two twice continuously differentiable and strictly monotone functions
such that (3.2) and (3.5) hold. Assume that ψ−1(Xi) has a log-concave density for each i. If

(φ−1(a1), . . . , φ
−1(an)) �m (φ−1(b1), . . . , φ

−1(bn)), (4.3)

then
n∑

i=1

a(i)Xi ≤st

n∑
i=1

b(i)Xi.

Moreover, if φ is increasing (decreasing), the majorization order in (4.3) can be replaced by the
supmajorization (submajorization) order.
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Combining Theorems 4.5 and 4.6 and Remark 3.5, we have the following corollaries, which
extend some results in Section 3 from i.i.d. to non-i.i.d. nonnegative random variables.

Corollary 4.7 ([19]). Let X1,X2, . . . ,Xn be independent nonnegative random variables satisfy-
ing X1 ≥lr X2 ≥lr · · · ≥lr Xn. If logXi has a log-concave density for each i, then,

(loga1, . . . , logan) �w (logb1, . . . , logbn) �⇒
n∑

i=1

a(n−i+1)Xi ≥st

n∑
i=1

b(n−i+1)Xi.

Corollary 4.8. Let p > 1 and q > 1 with p−1 + q−1 = 1, and let X1,X2, . . . ,Xn be indepen-
dent nonnegative random variables such that X1 ≥lr X2 ≥lr · · · ≥lr Xn. If X

p
i has a log-concave

density function for each i, then, for a,b ∈ �n+,

(a
q

1 , . . . , a
q
n) 	w (b

q

1 , . . . , b
q
n) �⇒

n∑
i=1

a(i)Xi ≥st

n∑
i=1

b(i)Xi.

Corollary 4.9. Let p ∈ (0,1) and q < 0 with p−1 +q−1 = 1, and let X1,X2, . . . ,Xn be indepen-
dent nonnegative random variables such that X1 ≥lr X2 ≥lr · · · ≥lr Xn. If X

p
i has a log-concave

density function for each i, then, for a,b ∈ �n+,

(a
q

1 , . . . , a
q
n) �w (b

q

1 , . . . , b
q
n) �⇒

n∑
i=1

a(n−i+1)Xi ≥st

n∑
i=1

b(n−i+1)Xi.

Corollary 4.10. Let p < 0 and 0 < q < 1 with p−1 + q−1 = 1, and let X1,X2, . . . ,Xn be
independent nonnegative random variables such that X1 ≥lr X2 ≥lr · · · ≥lr Xn. If X

p
i has a log-

concave density function for each i, then, for a,b ∈ �n+,

(a
q

1 , . . . , a
q
n) �w (b

q

1 , . . . , b
q
n) �⇒

n∑
i=1

a(n−i+1)Xi ≥st

n∑
i=1

b(n−i+1)Xi.

Finally, we give an example to which Corollaries 4.7–4.10 can be applied.

Example 4.11. Let X be a nonnegative random variable having the generalized gamma distribu-
tion Fp,α,λ with density function

fp,α,λ(x) = pλα

	(α)
xαp−1e−λxp

, x > 0,

where p > 0, α > 0 and λ > 0 (see [5,14]). This class of distributions includes the Weibull
(α = 1), gamma (p = 1) and the generalized Rayleigh (p = 2) distributions as special cases. It
is easy to see that

• for α ≥ 1, Xp has a log-concave density;
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• for 0 < α < 1, Xαp has a log-concave density;
• for 0 < α1 ≤ α2, Fp,α1,λ ≤lr Fp,α2,λ;
• for 0 < λ1 ≤ λ2, Fp,α,λ2 ≤lr Fp,α,λ1 ;
• logX has a log-concave density.

Corollaries 4.8 and 4.9 can be applied to the above generalized gamma distribution. For ex-
ample, let X1,X2, . . . ,Xn be independent nonnegative random variables having distributions
Fp,α,λ1 ,Fp,α,λ2 , . . . ,Fp,α,λn with 0 < λ1 ≤ λ2 ≤ · · · ≤ λn and α ≥ 1, or having distributions
Fp,α1,λ,Fp,α2,λ, . . . ,Fp,αn,λ with α1 ≥ α2 ≥ · · · ≥ αn ≥ 1. Then Corollaries 4.8 and 4.9 hold for
p > 1 and p < 1, respectively.
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